

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICA

PROYECTO TÉCNICO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA:

"DISEÑO Y CONSTRUCCIÓN ESTRUCTURAL DE UN PROTOTIPO DE AVIÓN NO TRIPULADO TÁCTICO CON SISTEMA MODULAR DESMONTABLE PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE LA FUERZA AÉREA ECUATORIANA DE LA CIUDAD DE AMBATO".

AUTOR: Alex Daniel Chipantiza Bombon

TUTOR: Ing. Mg. Víctor Rodrigo Espín Guerrero

AMBATO – ECUADOR

2019

CERTIFICACIÓN DEL TUTOR

En mi calidad de tutor del trabajo técnico, previo a la obtención del título de Ingeniero Mecánico bajo el tema "DISEÑO Y CONSTRUCCIÓN ESTRUCTURAL DE UN PROTOTIPO DE AVIÓN NO TRIPULADO TÁCTICO CON SISTEMA MODULAR DESMONTABLE PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE LA FUERZA AÉREA ECUATORIANA DE LA CIUDAD DE AMBATO" elaborado por el Sr. Alex Daniel Chipantiza Bombon, portador de la cédula de ciudadanía: 180459273-9, estudiante de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato.

Certifico:

Que la presente tesis es original de su autor. Ha sido revisado cada uno de sus capítulos. Es concluida y puede continuar con el trámite correspondiente.

Ambato, agosto 2019

EL TUTOR

Ing. Mg. Víctor Espín DOCENTE INGENIERÍA MECÁNICA

AUTORÍA

Yo, Alex Daniel Chipantiza Bombon, manifiesto que el contenido del proyecto técnico bajo el tema "DISEÑO Y CONSTRUCCIÓN ESTRUCTURAL DE UN PROTOTIPO DE AVIÓN NO TRIPULADO TÁCTICO CON SISTEMA MODULAR DESMONTABLE PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE LA FUERZA AÉREA ECUATORIANA DE LA CIUDAD DE AMBATO", así como también los objetivos, resultados, conclusiones, recomendaciones con excepción de los fundamentos teóricos y definiciones, son auténticos y de responsabilidad exclusiva de mi persona en calidad de autor del presente proyecto.

Ambato, agosto 2019

EL AUTOR

Alex Daniel Chipantiza Bombon

C.C: 180459273-9

DERECHOS DE AUTOR

Yo, Alex Daniel Chipantiza Bombon, con C.I. 180459273-9, autorizo a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico o parte de él un documento para la lectura, consulta y proceso de investigación según las normas de la institución.

Cedo los derechos de mi Proyecto Técnico con fines de difusión pública, además la reproducción del mismo dentro de las regulaciones de la Universidad, siempre y cuando que dicha reproducción no represente ganancia económica y se realice bajo mis derechos de autor.

Ambato, agosto 2019

EL AUTOR

Alex Daniel Chipantiza Bombon

C.C: 180459273-9

APROBACIÓN DE TRIBUNAL DE GRADO

Los miembros de tribunal de grado aprueban el informe de Proyecto Técnico realizado por el egresado Alex Daniel Chipantiza Bombon de la carrera de Ingeniería Mecánica, bajo el tema "DISEÑO Y CONSTRUCCIÓN ESTRUCTURAL DE UN PROTOTIPO DE AVIÓN NO TRIPULADO TÁCTICO CON SISTEMA MODULAR DESMONTABLE PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE LA FUERZA AÉREA ECUATORIANA DE LA CIUDAD DE AMBATO".

Por constancia firman.

More Guerfungersp 6

Ing. Jorge Guamanquispe T, Mg.

Kionzale

Ing. Gonzalo Eduardo López Villacís, Mg.

DEDICATORIA

Por su amor, enseñanza y dedicación, Mamá Martha le dedico todo este tiempo de investigación para obtener uno de los anhelos más deseados en mi vida

AGRADECIMIENTO

Agradezco a Dios por guiarme, ser mi apoyo y fortaleza en todo momento.

A mis Padres Mentor y Martha por confiar y creer en mis sueños, por los consejos y el apoyo incondicional.

A mis hermanos Leslie y Pablo que han estado conmigo en todo momento y siempre, me brindaron palabras de aliento para culminar esta meta.

A mis amigos por apoyarme en el trascurso de la Universidad y brindarme su apoyo cuando más lo necesite.

ÍNDICE GENERAL DE CONTENIDOS

PÁGINAS PRELIMINARES

Certificación del tutor	II
Autoría	III
Derechos de autor	IV
Aprobación de tribunal de grado	V
Dedicatoria	VI
Agradecimiento	VII
Índice general de contenidos	VIII
Índice de figuras	XII
Índice de tabla	XVIII
Resumen ejecutivo	XXI
Executive summary	XIX

CAPÍTULO I MARCO TEÓRICO

1.1.	Ant	ecedentes Investigativos	1
1.2.	Fur	damentación teórica	5
1.2	.1.	Aerodinámica	5
1.2	.2.	Origen de cargas aerodinámicas	5
1.2	.3.	Número de Reynolds	6
1.2	.4.	Teorema de Bernoulli	7

1.2.5.	Perfiles aerodinámicos	7
1.3. Ob	jetivos	14
1.3.1.	Objetivo general	14
1.3.2.	Objetivos específicos	14

CAPÍTULO II METODOLOGÍA

2.1. Mater	iales compuestos reforzados con fibras	15
2.1.1.	Influencia de la orientación y concentración de la fibra	15
2.1.2.	Fibra de vidrio	19
2.1.3.	Fibra de carbono	20
2.1.4.	Materiales matrices para compuesto reforzado con fibra	22
2.1.5.	Madera de balsa	24
2.2. Mé	todos	24
2.2.1.	Parámetros para el diseño de la estructura de prototipo UAV Táctico	24
2.2.2.	Selección del perfil alar	31
2.2.3.	Estructura principal de un vehículo aéreo no tripulado	41
2.2.4.	Dimensionamiento de estructura principal del UAV	42
2.2.5.	Diseño del ala, fuselaje y cola	49
2.2.5.1.	Diseño del ala	49
2.2.5.2.	Diseño del fuselaje	62
2.2.5.3.	Diseño de cola	65
2.2.6.	Sistema desmontable	67

CAPÍTULO III RESULTADOS Y DISCUSIÓN

3.1.	Fuerzas que actúan en un avión no tripulado	68
3.1.	1. Sustentación	68
3.1.	2. Peso del UAV	69
3.1.	3. Tracción del motor	69
3.1.	4. Resistencia al avance del UAV	69
3.2.	Cálculo de fuerzas que actúan en el UAV	70
3.2.	1. Cálculo de fuerza de sustentación	70
3.2.	2. Cálculo de fuerza de resistencia	71
3.2.	3. Cálculo de peso del UAV (vehículo aéreo no tripulado)	71
3.2.	4. Cálculo de momento de cabeceo	71
3.3.	Factor de seguridad	72
3.4.	Propiedades de los materiales utilizados en la fabricación de la estruc	tura
del U	AV	72
3.4.	1. Número de capas	72
3.4.	2. Propiedades de los materiales compuestos	73
3.4.	3. Propiedades de la fibra de vidrio	73
3.4.	4. Propiedades de la balsa	74
3.4.	5. Propiedades de la resina epóxica	74
3.4.	6. Propiedades de material compuesto para la cabina	79
3.4.	7. Propiedades de material compuesto para el ala	80
3.4.	8. Propiedades de material compuesto de viga para el ala	80
31		
5.4.	9. Propiedades de material compuesto para tubos	81

3.6.	An	álisis estructural mediante elementos finitos	105
3.6.	1.	Análisis de viga principal del ala	105
3.6.	2.	Análisis de unión cabina – ala	109
3.7.	An	álisis aerodinámico de UAV	114
3.8.	Par	ámetros de mecanizado de moldes	122
3.9.	Cu	rsograma análitico de procesos	126
3.10). C	Costos	131

CAPÍTULO IV CONCLUSIONES Y RECOMENDACIONES

4.1.	Conclusiones	136
4.2.	Recomendaciones	137
Refere	encias bibliograficas	138
ANEX	XOS	142
Anexo	o A. Certificado de culminación de proyecto	142
Anexo	B. Propiedades fibra de carbono	143
Anexo	C. Propiedades de resina epoxica	145
Anexo	D. Imágenes de proceso de elaboración de moldes de ala	146
Anexo	DE. Imágenes de proceso de elaboración de moldes de cabina	146
Anexo	p F. Imágenes de proceso de laminado de ala	147
Anexo	G. Imágenes de proceso de elaboración laminado de cabina	148
PLAN	NOS	149

ÍNDICE DE FIGURAS

Figura 1.1. Cuadernas centrales y secundarias del UAV Gavilán1
Figura 1.2. Diseño modular UAV Céfiro2
Figura 1.3. UAV Céfiro
Figura 1.4. Diseño de UAV
Figura 1.5. Comportamiento aerodinámico con respecto a la velocidad
Figura 1.6 Presión con respecto a la superficie
Figura 1.7. Distribución de presión neta, P - P ∞ , y esfuerzo viscoso (τ) sobre una
superficie, donde $P\infty$ es un valor de presión de referencia5
Figura 1.8. Coeficiente de resistencia vs Reynolds
Figura 1.9. Perfil alar plano – convexo
Figura 1.10. Perfil alar cóncavo – convexo
Figura 1.11. Perfil alar biconvexo simétrico
Figura 1.12. Perfil alar supercrítico
Figura 1.13. Representación de terminología del ala10
Figura 1.14. Perfil alar
Figura 1.15. Representación de borde de ataque11
Figura 1.16. Perfil simétrico con ángulo de ataque cero 12
Figura 1.17. Perfil simétrico con ángulo de ataque positivo
Figura 1.18. Perfil simétrico con aumento de ángulo de ataque
Figura 1.19. Posición del centro de presión (cp.)14
Figura 2.1. Alineación de fibras continuas
Figura 2.2. Alineación de fibras discontinuas16
Figura 2.3. Materiales utilizados para el cuerpo del Boeing 787
Figura .2.4. Tejido de fibra en dos, tres y cuatro direcciones

Figura 2.5 Representación de carga útil.	
Figura 2.6. Perfil alar (ag35-il) AG35	
Figura 2.7. Coeficiente de sustentación versus ángulo de ataque	40
Figura 2.8. Coeficiente de arrastre versus ángulo de ataque	40
Figura 2.9. Cl/Cd versus ángulo de ataque.	41
Figura 2.10. Ala	41
Figura 2.11. Fuselaje	
Figura 2.12. Configuración de cola en T	
Figura 2.13. Angulo diedro [31]	50
Figura 2.14 Dimensiones del perfil alar	50
Figura 2.15 Opción 1 AG 35	51
Figura 2.16 Propiedades de masa de AG 35 opción 1	51
Figura 2.17. Resultados de deformación AG 35 opción 1	
Figura 2.18. Opción 2 AG 35	
Figura 2.19. Propiedades de masa de AG 35 opción 2	
Figura 2.20. Análisis de deformación	53
Figura 2.21. Ala rectangular y trapezoidal. [32]	53
Figura 2.22. Distribución estructural rectangular del ala	54
Figura 2.23. Ala rectangular	54
Figura 2.24. Distribución estructural trapezoidal del ala.	55
Figura 2.25. Estructura del ala trapezoidal	55
Figura 2.26. Estructura de ala compuesta	56
Figura 2.27. Ala con perfil AG 35	56
Figura 2.28. Análisis de von Mises en el ala	57
Figura 3.29. Deformación máxima del ala	57

Figura 2.30. Análisis de Von Mises disminuyendo la presión atmosférica	58
Figura 2.31. Deformación del ala a menor presión atmosférica	58
Figura 2.32. Diedro del ala	59
Figura 2.33. Ubicación de alerón	60
Figura 2.34. Tipos de winglet. [34]	60
Figura 2.35.Angulo de inclinación recomendado	61
Figura 2.36. Ala completa de UAV	61
Figura 2.37. Componentes principales del fuselaje [35]	62
Figura 2.38. Angulo de inclinación de nariz vs Factor de corrección de la nariz er	ı el
momento de lanzamiento.	63
Figura 2.39. Geometría de nariz	63
Figura 2.40. Diseño de nariz.	64
Figura 2.41. Diseño de cabina	64
Figura 2.42. Diseño de cola	65
Figura 2.43. Estabilizador horizontal.	65
Figura 2.44. Estabilizador vertical	66
Figura 2.45. Cola en T	66
Figura 2.46. Sistema desmontable del ala.	67
Figura 2.47. Sistema desmontable de cola.	67
Figura 3.1. Fuerzas que actúan en un avión [25]	68
Figura 3.2. Representación de diferencia de presiones [7]	68
Figura 3.3. Fuerzas y momento de origen aerodinámico sobre un perfil [4]	70
Figura 3.4. Aplicación de momento en perfil alar [6]	72
Figura 3.5. Representación de cargas aplicadas en la viga del ala	84
Figura 3.6. Diagrama de cuerpo libre de la viga en el plano X-Y	85

Figura 3.7. Diagrama de cuerpo libre en el plano X-Y	86
Figura 3.8. Método de secciones aplicado a la viga del ala	
Figura 3.9. Diagrama de esfuerzos de la viga	
Figura 3.10. Diagrama de momentos	
Figura 3.11. Diagrama de viga plano x-z	
Figura 3.12. Carpa puntual aplicada en el plano x-z	
Figura 3.13. Método de secciones aplicado a la viga del ala	
Figura 3.14. Diagrama de esfuerzos de la viga	
Figura 3.15. Diagrama de momentos en el ala	
Figura 3.16. Viga en C	91
Figura 3.17. Áreas de viga en C para t=4mm	92
Figura 3.18. Áreas de viga en C	94
Figura 3.19. Unión de ala a la cabina	
Figura 3.20. Fuerzas que actúan en el tubo	
Figura 3.21. Método de secciones aplicado al tubo.	
Figura 3.22. Diagrama de esfuerzos en el tubo	
Figura 3.23. Diagrama de momentos	
Figura 3.24. Diagrama de cuerpo libre plano (X-Z)	
Figura 3.25. Método de secciones aplicado en el tubo	
Figura 3.26. Diagrama de esfuerzos en el tubo	
Figura 3.27. Diagrama de momentos en el ala	
Figura 3.28. Viga del ala	
Figura 3.29. Propiedades mecánicas de material	
Figura 3.30. Especificación de coordenadas	107
Figura 3.31. Empotramiento y cargas que actúan en el ala	

Figura 3.32. Mallado para simulación	8
Figura 3.33. Tensión de von Mises 10	8
Figura 3.34. Desplazamiento máximo de la viga10	9
Figura 3.35. Factor de diseño10	9
Figura 3.36. Tubo de unión cabina – ala11	0
Figura 3.37. Propiedades mecánicas de compuesto11	0
Figura 3.38 Empotramiento y cargas que actúan en el tubo11	1
Figura 3.39. Parámetros de mallado para simulación11	1
Figura 3.40. Mallado de tubo 11	2
Figura 3.41. Tensión de von Mises 11	2
Figura 3.42. Desplazamiento máximo del tubo 11	3
Figura 3.43. Factor de diseño11	3
Figura 3.44. Sistema de unidades para análisis11	4
Figura 3.45. Selección de tipo de análisis11	4
Figura 3.46. Selección de flujo laminar y fluido11	5
Figura 3.47. Condiciones iniciales para el análisis11	5
Figura 3.48. Dominio computacional11	6
Figura 3.49. Velocidad angular de motor11	6
Figura 3.50. Parámetros de mallado11	7
Figura 3.51. Metas del estudio	7
Figura 3.52. Fuerzas obtenidas	8
Figura 3.53. Comportamiento de velocidad en Z11	8
Figura 3.54. Comportamiento de velocidad de UAV11	9
Figura 3.55 Resultado de presiones sobre UAV 11	9
Figura 3.56. Análisis de von Mises en el ala12	0

Figura 3.57 Deformación del ala	120
Figura 3.58 Análisis de von Mises en la cola	121
Figura 3.59. Deformación de la cola	121
Figura 3.60. Factor de diseño en la cola	122
Figura3.61. Fibra de vidrio para laminación [38]	132
Figura 3.62. Resina Epóxica y acelerante [38]	132

ÍNDICE DE TABLA

Tabla 2.1. Características de las fibras de refuerzo 19	9
Tabla 2.2. Módulo elástico de las fibras	0
Tabla 2.3. Propiedades mecánicas de refuerzos	2
Tabla. 2.4. Propiedades mecánicas de la fibra de carbono	2
Tabla 2.5. Propiedades de diferentes tipos de resinas. 2.3	3
Tabla 2.6. Propiedades de resina epóxica, poliéster y fibra de carbono. 2.2	3
Tabla 2.7. Propiedades elásticas de fibra de vidrio y carbono. 2.7.	3
Tabla 2.8. Propiedades mecánicas de la balsa	4
Tabla 2.9. Propiedades mecánicas de la balsa	4
Tabla 2.10. Componentes de carga útil	5
Tabla 2.11. Estimación preliminar de peso UAV. 20	6
Tabla 2.12. Peso estimado	6
Tabla 2.13. Condiciones atmosféricas Aeropuerto Chachoán (ATF). 27	7
Tabla 2.14. Características estándar de la atmosfera. 28	8
Tabla 2.15. Descripción de perfiles alares 3	1
Tabla 2.16. Ponderación de coeficiente de sustentación	5
Tabla 2.17. Ponderación de resistencia. 33	5
Tabla 2.18. Ponderación de coeficiente (Cl/Cd) 30	6
Tabla 2.19. Ponderación final. 30	6
Tabla 2.20. Características del perfil	7
Tabla 2.21. Coeficiente de carga alar	3
Tabla 2.22. Parámetros a considerar para el diseño. 49	9
Tabla 2.23. Dimensiones generales del ala. 50	0

Tabla 2.24. Dimensiones generales del alerón. 59
Tabla 2.25. Dimensiones generales de fuselaje. 62
Tabla 2.26. Dimensiones generales del alerón de cola en T. 66
Tabla 3.1 Número de capas para fuselaje72
Tabla 3.2. Propiedades mecánicas de fibra de carbono 73
Tabla 3.3. Propiedades mecánicas de fibra de vidrio
Tabla 3.4. Propiedades mecánicas de la balsa
Tabla 3.5. Propiedades mecánicas de fibra de vidrio
Tabla 3.6. Materiales utilizados para el fuselaje. 75
Tabla 3.7. Materiales utilizados para el ala
Tabla 3.8. Materiales utilizados para la viga del ala 75
Tabla 3.9. Materiales utilizados para el tubo de unión ala -fuselaje
Tabla 3.10. Propiedades de material compuesto para la cabina
Tabla 3.11. Propiedades de material compuesto del ala 80
Tabla 3.12. Propiedades de material compuesto de viga del ala
Tabla 3.13. Propiedades de material compuesto de tubos
Tabla 3.14. Fuerzas que actúan en la aeronave 84
Tabla 3.15. Datos para obtener centroide y momento de inercia Ixx
Tabla 3.16. Datos para obtener centroide y momento de inercia IYY
Tabla 3.17. Datos para obtener centroide y momento de inercia IXX
Tabla 3.18. Datos para obtener centroide y momento de inercia IYY
Tabla 3.19. Parámetros de mecanizado para moldes 122
Tabla 3.20. Velocidad de corte y avance por diente recomendado. [37]
Tabla 3.21. Parámetros de mecanizado obtenidos
Tabla 3.22. Cursograma analítico de proceso de construcción de molde del ala 127

Tabla 3.23. Cursograma analítico de proceso de construcción de molde de cabina 12	28
Tabla 3.24. Cursograma analítico de proceso laminado del ala	29
Tabla 3.25. Cursograma analítico de proceso de laminado de la cabina	30
Tabla 3.26. Área requerida de fibra de carbono y fibra de vidrio	31
Tabla 3.27. Fibra de carbono para laminación [38] 13	31
Tabla 3.28. Cantidad de resina epóxica y acelerante utilizados para laminar 13	33
Tabla 3.29. Costo de materiales 13	33
Tabla 3.30. Costos de maquinaria y equipos 13	34
Tabla 3.31. Costos adicionales	34
Tabla 3.32. Costo total del proyecto 13	35

RESUMEN EJECUTIVO

El presente proyecto se realizó en el Centro de Investigación Desarrollo de la Fuerza Aérea Ecuatoriana, el cual tiene como finalidad diseñar y construir la estructura de un prototipo UAV Táctico mediante un sistema modular desmontable como requisito del centro de investigación. Con el sistema desmontable se busca una mejor forma de transportar el UAV a diferentes misiones, reduciendo el espacio a ocupar en el medio de transporte que se elija, además de la facilidad de ensamblar y retirar el ala y la cola de la aeronave.

Para realizar el diseño del prototipo se consideró parámetros como el peso, dimensiones tanto del fuselaje, ala y cola, además de las velocidades de perdida y crucero para conocer el comportamiento del UAV mediante un análisis aerodinámico, observando su comportamiento en condiciones de vuelo crucero, además de las perdidas mínimas debido a la fricción de aeronave cuando entra en contacto con las partículas de aire. En el cálculo y análisis estructural se aplicó el factor de seguridad de 1,5 según las normas federales de aviación (FAR/AIM), el cual permite evitar desastres en caso de requerirse una fuerza superior al límite.

La elaboración de la estructura se realizó mediante materiales compuestos como la fibra de carbono y resina epóxica que se utilizó para la laminación de la cabina, y el material compuesto formado por fibra de vidrio, carbono y resina epóxica para la piel del ala, brindando un menor peso además de una elevada resistencia a los impactos.

Finalmente se obtuvo la estructura del prototipo UAV, en el cual se desmonta el ala y la cola con facilidad, cumpliendo con los requerimientos establecidos por el Centro de Investigación.

EXECUTIVE SUMMARY

This project was carried out at the Development Research Center of the Ecuadorian Air Force, which aims to design and build the structure of a Tactical UAV prototype using a detachable modular system as a requirement of the research center. The detachable system seeks a better way to transport the UAV to different missions, reducing the space to be occupied in the means of transport that is chosen, in addition to the ease of assembling and removing the wing and tail of the aircraft.

To design the prototype, parameters such as weight, dimensions of both the fuselage, wing and tail were considered, as well as the speeds of loss and cruiser to know the behavior of the UAV through an aerodynamic analysis, observing its behavior in cruise-flying conditions, in addition to minimal losses due to aircraft friction when it comes into contact with air particles. The safety factor of 1.5 sec was applied in the structural calculation and analysis, according to federal aviation standards (FAR/AIM), which allows disasters to be avoided if a force exceeds the limit is required.

The structure was developed using composite materials such as carbon fiber and epoxy resin that was used for the lamination of the cab, and the composite material consisting of fiberglass, carbon and epoxy resin for the wing skin, providing a less weight in addition to high impact resistance.

Finally, the structure of the UAV prototype was obtained; the wing and tail are disassembled easily, fulfilling the requirements established by the Research Center.

CAPÍTULO I

MARCO TEÓRICO

1.1. ANTECEDENTES INVESTIGATIVOS

Wilson Pineda, presenta como proyecto la realización del análisis estructural de las cuadernas centrales para optimizar el peso del vehículo aéreo no tripulado (UAV) gavilán en el Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana, para lo cual el investigador se enfoca en las propiedades de los materiales de cada elemento, en las condiciones críticas de vuelo en base Federal Aviation Regular (FAR) y en base a los parámetros como velocidad del aire y presión atmosférica, mediante un software de diseño y simulación se obtienen esfuerzos, deformaciones y factor de seguridad, lo cual permite modificar la estructura de las cuadernas.

En la figura 1.1. se observa la distribución de las cuadernas centrales y secundarias, las cuales soportan las cargas que se producen durante el vuelo y además contienen los componentes principales de la aeronave.

Figura 1.1. Cuadernas centrales y secundarias del UAV Gavilán [1]

Para la optimización del peso en el UAV gavilán, se obtuvo una nueva configuración en los materiales, buscando reducir el peso de los mismos y posteriormente se realizó un análisis estático para la comprobación del diseño. [1]

De esta manera como menciona el investigador se reduce el peso en un 28.1% para la cuaderna central y en un 0.31% en el peso total de la aeronave. [1]

En el proyecto con el tema "Diseño estructural y construcción de un avión no tripulado" del año 2008 realizada por: Daniel Pérez, el cual presenta un diseño del UAV Céfiro buscando la facilidad y simplificación de pasos de construcción, para lo cual inicialmente el investigador estima los pesos y centro de gravedad, siendo estos datos de gran importancia ya que de esto depende la estabilidad de UAV. [2]

En la figura 1.2 se muestra el diseño estructural del UAV Céfiro con un sistema modular el cual permite realizar cambios en la estructura en caso de ser necesario, y además se sustituyen los componentes de una manera más fácil. [2]

Figura 1.2. Diseño modular UAV Céfiro [2]

En la figura 1.3 se muestra el UAV Céfiro listo para volar, el cual este cubierto por una piel de balsa.

Figura 1.3. UAV Céfiro [2]

En el tema de investigación "Diseño aerodinámico de un UAV MALE" del año 2016 realizado por: Panagiotou P, el cual presenta el procedimiento del diseño aerodinámico de un vehículo aéreo no tripulado, teniendo dos fases de diseño conceptual y preliminar. En el diseño conceptual se trabaja las configuraciones diferentes de modelos de UAV, basados en la misión que va a cumplir, mientras que el diseño preliminar se enfoca en el análisis aerodinámico. [3]

En la figura 1.4 se muestra el diseño del UAV, el cual tiene un peso de 185 kg, una velocidad crucero de 160km/h y una velocidad de perdida de 70km/h. [3]

Figura 1.4. Diseño de UAV [3]

Ademas, se realiza un analisis aerodinamico en el cual se muestra el comportamiento de la velocidad, con un valor máximo de 7.086 m/s como se muestra en la figura 1.5.

Figura 1.5. Comportamiento aerodinámico con respecto a la velocidad [3]

También se muestra el análisis de presiones con respecto a la superficie del UAV como se muestra en la figura 1.6.

Figura 1.6 Presión con respecto a la superficie. [3]

1.2. FUNDAMENTACIÓN TEÓRICA

1.2.1. Aerodinámica

Se entiende por aerodinámica a la especialidad de la mecánica que analiza la interacción entre un cuerpo y un elemento sólido cuando están en movimiento. [4]

Se tiene como objetivos principales de la aerodinámica:

- Evaluar las fuerzas, momentos y la transferencia de calor que provoca el movimiento relativo alrededor de los cuerpos. [4]
 Por ejemplo, se busca conocer la sustentación, resistencia y momentos alrededor de un ala.
- Otro de los objetivos es definir las propiedades del flujo a través de conductos (aerodinámica interna). [4]

1.2.2. Origen de cargas aerodinámicas

Para entender el origen de las cargas aerodinámicas se tienen dos causas:

La primera es la distribución de presiones en un cuerpo (alas, fuselaje, estabilizadores), entendiéndose como la diferencia presiones (P) entre la presión ambiental que rodea al cuerpo (P_{∞}) y la segunda es la distribución de esfuerzos viscosos sobre la superficie de un cuerpo (P_{τ}). [4]

En la figura 1.7 se observa que las presiones actúan en la dirección normal a la superficie del cuerpo y los esfuerzos viscosos en dirección tangencial al cuerpo.

Figura 1.7. Distribución de presión neta, $P - P_{\infty}$, y esfuerzo viscoso (τ) sobre una superficie, donde P_{∞} es un valor de presión de referencia. [4]

1.2.3. Número de Reynolds

Se entiende por número de Reynolds a un valor adimensional que mide la relación entre las fuerzas de inercia y las fuerzas viscosas, determinando el grado de flujo laminar o turbulento. [5]

Si se tiene un valor de número de Reynolds relativamente alto la capa limite es turbulenta, caso contrario si el valor es relativamente pequeño la capa limite es laminar. [6]

En un perfil, cerca del borde de ataque la capa limite es laminar y mientras la distancia del borde de ataque vaya aumentando, el número de Reynolds va incrementando y la capa limite podría ser turbulenta. [6]

En la figura 1.8 se observa la variación del coeficiente de resistencia en los casos de una capa limite laminar y turbulenta en función del número de Reynolds para una placa plana. También se visualiza la zona en la cual se produce la transición que ocurre para valores de Reynolds entre medio millón y 10 millones, que se produce dependiendo de la rugosidad de la superficie, la temperatura de la superficie, la turbulencia de la corriente libre de aire y la distribución de presiones. [6]

Figura 1.8. Coeficiente de resistencia vs Reynolds [6]

El número de Reynolds de un avión no tripulado se calcula mediante la Ec [1], cabe recalcar que el valor no siempre es el mismo durante el vuelo.

Donde:

v es la velocidad del fluido en m/s

l es la longitud de la cuerda del ala en m

 ρ es densidad del fluido

 μ es viscosidad dinámica del fluido

 ν es viscosidad cinemática del fluido

1.2.4. Teorema de Bernoulli

El teorema de Bernoulli, relaciona la presión y la velocidad entre dos puntos situados a la misma altura, el cual se expresa mediante la siguiente formula.

$$P + \frac{\rho * V^2}{2} = \text{constante}$$
 Ec. [2]

Si la velocidad del aire aumenta, existe una reducción de la presión y si hay una reducción de la velocidad se da un incremento de presión. [7]

Entonces, si la velocidad del aire es mayor en extradós (parte superior del ala), se tendrá menor presión y en intradós (parte inferior del ala) al ser menor la velocidad ya que se opone al movimiento del ala, existe un incremento de presión. [7]

1.2.5. Perfiles aerodinámicos

1.2.5.1. Tipos de perfiles aerodinámicos

Los perfiles aerodinámicos van a variar de forma individual o total, cambiando totalmente las características aerodinámicas y con esto se obtendrán diferentes tipos de perfiles que son utilizados en la actualidad que se muestran a continuación:

• **Plano – Convexo:** En este tipo de perfil la superficie inferior o intradós es recta y la superficie superior o extradós es curva. En este perfil, la cuerda es la distancia entre el borde de ataque y borde de salida a lo largo de intradós. [8]

Figura 1.9. Perfil alar plano – convexo [8]

• **Cóncavo – Convexo:** El intradós es curvado hacia dentro del perfil. La cuerda de este tipo de perfil es la distancia en línea recta entre el extremo del borde de ataque y el borde de salida, pasando por fuera de parte del contorno del perfil. [8]

Figura 1.10. Perfil alar cóncavo – convexo [8]

• **Biconvexo Simétrico:** Se utiliza en aeronaves de alta velocidad, las curvaturas del extradós y del intradós son iguales. La cuerda se mide de igual forma que el perfil biconvexo asimétrico. [8]

Figura 1.11. Perfil alar biconvexo simétrico [8]

• **Supercrítico:** Es un perfil utilizado para vuelos cerca de la velocidad del sonido. [8]

Figura 1.12. Perfil alar supercrítico [8]

1.2.5.2. Nomenclatura del ala

En la figura 1.13 se muestra la terminología del ala, para mayor entendimiento de definiciones como cuerda (c), la superficie alar (S) y envergadura. Para definir la geometría del ala se tiene la cuerda de raíz (C_r) y la cuerda de punta (C_p). [6]

• Envergadura (b): Es la distancia máxima del ala, medida de punta a punta de ala, sin importar la forma que esta tenga. [6]

• **Superficie alar (S):** Es la superficie vista desde la parte superior del ala, además se debe incluir la parte del ala que está cubierta por el fuselaje o góndolas de los motores. [6]

• **Cuerda media (c):** Se entiende por cuerda media, como aquella que multiplicada por la envergadura es igual a la superficie alar. [6]

$$c * b = S \qquad Ec. [3]$$

c es la cuerda media en cm

b es la envergadura del ala en cm

S es la superficie alar en cm^2

• **Estrechamiento** (λ): Se define por la siguiente formula:

$$\lambda = \frac{C_t}{C_r} \qquad \qquad \text{Ec. [4]}$$

Donde:

 C_r : cuerda del perfil en el encastre

Ct: cuerda de perfil en la punta

• Alargamiento (AR): Se entiende como la relación entre la envergadura y la cuerda media. [6]

$$AR = \frac{b^2}{s} \qquad \qquad Ec. [5]$$

Donde:

b es la envergadura del ala en cm

S es la superficie alar en cm²

- Línea del 25% de la cuerda: El centro aerodinámico está ubicado alrededor del 25% de la cuerda media aerodinámica, siendo de gran importancia tanto para consideraciones de proyecto como de centrado. [6]
- Flecha (Λ): Se conoce como al ángulo que forma la proyección sobre un plano horizontal de la línea de 25% de la cuerda con el eje OY del avión no tripulado. [6]

- **Curva media aerodinámica:** Se tiene en un ala rectangular de la misma envergadura y sin flecha que produjera el mismo momento y sustentación. [6]
- Diedro (Γ): Es la inclinación del plano de ala con respecto al plano XY del vehículo aéreo no tripulado. [6]
- Torsión: Puede ser geométrica o aerodinámica. [6]

Figura 1.13. Representación de terminología del ala [6]

En la figura 1.14 se muestran las partes principales de un perfil alar.

Figura 1.14. Perfil alar [4]

Borde de ataque: Es el punto más adelantado del perfil.

Borde de salida: Es el punto final del perfil.

Cuerda: Es la línea recta que une el borde de ataque con el borde de salida.

Línea de curvatura: Es la línea medida perpendicularmente a la cuerda y equidistante entre intradós y extradós.

Curvatura: Distancia entre la línea de curvatura y cuerda.

Espesor: Se mide desde intradós hasta extradós, esta medida debe ser perpendicular a la cuerda.

Radio de borde de ataque: Es la medida de la curvatura del borde de ataque.

A la parte superior del perfil se llama **extradós**, mientras que a la parte inferior **intradós**.

Ángulo de ataque: Es el ángulo que existe entre la cuerda y la dirección de la corriente libre de aire.

Figura 1.15. Representación de borde de ataque [6]

1.2.6. Coeficientes aerodinámicos

Es de importancia tener en cuenta estos coeficientes en la aerodinámica ya que se puede describir un fenómeno físico arbitrario mediante una mínima cantidad de variables. [4]

Para el análisis dimensional se utilizan los siguientes coeficientes adimensionales de sustentación (C_l), resistencia (C_d) y el momento (C_m) que dependen del ángulo de ataque (\propto) y el número de Reynolds. [4]

Coeficiente de sustentación: Es un número el cual permite conocer las dependencias complejas de forma, inclinación y algunas condiciones de flujo en la elevación. [9]

$$C_{l} = \frac{L}{\frac{1}{2}*\rho*v^{2}*S} \qquad \text{Ec. [6]}$$

Donde:

C_l es el coeficiente de sustentación

- L es la fuerza de sustentación en Newtons
- ρ es la densidad del aire en kg/m³

v es la velocidad en m/s

S es la superficie alar en m^2

Coeficiente de resistencia: Con este número se determina las dependencias complejas de forma, inclinación y condiciones de flujo en la resistencia del avión no tripulado. [10]

$$C_{d} = \frac{D}{\frac{1}{2}*\rho*v^{2}*S}$$
 Ec. [7]

Donde:

 C_d es el coeficiente de resistencia

D es la fuerza de resistencia en Newtons

1.2.7. Fuerza resultante sobre un perfil alar

En la figura 1.16 se observa un perfil simétrico con ángulo de ataque cero, en donde se muestra la distribución de presiones. [6]

Figura 1.16. Perfil simétrico con ángulo de ataque cero [6]

En la figura 1.17 se observa un perfil con ángulo de ataque positivo, observándose la distribución de las líneas de la corriente con un incremento de velocidad en el extradós respecto a la corriente libre y disminución en el intradós. [6]

Figura 1.17. Perfil simétrico con ángulo de ataque positivo [6]

Además, en la figura 1.18 se aprecia el aumento del ángulo de ataque y la distribución de presiones cambia como se indica. En el extradós la depresión aumenta y puede ser positiva en el intradós y debido a esto la sustentación aumenta con el ángulo de ataque. [6]

Figura 1.18. Perfil simétrico con aumento de ángulo de ataque [6]

En la figura 1.19. se observa que cuando mayor es el ángulo de ataque, el centro de presiones se ubica más cerca del borde de ataque, cabe recalcar que esta observación se realiza en un perfil asimétrico. [6]

Figura 1.19. Posición del centro de presión (cp.) [6]

1.2.8. Análisis por elementos finitos

Es de importancia el análisis de elementos finitos para el diseño del avión no tripulado, ya que después de estimarse el valor de las cargas aerodinámicas mediante métodos analíticos, se utilizan métodos computacionales aplicando dinámica de fluidos computacional para obtener resultados más precisos. [11]

1.3. OBJETIVOS

1.3.1. Objetivo general

Desarrollar un prototipo UAV Táctico con sistema modular desmontable

1.3.2. Objetivos específicos

- Determinar los parámetros necesarios para el desarrollo del prototipo UAV.
- Diseñar los elementos constitutivos del prototipo UAV.
- Construir el prototipo mediante moldes de fuselaje, alas y estabilizadores, cumpliendo los requerimientos del diseño establecido.
- Analizar el comportamiento aerodinámico del prototipo mediante elementos finitos.
CAPÍTULO II

METODOLOGÍA

2.1. MATERIALES COMPUESTOS REFORZADOS CON FIBRAS

En la actualidad es común el uso de materiales compuestos reforzados con fibra, obteniendo elevada resistencia y rigidez en función del peso. [12]

2.1.1. Influencia de la orientación y concentración de la fibra

Es de importancia la orientación de las fibras, su concentración y distribución ya que influyen en la resistencia y en otras propiedades de los materiales compuestos reforzados con fibras. [12]

En referencia a la orientación se tiene dos casos:

- Alineación paralela de los ejes longitudinales de las fibras
- Alineación al azar

En la figura 2.1 se observa la alineación de las fibras continuas, mientras que en la figura 2.2 se observa la alineación de las fibras discontinuas

Figura 2.1. Alineación de fibras continuas [12]

Figura 2.2. Alineación de fibras discontinuas [12]

2.1.1.1.Materiales compuestos con fibras continuas y alineadas

Esfuerzo de tracción - Comportamiento de tensión - Carga longitudinal

En un material compuesto con fibras alineadas se tienen las propiedades de carácter anisotrópico, es decir que va a depender de la dirección en la que se mide. [12]

Comportamiento elástico – Carga longitudinal

Se considera el comportamiento elástico de un material compuesto de fibra continua y orientado que se carga en la dirección de alineación de la fibra. [12]

Para este material la deformación será en dirección longitudinal y se considera que la unión matriz fibra es muy fuerte, de esta manera la deformación de la matriz es igual a la de la fibra, ha esto se le conoce como isodeformación. Al tener estas condiciones la carga soportada por el compuesto (Fc) es igual a las cargas que soporta tanto la fase matriz (F_m) y la fase fibra (F_f) como se muestra en la siguiente ecuación:

$$F_{c} = F_{m} + F_{f} \qquad \text{Ec. [8]}$$

Se conoce que el esfuerzo es igual a la carga sobre el área ($\sigma = F/A$), con esto se obtiene las expresiones de (F_c , F_m y F_f), en función de los esfuerzos (σ_c , σ_m y σ_f) y sus correspondientes áreas (A_c , A_m y A_f). Al reemplazar estas expresiones en la Ec [8] se obtiene:

$$\sigma_{c}A_{c} = \sigma_{m}A_{m} + \sigma_{f}A_{f} \qquad \text{Ec. [9]}$$

Se despeja σ_c y se obtiene la siguiente ecuación:

Donde:

 $\frac{A_m}{A_c} y \frac{A_f}{A_c}$ son fracciones del área de la matriz y fibra.

 σ_c es el esfuerzo del material compuesto

 σ_f es el esfuerzo de la fibra

 A_m es el área de la matriz

Af es el área de la fibra

Ac es el áreal del material compuesto

Si las áreas del compuesto son iguales tanto de la matriz como la de la fibra, $\frac{A_m}{A_c}$ corresponde a la fracción de volumen de la matriz (V_m) y $\frac{A_f}{A_c}$ corresponde a la fracción de volumen de las fibras (V_f), con esto se obtiene la siguiente ecuación.

$$\sigma_{\rm c} = \sigma_{\rm c} V_{\rm m} + \sigma_{\rm f} V_{\rm f} \qquad \qquad \text{Ec. [11]}$$

Para el estado de isodeformación se muestra la siguiente expresión:

$$\delta_{\rm c} = \delta_{\rm m} = \delta_{\rm f}$$
 Ec. [12]

Cada término de la Ec [12] se divide para la Ec [11].

Si todas las deformaciones del compuesto, la matriz y la fibra son elásticas, es decir:

$$E_{c} = \frac{\sigma_{c}}{\delta_{c}}, E_{m} = \frac{\sigma_{m}}{\delta_{m}}, E_{f} = \frac{\sigma_{f}}{\delta_{f}}$$
 Ec. [14]

Reemplazando la Ec [14] en Ec [13] se obtiene la siguiente ecuación:

$$E_{c} = E_{m}V_{m} + E_{f}V_{f} \qquad \qquad Ec. [15]$$

Si el compuesto está conformado de matriz y de fibras esto es igual a la siguiente ecuación:

$$V_{\rm m} + V_{\rm f} = 1$$
 Ec. [16]

Al reemplazar la Ec [16] en Ec [15] se obtiene la siguiente expresión:

$$E_{c} = E_{m}(1 - V_{f}) + E_{f}V_{f}$$
 Ec. [17]

Comportamiento elástico – Carga transversal

El comportamiento elástico de un material compuesto de fibra continua y orientada, se puede cargar en dirección transversal aplicando la carga a 90° como se muestra en la figura 2.1.

Para este caso, el esfuerzo es el mismo tanto para el material compuesto, la matriz y la fibra, como se muestra en la Ec [18]

$$\sigma_{\rm c} = \sigma_{\rm m} = \sigma_{\rm f} = \sigma$$
 Ec. [18]

En la Ec [19] se muestra un estado isotensionado, por la tanto la deformación del material compuesto (ϵ_c) es:

$$\epsilon_{\rm c} = \epsilon_{\rm m} V_{\rm m} + \epsilon_{\rm f} V_{\rm f}$$
 Ec. [19]

Se tiene que el alargamiento o la deformación unitaria es igual a:

$$\epsilon = \frac{\sigma}{E}$$
 Ec. [20]

Se reemplaza la Ec [20] en la Ec [19]

$$\frac{\sigma}{E_{c}} = \frac{\sigma * V_{m}}{E_{m}} + \frac{\sigma * V_{f}}{E_{f}} \qquad \text{Ec. [21]}$$

Se divide ambos términos para el esfuerzo (σ).

$$\frac{1}{E_c} = \frac{V_m}{E_m} + \frac{V_f}{E_f} \qquad \qquad \text{Ec. [22]}$$

Finalmente, la ecuación para el material compuesto es la siguiente:

$$E_{c} = \frac{E_{m}E_{f}}{V_{m}E_{f}+V_{m}E_{f}} = \frac{E_{m}E_{f}}{(1-V_{f})E_{f}+V_{f}E_{m}}$$
 Ec. [23]

2.1.2. Fibra de vidrio

Este tipo de fibra es el que más se utiliza debido a que no es muy costosa en relación a la fibra de carbono, generalmente se conoce como plástico reforzado con fibra de vidrio (GFRP) y contiene entre el 30% y 60% de fibras de vidrio en volumen. [13]

Se conocen tres tipos de fibra de vidrio principales:

- Tipo E: vidrio alumino borosilicato de calcio, que generalmente es el más utilizado. [13]
- Tipo S: vidrio de magnesia y aluminosilicato, que ofrece mayor resistencia y rigidez, es más costosa. [13]
- Tipo E-CR: fibra de vidrio de alto rendimiento, con mayor resistencia a temperaturas elevadas. [13]

La fibra de vidrio se utiliza como refuerzo debido a las siguientes razones:

- Fácil de hilar en fibra de alta resistencia.
- Compuesto de alta resistencia al formar una matriz plástica.
- Útil en gran variedad de ambientes corrosivos.

En la tabla 2.1 se muestra las propiedades de las fibras de refuerzo

Tabla 2.1. Características de las fibras de refuerzo [13]

Propiedades características de las fibras de refuerzo								
Тіро	Esfuerzo de tracción (MPa)	Módulo elástico (GPa)	Densidad (kg/m ³)	Costo relativo				
Boro	3500	380	2600	El más alto				
Carbono								
Alta resistencia	3000	275	1900	Bajo				
Alto módulo	2000	415	1900	Bajo				
Vidrio								
Tipo E	3500	73	2480	El más bajo				
Tipo S	4600	85	2540	El más bajo				
Kevlar								
29	2800	62	1440	Alto				
49	2800	117	1440	Alto				
129	3200	85	1440	Alto				
Nextel								
312	1630	135	2700	Alto				
610	2770	328	3960	Alto				
Spectra								
900	2270	64	970	Alto				
1000	2670	90	970	Alto				
2000	3240	115	970	Alto				
Alúmina (Al ₂ O ₃)	1900	380	3900	Alto				
Carburo de silicio	3500	400	3200	Alto				

2.1.3. Fibra de carbono

La estructura del avión no tripulado estará constituida en su mayoría por fibra de carbono.

La fibra de carbono es dominante para refuerzos en materiales compuestos de alto rendimiento, además de su baja densidad, alta resistencia y alto módulo de elasticidad es ideal para la utilización en el área aeronáutica. [14]

En la tabla 2.2 se muestra las propiedades del módulo de elasticidad, módulo cortante y el coeficiente de Poisson

Table 3.3 Fiber	Elastic Modulus				
		Glass E	Kevlar	Carbon H.R.	Carbon H.M.
	fiber longitudinal modulus in ℓ direction Ef_{ℓ} (MPa) fiber transverse modulus	74,000	130,000	230,000	390,000
	in <i>t</i> direction <i>Ef_t</i> (MPa)	74,000	5400	15,000	6000
ma	fiber shear modulus Gf _{et} (Mpa)	30,000	12,000	50,000	20,000
m -	fiber Poisson ratio vf _{et}	0.25	0.4	0.3	0.35
		Isotropic		Anisotropic	

Tabla 2.2. Módulo elástico de las fibras [15]

2.1.3.1.Aplicaciones

Los compuestos de polímero de fibra de carbono, también conocidos como polímeros reforzados con fibra de carbono o CFRP, se utilizan para estructuras livianas, estructuras primarias y secundarias de aeronaves civiles y militares, componentes de satélites, tubos de pared delgada para aeronaves y satélites, componentes de vehículos de lanzamiento, estructuras de panal de abeja, madera reforzada con superficie, componentes estructurales de automóviles, artículos deportivos como cañas de pescar, raquetas de tenis, bicicletas de carrera, prótesis, etc. [14]

En la figura 2.3 se observa que el avión Boeing 787 utiliza compuestos de matriz de polímeros de fibra continua en el 50% del avión, además de secciones complejas del fuselaje, cola y las pieles de las alas. [14]

Figura 2.3. Materiales utilizados para el cuerpo del Boeing 787 [14]

En la figura 2.4 se visualiza el tejido de la fibra en dos, tres y cuatro direcciones, de manera que la tela tiene propiedades mecánicas en varias direcciones. Por lo general el tejido se realiza en dos dimensiones, pero cada vez es más común el tejido tridimensional que mecánicamente es bueno en las tres direcciones.

Figura.2.4. Tejido de fibra en dos, tres y cuatro direcciones [14]

En la tabla 2.3 se muestran propiedades mecánicas de los refuerzos de uso común

Reinforcements	Fiber Diameter d(µm)	Density ρ(kg/m³)	Modulus of Elasticity E(Mpa)	Shear Modulus G(Mpa)	Poisson Ratio v	Tensile Strength σ _{Ult} (Mpa)	Elongation E(%)	Coefficient of Thermal Expansion $\alpha(^{\circ}C^{-1})$	Coefficient of Thermal Conductivity λ(W/M°C)	Heat Capacity c(J/kg°C)	Useful Temperature Limit T _{max} (°C)	Price 1993 (\$ /kg)
"R" glass, high performance	10	2500	86,000		0.2	3200	4	0.3 × 10 ⁻⁵	1	800	700	14
E" glass, common applications	16	2600	74,000	30,000	0.25	2500	3.5	0.5 × 10 ⁻⁵	1	800	700	2
Kevlar 49	12	1450	130,000	12,000	0.4	2900	2.3	-0.2×10^{-5}	0.03	1400		70
"HT" graphite,	7	1750	230,000	50,000	0.3	3200	1.3	0.02 × 10 ⁻⁵	200 (20°C) 60 (800°C)	800	>1500	70
high strength "HM" graphite, high modulus	6.5	1800	390,000	20,000	0.35	2500	0.6	0.08 × 10 ⁻⁵	200 (20°C) 60 (800°C)	800	>1500	140
Boron	100	2600	400,000			3400	0.8	0.4×10^{-5}			500	500
Aluminum	20	3700	380,000			1400	0.4		50 (20°C) 7 (800°C)	900	>1000	
Aluminum silicate	10	2600	200,000			3000	1.5					
Silicon	14	2550	200,000			2800	1.3	$0.5 imes 10^{-5}$			1300	600
Polyethylene		960	100,000			3000					150	

Tabla 2.3. Propiedades mecánicas de refuerzos [15]

En la tabla 2.4 se muestran las propiedades mecánicas de la fibra de carbono

Fibra	T300 Carb	B(4) Boro	AS Carb	Kev 49	AS 4 Carb	IM6 Carb	T300 cinta	T300 tejido	T300tej
Matriz	N5208	N5505	H3501	Epoxi	PEEK AP	Epoxi	F934 4-mil	F934 13-mil	F934 7-
E _x (GPa)	181	204	138	76	134	203	148	74	66
E _y (GPa)	10,3	18,5	8,96	5,5	8,9	11,2	9,65	74	66
G _{xy} (GPa)	7,17	5,59	7,1	2,3	5,1	8,4	4,55	4,55	4,1
VXY	0,28	0,23	0,3	0,34	0,28	0,32	0,3	0,05	0,04
V _f (%)	70	50	66	60	66	66	60	60	60
h ₀ (mm)	0,125	0,125	0,125	0,125	0,125	0,125	0,1	0,325	0,175
X (MPa)	1500	1260	1447	1400	2130	3500	1314	499	375
X' (MPa)	1500	2500	1447	235	1100	1540	1220	352	279
Y (MPa)	40	61	51,7	12	80	56	43	458	368
Y' (MPa)	246	202	206	53	200	150	168	352	278
S12 (MPa)	68	67	93	34	160	98	48	46	46

Tabla. 2.4 Propiedades mecánicas de la fibra de carbono [16]

2.1.4. Materiales matrices para compuesto reforzado con fibra

2.1.4.1. Resina Epóxica

La resina epóxica en comparación con la resina poliéster tiene mejores propiedades de resistencia y menor contracción después de ser curadas. Esta resina se utiliza para realizar compuestos de fibra de carbono y aramida. [17]

En la tabla 2.5 se muestran las propiedades de los diferentes tipos de resinas

											_
Resins	Density p (kg/m³)	Elastic Modulus E(Mpa)	Shear Modulus G(Mpa)	Poisson Ratio v	Tensile Strength σ _{UR} (Mpa)	Elongation E%	Coefficient of Thermal Expansion $\alpha(^{\circ}C^{-1})$	Coefficient of Thermal Conductivity λ(W/m°C)	Heat Capacity C(J/kg°C)	Useful Temperature Limit T _{max} (°C)	Price 1993 (\$/kg)
Thermosets											
Ероху	1200	4500	1600	0.4	130	2 (100°C) 6 (200°C)	11 × 10 ⁻⁵	0.2	1000	90 to 200	6 to 20
Phenolic	1300	3000	1100	0.4	70	2.5	1 × 10 ⁻⁵	0.3	1000	120 to 200	
Polyester	1200	4000	1400	0.4	80	2.5	8 × 10 ⁻⁵	0.2	1400	60 to 200	2.4
Polycarbonate	1200	2400		0.35	60		6×10 ⁻⁵		1200	120	
Vinylester	1150	3300			75	4	5 × 10 ⁻⁵			>100	4
Silicone	1100	2200		0.5	35					100 to 350	
Urethane	1100	700 to 7000			30	100				100	4
Polyimide	1400	4000 to 19,000	1100	0.35	70	1	8×10 ⁻⁵	0.2	1000	250 to 300	
					Thermop	lastics					
Polypropylene	900	1200		0.4	30	20 to 400	9 × 10 ⁻⁵		330	70 to 140	
Polyphenylene sulfone (pps)	1300	4000			65	100	5 × 10 ⁻⁵			130 to 250	
Polvamide (pa)	1100	2000		0.35	70	200	8×10 ⁻⁵		1200	170	6
Polyether sulfone (pes)	1350	3000			85	60	6 × 10 ⁻⁵			180	25
Polyetherimide (pei)	1250	3500			105	60	6 × 10 ⁻⁵	0.2		200	20
Polyether-ether- ketone (peek)	1300	4000			90	50	5 × 10 ⁻⁵	0.3		140 to 250	96

Tabla 2.5. Propiedades de diferentes resinas [15]

En la tabla 2.6 se muestran las propiedades de la resina epóxica, resina poliéster y fibra de carbono en la cual se muestra el modulo de elasticidad, esfuerzo a la fluencia y limite elástico

	Resina Epóxica (Mpa)	Resina Poliéster (Mpa)	Fibra de Carbono (Mpa)
Modulo de Elasticidad (E)	974.1	1171.2	25785
Esfuerzo de Fluencia	31	44.7	360
Limite Elástico	12.2	29.62	360
% de Elongación	4.7	5.8	1.7

Tabla 2.6. Propiedades de resina epóxica, poliéster y fibra de carbono [18]

En la tabla 2.7 se presentan las propiedades elásticas de la fibra de carbono y fibra de vidrio

Tabla 2.7. Propiedades elásticas de fibra de vidrio y carbono [19]

Material	E _x (MPa)	Ey (MPa)	E₂ (MPa)	V _{NY}	Vyz	V _{HZ}	Sy (MPa)
Hueso cortical ²⁸	25 500	14 450	10 200	0,15	0,315	0,215	N.A
Hueso esponjoso ²⁷	904	156	696	0,3	0,3	0,3	N.A
LPD ²⁹	0,68	0,68	0,68	0,49	0,49	0,49	N.A
Dentina ²⁴	16 300	16 300	16 300	0,25	0,25	0,25	N.A
Cemento ¹⁹	2 600	2 600	2 600	0,33	0,33	0,33	N.A
Ti-6Al-4V ^{22,26}	109 000	109 000	109 000	0,31	0,31	0,31	1 477
Fibra vidrio ²²	48 000	48 000	48 000	0,26	0,26	0,26	1 215
Fibra carbono ²²	141 000	141 000	141 000	0,25	0,25	0,25	1 394
Resina ²⁵	12 400	12 400	12 400	0,3	0,3	0,3	N.A
Spartan Plus ²³	141 000	141 000	141 000	0,3	0,3	0,3	N.A
Porcelana ²⁵	69 000	69 000	69 000	0,2	0,2	0,2	N.A

2.1.5. Madera de balsa

Propiedades mecánicas de la balsa

En la tabla 2.8 se muestran las propiedades mecánicas de la balsa y de otros diferentes tipos de maderas

Madera	a Densidad ¹ (Mg m ⁻³)		Young ^{1,2}	Resistenc ∥ al gran	cia ^{1,3} (MPa) o	Tenacidad a la fractura ¹ (MPa m ^{1/2})		
		al grano	⊥ al grano	Tracción	Compresión	al grano	⊥ al grano	
Balsa	0,1-0,3	4	0,2	23	12	0,05	1,2	
Caoba	0,53	13,5	0,8	90	46	0,25	6,3	
Abeto Douglas	0,55	16,4	1,1	70	42	0,34	6,2	
Pino escocés	0,55	16,3	0,8	89	47	0,35	6,1	
Abedúl	0,62	16,3	0,9	-	-	0,56	_	
Fresno	0,67	15,8	1,1	116	53	0,61	9,0	
Roble	0,69	16,6	1,0	97	52	0,51	4,0	
Haya	0,75	16,7	1,5	-	-	0,95	8,9	

Tabla 2.8. Propiedades mecánicas de diferentes maderas [20]

Además, en la tabla 2.9 se muestran las propiedades de diferentes materiales, incluyendo la balsa

		1									
Cores	Density ρ(Kg/M³)	Modulus of Elasticity E(Mpa)	Shear Modulus G(Mpa)	Poisson Ratio v	Compressive Strength _{ØUk} (Mpa)	Elongation E%	Coefficient of Thermal Expansion $\alpha(°C^1)$	Coefficient of Thermal Conductivity λ(W/M°C)	Heat Capacity C(J/Kg°C)	Useful Temperature Limit T _{max} (°C)	Price 1993 (\$/Kg)
Balsa	100 to 190	2000 to 6000	100 to 250		8 to 18			0.05			11
Polyurethane foam	30 to 70	25 to 60		0.4						75	
Polystyrene foam	30 to 45	20 to 30		0.4	0.25 to 1.25					75	
Honeycombs Impregnated carton Impregnated glass fabric	15 to 120		50 to 350 100 to 600		0.2 to 0						
Aluminum	15 to 130		130 to 910		0.2 to 8						
Steel			550 to 1250								
Nomex [®]	25 to 50		10 to 40		0.2 to 2.5						

Tabla 2.9. Propiedades de diferentes materiales [15]

2.2. MÉTODOS

2.2.1. Parámetros para el diseño de la estructura de prototipo UAV Táctico

2.2.1.1. Determinación de peso UAV

Para establecer el peso del avión no tripulado, se define la carga útil como la cantidad de carga que puede transportar el UAV, tomando en cuenta los dispositivos encargados de realizar y transmitir video y otros accesorios como se muestra en la figura 2.5. [21]

Figura 2.5 Representación de carga útil [21]

A continuación, en la tabla 2.10 se detallan los componentes a utilizar en el avión no tripulado, para definir una carga útil aproximada

Componentes	Peso (g)
Electronic Speed Control (Turnigy Trust 45A)	38
Piloto automático Erle-Brain Linux	100
Pixhawk	120
Tubo pitot	20
buzzer	10
GPS	20
SiK 3DR V2.0 con una frecuencia de 915Mhz	40
Radio de telemetría 915 Mhz	24
Receptor FRSKY D4R-II	10
Cámara	250
Carga útil	632

Tabla 2.10. Componentes de carga útil

Se obtiene una carga útil de 632 gramos, con lo cual es posible obtener el peso estimado del ala, fuselaje y cola en T.

El peso estimado del avión, se obtiene de multiplicar de 2 a 4 veces la carga útil, con esto se obtiene un peso de 2528 gr. [22]

En la tabla 2.11 se muestra el porcentaje de peso estimado para los diferentes componentes mostrados

Componente	Peso estimado
Ala	26 % -34 %
Fuselaje	16% - 26%
Cola en T	1,5% - 2,5%
Motor	10% -20%
Bateria	30% - 48%

Tabla 2.11. Estimación preliminar de peso UAV [22]

Con los valores de porcentaje de peso estimado, se obtiene el peso para cada componente como se muestra en la tabla 2.12.

Componente	Peso estimado (%)	Peso (g)
Ala	30	758,4
Fuselaje	21	530,88
Cola en T	2	50,56
Motor	15	379,2
Bateria	39	985,92

Tabla 2.12. Peso estimado

Cálculo de peso total de UAV.

Se utiliza un total de cuatro servos en el UAV, dos ubicados en las alas para mover los alerones y dos ubicados en la cola en T, cada uno con un peso de 70 gramos, dándose un peso total de 280 gramos.

Con los valores calculados es la tabla 2.12, peso de los servos, peso de la unión cola fuselaje y la carga útil se procede al cálculo del peso total del avión no tripulado.

$$W_{T} = W_{ala} + W_{fuselaje} + W_{cola en T} + W_{motor} + W_{bateria} + W_{servos} + W_{union cola-fuselaje} + W_{carga util} \qquad Ec. [24]$$

$$W_T = 758,4 + 530,88 + 50,56 g + 379,2g + 985,92g + 280 g + 100g + 632g$$

$$W_T = 3716,96$$
 gramos

El peso mínimo del UAV es de 2528 gramos, mientras que el peso máximo es de 3716,96 gramos.

2.2.1.2. Propiedades atmosféricas Aeropuerto Chachoán (ATF)

En la tabla 2.13 se muestran las propiedades atmosféricas del aeropuerto Chachoán, para conocer los datos de la altitud o elevación y posteriormente encontrar las características atmosféricas

Condiciones atmosféricas		
Ubic	cación	
Cuidad	Ambato	
Provincia	Tungurahua	
Det	alles	
Tipo	Aeropuerto	
	(Aerodrómo)	
Latitud	1 °12' 34" S(-	
Latitud	1,212066)	
Longitud	78° 34' 29'' W (-	
Longitud	78,574635)	
Elevación	2591 m	
Pista de aterrizaje	1925 m de largo	
Temperatura	12 a 19 grados	

Tabla 2.13. Condiciones atmosféricas Aeropuerto Chachoán (ATF) [23]

-

Además, es de importancia conocer las características atmosféricas a la altitud de 2591m, ya que será útil para conocer la temperatura, presión, densidad y viscosidad del aire.

Estos datos se obtienen de la tabla 2.14 que se muestra a continuación

Altitude (h), km	Temperature (T) , K	Pressure (P), N/m ²	Density (ρ), kg/m ³	Speed of sound (a), m/s	Viscosity (µ), kg/m s
0.0	288.16	101325	1.225	340.3	1.79E-05
0.5	284.91	95461	1.1673	338.4	1.77E-05
1.0	281.66	89876	1.1117	336.4	1.76E-05
1.5	278.41	84560	1.0581	334.5	1.74E-05
2.0	275.16	79501	1.0066	332.5	1.73E-05
2.5	271.92	74692	0.95696	330.6	1.71E-05
3.0	268.67	70121	0.90926	328.6	1.69E-05
3.5	265.42	65780	0.86341	326.6	1.68E-05
4.0	262.18	61660	0.81935	324.6	1.66E-05
4.5	258.93	57752	0.77704	322.6	1.65E-05
5.0	255.69	54048	0.73643	320.5	1.63E-05
5.5	252.44	50539	0.69747	318.5	1.61E05
б.0	249.2	47217	0.66011	316.5	1.6E-05
6.5	245.95	44075	0.62431	314.4	1.58E-05
7.0	242.71	41105	0.59002	312.3	1.56E-05
7.5	239.47	38299	0.55719	310.2	1.54E-05
8.0	236.23	35651	0.52578	308.1	1.53E-05
8.5	232.98	33154	0.49575	306.0	1.51E-05

Tabla 2.14. Características estándar de la atmosfera [24]

2.2.1.3. Cálculo de velocidades de UAV

En el vuelo se utilizan diversos conceptos de la velocidad, por lo cual es necesario definirlos, en este caso se estudia la velocidad de pérdida, velocidad de crucero y velocidad de despegue.

2.2.1.3.1. Velocidad de pérdida

Se entiende a la velocidad pérdida (V_s), a la velocidad mínima en la que el avión no tripulado puede sustentarse en el aire. [6]

Al perder velocidad, no se obtiene suficiente sustentación para mantener el avión no tripulado en el aire. Para el cálculo de la velocidad, se asume que el vuelo es horizontal, rectilíneo y uniforme ($V_{\infty} = 0$), al tener estas condiciones también se cumple que la fuerza de sustentación (*L*) es igual al peso de aeronave (*W*). [6]

Para el cálculo de la velocidad se toma en cuenta la Ec [6] de la sección 1.2.6.

$$C_l = \frac{L}{\frac{1}{2}*\rho*v^2*S}$$

En la Ec [6] se tiene en cuenta que L = W y se obtiene:

$$W = \frac{1}{2} * \rho * v^{2} * S * C_{l}$$
 Ec. [25]

Donde:

W es el peso del UAV en Newtons

 ρ es la densidad del aire en kg/m³

v es la velocidad en m/s

S es la superficie alar en m²

Cl es el coeficiente de sustentación

Al despejar la velocidad se obtiene la siguiente ecuación:

$$V_{S} = \sqrt{\frac{2W}{\rho * S * Cl_{max}}}$$
 Ec. [26]

Donde:

V_S es la velocidad de pérdida de la aeronave

Cl_{max} es el coeficiente de máximo de sustentación

El valor del coeficiente de sustentación máximo se obtiene del perfil seleccionado (ag35-il) AG35 de la tabla 2.20 en la sección 2.2.2.2, con un valor de 1,3465 a un ángulo de ataque de 11,5 grados.

El valor del peso total se obtiene de la sección 2.2.1.1, mientras que la densidad se toma de la tabla 2.14 y el valor S que es la superficie alar se encuentra en la sección 2.2.4.1.

$$V_{s} = \sqrt{\frac{2(3,71696 \text{ kg} * 9,81\frac{\text{m}}{\text{s}})}{(0,95696 \text{ kg/m}^{3})(0,6557)(1,3465)}}}$$
$$V_{s} = 9,2905\frac{\text{m}}{\text{s}}}$$

Se obtiene una velocidad de pérdida de 9,2905 m/s , si el avión no tripulado se acerca a esta velocidad podría entrar en perdida y no tener sustentación en el aire.

2.2.1.3.2. Velocidad de crucero

Se define como velocidad de crucero, a la velocidad constante de un avión no tripulado para mantenerse en el aire con un vuelo recto y nivelado.[25]

$$Vc = 33\sqrt{CA} \qquad Ec. [27]$$

Donde:

Vc es la velocidad crucero en mi/h

CA es la carga alar en lb/ft^2

El valor de la carga alar se obtiene mediante la siguiente ecuación:

$$CA = \frac{W_{T}}{s} \qquad \qquad Ec. [28]$$

Donde:

 W_T es el peso total del UAV en lbs

S es la superficie alar en ft²

Además, se necesita el valor de la superficie alar (S) el cual se obtiene de la sección 2.2.4.1 en el cálculo del dimensionamiento del ala.

$$CA = \frac{3716,96 \text{ gramos}}{65,5732 \text{ dm}^2}$$

$$CA = 56,6841 \frac{\text{g}}{\text{dm}^2} * \frac{1 \text{ kg}}{1000\text{g}} * \frac{(1\text{dm})^2}{(10\text{cm})^2} * \frac{2.2 \text{ lb}}{1\text{kg}} * \frac{(1\text{cm})^2}{(0,0328 \text{ ft})^2}$$

$$C.A = 1,1591 \text{ lb/ft}^2$$

$$Vc = 33\sqrt{1,1591}$$

$$Vc = 35,5283 \text{ mi/h}$$

$$Vc = 15,8826 \frac{\text{m}}{\text{s}}$$

Se obtiene una velocidad crucero de 15,8826 m/s , con la cual el UAV se mantiene en un vuelo recto y nivelado.

2.2.1.3.3 Velocidad de despegue

$$V_d = 1,2(V_s)$$
 Ec. [29]

Donde:

 V_d es la velocidad de despegue en m/s

$$V_{d} = 1,2 \left(9,2905 \frac{m}{s}\right)$$

 $V_{d} = 11,1486 \text{ m/s}$

2.2.2. Selección del perfil alar

A continuación, en la tabla 2.15 se realiza una descripción de los perfiles alares a seleccionar para el ala del prototipo UAV Táctico

Tabla 2.15. Descripción de perfiles alares [26]

2.2.2.1. Cálculo del valor de Reynolds

Para la selección del perfil alar, inicialmente se calcula el número de Reynolds el cual permite determinar si el flujo de aire que pasa por el ala es laminar o turbulento.

El cálculo del número de Reynolds se realiza con la Ec [1] de la sección 1.2.3, que depende de la velocidad, la longitud de la cuerda del ala y el fluido.

Para el cálculo del número de Reynolds se utiliza la velocidad de pérdida o desplome de 9.2905 m/s , que se obtiene en la sección 2.2.1.3.1.

$$Re = \frac{vl}{v}$$

$$v = \frac{\mu}{\rho}$$

$$v = \frac{1,71E - 05}{0,95696}$$

$$v = 0,000017869 \frac{m^2}{s}$$

$$Re = \frac{(9,2905 \frac{m}{s})(0,31m)}{0,000017869 \frac{m^2}{s}}$$

$$Re = 161176,0591$$

Para seleccionar el perfil alar se considera un número de Reynolds entre el valor calculado de 161176,0591 y 500000, ya que estos valores se encuentran en el rango de régimen laminar.

Además, se toman diferentes perfiles alares de la tabla 2.15, teniendo en cuenta el ángulo de ataque a 3 grados, ya que para ángulos entre 0 y 10 grados la corriente de flujo se mantiene adherida de tal modo al cuerpo que la variación es lineal en el coeficiente de sustentación. Con ángulos de ataque mayores a 10 grados se produce perdida del coeficiente de sustentación. [27]

En la tabla 2.16 se toma cuenta el coeficiente de sustentación máximo, ya que, a mayor valor del coeficiente de sustentación se obtiene una mayor estabilidad en el vuelo para cumplir las diferentes misiones, tomando en cuenta una ponderación de 1 a 10, siendo 1 en valor más bajo y 10 el valor más alto.

Estos datos son obtenidos de los perfiles DRELA con un número de Reynolds de 500000.[26]

Ponderación Cl para alfa igual a 3 grados			
Perfil	Cl máximo	Puntuación	
(ag03-il)AG03	0,5298	5	
(ag04-il)AG 04	0,5142	3	
(ag08-il)AG 08	0,5192	4	
(ag09-il)AG 09	0,5037	2	
(ag10-il)AG 10	0,4882	1	
(ag14-il)AG 14	0,568	7	
(ag35-il)AG 35	0,7508	10	
(ag36-il)AG 36	0,7258	9	
(ag37-il)AG 37	0,7056	8	
(ag44ct02r-il) AG44ct - 02g	0,5303	6	

Tabla 2.16. Ponderación de coeficiente de sustentación

En la tabla 2.17 se observa el coeficiente de resistencia mínimo al avance del UAV, el cual a menor valor ayuda a la disminución del consumo de la energía

Ponderación Cd para alfa igual a 3			
	grados		
Perfil	Cd mínimo	Puntuación	
(ag03-il)AG03	0,00705	10	
(ag04-il)AG 04	0,00706	9	
(ag08-il)AG 08	0,00719	7	
(ag09-il)AG 09	0,00725	5	
(ag10-il)AG 10	0,00767	4	
(ag14-il)AG 14	0,00724	6	
(ag35-il)AG 35	0,00832	2	
(ag36-il)AG 36	0,00819	3	
(ag37-il)AG 37	0,00835	1	
(ag44ct02r-il) AG44ct - 02g	0,00711	8	

Tabla 2.17. Ponderación de resistencia

En la tabla 2.18 se observa la relación (Cd/Cl) máximo que es un indicador de la eficiencia aerodinámica de los aviones, si se tiene una cantidad alta en la relación, se indica una gran cantidad de sustentación y una baja cantidad de resistencia.

Ponderación (Cl/Cd) máximo			
Perfil	(Cl/Cd) máximo	Puntuación	
(ag03-il)AG03	75,14894	6	
(ag04-il)AG 04	72,83286	4	
(ag08-il)AG 08	72,21140	3	
(ag09-il)AG 09	69,47586	2	
(ag10-il)AG 10	63,65059	1	
(ag14-il)AG 14	78,45304	7	
(ag35-il)AG 35	90,24038	10	
(ag36-il)AG 36	88,62027	9	
(ag37-il)AG 37	84,50299	8	
(ag44ct02r-il) AG44ct - 02g	74,58509	5	

Tabla 2.18. Ponderación de coeficiente (Cl/Cd)

De acuerdo con la ponderación final que se muestra en la tabla 2.19, se elige el perfil (ag35-il) AG35 ya que representa la mayor puntuación con un total de 22

Ponderación final				
Perfil	Cl máximo	Cd mínimo	(Cl/Cd) máximo	Total
(ag03-il)AG03	5	10	6	21
(ag04-il)AG 04	3	9	4	16
(ag08-il)AG 08	4	7	3	14
(ag09-il)AG 09	2	5	2	9
(ag10-il)AG 10	1	4	1	6
(ag14-il)AG 14	7	6	7	20
(ag35-il)AG 35	10	2	10	22
(ag36-il)AG 36	9	3	9	21
(ag37-il)AG 37	8	1	8	17
(ag44ct02r-il) AG44ct - 02g	6	8	5	19

Tabla 2.19. Ponderación final

En la figura 2.6 se muestra el perfil alar seleccionado (ag35-il) AG35, con el cual se diseñará el ala

Figura 2.6. Perfil alar (ag35-il) AG35

2.2.2.2. Características del perfil alar (ag35-il) AG35

En la tabla 2.20 se muestran las características del perfil alar seleccionado, la cuales indican el comportamiento aerodinámico del coeficiente de sustentación (Cl), coeficiente de resistencia al avance del UAV(Cd) y eficiencia (Cl/Cd)

Alpha	Cl	Cd	Cl/Cd
-9,75	-0,5188	0,076	-6,82631579
-9,5	-0,5176	0,0703	-7,36692286
-9,25	-0,5096	0,066	-7,72121212
-9	-0,4998	0,0618	-8,08999676
-8,75	-0,489	0,0572	-8,55194124
-8,5	-0,4777	0,0521	-9,16538757
-8,25	-0,4669	0,0467	-10,0085745
-8	-0,4512	0,0417	-10,8201439
-7,75	-0,4652	0,0279	-16,6559255
-7,5	-0,4466	0,0239	-18,6549708
-7,25	-0,414	0,0201	-20,5970149
-7	-0,3799	0,0177	-21,4875566
-6,75	-0,3449	0,0162	-21,2376847
-6,5	-0,3099	0,0143	-21,6410615
-6,25	-0,2742	0,0131	-20,883473
-6	-0,2416	0,0124	-19,483871
-5,75	-0,2074	0,0117	-17,7720651
-5,5	-0,1764	0,0112	-15,7781753
-5,25	-0,1468	0,0102	-14,3359375
-5	-0,1187	0,0099	-11,9657258
-4,75	-0,0923	0,0095	-9,75687104
-4,5	-0,066	0,0092	-7,21311475
-4,25	-0,0401	0,0088	-4,56200228
-4	-0,0142	0,0084	-1,69856459

Tabla 2.20. Características del perfil

-3,75	0,0116	0,0079	1,462799496
-3,5	0,0377	0,0076	4,986772487
-3,25	0,064	0,0072	8,864265928
-3	0,0899	0,0068	13,18181818
-2,75	0,1145	0,0063	18,29073482
-2,5	0,1349	0,0057	23,79188713
-2,25	0,1606	0,0055	29,36014625
-2	0,2109	0,0055	38,27586207
-1,75	0,2368	0,0056	42,28571429
-1,5	0,2629	0,0057	46,20386643
-1,25	0,289	0,0058	49,74182444
-1	0,3147	0,006	52,5375626
-0,75	0,3408	0,0062	54,96774194
-0,5	0,3675	0,0064	57,60188088
-0,25	0,3946	0,0065	60,4287902
0	0.4217	0.0067	63.12874251
0,25	0,4491	0,0068	65,85043988
0,5	0,4766	0,0069	68,77344877
0,75	0,5041	0,0071	71,40226629
1	0,5315	0,0072	73,92211405
1,25	0,5591	0,0073	76,48426813
1,5	0,5868	0,0074	79,08355795
1,75	0,6144	0,0075	81,48541114
2	0,6419	0,0077	83,90849673
2,25	0,6694	0,0078	86,15186615
2,5	0,6967	0,0079	87,96717172
2,75	0,7239	0,0081	89,37037037
3	0,7508	0,0083	90,24038462
3,25	0,7774	0,0086	90,81775701
3,5	0,8038	0,0089	90,72234763
3,75	0,8299	0,0092	90,20652174
4	0,8559	0,0096	89,43573668
4,25	0,8817	0,01	88,61306533
4,5	0,9073	0,0104	87,57722008
4,75	0,9328	0,0108	86,61095636
5	0,9584	0,0112	85,72450805
5,25	0,9834	0,0116	84,48453608
5,5	1,0086	0,0121	83,49337748
5,75	1,0332	0,0126	82,13036566
6	1,0576	0,0131	80,73282443
6,25	1,0814	0,0137	78,99196494
6,5	1,1052	0,0143	77,50350631
6,75	1,128	0,015	75,45150502

Tabla 2.20. Características del perfil (continuación 1)

7	1,1499	0,0158	72,96319797
7,25	1,171	0,0166	70,37259615
7,5	1,1904	0,0177	67,10259301
7,75	1,2123	0,0184	65,77862181
8	1,2318	0,0194	63,56037152
8,25	1,2489	0,0206	60,74416342
8,5	1,2677	0,0215	59,07269338
8,75	1,2851	0,0225	57,21727516
9	1,3001	0,0236	55,01904359
9,25	1,3074	0,0255	51,31083203
9,5	1,3139	0,0273	48,1105822
9,75	1,3235	0,0285	46,38976516
10	1,3297	0,03	44,38251001
10,25	1,3344	0,0316	42,2278481
10,5	1,3383	0,0334	40,08086253
10,75	1,3416	0,0353	37,99490229
11	1,3441	0,0374	35,91929449
11,25	1,346	0,0397	33,90428212
11,5	1,3465	0,0423	31,85474332
11,75	1,345	0,0453	29,72375691
12	1,3407	0,0487	27,51847291
12,25	1,334	0,0527	25,31789713
12,5	1,3249	0,0572	23,16663752
12,75	1,3142	0,0622	21,14561545
13	1,3015	0,0675	19,27006219
13,25	1,2875	0,0733	17,5671988
13,5	1,2725	0,0793	16,0426122
13,75	1,2588	0,0855	14,73142188
14	1,2428	0,0923	13,47062649
14,25	1,2275	0,0992	12,37274468

Tabla 2.20. Características del perfil (continuación 2)

2.2.2.3. Comportamiento aerodinámico del perfil seleccionado

En la figura 2.7 se muestra el comportamiento aerodinámico del coeficiente de sustentación, en relación al ángulo de ataque. Se observa que a los 11.5 grados, con un coeficiente de 1.3465 se presenta el coeficiente máximo de sustentación. Después de esto hay un decrecimiento del coeficiente de sustentación lo cual indica que a un ángulo de ataque mayor de 11.5 grados el perfil alar entra en perdida o desplome.

Figura 2.7. Coeficiente de sustentación versus ángulo de ataque

En la figura 2.8 se muestra el comportamiento aerodinámico del coeficiente de arrastre versus el ángulo de ataque, donde se observa que el menor coeficiente de arrastre se da desde -6.75 hasta los 8 grados, presentándose menor resistencia al avance y con esto menor gasto de energía.

Figura 2.8. Coeficiente de arrastre versus ángulo de ataque

La figura 2.9 muestra la eficiencia aerodinámica del perfil alar, en la cual mediante el ángulo de ataque se observa que en un rango de 3 a 6 grados se obtiene un vuelo nivelado (optimo).

Figura 2.9. Cl/Cd versus ángulo de ataque.

2.2.3. Estructura principal de un vehículo aéreo no tripulado 2.2.3.1.Ala

Es de importancia conocer el funcionamiento del ala del avión no tripulado, ya que ahí se genera la fuerza de sustentación al moverse a una cierta velocidad a través de aire.

Figura 2.10. Ala

2.2.3.2. Fuselaje

En los vehículos aéreos no tripulados, el fuselaje es la estructura principal en la cual se acoplan tanto las alas, tren de aterrizaje, componentes eléctricos, motor y estabilizadores.

Figura 2.11. Fuselaje

2.2.3.3. Cola en T

La cola en T, se ha utilizado desde la década de 1960, en el avión comercial Boeing B-727. [28]

Una de las ventajas de la cola en T es la estabilidad que ofrece al momento de maniobrar o cambiar de ruta de vuelo. [28]

Estabilizador horizontal: Semejante a un ala pequeña que se sitúa en la cola de la aeronave.

Estabilizador vertical: También se sitúa en la cola y de divide en una parte fija y otra articulada que es el timón.

Figura 2.12. Configuración de cola en T [28]

2.2.4. Dimensionamiento de estructura principal del UAV

Se realiza el dimensionamiento del ala, fuselaje y cola para posteriormente realizar el diseño del UAV.

2.2.4.1.Dimensionamiento del ala

Para el dimensionamiento del ala, es necesario el cálculo de la superficie alar ya que permite conocer las dimensiones de envergadura y cuerda media.

Superficie alar: Como se mencionó en el capítulo anterior de la sección 1.2.5.2, la superficie alar es la superficie vista desde la parte superior como se muestra en la figura 1.13.

Para el cálculo de la superficie, se obtiene mediante la Ec [28] de la sección 2.2.1.3.2.

$$CA = \frac{W_T}{S}$$

Se despeja la superficie alar

$$S = \frac{W_T}{CA}$$

La carga alar también se obtiene mediante la siguiente ecuación:

$$CA = C * \sqrt{S}$$
 Ec. [30]

Donde:

C es el coeficiente de carga alar

S es la superficie en dm²

Al reemplazar la Ec [30] en Ec [28] se obtiene la fórmula de superficie alar en función de C que es el coeficiente de carga el cual se muestra en la tabla 2.21.

Tabla 2.21. Coeficiente de carga alar [29]

С	Tipo de avión
2 y 3	Velero térmico
4 y 5	Motoplaneador
6 y 8	Entrenador
9 y 12	Acrobático
13 y 15	Carreras

Por lo tanto:

$$S = \frac{W_{\rm T}}{C * \sqrt{S}}$$
$$S = \sqrt[3]{\left(\frac{W_{\rm T}}{C}\right)^2} \qquad \text{Ec. [31]}$$

Para el cálculo de la superficie alar, se elige un coeficiente de carga alar promedio de 7 que se muestra en la tabla 2.21, ya que el prototipo UAV se asemeja a un avión entrenador.

$$S = \sqrt[3]{\left(\frac{3716,96}{7}\right)^2}$$

S = 65,5732 dm²
S = 6557,32 cm²

Se obtiene una superficie alar de 6557,32 cm², siendo posible calcular la envergadura y la cuerda media del ala.

A continuación, se procede al cálculo de la envergadura (b) utilizando la Ec [5] de la sección 1.2.5.2, con un valor de AR igual a 7 que es el alargamiento. [28]

$$AR = \frac{b^2}{s}$$

b = $\sqrt{s * AR}$
b = $\sqrt{6557,32 * 7}$
b = 214,2457 cm \approx 214 cm

Se obtiene un valor de envergadura de 214 cm, el cual me indica la distancia máxima del ala medida de punta a punta como se muestra en la figura 1.13 de la sección 1.2.5.2.

También se calcula el valor de la cuerda media (c) con la Ec [3] que se encuentra en la sección 1.2.5.2.

$$c = \frac{s}{b}$$

$$c = \frac{6557,32 \text{ cm}^2}{214 \text{ cm}}$$
$$\bar{c} = 30,6417 \text{ cm}$$
$$\bar{c} = 310 \text{ mm}$$

Cálculo de cuerda punta

Para este cálculo de toma en cuenta la conicidad, que es 0,7 ya que este valor proporciona una superficie de sustentación estable. Este valor se calcula con la Ec [4] de la sección 1.2.5.2.

$$\lambda = \frac{c_t}{c_r}$$
$$c_t = \lambda * c_r$$
$$c_t = 0.7 * 310$$
$$c_t = 217 \text{ mm}$$

2.2.4.2.Dimensionamiento de fuselaje

Longitud de fuselaje

Para el dimensionamiento del fuselaje se toma en cuenta la longitud de la cuerda media, la cual se multiplica en un intervalo entre 4 y 6 veces la cuerda media del ala. [30]

$$L_{f} = 4 * c$$
 Ec. [32]
 $L_{f} = 4 * 310$
 $L_{f} = 1240 \text{ mm}$

Donde:

L_f es la longitud total del fuselaje

Altura de fuselaje

La altura del fuselaje se diseña de acuerdo a la distribución de los componentes electrónicos, además se toma en cuenta la distancia del soporte del motor en relación

al tubo de unión cola – fuselaje, así la hélice no causara daños al tubo en caso de chocar. La altura del fuselaje es de 256,5 mm.

Ancho del fuselaje

Al igual que la altura del fuselaje, para el dimensionamiento se considera la distribución de los componentes, considerando un ancho de 100 mm.

2.2.4.3.Dimensionamiento de cola

Diseño de cola UAV

El diseño de la cola, se realiza mediante el dimensionamiento de un estabilizador horizontal y vertical como se indica en la figura 2.12 de la sección 2.2.3.3.

Dimensionamiento de estabilizador horizontal

En cálculo de la superficie del estabilizador horizontal, se toma en cuenta el 15% de la superficie del ala.

$$S_{h} = \% * S_{ala}$$
 Ec. [33]

Donde:

S_h es la superficie del estabilizador horizontal.

Sala del ala es la superficie del ala

$$S_h = 0,15 * 6557,32 \text{ cm}^2$$

 $S_h = 983,5980 \text{ cm}^2$

Para el cálculo de la cuerda media en el estabilizador horizontal, se toma en cuenta la Ec [3] de la sección 1.2.5.2.

$$c = \frac{s}{b}$$

 $c = \frac{983.5980 \text{ cm}^2}{59}$
 $c = 16,6712 \text{ cm}$

Además, se calcula el valor de la longitud horizontal del estabilizador mediante la Ec [5] de la sección 1.2.5.2.

$$AR = \frac{l_h^2}{S_h}$$
$$l_h = \sqrt{AR * S_h}$$
$$l_h = \sqrt{3.5 * 983.5980}$$
$$l_h = 58,6736 \text{ cm}$$
$$l_h = 59 \text{ cm}$$

Donde:

AR es el alargamiento recomendado el estabilizador horizontal

l_h es la longitud horizontal del estabilizador

 S_h es la superficie del estabilizador horizontal

Dimensionamiento de estabilizador vertical

Para el dimensionamiento del estabilizador vertical se toma en cuenta el 5% de la superficie del ala, esto se calcula mediante la Ec [33] de la sección 2.2.4.3.

$$S_v = \% * S_{ala}$$

Donde:

 S_v es la superficie del estabilizador vertical

$$S_v = 0.05 * 6557,32 \text{ cm}^2$$

 $S_v = 327,8660 \text{ cm}^2$

Para el cálculo de la cuerda media en el estabilizador vertical, se toma en cuenta la Ec [3] de la sección 1.2.5.2.

$$c = \frac{s}{b}$$

$$c = \frac{327,866 \text{ cm}^2}{22}$$

$$c = 14,903 \text{ cm}$$

Además, se calcula el valor de la longitud vertical del estabilizador mediante la Ec [5] de la sección 1.2.5.2.

$$AR = \frac{l_v^2}{S_v}$$

Donde:

AR es el alargamiento recomendado para el estabilizador vertical

 l_v es la longitud vertical del estabilizador

 S_v es la superficie del estabilizador vertical

$$l_v = \sqrt{AR * S_v}$$

 $l_v = \sqrt{1,45 * 327,8660}$
 $l_v = 21,8030 \text{ cm}$
 $l_v = 22 \text{ cm}$

En la tabla 2.22 se indican los parámetros a considerar para el diseño del ala, fuselaje y cola del prototipo UAV táctico

Parámetros	Especificación	Unidad	
Peso de UAV	3716,96	gr	
Velocidad crucero	15,8826	m/s	
Velocidad de perdida	9,2905	m/s	
Velocidad de despegue	11,1486	m/s	
Din	nensiones del ala		
Perfil alar	(ag 35 - il) AG35	-	
Superficie alar	6557,32	cm^2	
Envergadura	2140	mm	
Cuerda media	310	mm	
Cuerda en la punta del ala	217	mm	
Dimensiones del fuselaje			
Longitud total	1240	mm	
Altura	256,5	mm	
Ancho	100	mm	
Dimensiones de cola (Estabilizador horizontal)			
Superficie	983,598	cm^2	
Cuerda media	16,67	cm	
Envergadura	59	cm	
Dimensiones de cola (Estabilizador vertical)			
Superficie	327,866	cm^2	
Cuerda media	16,67	cm	
Envergadura	22	cm	

Tabla 2.22. Parámetros a considerar para el diseño

2.2.5. Diseño del ala, fuselaje y cola

2.2.5.1. Diseño del ala

Diedro

El ángulo diedro, es el ángulo de inclinación que se forma entre el plano horizontal y la raíz del ala como se muestra en la figura 2.13, que generalmente está en el rango de 3 a 8 grados. Este ángulo influye en la estabilidad del avión. [31]

Figura 2.13. Angulo diedro [31]

Con las dimensiones generales mostradas en la tabla 2.23 se procede al diseño del ala, teniendo en cuenta un ángulo para el diedro de 3 grados.

Parámetro	Descripción
Perfil alar	(ag 35 - il) AG35
Superficie alar	655732 mm^2
Envergadura	2140 mm
Cuerda media	310 mm
Cuerda en la punta del ala	217 mm

Tabla 2.23. Dimensiones generales del ala.

Inicialmente para el diseño del ala se tiene el perfil AG 35 seleccionado anteriormente, el cual se muestra en la figura 2.14 con un valor de la cuerda de 310 mm y un espesor de 23 mm ya que ingresará un tubo de 13 mm que une el ala con la cabina, además se utiliza balsa para las costillas.

Figura 2.14 Dimensiones del perfil alar

Para el diseño del ala, se busca tener el menor peso posible por lo cual se aliviana el peso de las costillas.
A continuación, en la figura 2.15 se muestra la primera opción para alivianar el peso de las costillas

Figura 2.15 Opción 1 AG 35

Inicialmente la costilla tiene una masa de 2,54 gramos y en la figura 2.16 se muestra la primera opción para alivianar el peso con un valor de 2 gramos

Figura 2.16 Propiedades de masa de AG 35 opción 1

En la figura 2.17, se observa la costilla con una deformación máxima de 0,3785 mm, a la cual se aplicó una fuerza de sustentación (L) de 16,68 N y el peso del ala de 6,61 N (W_{ala}), además de una presión de 74.692 Pa. El valor del coeficiente de sustentación L = 16,68 N, se da cuando el vehículo aéreo no tripulado vuela en condiciones crucero.

Figura 2.17. Resultados de deformación AG 35 opción 1

En la figura 2.18 se muestra la segunda opción para alivianar el peso de las costillas

Figura 2.18. Opción 2 AG 35

Esta costilla tiene una masa de 1,796 gramos como se observa en la figura 2.19

Figura 2.19. Propiedades de masa de AG 35 opción 2

En la figura 2.20, se observa la costilla con una deformación máxima de 0,3728 mm, a la cual se aplicó una fuerza de sustentación (L) de 16,68 N y el peso del ala de 6,61 N (W_{ala}), además se aplicó una presión de 74.692 Pa.

Figura 2.20. Análisis de deformación

Se elige la opción 2, ya que inicialmente la costilla tiene un peso de 2,54 gramos y se reduce a 1,796 gramos, siendo óptimo para reducir el peso del ala.

Para el diseño, se toma en cuenta que el ala estará dividida en dos partes y se unirá al fuselaje mediante un tubo, esto es porque se requiere que el ala sea desmontable.

Se elige un ala compuesta (ala rectangular y ala trapezoidal) ya que el ala rectangular ofrece alta sustentación a bajas velocidades, una óptima estabilidad y la resistencia al avance es elevada, mientras que el ala trapezoidal tiene mayor rigidez, mejor maniobrabilidad de la aeronave, menor resistencia avance (menor área en las puntas) y tiene una mejor distribución de la sustentación sobre la superficie alar. En la figura 2.21 se muestra un ala rectangular y ala trapezoidal. [32]

Ala rectangular Ala trapezoidal

Figura 2.21. Ala rectangular y trapezoidal. [32]

En la figura 2.22 se muestra la distribución estructural del ala rectangular con un espesor de las costillas de 2.5 mm. Se tiene una separación de 47,5 mm entre la costilla 1-2, 2-3, 3-4, debido a que se genera la mayor cantidad de esfuerzos es las costillas.

Figura 2.22. Distribución estructural rectangular del ala

En la figura 2.23 se observa el diseño estructural del ala rectangular

Figura 2.23. Ala rectangular

En la figura 2.24 se observa la distribución estructural del ala trapezoidal con un espesor de las costillas de 2.5 mm.

Figura 2.24. Distribución estructural trapezoidal del ala

En la figura 2.25 se muestra la estructura del ala trapezoidal, la cual tiene un ángulo del diedro de 3 grados

Figura 2.25. Estructura del ala trapezoidal

Ala compuesta (ala rectangular y ala trapezoidal)

En la figura 2.26 se muestra la estructura del ala compuesta con una viga principal y una viga de apoyo

Figura 2.26. Estructura de ala compuesta

En la figura 2.27 se muestra el diseño del ala cubierta con una capa de piel del material compuesto (fibra de carbono y fibra de vidrio)

Figura 2.27. Ala con perfil AG 35

En la figura 2.28, se observa que la mayor concentración de esfuerzos se encuentra en la parte rectangular del ala por lo cual se ubicaron las costillas 1, 2, 3 y 4 más unidas con respecto a las costillas 5, 6, 7, 8 y 9.

Para el análisis se aplica una fuerza de sustentación (L) de 16,68 N y el peso del ala de 6,61 N (W_{ala}), además se aplicó una presión de 74.692 Pa.

Figura 2.28. Análisis de von Mises en el ala

Además, se muestra la deformación máxima que el ala tendría con las condiciones anteriormente establecidas con un valor de 2,031 mm.

Figura 3.29. Deformación máxima del ala

En el caso de disminuir la presión atmosférica al cambiar la altitud a 3500 metros, se tiene una menor concentración de esfuerzos en la parte rectangular del ala. Se utiliza una presión de 65.780 Pa.

Figura 2.30. Análisis de von Mises disminuyendo la presión atmosférica

Finalmente se muestra la deformación máxima que el ala tendría con las condiciones anteriormente establecidas con un valor de 2,055 mm.

Figura 2.31. Deformación del ala a menor presión atmosférica

En la figura 2.32 se muestra el diseño del diedro con un ángulo de 3 grados

Figura 2.32. Diedro del ala

Alerones

El alerón actúa como dispositivo de control de balanceo y se instala en los extremos del ala, entre un 5 y 10 % de la superficie del ala se emplea en el alerón para su dimensionamiento, el valor de la cuerda del alerón está en un rango 15 al 25% de cuerda del ala y el tramo horizontal del alerón está en un valor del 20 al 30 % de la envergadura total del ala. [33]

En la tabla 2.24 se muestran las dimensiones del alerón

Parámetros	% (porcentaje estimado)	% (porcentaje de diseño)	Especificación	Unidad
Envergadura	20 - 30 %	21%	450	mm
Cuerda	15 - 25 %	16%	50	mm
Superficie	5 -10 %	5%	32787	mm^2

Tabla 2.24. Dimensiones generales del alerón

En la figura 2.33 se muestra la ubicación del alerón en el ala

Figura 2.33. Ubicación de alerón

Winglet

Este dispositivo reduce la resistencia inducida, en la figura 2.34 se muestran los diferentes tipos de winglets que modifican el vórtice o torbellino que se forma en la punta del ala. A velocidades mínimas, el grado de reducción es mínimo, mientras que a altas velocidades existe un cierto grado de reducción de la resistencia. [34]

Figura 2.34. Tipos de winglet [34]

Para el diseño del winglet se toma en consideración el tipo blended, y un ángulo de inclinación con respecto al plano horizontal de 28 grados como se muestra en la figura 2.35. [34]

Figura 2.35. Angulo de inclinación recomendado

En la figura 2.36 se muestra el diseño final del ala, cumpliendo con los parámetros establecidos anteriormente

Figura 2.36. Ala completa de UAV

2.2.5.2.Diseño del fuselaje

En la tabla 2.25 se muestran las dimensiones generales del fuselaje

Parámetros	Especificación	Unidad
Longitud	1240	mm
Altura	256,5	mm
Ancho	100	mm

Tabla 2.25. Dimensiones generales de fuselaje

El fuselaje tiene tres componentes principales: nariz, cabina y cola como se muestra en la figura 2.37.

Figura 2.37. Componentes principales del fuselaje [35]

Diseño de la nariz

Para el diseño de la nariz se toma en cuenta la relación de finura (FR_n) , que es la |relación entre la longitud de la nariz (L_n) y la altura de la cabina (d_f) . [35]

$$FR_{n} = \frac{L_{n}}{d_{f}}$$
Ec. [34]

$$FR_{n} = \frac{L_{n}}{d_{f}}$$

$$FR_{n} = \frac{220 \text{ mm}}{165 \text{ mm}}$$

$$FR_{n} = 1,3333$$

Al obtener el valor de relación de finura de 1,3333 se observa en la figura 2.38 que el ángulo de inclinación de la nariz esta un rango 37 a 44 grados. Se elige un ángulo de

inclinación de 37 grados, el cual nos da un factor de corrección de la nariz en el momento de lanzamiento de 0,06.

Figura 2.38. Angulo de inclinación de nariz vs Factor de corrección de la nariz en el momento de lanzamiento [35]

El valor de h_w es un parámetro que asume el diseñador, por lo cual se tiene un valor de 140 mm.

En la figura 2.39 se observa en el frente de la nariz un ángulo de inclinación de 37° que se forma con respecto a la horizontal que forma h_w , esto se realizó tanto en la parte superior de la nariz como en la parte inferior, con la diferencia que h_w es cero en la base de la nariz.

Figura 2.39. Geometría de nariz

En la figura 2.40 se muestra el diseño de la nariz

Figura 2.40. Diseño de nariz

Diseño de cabina

El ancho de la cabina es de 100 mm y la altura de 175 mm, siendo este el valor de d_f .

En la figura 2.41 se observa el diseño de la cabina con las dimensiones anteriormente indicadas

Figura 2.41. Diseño de cabina

2.2.5.3.Diseño de cola

En la figura 2.42 se muestra el diseño de la cola, el cual unirá mediante un tubo de fibra de carbono de 24 mm de diámetro a la cola en T.

El soporte donde va ubicado el motor, debe estar a una altura en la cual la hélice no choque con el tubo de unión.

Figura 2.42. Diseño de cola

2.2.9.1. Diseño de cola en T

Para el diseño de la cola en T se toman en cuenta las dimensiones calculadas tanto en el estabilizador horizontal y vertical, calculados en la sección 2.2.4.3.

Estabilizador horizontal

Figura 2.43. Estabilizador horizontal

Estabilizador vertical

Figura 2.44. Estabilizador vertical

Alerones

Para el dimensionamiento de los alerones de la cola en T, se toma en cuenta que el valor de cuerda media, debe estar en un rango del 15 al 25 % de la de la cuerda media de la proyección horizontal, y la envergadura será el mismo valor de la proyección.

Parámetros	% (porcentaje estimado)	% (porcentaje de diseño)	Especificación	Unidad
Envergadura	100%	100%	59	cm
Cuerda	15 - 25 %	22%	3,7	cm
Superficie	5 -10 %	5%	49,18	cm^2

Tabla 2.26. Dimensiones generales del alerón de cola en T.

En la figura 2.45 se muestran tanto los estabilizadores como los alerones de la cola en T

Figura 2.45. Cola en T

2.2.6. Sistema desmontable

En la figura 2.46 se observa que el ala del prototipo UAV se une mediante tubos a la cabina, los cuales se sostienen con una placa de fibra de carbono.

Este sistema desmontable permite ensamblar y retirar las alas de manera fácil.

Figura 246. Sistema desmontable del ala

En la figura 2.47 se muestra el sistema desmontable de la cola, la cual se sujetará en un soporte colocado en el interior del fuselaje, con lo cual es posible ensamblar y retirar la cola rápidamente.

Figura 2.47. Sistema desmontable de cola

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1.FUERZAS QUE ACTÚAN EN UN AVIÓN NO TRIPULADO

En el avión no tripulado básicamente las fuerzas que actúan son el peso (W), la sustentación (L), la resistencia (D) y la tracción (T), como se detalla en la figura 3.1.

Figura 3.1. Fuerzas que actúan en un avión [25]

3.1.1. Sustentación

Se entiende por sustentación al resultado de la diferencia de presiones entre extradós e intradós que producirá una fuerza hacia arriba como se muestra en la figura 3.2, para esto se encuentran varios factores involucrados como: el ángulo de ataque, área y forma del ala, velocidad del aire y densidad del aire. [7]

Figura 3.2. Representación de diferencia de presiones [7]

La sustentación se expresa mediante la siguiente formula:

$$L = \frac{1}{2} * \rho * v^{2} * S * C_{l}$$
 Ec. [35]

L es la fuerza de sustentación en Newtons

C₁ es el coeficiente de sustentación

 ρ es la densidad del aire en kg/m³

v es la velocidad en m/s

S es la superficie alar en m²

3.1.2. Peso del UAV

El peso se calcula mediante la siguiente formula:

$$W = m * g \qquad \qquad \text{Ec. [36]}$$

Donde la masa del avión no tripulado por lo general es conocida y g es la gravedad que es igual a 9.8 $m/_{s^2}$.

3.1.3. Tracción del motor

Esta fuerza se da por el accionamiento de un motor a pistón, motor eléctrico, turbohélice, turbo fan, turbina pura, produciendo el avance del avión.

3.1.4. Resistencia al avance del UAV

La resistencia aerodinámica depende de la fricción del avión completo (ala, fuselaje y estabilizadores) al entrar en contacto con las partículas del aire y se expresa mediante la siguiente formula. [4]

$$D = \frac{1}{2} * \rho * v^{2} * S * C_{d}$$
 Ec. [37]

Donde:

D es la fuerza de resistencia en Newtons

 C_d es el coeficiente de resistencia

 ρ es la densidad del aire en kg/m³ v es la velocidad en m/s

S es la superficie alar en m²

3.2.CÁLCULO DE FUERZAS QUE ACTÚAN EN EL UAV.

3.2.1. Cálculo de fuerza de sustentación

Para el cálculo de fuerzas resultantes, se considera que el UAV vuela en condiciones crucero, por lo cual se tiene un ángulo de ataque (α) de cero grados, y un coeficiente de sustentación máximo (Cl) de 0,4217, además el centro de gravedad en el perfil está ubicado a 1/3 del valor de la cuerda. Estos valores se obtienen de la tabla 2.20 de la sección 2.2.2.2.

En la figura 3.3 se observan las fuerzas y el momento de origen aerodinámico sobre un perfil.

Figura 3.3. Fuerzas y momento de origen aerodinámico sobre un perfil [4]

Para el cálculo de sustentación (L) se toma en cuenta la Ec [35] de la sección 3.1.1.

$$\mathbf{L} = \frac{1}{2} * \rho * \mathbf{v}^2 * \mathbf{S} * \mathbf{C}_1$$

El valor de la densidad se toma de la tabla 2.14 que se encuentra en la sección 2.2.1.2, la velocidad y superficie alar se encuentra en la tabla 2.22 de la sección 2.2.4.3.

L =
$$\frac{1}{2}$$
 * 0,95696 kg/m³ * $\left(15,8826\frac{m}{s}\right)^2$ * 0,655732m² * 0,4217
L = 33,3762 N

Se calcula una fuerza de sustentación de 33,3762 N, siendo esta la fuerza necesaria para que la aeronave se mantenga en el aire en condiciones de vuelo crucero.

3.2.2. Cálculo de fuerza de resistencia

Para el cálculo de la resistencia se toma la Ec [37] de la sección 3.1.4. Se considera que el UAV vuela en condiciones crucero, por lo cual se tiene un ángulo de ataque (α) de cero grados, y un coeficiente de resistencia al avance del UAV (Cd) de 0,0.00668.

$$D = \frac{1}{2} * \rho * v^{2} * S * C_{d}$$
$$D = \frac{1}{2} * 0,95696 \frac{\text{kg}}{\text{m}^{3}} * \left(15,8826 \frac{\text{m}}{\text{s}}\right)^{2} * 0,655732\text{m}^{2} * 0,00668$$
$$D = 0,5287 \text{ N}$$

Se calcula una fuerza de resistencia al avance del UAV de 0,5287 N, siendo esta la fuerza de ficción del UAV al entrar en contacto con las partículas de aire.

3.2.3. Cálculo de peso del UAV (vehículo aéreo no tripulado)

$$W = m * g$$

 $W = 3,7167 * 9.81 m/s^2$
 $W = 36,4608 N$

3.2.4. Cálculo de momento de cabeceo

Momento: Este valor depende de la fuerza de sustentación y el punto en el que se tomen los momentos. En la figura 3.4 se observa la sustentación aplicada en un punto (A) y un momento M_1 aplicado en dirección negativa que generalmente sucede en los perfiles con curvatura positiva. [6]

Figura 3.4. Aplicación de momento en perfil alar [6]

$$M = L * A$$
 Ec. [38]
 $M = 33,3762 N * (0,31/3)$
 $M = 3,4489 N.m$

3.3.FACTOR DE SEGURIDAD

Según las regulaciones Federales de aviación, el factor de seguridad aplicado para cargas externas e inercia es 1,5 que permite evitar desastres en casos que se requiera una fuerza superior al límite. [36]

3.4.PROPIEDADES DE LOS MATERIALES UTILIZADOS EN LA FABRICACIÓN DE LA ESTRUCTURA DEL UAV

3.4.1. Número de capas

Andrés Jacome realiza un estudio de las propiedades mecánicas del fuselaje de los Vehículos Aéreos No Tripulados (UAV) del Centro de Investigación y Desarrollo de la Fuerza Aérea Ecuatoriana (CIDFAE) en el cual obtiene los siguientes resultados para la fibra de carbono, siendo aceptable utilizar 3 capas.

SECCION	CONFIGURACIONES	CARGA MÁXIMA (N)	XIMA PAR ESFUERZO MAXIMO (MPa)		PAR
	FLC	49,0		386,1	
	CLI	50,0		342,0	
LATERALES	CL II	54,1		385,6	
	CL III	60,8		420,1	
	CL IV	57,0		396,0	
	FPC	127,1		7,0	
PISO	CP I	287,7		16,1	
	CP II	124,7		6,9	
PARÁMETROS	DE ACEPTACION O RECH	IAZO (PAR)			
Rojo = Resultado NO ACEPTABLE					
Amarillo = Resultado MEDIANAMENTE ACEPTABLE					
Verde = Resultado ACEPTABLE.					

Tabla 3.1 Número de capas para fuselaje

3.4.2. Propiedades de los materiales compuestos

Es necesario conocer las propiedades de las fibras de refuerzo, resina a utilizar y refuerzos para conocer las propiedades de los materiales compuestos. En la tabla 3.2 se muestran las propiedades mecánicas de la fibra de carbono.

Fibra de carbono					
Propiedad	Valor	Unidad	Fuente		
Módulo elástico en X	231000	Мра	Anexo B		
Módulo elástico en Y	15000	Мра	Tabla 2.2 [15]		
Coeficiente de Poisson en XY	0,3	-	Tabla 2.2 [15]		
Coeficiente de Poisson en YZ	0,3	-	Tabla 2.2 [15]		
Coeficiente de Poisson en XZ	0,3	-	Tabla 2.2 [15]		
Densidad de masa	1790	kg/m^3	Anexo B		
Límite elástico	228	Мра	Anexo B		

Tabla 3.2. Propiedades mecánicas de fibra de carbono

3.4.3. Propiedades de la fibra de vidrio

En la tabla 3.3 se muestran las propiedades mecánicas de la fibra de vidrio

Fibra de vidrio					
Propiedad	Fuente				
Módulo elástico en X	74000	Mpa	Tabla 2.2 [15]		
Módulo elástico en Y	74000	Мра	Tabla 2.2 [15]		
Coeficiente de Poisson en XY	0,25	-	Tabla 2.2 [15]		
Coeficiente de Poisson en YZ	0,25	-	Tabla 2.2 [15]		
Coeficiente de Poisson en XZ	0,25	-	Tabla 2.2 [15]		
Densidad de masa	2600	kg/m^3	Tabla 2.3 [15]		
Límite elástico	1215	Mpa	Tabla 2.7 [19]		

Tabla 3.3. Propiedades mecánicas de fibra de vidrio

3.4.4. Propiedades de la balsa

En la tabla 3.4 se muestran las propiedades mecánicas de la balsa

Baka					
Propiedad	Valor	Unidad	Fuente		
Módulo elástico en X	4000	Мра	Tabla 2.8 [20]		
Módulo elástico en Y	200	Мра	Tabla 2.8 [20]		
Coeficiente de Poisson en XY	0,29	-	Solidworks		
Coeficiente de Poisson en YZ	0,29	-	Solidworks		
Coeficiente de Poisson en XZ	0,29	-	Solidworks		
Densidad de masa	190	kg/m^3	Tabla2.9 [15]		
Límite elástico	20	Мра	Solidworks		

Tabla 3.4. Propiedades mecánicas de la balsa

3.4.5. Propiedades de la resina epóxica

En la tabla 3.5 se muestran las propiedades mecánicas de la resina epóxica

Resina Epóxica					
Propiedad	Valor	Unidad	Fuente		
Módulo elástico en X	193053	Мра	Anexo C		
Módulo elástico en Y	193053	Мра	Anexo C		
Coeficiente de Poisson en XY	0,4	-	Tabla 2.5 [15]		
Coeficiente de Poisson en YZ	0,4	-	Tabla 2.5 [15]		
Coeficiente de Poisson en XZ	0,4	-	Tabla 2.5 [15]		
Densidad de masa	1110	kg/m^3	Anexo C		
Límite elástico	12,2	Mpa	Tabla 2.6 [18]		

Tabla 3.5. Propiedades mecánicas de fibra de vidrio

Para el cálculo de los materiales utilizados se toman las ecuaciones de la sección 2.1.1.1 y así obtener las nuevas propiedades para los cálculos de deformación y análisis estático mediante elementos finitos.

En la tabla 3.6 se muestran los materiales utilizados para la laminación del fuselaje y el porcentaje de fracción

Fibras	Espesor en mm	Número de capas	Cantidad en mm	% de fracción
Carbono	0,35	3	1,05	60,12
Matriz Epóxica		0,15	39,88	
Espesor total		1,2	100	

Tabla 3.6. Materiales utilizados para el fuselaje

En la tabla 3.7 se muestran los materiales utilizados para la laminación del ala y también se muestra el porcentaje de fracción

Fibras	Espesor en	Número de capas	Cantidad en	% de
	mm		mm	Iraccion
Carbono	0,35	1	0,35	40,08
Vidrio	0,4	1	0,4	20,04
Matriz Epóxica			0,15	39,88
Espesor total			0,9	100

En la tabla 3.8 se muestran los materiales utilizados para la viga del ala, y el porcentaje de fracción

Tabla 3.8. Materiales utilizados	para la	viga	del ala
----------------------------------	---------	------	---------

Fibras	Espesor en	Número de cenes	Cantidad en	% de
Tibras	mm	Numero de capas	mm	fracción
Balsa	5	1	5	25,05
Carbono	0,35	1	0,35	10,02
Balsa	5	1	5	25,05
Matriz Epóxica		0,15	39,88	
Espesor total			10,5	100

Además, se muestran los materiales utilizados para los tubos, y el porcentaje de fracción

Fibras	Espesor en	Número de	Cantidad	% de
	mm	capas	en mm	fracción
Carbono	0,35	4	1,4	60,12
Ν	Matriz Epóxic	a	0,15	39,88
Espesor total		1,55	100	

Tabla 3.9. Materiales utilizados para el tubo de unión ala -fuselaje

De la sección 2.1.1.1 se toma la Ec [16] y [17], para calcular las propiedades de los materiales tales como el módulo elástico, coeficiente de Poisson.

$$V_{\rm m} + V_{\rm f} = 1$$
 Ec. [16]

Módulo de elasticidad para el material compuesto (Comportamiento elástico – Carga longitudinal)

En la Ec [39] se muestra que el material está formado por matrices y fibras.

$$V_{\rm m} + 3V_{\rm c} = 1$$
 Ec. [39]

Mediante la Ec [17] se determina el módulo de elasticidad para el material compuesto.

$$E_{\rm T} = V_{\rm m} E_{\rm m} + 3V_{\rm c} E_{\rm c} \qquad \qquad \text{Ec. [40]}$$

De la Ec [39], se despeja el volumen de la matriz para reemplazarlo en la Ec [40].

$$V_{\rm m} = 1 - 3V_{\rm c}$$

$$E_{\rm T} = V_{\rm m}E_{\rm m} + 3V_{\rm c}E_{\rm c}$$

$$E_{\rm T} = (1 - 3V_{\rm c})E_{\rm m} + 3V_{\rm c}E_{\rm c}$$

$$E_{\rm T} = E_{\rm m} - 3V_{\rm c}E_{\rm m} + 3V_{\rm c}E_{\rm c}$$

$$E_{x} = E_{mx} - 3V_{c}(E_{mx} - E_{cx})$$
Ec. [41]

Donde:

Emx es el módulo de elasticidad de la matriz epóxica en dirección longitudinal

 E_{cx} es el módulo de elasticidad de la fibra de carbono en dirección longitudinal

V_c es la fracción de la fibra de carbono

Módulo de elasticidad para el material compuesto (Comportamiento elástico – Carga transversal)

Para determinar el módulo de elasticidad del material compuesto, se toma la Ec [19] de la sección 2.1.1.1, la cual nos muestra la deformación del material compuesto (ϵ_c).

$$\epsilon_{\rm Y} = \epsilon_{\rm m} V_{\rm m} + \epsilon_{\rm c} V_{\rm c}$$

Para conocer las propiedades del nuevo material compuesto, modificamos la Ec [19] de acuerdo al número de capas de la fibra.

$$\epsilon_{\rm Y} = \epsilon_{\rm m} V_{\rm m} + 3(\epsilon_{\rm c} V_{\rm c})$$
 Ec. [42]

En la Ec [20], de la sección 2.1.1.1, se tiene que el alargamiento o la deformación unitaria es igual a:

$$\epsilon = \frac{\sigma}{E}$$

Se reemplaza la Ec [20] en la Ec [42].

$$\frac{\sigma}{E_{Y}} = \frac{\sigma * V_{m}}{E_{m}} + 3 * \frac{\sigma * V_{c}}{E_{c}} \qquad \text{Ec. [43]}$$

Se divide ambos términos para el esfuerzo (σ).

Finalmente, la ecuación para el material compuesto es la siguiente.

$$E_{Y} = \frac{E_{my}E_{cy}}{V_{m}E_{cy} + 3(V_{c}E_{my})} = \frac{E_{my}E_{cy}}{(1 - 3V_{c})E_{cy} + 3(V_{c}E_{my})}$$
 Ec. [45]

Donde:

E_{mx} es el módulo de elasticidad de la matriz epóxica en dirección longitudinal.

 E_{cx} es el módulo de elasticidad de la fibra de carbono en dirección longitudinal.

 V_c es la fracción de la fibra de carbono.

Densidad de masa del material compuesto (ρ_T).

$$\rho_{\rm T} = V_{\rm m} \rho_{\rm m} + 3V_{\rm c} \rho_{\rm c} \qquad \qquad \text{Ec. [46]}$$

En la siguiente ecuación se muestra la densidad de masa total del material compuesto.

$$\rho_{\rm T} = \rho_{\rm m} - 3V_{\rm c}(\rho_{\rm m} - \rho_{\rm c}) \qquad \qquad \text{Ec. [47]}$$

Donde:

 ρ_m es la densidad de la masa de la matriz epóxica.

 ρ_c la densidad de la masa de la fibra de carbono.

 V_c es la fracción de la fibra de carbono.

Coeficiente de Poisson (v_T)

$$\upsilon_{\rm T} = V_{\rm m}\upsilon_{\rm m} + 3_{\rm c}\upsilon_{\rm c} \qquad \qquad \text{Ec. [48]}$$

En la siguiente ecuación se muestra el coeficiente de Poisson del material compuesto.

$$\upsilon_{\rm T} = \upsilon_{\rm m} - 3V_{\rm c}(\upsilon_{\rm m} - \upsilon_{\rm c}) \qquad \qquad \text{Ec. [49]}$$

Donde:

 v_m es el coeficiente de Poisson de la matriz epóxica.

 v_c es el coeficiente de Poisson de la fibra de carbono.

 V_c es la fracción de la fibra de carbono.

Además, se obtienen las ecuaciones del material compuesto para las direcciones xy, yz, xz en base a la Ec [41].

$$v_{T_{xy}} = v_{m_{xy}} - 3V_c(v_{m_{xy}} - v_{c_{xy}})$$
 Ec. [50]

$$v_{T_{yz}} = v_{m_{yz}} - 3V_c(v_{m_{yz}} - v_{c_{yz}})$$
 Ec. [51]

$$v_{T_{xz}} = v_{m_{xz}} - 3V_c(v_{m_{xz}} - v_{c_{xz}})$$
 Ec. [52]

Límite de elasticidad del material compuesto (ρ_T)

$$\sigma_{\rm T} = V_{\rm m} \sigma_{\rm m} + 3V_{\rm c} \sigma_{\rm c} \qquad \qquad \text{Ec. [53]}$$

En la siguiente ecuación se muestra la densidad de masa total del material compuesto.

$$\sigma_{\rm T} = \sigma_{\rm m} - 3V_{\rm c}(\sigma_{\rm m} - \sigma_{\rm c}) \qquad \qquad \text{Ec. [54]}$$

Donde:

 σ_m es el límite de elasticidad de la matriz epóxica

 σ_c la densidad de la masa de la fibra de carbono

 V_c es la fracción de la fibra de carbono

3.4.6. Propiedades de material compuesto para la cabina

En la tabla 3.10. se muestran las propiedades del material compuesto utilizado para la laminación de la estructura de la cabina.

Propiedades	Fibra de carbono	Fibra de Resina carbono Epóxica		Unidad
Módulo elástico en X	231000	193050	261496,62	Mpa
Módulo elástico en Y	15000	193050	17141,551	Mpa
Coeficiente de Poisson en XY	0,3	0,4	0,21964	-
Coeficiente de Poisson en YZ	0,3	0,4	0,21964	-
Coeficiente de Poisson en XZ	0,3	0,4	0,21964	-
Densidad	1570	1110	1939,656	kg/m^3
Limite elástico	228	12,2	401,41688	Мра

Tabla 3.10. Propiedades de material compuesto para la cabina

3.4.7. Propiedades de material compuesto para el ala

En la tabla 3.11 se muestran las propiedades del material compuesto utilizado para la laminación de las alas.

Propiedades	Fibra de carbono	Fibra de vidrio	Resina Epóxica	Material compuesto
Módulo elástico en X	231000	74000	193050	184402,7400
Módulo elástico en Y	15000	74000	193050	74468,4119
Coeficiente de Poisson en XY	0,3	0,25	0,4	0,3299
Coeficiente de Poisson en YZ	0,3	0,25	0,4	0,3299
Coeficiente de Poisson en XZ	0,3	0,25	0,4	0,3299
Densidad	1570	2480	1110	1568,9160
Limite elástico	228	1215	12,2	339,7338

Tabla 3.11. Propiedades de material compuesto del ala

3.4.8. Propiedades de material compuesto de viga para el ala

En la tabla 3.12 se muestran las propiedades del material compuesto utilizado para la fabricación de la viga que soporta el peso del ala

Propiedades	Fibra de carbono	Balsa	Resina Epóxica	Material compuesto	Unidad
Módulo elástico en X	231000	4000	193050	102138,5400	Мра
Módulo elástico en Y	15000	200	193050	397,8127	Мра
Coeficiente de Poisson en XY	0,3	0,29	0,4	0,3349	-
Coeficiente de Poisson en YZ	0,3	0,29	0,4	0,3349	-
Coeficiente de Poisson en XZ	0,3	0,29	0,4	0,3349	-
Densidad (Kg/m3)	1570	190	1110	695,1720	kg/m^3
Limite elástico (Mpa)	228	20	12,2	35,7771	Мра

Tabla 3.12. Propiedades de material compuesto de viga del ala

3.4.9. Propiedades de material compuesto para tubos

En la tabla 3.13 se muestran las propiedades del material compuesto utilizado para la fabricación de los tubos

Propiedades	Fibra de carbono	Resina Epóxica	Material compuesto	Unidad
Módulo elástico en X	231000	193050	284312,16	Мра
Módulo elástico en Y	15000	193050	51037,32	Мра
Coeficiente de Poisson en XY	0,3	0,4	0,27976	-
Coeficiente de Poisson en YZ	0,3	0,4	0,27976	-
Coeficiente de Poisson en XZ	0,3	0,4	0,27976	-
Densidad	1570	1110	1663,104	kg/m^3
Limite elástico	228	12,2	141,93896	Мра

Tabla 3.13. Propiedades de material compuesto de tubos

3.5.CÁLCULOS ESTRUCTURALES

Se obtiene la masa total de la cabina con los valores de la tabla 2.12 en donde se indica el peso estimado del UAV (vehículo aéreo tripulado).

$$\begin{split} m_{cabina} &= m_{fuselaje} + m_{motor} + m_{bateria} + m_{carga\,util} \\ m_{cabina} &= 530,88 + 379,2 + 985,92 + 632 \\ m_{cabina} &= 2528 \text{ gramos} \end{split}$$

Para el cálculo del peso de la cabina se utiliza la Ec [35] de la sección 3.1.2.

$$W_{cabina} = m_{cabina} * gravedad$$

 $W_{cabina} = 2,528 * 9,81$
 $W_{cabina} = 24,7997 N$

Además, se obtiene el peso del ala con los valores de la tabla 2.12 en donde se indica el peso estimado del UAV.

$$m_{ala} = m_{ala} + m_{servos}$$

 $m_{ala} = 758,4 + 140$
 $m_{ala} = 898,4$ gramos

Para el cálculo del peso del ala se utiliza la Ec [35] de la sección 3.12.

$$W_{ala} = m_{ala} * gravedad$$

 $W_{ala} = 0,8984 * 9,81$
 $W_{ala} = 8,8133 N$

Para el análisis de la viga se calcula la fuerza de sustentación y resistencia máxima cuando el UAV (vehículo aéreo no tripulado) va a despegar, debido a que el ala estará sometida a la mayor cantidad esfuerzos en ese momento.

Cálculo de fuerza de sustentación máxima

Para el cálculo de la fuerza sustentación máxima se toma el valor del coeficiente de sustentación máximo ($Cl_{max} = 1,3465$) que se encuentra en la tabla 2.20.

$$L_{\max} = \frac{1}{2} * \rho * v^2 * S * Cl_{\max}$$

Donde:

L max es la fuerza de sustentación máxima en Newtons

Cl_{max} es el coeficiente de sustentación máximo.

 ρ es la densidad del aire en $\frac{\text{kg}}{\text{m}^3}$

v es la velocidad de despegue en $\frac{m}{s}$

S es la superficie del ala en m²

El valor de la densidad se toma de la tabla 2.14 que se encuentra en la sección 2.2.1.2, la velocidad de despegue es igual a 11,1486 $\frac{m}{s}$ y superficie alar se encuentra en la tabla 2.22 de la sección 2.2.4.

$$L_{max} = \frac{1}{2} * \rho * v^{2} * S * C_{l_{max}}$$
$$L_{max} = \frac{1}{2} * 0,95696 \frac{\text{kg}}{\text{m}^{3}} * \left(11,1486 \frac{\text{m}}{\text{s}}\right)^{2} * 6,6557 * 1,3465$$
$$L_{max} = 52,5099 \text{ N}$$

Cálculo de fuerza de resistencia máxima

Para el cálculo de fuerza resistencia máxima se toma el valor del coeficiente de sustentación máximo ($Cd_{max} = 0,0992$) que se encuentra en la tabla 2.20.

$$D_{max} = \frac{1}{2} * \rho * v^2 * S * Cd_{max}$$

Donde:

D_{max} es la fuerza de resistencia máxima en Newtons

Cd_{max} es el coeficiente de resistencia máximo

$$D_{\text{max}} = \frac{1}{2} * 0,95696 \frac{\text{kg}}{\text{m}^3} * \left(11,1486 \frac{\text{m}}{\text{s}}\right)^2 * 0,655732\text{m}^2 * 0,0992$$
$$D_{\text{max}} = 3,8685 \text{ N}$$

En la tabla 3.14 se muestran los valores de las fuerzas que actúan en la aeronave, a las cuales se multiplica por el factor de seguridad (FS) de 1,5 que es el valor recomendado por las Regulaciones Federales de Aviación (FAR).

W _{cabina} = 24,7997 N * FS = 37,1995 N
$W_{ala} = 8,8133 \text{ N} * \text{FS} = 13,22 \text{ N}$
$L_{max} = 52,5099 \text{ N*FS} = 78,7641 \text{ N}$
D _{max} =3,8685 N*FS= 5,8023 N

Tabla 3.14. Fuerzas que actúan en la aeronave

Con las fuerzas obtenidas anteriormente se procede al análisis de la viga del ala

Análisis de viga del ala

En la figura 3.5, se representa la viga del ala, en la cual se muestra W_{cabina} que es el peso de la cabina con un valor de 18,599 N, ya que la fuerza se distribuye para el ala, además se observa $W_{ala} = 6,61$ N,que es la mitad de peso del ala, ya que el ala se divide en dos partes, también se considera la fuerza de sustentación la cual está distribuida sobre la viga con un valor de $L_{max} = 39,382$ N, y finalmente se muestra $D_{max} = 2,9012$ N que es la fuerza de resistencia aplicada en la viga del ala.

Figura 3.5. Representación de cargas aplicadas en la viga del ala

En la figura 3.6 se representa el diagrama de cuerpo libre en el plano (x-y) en el cual se muestran las cargas aplicadas para el análisis de la viga, la fuerza de sustentación máxima (L_{max}) y el peso del ala (W_{ala}) se consideran como carga distribuida.

$$q_{\rm L} = \frac{L_{\rm max}}{l} \qquad \qquad \text{Ec. [55]}$$

Donde:

 q_L es la carga distribuida de sustentación en $\frac{N}{m}$ l es la longitud de la viga en metros

$$q_{L} = \frac{39,382 \text{ N}}{1,07 \text{ m}}$$
$$q_{L} = 36,8056 \frac{\text{N}}{\text{m}}$$

Cálculo de carga distribuida en el ala

$$q_{Ala} = \frac{L_{max}}{l}$$

Donde:

 q_{Ala} es la carga distribuida del ala en $\frac{N}{m}$

$$q_{Ala} = \frac{6,61 \text{ N}}{1,07 \text{ m}}$$

 $q_{Ala} = 6,1776 \frac{\text{N}}{\text{m}}$

Diagrama de cuerpo libre. (Plano X-Y)

Figura 3.6. Diagrama de cuerpo libre de la viga en el plano X-Y

Como primer paso se transforma la carga distribuida en carga puntual y se calcula la fuerza de reacción en el punto A y C.

Figura 3.7. Diagrama de cuerpo libre en el plano X-Y.

 $\sum_{Fy=0}^{Fy=0} -W_{cabina} + R_{Ay} + R_{Cy} - W_{ala} + L_{max} = 0$ -18,599 + R_{Ay} + R_{Cy} - 6,61 + 39,382 = 0 R_{Ay} + R_{Cy} = -14,173 N

$$\sum MA = 0$$

$$R_{Cy}(0,152) + L_{max}(0,535) - W_{ala}(0,535) = 0$$

$$R_{Cy}(0,152) + 39,382(0,535) - 6,61(0,535) = 0$$

$$R_{Cy} = -115,3488 \text{ N}$$

Se obtiene el valor de la fuerza de reacción RAy

$$R_{Ay} + R_{Cy} = -14,173 \text{ N}$$

 $R_{Ay} = 101,1758 \text{ N}$

Para el diagrama de esfuerzos y momentos, se analiza la viga mediante el método de secciones

Figura 3.8. Método de secciones aplicado a la viga del ala
$$\sum Fy = 0$$

$$-W_{cabina} + R_{Ay} - R_{Cy} + 36,8056(x) - 6,1776(x) - F_{D} = 0$$

$$-18,599 + 101,1758 - 115,3488 + 36,8056(x) - 6,1776(x) - F_{D} = 0$$

$$F_{D} = 30,628(x) - 32,772$$

$$\Rightarrow Para x = 0,152 \qquad F_{D} = 30,628(0,152) - 32,772$$

$$F_{D} = -28,12 N$$

$$\Rightarrow Para x = 1,07 \qquad F_{D} = 30,628(1,07) - 32,772$$

$$F_{D} = 0 N$$

$$\sum M_{D} = 0$$

$$W_{cabina}(x) - R_{Ay}(x) + R_{Cy}(x - 0,152) - 36,8056(x) \left(\frac{x}{2}\right) + 6,1776(x) \left(\frac{x}{2}\right)$$

$$+ M_{D} = 0$$

$$M_{D} = 30,628(x) \left(\frac{x}{2}\right) - 32,772(x) + 17,53$$

$$\Rightarrow Para x = 1,07 \qquad M_{D} = 30,628(x) \left(\frac{1,07}{2}\right) - 32,772(1,07) + 17,53$$

$$M_{D} = 0 N.m$$

$$\Rightarrow Para x = 0,152 \qquad M_{D} = 30,628(0,152) \left(\frac{0,152}{2}\right) - 32,772(0,152) + 17,53$$

$$M_{D} = 12,91 N.m$$

En la figura 3.9 se representa el diagrama de esfuerzos

Figura 3.9. Diagrama de esfuerzos de la viga

En la figura 3.11 se representa la carga distribuida que genera la resistencia del aire, y se calcula mediante la siguiente ecuación:

$$q_{D} = \frac{D_{max}}{l}$$
$$q_{D} = 2,9012 \frac{N}{1,07m}$$
$$q_{D} = 2,7114 \frac{N}{m}$$

Diagrama de cuerpo libre. (Plano X-Z)

Se transforma la carga distribuida a carga puntual y se calcula la fuerza de reacción en A y en C.

Se encuentra el valor de R_{AZ}

$$R_{AZ} + 10,2115 = 2,9012 \text{ N}$$

 $R_{AZ} = -7,31 \text{ N}$

Para el diagrama de esfuerzos y momentos, se analiza la viga mediante el método de secciones

$$\sum Fy = 0$$

-R_{AZ} + R_{CZ} - 2,7114(x) - F_E = 0
F_E = 2,9015 - 2,7114(x)
F_E = 2,9015 - 2,7114(0,152)
F_E = 2,49 N

 \rightarrow Para x = 0,152

→ Para x = 1,07
$$F_E = 2,9012 - 2,7114(1,07)$$

 $F_E = 0 N$

$$\sum_{K} M_{E} = 0$$

$$R_{Az}(x) - R_{CZ}(x - 0.152) + 2.7114(x) \left(\frac{x}{2}\right) + M_{E} = 0$$

$$M_{E} = -2.7114(x) \left(\frac{x}{2}\right) - 7.31(x) + 10.2115(x - 0.152)$$

 \rightarrow Para x = 0

$$M_{\rm E} = -2,7114(0)\left(\frac{0}{2}\right) - 7,31(0) + 10,2115(0-0,152)$$
$$M_{\rm E} = 0$$

$$\rightarrow$$
 Para x = 0,152

$$M_{\rm E} = -2,7114({\rm x}) \left(\frac{0,152}{2}\right) - 7,31(0,152) + 10,2115(0,152 - 0,152)$$
$$M_{\rm E} = 1.14 \text{ N.m}$$

En la figura 3.14 se representa el diagrama de esfuerzos

Figura 3.14 Diagrama de esfuerzos de la viga

En la figura 3.15 se muestra en diagrama de momentos de la viga del ala debido a fuerza de resistencia

Figura 3.15. Diagrama de momentos en el ala

Los esfuerzos de flexión en dos planos (XY; XZ) se representan mediante la Ec [3.23] de Shigley.

$$\sigma_{\rm x} = -\frac{M_z * y}{Iz} + \frac{M_y * z}{Iy} \qquad \qquad \text{Ec. [56]}$$

Donde:

 σ_x es el esfuerzo en flexión

 M_Z es el momento flexionante en el plano xy

y es la distancia desde el eje neutro x

Iz es el segundo momento de área alrededor del eje z

 M_{γ} es el momento flexionante en el plano xz

z es la distancia desde el eje neutro y

Iy es el segundo momento de área alrededor del eje y

Se determina la inercia en los ejes X, Y, para esto se conocen las dimensiones a = 10 mm, b = 23 mm y c = 10 mm de la viga

Figura 3.16. Viga en C

Se plantean dos espesores para la viga, t = 4 y 6 mm que son los materiales disponibles en el área de estructuras del centro de investigación.

Cálculo de centroides y momentos de inercia con respecto al eje I_{XX} , I_{YY} para t = 4 mm.

Figura 3.17 Áreas de viga en C para t=4mm

En la tabla 3.15 se muestra el área de cada elemento, y_i que es el centroide con respecto al eje Y, M_i que es el momento estático, además se observa el radio de inercia que se representa por la formula ($\overline{I} = y_i^2 * A_i$) y el momento de inercia para una figura rectangular (I_{cgxx}), con esto se calcula el momento de inercia con respecto al eje X-X y el centroide del perfil en C con respecto al eje Y.

Tabla 3.15. Datos para obtener centroide y momento de inercia I_{xx}

Elemento	Área (mm^2)	yi (mm)	Mi=yi*Ai (mm^3)	yi^2*Ai (mm^4)	Icgxx (mm^4)
1	24	2	48	32	32
2	92	11,5	1058	12167	4055,67
3	24	2	48	96	32
Total	140		1154	12295	4119,67

Momento de inercia con respecto al eje X-X

$$I_{XX} = I_{cgxx} + y_i^2 * A_i \qquad \qquad \text{Ec. [57]}$$

Donde:

 I_{XX} es el momento de inercia respecto al eje X-X I_{cgxx} es la inercia de un rectángulo con respecto al eje X $(\bar{I} = y_i^2 * A_i)$ es el radio de inercia

$$I_{XX} = 4119,67 + 22,783$$

 $I_{XX} = 26902,67 \text{mm}^4$

Cálculo de centroide con respecto al eje Y

$$\overline{y} = \frac{\sum y_i * A_i}{\sum A_i}$$
Ec. [58]
$$\overline{y} = \frac{1610}{140}$$
$$\overline{y} = 11,5 \text{ mm}$$

En la tabla 3.16 se muestra el área de cada elemento, xi que es el centroide con respecto al eje X, M_i es el momento estático, además se observa el radio de inercia que se representa por la formula ($\overline{I} = x_i^2 * A_i$) y el momento de inercia para una figura rectangular (I_{cgyy}), con esto se calcula el momento de inercia con respecto al eje Y-Y y el centroide del perfil en C con respecto al eje X.

Elemento	Área (mm^2)	xi (mm)	Mi=xi*Ai (mm^3)	xi^2*Ai (mm^4)	Icgyy (mm^4)
1	24	7	168	1176	72
2	92	2	184	368	122,67
3	24	7	168	1176	72
Total	140		520	2720	266,67

Tabla 3.16. Datos para obtener centroide y momento de inercia I_{YY}

Momento de inercia con respecto al eje Y-Y

$$I_{YY} = I_{cgyy} + x_i^2 * A_i$$
$$I_{YY} = 266,67 + 2720$$
$$I_{YY} = 2986,67 \text{ mm}^4$$

Donde:

I_{YY} es el momento de inercia respecto al eje Y-Y

Icgyy es la inercia de un rectángulo con respecto al eje

 $(\bar{I}=x_i^2\ast A_i)$ es el radio de inercia

Cálculo de centroide con respecto al eje X

$$\bar{\mathbf{x}} = \frac{\sum \mathbf{x}_i * \mathbf{A}_i}{\sum \mathbf{A}_i}$$
$$\bar{\mathbf{x}} = \frac{520}{140}$$
$$\bar{\mathbf{x}} = 3.7143 \text{ mm}$$

Cálculo de centroides y momentos de inercia con respecto al eje I_{XX} , I_{YY} para t = 6 mm.

Inicialmente se divide la viga en C en áreas rectangulares (A_1, A_2, A_3) para facilitar el cálculo de los centroides.

Figura 3.0.18. Áreas de viga en C

Tabla 3.17. Datos para obtener centroide y momento de inercia I_{XX}

Elemento	Área (mm^2)	yi (mm)	Mi=yi*Ai (mm^3)	yi^2*Ai (mm^4)	Icgxx (mm^4)
1	24	3	72	216	72
2	138	11,5	1587	18250,5	6083,5
3	24	20	480	9600	72
Total	186		2139	28066,5	6227,5

Momento de inercia respecto al eje X-X

$$I_{XX} = I_{cgxx} + y_i^2 * A_i$$
$$I_{XX} = 6227,5 + 28066,5$$
$$I_{XX} = 34294 \text{ mm}^4$$

Cálculo de centroide respecto al eje Y

$$\overline{y} = \frac{\sum yi * A_i}{\sum A_i}$$
$$\overline{y} = \frac{2139}{186}$$
$$\overline{y} = 11,5 \text{ mm}$$

Tabla 3.18. Datos para obtener centroide y momento de inercia I_{YY}

Elemento	Área (mm^2)	xi (mm)	Mi=xi*Ai (mm^3)	xi^2*Ai (mm^4)	Icgyy (mm^4)
1	24	8	192	1536	32
2	138	3	414	1242	414
3	24	8	192	1536	32
Total	186		798	4314	478

Momento de inercia respecto al eje Y-Y

$$I_{YY} = I_{cgyy} + x_i^2 * A_i$$
$$I_{YY} = 478 + 4314$$
$$I_{YY} = 4792 \text{ mm}^4$$

Cálculo de centroide con respecto al eje

$$\overline{x} = \frac{\sum x_i * A_i}{\sum A_i}$$
$$\overline{x} = \frac{798}{186}$$
$$\overline{x} = 4,2903 \text{ mm}$$

Análisis para viga con t = 4 mm

$$\sigma_{\rm x} = -\frac{M_{\rm z} * y}{Iz} + \frac{M_{\rm y} * z}{Iy} \qquad \qquad \text{Ec. [59]}$$

Para un mejor entendimiento de la formula, se reemplazan los términos utilizados en los cálculos anteriores

$$\sigma_{x} = -\frac{M_{XY} * \bar{y}}{I_{XX}} + \frac{M_{XZ} * \bar{x}}{I_{YY}}$$
$$\sigma_{x} = -\frac{(-12,91 \text{ N. m}) * (0,0115 \text{ m})}{2,6903 * 10^{-8} \text{m}^{4}} + \frac{(1,14 \text{ N. m})(3,7143 * 10^{-3} \text{ m})}{2,9867 * 10^{-9} \text{ m}^{4}}$$
$$\sigma_{x} = 6,9362 \text{ MPa}$$

Cálculo de esfuerzo transversal

$$\tau_{xy} = \frac{VQ}{Ib} \qquad \qquad \text{Ec. [60]}$$

Donde:

 τ_{xy} es el esfuerzo cortante transversal

V es el esfuerzo cortante en el plano X-Y

Q es el momento en primer orden

I es el momento de inercia en el eje Y

b es el espesor de la viga

$$Q = \sum A * \bar{y}$$

$$Q = (46 * 5,75) + (24 * 9,5)$$

$$Q = 492.5 \text{ mm}^{3}$$

$$Q = 492.5 * 10^{-7} \text{ m}^{3}$$

$$\tau_{xy} = \frac{87,23 \text{ N} * 4,925 * 10^{-7} \text{ m}^{3}}{2,9867 * 10^{-9} \text{ m}^{4} * 4 * 10^{-3} \text{ m}}$$

$$\tau_{xy} = 3,596 \text{ Mpa}$$

Cálculo de esfuerzo de von Mises

$$\sigma' = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$

$$\sigma' = \sqrt{(6,9362)^2 + 3(3,596)^2}$$

$$\sigma' = 9,3223 \text{ Mpa}$$

Factor de seguridad

El material compuesto tiene un esfuerzo a la fluencia de 35,7711 Mpa.

$$n = \frac{Sy}{\sigma'} \qquad Ec. [61]$$

Donde:

n es el factor de seguridad

Sy es el esfuerzo a fluencia del material

 σ' es el esfuerzo de von Mises

$$n = \frac{35,7711}{9,3223}$$
$$n = 3,84$$

Análisis para viga con t = 6 mm.

$$\sigma_{\rm x} = -\frac{M_{\rm XY} * \bar{y}}{I_{\rm XX}} + \frac{M_{\rm XZ} * \bar{x}}{I_{\rm YY}}$$
$$\sigma_{\rm x} = -\frac{(-12,91 \text{ N. m})(0,0115 \text{ m})}{3.4294 * 10^{-8} \text{m}^4} + \frac{(1,14 \text{ N. m})(0,0043 \text{ m})}{4,793 * 10^{-9} \text{ m}^4}$$
$$\sigma_{\rm x} = 5,3519 \text{ MPa}$$

Cálculo de esfuerzo transversal

$$\tau_{xy} = \frac{VQ}{Ib}$$

$$Q = \sum A * \bar{y}$$

$$Q = (69 * 5,75) + (24 * 8,5)$$

$$Q = 600,75 \text{ mm}^{3}$$

$$Q = 6,0075 * 10^{-7} \text{ m}^{3}$$

$$\tau_{xy} = \frac{(87,23 \text{ N})(6,0075 * 10^{-7} \text{ m}^{3})}{(4,793 * 10^{-9} \text{ m}^{4})(6 * 10^{-3} \text{ m})}$$

$$\tau_{xy} = 1,8222 \text{ Mpa}$$

Cálculo de esfuerzo de von Mises

$$\sigma' = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$

$$\sigma' = \sqrt{(5,3519)^2 + 3(1,8222)^2}$$

$$\sigma' = 6,213 \text{ Mpa}$$

Factor de seguridad

El material compuesto tiene un esfuerzo a la fluencia de 35,7711 Mpa.

$$n = \frac{S}{\sigma'}$$
$$n = \frac{35,7711 \text{ Mpa}}{6,213 \text{ Mpa}}$$
$$n = 5,76$$

Se elije la viga con un espesor de 6mm, ya que tiene un factor de seguridad de 5,76 y soportaría las fuerzas máximas de sustentación y arrastre sin ningún inconveniente.

Análisis de tubo de unión cabina ala

En la figura 3.19 se observa la unión del ala a la cabina mediante dos tubos

Figura 3.19. Unión de ala a la cabina

En la figura 3.20, se representan las fuerzas que actúan en el tubo, conociéndose la W_{cabina} que es el peso de la cabina distribuida en el tubo, además se conocen las fuerzas que reaccionan en el tubo F_{R1} y F_{R2} .

Diagrama de cuerpo libre. (Plano X-Y)

Figura 3.20. Fuerzas que actúan en el tubo

Se calcula la fuerza de reacción en el punto A y B.

$$\sum MA = 0$$

$$F_{R2}(0,152) - W_{cabina}(0,1) + R_{By}(0,1) + F_{R1}(0,1) - F_{R2}(0,252) = 0$$

$$R_{By} = 32,772 \text{ N}$$

$$\sum Fy = 0$$

$$-2(W_{cabina}) - 2(F_{R2}) + 2(F_{R1}) + R_{Ay} + R_{By}$$

$$R_{Ay} = 32,772 \text{ N}$$

En la figura 3.21 se representa el diagrama de cuerpo libre en el plano (X-Y) en el cual se muestran las cargas aplicadas para el análisis del tubo, y se calcula por el método de secciones los esfuerzos y los momentos en el tramo B-D del tubo ya que las fuerzas actuantes son simétricas.

En la figura 3.22 se representa el diagrama de esfuerzos

En la figura 3.23 se representa el diagrama de momentos de del tubo

Figura 3.23. Diagrama de momentos

Diagrama de cuerpo libre. (Plano X-Z)

En la figura 3.24 se representan las fuerzas que actúan en el plano X-Z en donde F_{R3} y F_{R4} son las fuerzas de reacción que soporta el tubo.

Figura 3.24. Diagrama de cuerpo libre plano (X-Z)

$$\sum M_{A} = 0$$

-F_{R4}(0,152) + R_{BZ}(0,1) - F_{R3}(0,1) + F_{R4}(0,252) = 0
R_{BZ} = -2,9015 n
$$\sum F_{y} = 0$$

(2)F_{R4} - (2)F_{R2} + R_{AZ} + R_{BZ} = 0
R_{AZ} = -2,9015 N

En la figura 3.25 se representa el diagrama de cuerpo libre en el plano (X-Z) en el tramo B-D, mostrándose la carga de resistencia aplicada a lo largo del tubo para el análisis. La fuerza de resistencia (D_{tubo}) se considera como carga distribuida.

→ Para x = 0
→ Para x = 0,152

$$M_E = -10,2115(0)$$

 $M_E = 0$
 $M_E = -10,2115(0,152)$
 $M_E = 1,5521$

En la figura 3.26 se representa el diagrama de esfuerzos.

En la figura 3.27 se muestra en diagrama de momentos de la viga del ala debido a fuerza de resistencia.

Se requiere un tubo de 13 mm de diámetro externo y el diámetro interno depende del número de capas de fibra de carbono que se utilicen para su fabricación.

Se determina la inercia para la sección circular, teniendo en cuenta dos espesores para el tubo.

 $t_1=1,2\ mm$, una capa de fibra de carbono

 $t_2 = 1,6mm$, dos capas de fibra de carbono

El esfuerzo de una sección circular se calcula mediante la Ec [3-38] de Shigley.

Donde:

 σ_m es el esfuerzo en flexión máximo de una sección transversal circular.

Mz es el momento flexionante en el plano XY

My es el momento flexionante en el plano XZ

de es el diámetro exterior del tubo.

di es el diámetro interior del tubo.

Análisis para tubo con $t_1 = 1, 2 \text{ mm.} (3 \text{ capas})$

$$I = \frac{\pi(de^4 - di^4)}{64}$$
$$I = \frac{\pi(13^4 - 10,6^4)}{64}$$
$$I = 782,2678 \text{ mm}^4$$
$$I = 7,8227 * 10^{-10} \text{ m}^4$$

Se calcula el esfuerzo máximo

$$\sigma_{\rm m} = \frac{((-1,5521)^2 + (18,9462)^2)^{\frac{1}{2}} \left(\frac{0,013}{2}\right)}{7,8227 * 10^{-10}}$$
$$\sigma_{\rm m} = 156,897 \, \text{Mpa}$$

Cálculo de esfuerzo transversal

$$\begin{split} \tau_{xy} &= \frac{VQ}{lb} \\ Q &= \sum A * \bar{y} \\ Q &= \left(\frac{\pi * r_e{}^2}{2} - \frac{\pi * r_i{}^2}{2}\right) * \left(\frac{4r_e}{3\pi} - \frac{4r_i}{3\pi}\right) \\ Q &= \left(\frac{\pi * (6.5 * 10^{-3})^2}{2} - \frac{\pi * (5.3 * 10^{-3})^2}{2}\right) * \left(\frac{4(6.5 * 10^{-3} - 5.3 * 10^{-3})}{3\pi}\right) \\ Q &= 1,1306 * 10^{-8} m^3 \\ \tau_{xy} &= \frac{(115,3488 \text{ N})(1,1306 * 10^{-8} m^3)}{(3,8410 * 10^{-10} \text{ m}^4)(5 * 10^{-4} m)} \\ \tau_{xy} &= 6,79 \text{ Mpa} \end{split}$$

Cálculo de esfuerzo de von Mises

$$\sigma' = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$

$$\sigma' = \sqrt{(156,897 \text{ Mpa})^2 + 3(6,79 \text{ Mpa})^2}$$

$$\sigma' = 157,3371 \text{ Mpa}$$

Factor de seguridad

La fibra de carbono tiene un esfuerzo a la fluencia de 228 Mpa.

$$n = \frac{S}{\sigma'}$$
$$n = \frac{228 \text{ Mpa}}{157,3371}$$
$$n = 1,45$$

Análisis para tubo con $t_2 = 1$, 6 mm. (4 capas)

$$I = \frac{\pi(de^4 - di^4)}{64}$$
$$I = \frac{\pi(13^4 - 9,8^4)}{64}$$
$$I = 949,21 \text{ mm}^4$$
$$I = 9,4922 * 10^{-10} \text{ m}^4$$

Se calcula el esfuerzo máximo:

$$\sigma_{\rm m} = \frac{((-1,5521)^2 + (18,9462)^2)^{\frac{1}{2}} \left(\frac{0,013}{2}\right)}{9,4922 * 10^{-10} \text{ m}^4}$$
$$\sigma_{\rm m} = 130,173 \text{ Mpa}$$

Cálculo de esfuerzo transversal

$$\begin{aligned} \tau_{xy} &= \frac{VQ}{lb} \\ Q &= \sum A * \bar{y} \\ Q &= \left(\frac{\pi * r_e^2}{2} - \frac{\pi * r_i^2}{2}\right) * \left(\frac{4r_e}{3\pi} - \frac{4r_i}{3\pi}\right) \\ Q &= \left(\frac{\pi * (6.5 * 10^{-3})^2}{2} - \frac{\pi * (5.9 * 10^{-3})^2}{2}\right) * \left(\frac{4(6.5 * 10^{-3} - 4.9 * 10^{-3})}{3\pi}\right) \\ Q &= 3,1861 * 10^{-8} \text{m}^3 \end{aligned}$$

$$\begin{aligned} \tau_{xy} = & \frac{(115,3488 \text{ N})(3,1861*10^{-8}\text{m}^3)}{(9,4922*10^{-10} \text{ m}^4)(5*10^{-4}\text{m})} \\ \tau_{xy} = & 7,7435 \text{ Mp} \end{aligned}$$

Cálculo de esfuerzo de von Mises

$$\sigma' = \sqrt{\sigma_x^2 + 3\tau_{xy}^2}$$
$$\sigma' = \sqrt{(130,173 \text{ Mpa})^2 + 3(7,7435 \text{ Mpa})^2}$$
$$\sigma' = 130,8621 \text{ Mpa}$$

Factor de seguridad

La fibra de carbono tiene un esfuerzo a la fluencia de 228 Mpa.

$$n = \frac{S}{\sigma'}$$
$$n = \frac{228 \text{ Mpa}}{130,8621}$$
$$n = 1,74$$

Se elije el tubo de 13 mm con espesor de 1,6 mm y un factor de diseño de 1,74, el cual soporta las fuerzas y esfuerzos a los que está sometido el tubo.

3.6.ANÁLISIS ESTRUCTURAL MEDIANTE ELEMENTOS FINITOS

El análisis de elementos finitos se realiza con el fin de conocer si los materiales compuestos resisten a las cargas estáticas generadas por el peso de la estructura del fuselaje, ala y la cola, además se efectúa un análisis aerodinámico que indica el comportamiento de las presiones que se ejercen en el UAV y también se visualiza el comportamiento del UAV en velocidad crucero.

3.6.1. Análisis de viga principal del ala

En la figura 3.28 se muestra la estructura del ala, en donde se visualiza la viga para el análisis estático.

Figura 3.28. Viga del ala

3.6.1.1.Especificación de material

Para el análisis de la viga, se tiene como primer paso especificar las propiedades del material utilizado, como el módulo de elasticidad en X, el módulo de elasticidad en Y, el coeficiente de Poisson en XY, YZ, XZ, densidad de la masa y límite elástico, como se muestra en la figura 3.29.

SolidWorks DIN Materials SolidWorks materials SolidWorks materials Materiales personalizados Solid materiales de UAV The materiales de UAV The materiales de Cabono	Propiedades Tabla Propiedades de m No se pueden ed material, cópielo Tipo de modelo: Unidades:	s y curvas Aparient naterial itar los materiales er primero a una biblic Ortotrópico elástico SI - N/mm^2 (MPa)	ia Rayado Perso a la biblioteca pred teca personalizada a lineal v Geo v Si	onalizado Datos de aplé eterminada. Para editar ur 1. ometría de referencia tema de coordenada
 > Tan union cabina - ala > Tan viga de ala > Materiali compuesto para el ala > Tan cabina cola > Tan cabina 	Categoria: Nombre: Criterio de fallos gredeterminado: Descripción: Qrigen: Sostenibilidad:	viga de ala Material compuesto Tensión de von Miss Material compuesto No definido	o para el ala es máx, vo o para el ala	Seleccionar
> iiii Material de cola	Propiedad		Valor	Unidad
	Módulo elástico er	n X	102138.54	N/mm ⁺
	Módulo de elastic	idad en Y	397.8127	N/mm*
	Módulo de elastic	idad en Z	0	N/mm^
	Coeficiente de Poi	sson en XV	0.3349	N/D
	Coefficiente de Poi	sson en YZ	0.3349	N/D
	Coefficiente de Poir	sson en 32	0.3349	N/D
	Módulo cortante e	en XV		N/mm^
	Módulo cortante e	tn YZ		N/mm^
	<			>

Figura 3.29. Propiedades mecánicas de material

Para la geometría de referencia, se especifica la dirección de las coordenadas en la viga a ser analizada.

Figura 3.30. Especificación de coordenadas

3.6.1.2.Sujeciones y cargas externas

A continuación, se colocan los empotramientos y las cargas que actúan en el ala.

Figura 3.31. Empotramiento y cargas que actúan en el ala

3.6.1.3. Mallado

Se crea el mallado, como se observa en la figura 3.32, el cual es un mallado estándar.

		Malla	(
~	×		
Dens	idad de i	malla	^
₿			
	Malla gr	ruesa	Fino
		Restablecer	
⊠ P a	arámetro	s de mallado	^
	Malla	a estándar	
	⊖ Malla	a basada en curv	atura
	⊖ Malla comb	a basada en curva binado	atura de
	mm		\sim
♠	5.000m	1m ~	-
-# [*] #-	0.250m	ım v	-

Figura 3.32. Mallado para simulación

Los parámetros a calcular en el análisis son: Tensión de von Mises, desplazamiento máximo de la viga el factor de diseño.

3.6.1.4.Resultados obtenidos

En la figura 3.33 se muestra la tensión de von Mises con un valor máximo de $6,533 * 10^6 Pa$, el cual indica que el material no se va a fracturar ya que se tiene un valor de limite elástico de $3,578 \ 10^7 Pa$.

Figura 3.33. Tensión de von Mises

En la figura 3.34 se muestra el desplazamiento estático de la viga, con un valor máximo de deformación, de 1,14 *mm*.

Figura 3.34. Desplazamiento máximo de la viga

Para la viga, se tiene un factor de diseño mínimo de 5,5 siendo este valor similar al calculado anteriormente y además se encuentra por encima del factor de seguridad requerido para aviación que es 1,5.

Figura 3.35. Factor de diseño

3.6.2. Análisis de unión cabina – ala.

El análisis se realiza para conocer si el tubo que une la cabina con el ala soporta el peso de la estructura.

En la figura 3.36 se muestra el tubo que soportará el peso del ala.

Figura 3.36. Tubo de unión cabina – ala

3.6.2.1.Especificación de material

Para el análisis de la unión cabina – ala, se tiene como primer paso especificar las propiedades del material compuesto utilizado, como el módulo de elasticidad en X, el módulo de elasticidad en Y, el coeficiente de Poisson en XY, YZ, XZ, densidad de la masa y límite elástico, como se muestra en la figura 3.37.

Propiedades	Tablas y curvas	Apariencia	Rayado	Personalizado	Datos de apli 📍	
Propiedades de material No se pueden editar los materiales en la biblioteca predeterminada. Para editar un material, cópielo primero a una biblioteca personalizada.						
Tipo de <u>m</u> oo	delo: Isotrópic	o elástico line	al 🗸			
<u>U</u> nidades:	SI - N/mn	n^2 (MPa)	~			
Ca <u>t</u> egoría:	union ca	ibina - ala				
No <u>m</u> bre:	Cabina -	ala				
Criterio de f predetermir	allos Tensión d	de von Mises i	náx. 🗸			
<u>D</u> escripción	Cabina -	ala				
Origen:						
Sostenibilid	ad: No defin	ido		Selec	cionar	
Propiedad			Valor		Unidad ^	
Módulo elás	tico		284312.1	16	N/mm^	
Coeficiente	de Poisson		0.2797		N/D	
Módulo cor	tante				N/mm^	
Densidad de	e masa		1663.1		kg/m^3	
Límite de tra	cción				N/mm^	
Límite de co	mpresión				N/mm^	
Límite elásti	0		141,9389	96	✓ N/mm^	
Coeficiente	de expansión té	irmica			/К 🗸	

Figura 3.37. Propiedades mecánicas de compuesto

3.6.2.2.Sujeciones y cargas externas

A continuación, se colocan los empotramientos y las cargas que actúan en el tubo.

Figura 3.38 Empotramiento y cargas que actúan en el tubo

3.6.2.3. Mallado

Se crea el mallado, como se observa en la figura 3.39 y además se selecciona la opción de malla basada en curvatura de combinado.

Figura 3.39. Parámetros de mallado para simulación

En la figura 3.40 se muestra el mallado del tubo unión cabina – ala.

Figura 3.40. Mallado de tubo

Los parámetros a calcular en el análisis del tubo que une la cabina con el ala son: tensión de von Mises, desplazamiento máximo de la viga y factor de diseño.

3.6.2.4. Resultados obtenidos

En la figura 3.41 se muestra la tensión de von Mises con un valor máximo de $8,266 * 10^7 Pa$, además se observa que gran parte de la concentración de esfuerzos se da en la unión del tubo con la cabina.

Figura 3.41. Tensión de von Mises

En la figura 3.42. se muestra el desplazamiento estático del tubo, con un valor máximo de 0,3539 *mm*.

Figura 3.42. Desplazamiento máximo del tubo

Se tiene un factor de diseño mínimo de 1,7 el cual está por encima del factor de seguridad recomendado para aviación que es de 1,5

Figura 3.43. Factor de diseño

3.7.ANÁLISIS AERODINÁMICO DE UAV

Para el análisis de elementos finitos, inicialmente se establecen las unidades a utilizar como se muestra en la figura 3.44

		System	Path	Comme	ent	
1		CGS (cm-g-s)	Pre-Define	d CGS (d	:m-g-s)	
-	C	FPS (ft-lb-s)	Pre-Define	d FPS (ft	-lb-s)	
1		IPS (in-lb-s)	Pre-Define	d IPS (in-	-lb-s)	
		NMM (mm-g-s)	Pre-Define	d NMM (mm-g-s)	
1		SI (m·kg·s)	Pre-Define	d SI(m-k	.g-s)	
	tt i	USA	Pre-Define	d USA		
		Create new	lame:	SI (m-ka-s) (modified)		
1	mile/h	Parameter	Unit	Decimals in results display	1 SI unit equals to	8
	S. MUR	🕞 Main				
	Section 11	Pressure & stress	Pa	.12	1	
1	2	Velocity	m/s	.123	31	
XIII.	1 2 3	Welocity Mass	m/s kg	.123 .123	1	
111xarea	5m 1 2 3	Velocity Mass Length	m/s kg m	.123 .123 .123	1 1 1	
111	cm 1 2	Velocity Mass Length Temperature	m/s kg m K	.123 .123 .123 .12	1 1 1	
THE REAL PROPERTY OF	or cm	Velocity Mass Length Temperature Physical time	m/s kg m K s	.123 .123 .123 .12 .12 .12	1 1 1 1	

Figura 3.44. Sistema de unidades para análisis

Se elige el tipo de análisis, en este caso es externo como se muestra en la figura 3.45 y además se selecciona la opción "rotation" para la simulación de movimiento del motor y hélice.

Wizard - Analysis Type		?	×
Wizard - Analysis Type	Analysis type O Internal © External Physical Features Heat conduction in Radiation Time-dependent Gravity Rotation Type	Consider closed cavities Exclude cavities without flow conditions Exclude internal space solids Local region(s) (Averaging)	
	< Back	Dependency Next > Cancel Help	

Figura 3.45. Selección de tipo de análisis

Se considera para este análisis flujo laminar, ya que en la sección 2.2.2.1. se calculó un valor de número de Reynolds de 161176,0591, estando en el rango adecuado de régimen laminar y además se selecciona como fluido el aire.

Wizard - Default Fluid				?	×
	Fluids Gases	Path	^	New) (N) (I)
	Pre-Defined				
	Acetone	Pre-Defined			
	Ammonia	Pre-Defined			
	Argon	Pre-Defined			
	Butane	Pre-Defined			
	Carbon dioxide	Pre-Defined			
	Chlorine	Pre-Defined			
	Ethane	Pre-Defined			
	Ethanol	Pre-Defined	~	Add	
	Project Fluids	Default Fluid		Remove	
and the second second	Air (Gases)	\checkmark			- II.
	Flow Characteristic	Value			
	Flow type	Laminar Only	~		
	High Mach number flow	/ 🗆			
	Humidity				
					»
	< Back	Next >	Cancel	Help	

Figura 3.46. Selección de flujo laminar y fluido

Se establecen las condiciones iniciales para el análisis, las cuales se encuentran en la tabla 2.14 de características estándar de la atmosfera y además se considera la velocidad de crucero que se calcula en la sección 2.2.1.2.

Para este análisis se ubica la velocidad con el signo negativo, ya que se tiene la dirección del fluido en sentido contrario al UAV, simulando la corriente de aire.

Wizard - Initial and Ambient Conditions			
70 - 20 50 - 10 0 - 0 20 0 - 0 20 0 - 0 - 0 20 0 - 0 - 0 - 0 - 0 - 0 -0 -0 - 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	Parameter Parameter Definition Thermodynamic Parameters Persaure Temperature Velocity Parameters Parameter Defined by Velocity in X direction Velocity in X direction Velocity in X direction	Value User Defined Pressure, temperature 74692 Pa 271.92 K Velocity 30 Vector 0 m/s 0 m/s -15.8826 m/s	dency
	< Back Fin	ush Cancel I	telp

Figura 3.47. Condiciones iniciales para el análisis

3.7.1. Condiciones para el análisis

En la figura 3.48 se observan los valores de dominio computacional en el cual deben ingresar todos los cuerpos sometidos al análisis.

Figura 3.48. Dominio computacional

Además, se coloca la velocidad angular con un valor de 1026 rad/s, ya que el motor turnigy tiene una velocidad de 9800 rpm.

Figura 3.49. Velocidad angular de motor

3.7.2. Generación de malla

Es de importancia ya que se refina la malla de los sólidos y se obtiene una mejor precisión en los resultados requeridos.

Para la generación de la malla, en la figura 3.50 se observa dos opciones automática y manual, para el análisis se opta por un mallado automático con un número de mallado de 4. Además, se elige la opción de mallado uniforme.

Figura 3.50. Parámetros de mallado

3.7.3. Fijar metas

Se establece como metas los resultados que se necesitan saber, en este caso es la fuerza (Y) que es la sustentación y la fuerza (z) que es la fuerza de arrastre.

Figura 3.51. Metas del estudio

3.7.4. Resultados obtenidos

En la figura 3.52 se muestra la fuerza(Y) que es la sustentación y la fuerza (z) que es la fuerza de arrastre que actúan sobre la superficie del UAV, siendo la fuerza de sustentación 7,74979 N y la fuerza de arrastre -3,64086 N.

Figura 3.52. Fuerzas obtenidas.

En la figura 3.53 se muestra el comportamiento del UAV en relación a la velocidad crucero, teniendo una velocidad máxima de 19,856 m/s, y una velocidad mínima de 2,482 m/s.

Figura 3.53. Comportamiento de velocidad en Z

En la figura 3.54 se observa trayectoria de las corrientes de viento aplicadas sobre el vehículo aéreo no tripulado (UAV), donde se visualiza la perdida de velocidad en la punta de la nariz y al inicio del soporte del motor, generando una resistencia o perdida mínima al avance de la aeronave, siendo esto de gran beneficio para obtener un mejor rendimiento en el vuelo.

Figura 3.54. Comportamiento de velocidad de UAV

En la figura 3.55 se muestra la distribución de la presión sobre el UAV, la cual indica una presión máxima de 75065,66 Pa y una presión mínima de 75065,66 Pa, estas presiones ejercidas en el UAV se muestran de acuerdo a la escala de colores mostrada.

Figura 3.55 Resultado de presiones sobre UAV

Finalmente, en la figura 3.56 se muestran las fuerzas de sustentación (L) y el peso del ala, aplicadas en el UAV, teniendo la mayor concentración de esfuerzos en el ala con un valor máximo de 2,601 * 10⁶ Pa que se indica en la escala de colores.

Figura 3.56. Análisis de von Mises en el ala

En la figura 3.57 se muestra la deformación máxima del ala, con un valor de 0,4469 mm.

Figura 3.57 Deformación del ala

Al aplicarse la fuerza de sustentación en la cola y su propio peso, esta tiene la mayor concentración de esfuerzos al inicio del tubo que une la cola con la cabina con un valor de $9,042 * 10^6$ Pa.

Figura 3.58 Análisis de von Mises en la cola

También se observa que la deformación máxima en la cola que es de 0,3022 mm.

Figura 3.59. Deformación de la cola

Se tiene un factor de diseño mínimo de 12 el cual indica que el tubo soporta el peso de la cola.

Figura 3.60. Factor de diseño en la cola

3.8.PARÁMETROS DE MECANIZADO DE MOLDES

N°	Moldes	Proceso de	Diámetro
		mecanizado	de
			herramienta
	Molde Izquierdo		
		Desbaste	
			12 mm
1		Acabado	
			4 mm
	Molde derecho	Desbaste	12 mm
2			

Tabla 3.19. Parámetros de mecanizado para moldes
		Acabado	4 mm
	Nariz	Desbaste	12 mm
3		Acabado	4 mm

En la tabla 3.20 se muestran la velocidad de corte y el avance por diente recomendado para madera.

Tabla 3.20. Velocidad de corte y ava	ance por diente recomendado. [37]
--------------------------------------	-----------------------------------

	Va	Diámetro (mm)							
MATERIALES A MECANIZAR	vc m/min	3	> 3 - 6	> 6 - 12					
	,	Avance por diente fz (mm)							
Madera dura	400	0,020 - 0,030	0,025 - 0,060	0,050 - 0,120					
Madera blanda	600	0,030 - 0,045	0,035 - 0,080	0,070 - 0,140					
Contrachapado	600	0,030 - 0,055	0,050 - 0,090	0,075 - 0,210					
Aluminio	350	0,010 - 0,020	0,015 - 0,014	0,030 - 0,100					
Plásticos	600	0,010 - 0,015	0,010 - 0,065	0,050 - 0,130					

La velocidad de corte es:

 $Vc = 400 \ m/_{min}$.

Cálculo de velocidad del husillo (n)

Fresado con herramienta de diámetro igual a 12 mm.

$$n = \frac{Vc \times 1000}{\pi \times D \times z} \qquad \text{Ec. [63]}$$

Donde:

n es la velocidad del husillo en rpm.

Vc es la velocidad de corte en m_{min} .

D es en diámetro de la herramienta.

z es el factor de corrección * (fresas de D < 20 mm)

Para Z= 1 el diámetro de la herramienta debe ser mayor a 20 mm.

Para Z= 2:8 < D < 20 mm.

Para Z= 4 el diámetro de la herramienta debe ser menor a 6 mm.

$$n = \frac{400 \times 1000}{\pi \times 12 \times 2}$$
$$n \approx 5305 \, rpm$$

Desbaste 60%: *n* = 3183 *rpm* Acabado 85%: *n* = 4509 *rpm*

Fresado con herramienta de diámetro igual a 4 mm.

$$n = \frac{Vc \times 1000}{\pi \times D \times z}$$
$$n = \frac{400 \times 1000}{\pi \times 4 \times 4}$$
$$n \approx 7958 \text{ rpm}$$
Desbaste 60%: n = 4775 rpm

Acabado 85%: n = 6764 rpm

Cálculo de avance (F)

$$F = fz * n \qquad Ec. [64]$$

Donde:

F es el avance de mesa, en $\frac{mm}{min}$.

fz es el avance por diente, en mm.

n es la velocidad de husillo, en rpm.

Fresado con herramienta de diámetro igual a 12 mm (Desbaste)

El valor de avance por diente recomendado para madera se toma de la tabla 3.12, el cual está en un rango de 0,050 - 0,12 mm, tomándose un valor promedio.

fz = 0,085 mm

F = 0,085 mm * 3183 rpm
F = 270,555
$$\frac{mm}{min}$$

Fresado con herramienta de diámetro igual a 4 mm (Desbaste)

El valor de avance por diente recomendado para la madera se toma de la tabla 3.14, el cual está en un rango de 0.025 - 0.060 mm, tomándose un valor promedio.

fz = 0,0425 mm

$$F = 0,0425 \text{ mm} * 4775 \text{ rpm}$$

 $F = 272,9375 \frac{\text{mm}}{\text{min}}$

Fresado con herramienta de diámetro igual a 12 mm (Acabado)

fz = 0.085 mm

$$F = 0,085 \text{ mm} * 4509 \text{ rpm}$$

$$F = 383,265 \frac{mm}{min}$$

Fresado con herramienta de diámetro igual a 4 mm (Acabado)

$$fz = 0,0425 mm$$

$$F = 0,0425 \text{ mm} * 6764 \text{ rpm}$$

 $F = 287,47 \frac{\text{mm}}{\text{min}}$

En la tabla 3.21 se muestran los parámetros de mecanizado como velocidad de corte, velocidad del husillo y el avance de mesa

Moldes	Proceso de mecanizado	Diametro de la herramienta	Velocidad de corte (m/min)	Velocidad de husillo (rpm)	Avance (mm/min)
	Desbaste	12	400	3183	270,555
Fuselaje izquierdo	Desbaste	4	400	4775	272,9375
	Acabado	12	400	4509	383,265
	Acabado	4	400	6764	287,47
	Desbaste	12	400	3183	270,555
Fuselaje	Desbaste	4	400	4775	272,9375
derecho	Acabado	12	400	4509	383,265
	Acabado	4	400	6764	287,47
	Desbaste	12	400	3183	270,555
Noriz	Desbaste	4	400	4775	272,9375
Nariz	Acabado	12	400	4509	383,265
	Acabado	4	400	6764	287,47

Tabla 3.21. Parámetros de mecanizado obtenidos

3.9. CURSOGRAMA ANÁLITICO DE PROCESOS

En las siguientes tablas, se muestran en proceso de elaboración de moldes del ala, cabina y además el proceso de laminación, en las cuales se detallan las actividades y los tiempos necesarios para llevar a cabo cada proceso.

Cursograma Analítico					(Opera	rios			
Diagrama núm. 1 Hoja núm. 1 de 4	Resumen									
Objeto: Ala	Actividad			Actual Pro			Prop	ouesta	Economía	
*	Opera	ción	\bigcirc		10					
	Transi	orte	Ď		3					
Actividad: Molde del ala	Espera	1	D		0					
	Inspec	ción			3					
	Almac	enamient	to ∇		1					
Método: Actual/ propuesto	Distan	cia(m)			3800	0				
	Tiemp	o(min-h	ombre)	10	0.221	00				
Lugar: Taller de estructuras	Costo:			-						
	Mano	de obra:								
Operario(s): Sgto, Carrillo E.										
Ficha núm.:	Mater	ial: Tríple	X							
Aprobado por: Fecha: 05/02/19	Canti	Distanc	Tiempo(h/m		S	ímho	lo			
Descrinción	dad	ia	in/seg)	\cap			\square	∇	0	bservaciones
Description	uuu	m	11/305)		~			v	Varifiaan	los detellos de enden
Revisar orden de trabajo			0:10:00				^		verincar	de trabajo
Retirar material de abastecimientos			0:15:00	۲						
Transportar el tríplex al lugar de corte laser		15000	0:40:00		\rangle					
Cortar a laser las costillas del ala, viga principal y secundaria			0:25:00	\langle						
Transportar las costillas y vigas al área de estructuras		15000	0:40:00		\mathbf{b}					
Preparar el lugar de trabajo			0:05:00	{					Limpia	el lugar de trabajo
Colocar viga principal y secundaria			0:10:00						Se ubica la viga principal y secundaria como guía para las costillas	
Unir las costillas y formar la estructura			0:50:00						De a estable	cuerdo al diseño cido, se ubican las costillas
Reforzar la estructura			0:30:00						Colocar unir l secunda	resina epóxica para a viga principal y ria con las costillas
Verificar si la estructura esta adherida			0:10:00						Se revisa com	si la estructura esta pletamente rígida
Cubrir la estructura con piel(tríplex)			1:10:00	<					Colocar las costi	la capa de piel sobre illas de la estructura
Verificar si la piel esta adherida			0:10:00				>		Revisar s	i la piel esta adherida 1 las costillas
Lijar la superficie del ala			0:15:00	5					Se lija l para u	a superficie del ala un mejor acabado
Transportar el molde positivo (macho)		4000	0:15:00		\mathbf{b}				Se transp	orta el molde al taller de fibras
Realizar el molde negativo(hembra)			5:00:00	<					En base obtiene	al molde positivo se el molde negativo
Transportar el molde al área de materiales compuestos		4000								
Almacenamiento del molde			0:10:00						Se alm mater	acena el molde en iales compuestos
TOTAL		38000	10:55:00	9	4	0	3	1		

Tabla 3.22. Cursograma analítico de proceso de construcción de molde del ala

Cursograma Analítico	Operarios								
Diagrama núm. 2 Hoja núm. 2 de 4	Resumen								
Objeto: Cabina		Activ	idad	Actual Pro				Prop	puesta Economía
*	Opera	ción	\cap		9				
	Trans	Transporte			5				
Actividad: Molde de cabina	Espera	a	Ď		0				
	Inspec	ción			1				
	Almac	Almacenamiento ∇			1				
Método: Actual/ propuesto	Distar	cia(m)			3001	3			
	Tiemp	o(min-1	hombre)	1	6:22:	:00			
Lugar: Taller de mecanizado	Costo:	:							
	Mano	de obra:							
Operario(s): Cp. Guaspa C.	Mater	ial: Mad	era de						
Ficha núm.:	Laure	1							
Aprobado por: Fecha: 12/02/19	Canti	Distan	Tiempo(h/m		S	Símbo	lo		
Descripción	dad	cia	in/seg)	Ο	\Box	D		∇	Observaciones
Revisar orden de trabajo			0:10:00				~		Verificar los detalles de orden de trabajo
Retirar material de abastecimientos			0:15:00	۲					
Transportar la madera al taller de			0.45.55						
carpintería		15000	0:40:00		>				
Preparación de la madera			0:25:00	<					Rectificar superficie de la madera
Transportar la madera a la cepilladora		1	0:05:00		\mathbf{b}				
Cepillar hasta nivelar la madera			0:15:00	<					Acabado sin rugosidades
Transportar la madera al área de mecanizado		15000	0:40:00		\rangle				
Elaborar códigos G para el mecanizado			2:00:00	ſ					De acuerdo al diseño de la cabina del UAV(vehículo aéreo no tripulado)
Calibrar la máquina CNC			0:25:00						
Maquinar los moldes			10:00:00						Se utilizan fresas de redondeo de 12 mm para desbaste y 4 mm para acabado
Transportar los moldes al área de estructuras		6	0:01:00		\rangle				
Lijar los moldes para obtener un acabado ideal			0:40:00	/					
Colocar sellador en la superficie			0:20:00						Se coloca sellador en la superficie mecanizada para que la resina no se una a la madera
Lijar hasta obtener un buen acabado			0:25:00						Se lija la superficie de la cabina para un mejor acabado
Transportar los moldes al área de		6	0.01.00		\boldsymbol{V}				
materiales compuestos		U	0.01.00						
TOTAL		30013	16:22:00	9	5	0	1	2	

Tabla 3.23. Cursograma analítico de proceso de construcción de molde de cabina

Cursograma Analítico	Operarios									
Diagrama núm. 3 Hoja núm. 3 de 4	Resumen									
Objeto: Ala		Acti	vidad	Actual Pro			Prop	ouesta	Economía	
	Opera	ción	0		13					
Actividad: Laminado del ala	Trans	porte	\Box	1						
	Espera	a			1					
	Inspec	cción			1					
Método: Actual/ propuesto	Almac	enami	ento V	0						
	Distar	icia(m)) hombuo)	1	6	.00				
Lugar: Materiales compuestos	Costo	ю(пші	- nombre)	1	4:01	:00				
Eugar, Water ales compuestos	Mano	de obr	а.							
Operario(s): Sgto, López A	Mater	ial: Ma	terial							
Ficha núm.:	compu	iesto								
Aprobado por: Fecha: 20/02/19	Canti	Dista	Tiempo(h/m		5	Símbo	olo			1 .
Descripción	dad	ncia	in/seg)	0	\Box	D		∇	0	bservaciones
Revisar orden de trabajo			0:10:00				~		Verificar	los detalles de orden
Colocar los moldes del ala en la mesa de trabajo			0:02:00	٢	1					
Aplicar desmoldante y liquido desmoldante en el molde			0:10:00						Se aplica ser lamin facilio	sobre la superficie a ada para una mayor lad de extraer el elemento
Cortar telas de fibra de carbono y vidrio			0:10:00						1 capa de caj	e fibra de vidrio y 1 pa de carbono
Calcular la cantidad de resina y secante a utilizar			0:05:00						Se calo resina y s de la	cula la cantidad de ecante según el peso as telas de fibra
Mezclar resina y secante			0:05:00							
Cubrir la mesa con plástico			0:02:00							
Colocar la tela de fibra encima del plástico			0:02:00							
Esparcir la mezcla sobre la tela			0:03:00							
Moldear las telas en la superficie del molde del ala			0:10:00							
Colocar una capa de Peel Ply			0:10:00						Para acabao	obtener un mejor lo en la superficie
Colocar una capa de Breather			0:10:00						Absorbe	el exceso de resina
Enfundar al vacío para el curado			0:20:00							
Colocar bomba de vacío			0:10:00	Ţ						
Verificar presión al vacío			0:10:00				2		Mantene	r a una presión de - 15 Psi
Esperar curado del elemento laminado			12:00:00			\mathbb{Z}			Se demo	ora 12 horas para el curado
Transportar el elemento al área de		6	0:02:00		1					
TOTAL		6	14:01:00	13	1	1	1	0		

Tabla 3.24. Cursograma analítico de proceso laminado del ala

Cursograma Analítico						Oper	rarios	5		
Diagrama núm. 4 Hoja núm. 4 de 4	Resumen									
Objeto: Cabina		Acti	vidad	Actual Pro			Prop	ouesta	Economía	
	Onera	ción	\bigcirc		13					
	Trans	porte			1					
Actividad: Laminado de la cabina	Esper	a	– ř		1					
	Inspec	ción		1						
	Almac	cenami	ento ∇		0					
Método: Actual/ propuesto	Distar	cia(m))		6					
	Tiemp	o(min	- hombre)	1	4:21:	:00				
Lugar: Materiales compuestos	Costo									
	Mano	de obr	a:							
Operario(s): Sgto. López A	Mater	ial: Fib	ra de							
Ficha núm.:	carbo	10								
Aprobado por: Fecha: 05/03/19	Canti	Dista	Tiempo(h/m		S	Símbo	olo			, ·
Descripción	dad	ncia	in/seg)	Ο		D		∇	0	bservaciones
									Verificar	los detalles de orden
Revisar orden de trabajo			0:10:00				~		vermeur	de trabajo
Colocar los moldes de la cabina en la										de duoujo
mesa de trabajo			0:02:00	ſ						
									So oplico	cobra la guparficia a
A plicar desmoldente y liquide desmoldente									ser lamin	sobre la superficie a
an al molda			0:10:00	I					facili	dad al extraer el
en el moide									1ac m	elemento
										centento
Cortar tela de fibra de carbono			0:20:00						3 telas o	le fibra de carbono
Calcular la cantidad de resina y secante a utilizar									Se cal	cula la cantidad de
			0:05:00						resina y s	ecante según el peso
									de la	as telas de fibra
Mezclar resina y secante			0:05:00							
Cubrir la mesa con plástico			0:02:00							
Colocar la tela de fibra encima del plástico			0:02:00							
Esparcir la mezcla sobre la tela			0:03:00	•						
*										
Moldear las telas en la superficie del			0:20:00							
molde de la cabina				I						
									Para	obtener un mejor
Colocar una capa de Peel Ply			0:10:00						acaba	lo en la superficie
									ucuba	io en la supericie
Colocar una capa de Breather			0:10:00						Absorbe	el exceso de resina
•				H						
Enfundar al vacío para el curado			0:20:00							
F										
Colocar bomba de vacío			0:10:00							
			0.10.00	r						
Verificar presión al vacío			0:10:00				>		Mantene	er a una presión de -
				<u> </u>	<u> </u>		<u> </u>		So dam	13 PS1
Esperar curado del elemento laminado			12:00:00						Se demo	ла 12 потаs para el
Transportar el elemento al área de				-						curauo
estructuras		6	0:02:00		1					
TOTAL		6	14:21:00							

Tabla 3.25. Cursograma analítico de proceso de laminado de la cabina

3.10. COSTOS

A continuación, se muestran los costos para la construcción de prototipo UAV Táctico.

3.10.1. Costos directos (CD)

Se consideran los materiales para la construcción de prototipo UAV Táctico como costos directos. Para determinar los costos de la fibra de carbono y fibra de vidrio, se obtienen las áreas a laminar de los moldes.

En la tabla 3.26 se muestra el área total del material, la cantidad a utilizar para la laminación y el peso de la fibra de carbono y fibra de vidrio

Moldes	Material	Base	Altura	Número de capas	Peso (gramos)	Área total (cm ²)
Ala daracha	Fibra de carbono	37	110	1	100	4070
Ala delecha	Fibra de vidrio	37	110	1	79	4070
A1 · ·	Fibra de carbono	37	110	1	100	4070
Ala izquiera	Fibra de vidrio	37	110	1	79	4070
fuselaje izquierdo	Fibra de carbono	34	70	3	157	7140
fuselaje derecho	Fibra de carbono	34	70	3	157	7140
Nariz	Fibra de carbono	30	35	3	60	3150
		Total				25570

Tabla 3.26. Área requerida de fibra de carbono y fibra de vidrio

La fibra de carbono a utilizar es la de tipo "Twill 2/2 Weave 3K" como se muestra en la tabla 3.27, con un valor de \$ 115.89 ctvs., la cual cubre el área total requerida.

Style #	Style	Weight Oz/Sq.Yd	Width / In	Thickness	Weave & Fill	PN	Price / Yd
282	Carbon Fiber 3K	5.8	50	.007	12.5 × 12.5	01- 00971	\$29.50
282	Carbon Fiber 3K	5.8	60	.007	12.5 x 12.5	01- 28260	\$35.90
284	Twill 2/2 Weave 3K	5.7	50	.007	12 x 12	01- 00602	\$29.95
284	Twill 2/2 Weave 3K	5.8	60	.007	12 x 12	01- 01232	\$35.50

Tabla 3.27. Fibra de carbono para laminación [38]

El tipo de fibra de vidrio a utilizar para la laminación es "#1080-50 E-GLASS FIBERGLASS CLOTH" como se muestra en la figura 3.61, con un valor de \$ 19.83 ctvs.

#1080-5 FIBERGL	#1080-50 E-GLASS FIBERGLASS CLOTH							
	In Stock ***** (0) <u>review this</u> Part # 1080-50 Quantity: 1 \$6.80/yd							
	ADD TO CART							

Figura3.61. Fibra de vidrio para laminación [38]

Además, se utiliza resina epóxica "AEROPOXY LAMINATING EPOXY PR2032" y acelerarte "AEROPOXY PH3660", la cual se muestra en la figura 3.62.

Figura 3.62 .Resina Epóxica y acelerante [38]

En la tabla 3.28. se especifica la cantidad de resina y acelerante a utilizar para la laminación de los moldes

Moldes	Material	Peso (gramos)	Cantidad de resina (gramos)	Cantidad de acelerante (gramos)		
Ala derecha	Fibra de carbono	100	227,33	48,33		
	Fibra de vidrio	79				
Ala izquiera	Fibra de carbono	100	227,33	48,33		
	Fibra de vidrio	79				
fuselaje izquierdo	Fibra de carbono	157	199,39	42,39		
fuselaje derecho	Fibra de carbono	157	199,39	42,39		
Nariz	Fibra de carbono	60	76,2	16,2		
Cantida	d total	732	929,64	197,64		

Tabla 3.28. Cantidad de resina epóxica y acelerante utilizados para laminar

También se utilizó peel ply que sirve para dar un mejor acabado a la superficie, breather que absorbe la resina sobrante en la laminación, bagging film para la laminación al vacío y cinta sellante para un mejor embolsado.

En la tabla 3.29.se muestran los materiales utilizados tanto para la laminación, moldes y refuerzos internos del ala

N°	Descripción	Unidad	Cantidad	Costo Unitario	Costo Total
1	Fibra de carbono "Twill 2/2 Weave 3K"	yardas	2,5	\$29,95	\$74,88
2	Fibra de carbono "#1080 - 50 E-GLASS"	yardas	1	\$6,80	\$6,80
3	Aeropoxy laminating epoxy PR2032	Galón	0,25	\$39,95	\$39,95
4	Aeropoxy PH3660	Galón	0,25	\$16,50	\$16,50
5	Peel Ply	yardas	2,5	\$4,35	\$10,88
6	Breather bleeder ply	yardas	2,5	\$1,95	\$4,88
7	#7400 Vacuum bagging film	yardas	4	\$2,75	\$11,00
8	cinta sellante	-	3	\$11	\$33
9	Madera	cm	2	\$25	\$50
10	balsas de 2.5 mm de espesor	mm	15	\$1,20	\$18,00
11	balsas de 8 mm de espesor	mm	4	\$2,40	\$9,60
12	Tiplex de 2,5 mm de espesor	mm	2	\$14	\$28
13	Sellador	litros	1	\$6	\$6
			,	Total	\$309,48

Tabla 3.29. Costo de materiales

3.10.2. Costos Indirectos

Costo de maquinaria y equipos

En la tabla 3.30. se indica el costo para el maquinado de los moldes del avión tripulado, el costo de laminado del fuselaje y alas, además del corte de la estructura para los moldes del ala y la estructura interna del ala

N°	Descripción	Unidad	Cantidad	Costo Unitario	Costo Total
1	Maquinado de moldes de fuselaje	horas	15	\$15,00	\$225,00
2	Laminado	horas	14	\$4,00	\$56,00
3	Corte laser para moldes de ala	minutos	50	\$0,35	\$17,50
4	Corte laser para estructura interna del ala	minutos	15	\$0,35	\$5,25
			Total		\$303,75

Tabla 3.30. Costos de maquinaria y equipos

3.10.3. Costos adicionales

En la tabla 3.31. se muestran los costos adicionales tales como el transporte hacia el centro de investigación, la alimentación, impresiones y anillados del proyecto de investigación

N°	Descripción	Unidad	Cantidad	'osto Unitari	Costo Total
1	Transporte	viajes	120	\$0,30	\$36,00
2	Alimentación	almuerzos	40	\$1,60	\$64,00
3	Impresiones	-	150	\$0,10	\$20,00
4	Anillados	-	1	\$10,00	\$10,00
			To	otal	\$130,00

Tabla 3.31. Costos adicionales

3.10.4. Costo total

En la tabla 3.32. se muestra el costo total del proyecto con un valor de 743.23 dólares.

N°	Descripción	Costo Total
1	Costo de materiales	\$309,48
2	Costo de máquinaria y herramientas	\$303,75
3	Costos adicionales	\$130,00
		\$743,23

Tabla 3.32. Costo total del proyecto

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1.CONCLUSIONES

- Se determinó los parámetros necesarios para el desarrollo del prototipo UAV, siendo estos: el peso total que es de 3.717 kg, la velocidad crucero de 15.8826 m/s con la cual el vuelo recto y nivelado si tener variación en altitud, y la velocidad de perdida que es de 8.127 m/s, además se calcula las dimensiones generales del ala, fuselaje y cola, los cuales son de gran importancia para el diseño.
- Se diseñó los elementos constitutivos del prototipo UAV, estos son el fuselaje, alas y cola, cumpliendo con los parámetros calculados que se muestran en la tabla 2.22 del capítulo 2.
- Se construyó la estructura del prototipo mediante moldes, el molde de la cabina se mecanizo en una fresadora CNC, mientras que el molde del ala se realizó en fibra de vidrio, para posteriormente ser laminadas.
- Mediante un software para análisis de elementos finitos se observó el comportamiento tanto estructural como aerodinámico del prototipo UAV, en la parte estructural se analizó la viga del ala, la cual dio como resultados la tensión de von Mises que indica si el material se va a fracturar o si resiste a la carga sometida que en este caso es el peso del ala, con un valor máximo de 9.53 * 10⁶ Pa, el cual indica que el material no se va a fracturar ya que se tiene un valor de limite elástico de 3,578 * 10⁷ Pa, soportando la carga del ala con un factor de diseño de 5,5 el cual se encuentra en el rango requerido según las regulaciones Federales de aviación.

En el análisis aerodinámico se evalúa el comportamiento de la velocidad del UAV, en relación a las corrientes del viento, obteniéndose una velocidad máxima de 19,856 m/s y una velocidad mínima de 2,482 m/s y además se observó en el análisis que existen pedidas mínimas debido a la ficción de aeronave cuando entra en contacto con las partículas de aire.

- La estructura de la cabina se construyó con fibra de carbono, debido a su alta resistencia y alto módulo de elasticidad además de su baja densidad siendo ideal para obtener reducir el peso de la estructura, la piel de las alas se laminó con una capa fibra de vidrio y una capa de fibra de carbono, esto se realizó para obtener un menor peso, además se fabricó una viga de balsa y carbono con el fin de resistir el peso de la estructura del ala.
- Además, el diseño del UAV cuenta con un sistema desmontable en el ala y la cola, el cual está unida mediante tubos de fibra de carbono y se fija con una placa de carbono a la cabina, siendo de gran beneficio ya que al momento de transportar la aeronave hacia una misión se desmostan fácilmente las alas y se ocupa un menor espacio en el medio de transporte utilizado.

4.2.RECOMENDACIONES

- Verificar todos los componentes para la carga útil, y así no tener inconvenientes en el dimensionamiento del UAV.
- Diseñar los elementos de acuerdo a los parámetros obtenidos y así evitar complicaciones en el proyecto.
- En el proceso de construcción, verificar si los moldes y el laminado se realizaron de una manera adecuada.
- Cumplir con el proyecto en el tiempo indicado.

REFERENCIAS BIBLIOGRAFICAS

- W. Pineda, «Análisis estructural de las cuadernas centrales para optimizar el peso en el UAV gavilán en el centro de investigación y desarrollo de la Fuerza Aérea Ecuatoriana.,» Ambato, 2016.
- [2] «Diseño estructural y costrucción de un avión no tripulado: Proyecto Céfiro».
- [3] K. P. Panagiotou, «Aerodynamic design of a MALE UAV,» Elsevier Masson, Grecia, 2016.
- [4] S. Franchini y L. Óscar, Introducción a la Ingeniería Aeroespacial, México: Alfaomega Grupo Editor, 2013, pp. 102-120.
- [5] «Airfoiltools,» 2018. [En línea]. Disponible: http://airfoiltools.com/calculator/reynoldsnumber.
- [6] A. Isodoro, Aerodinámica y actuaciones del avión, Treceava ed., Madrid: Ediciones Parainfo, 2015, pp. 77-125.
- [7] A. Creus, Iniciación a la Aeronáutica, Madrid: Ediciones Díaz de Santos, 2010, pp. 7-12.
- [8] «Mundo aeronáutico EWM,» 2007. [En línea]. Disponible: http://www.alasewm.com.ar/pewmalar.htm.
- [9] N. Hall, «National Aeronautics and Space Administration,» 5 Mayo 2015. [En línea]. Disponible: https://www.grc.nasa.gov/www/k-12/airplane/liftco.html. [Último acceso: 5 Diciembre 2018].
- [10] N. Hall, «National Aeronautics and Space Administration,» [En línea]. Disponible: https://www.grc.nasa.gov/www/k-12/airplane/dragco.html. [Último acceso: 22 01 2019].
- [11] L. Soria, C. Scarano y L. Gonzáles, «Aplicaciones de CDF para aerodinámica en FADAE S.A.,» Asociación Argentina de Mecánica Computacional, vol. XXXIV, pp. 1043-1060, 2016.

- [12] W. Callister y D. Rethwisch, Materials Science and Engineering an Introduction, Octava ed., United States: John Wiley & Sons, 2009, pp. 628-638.
- [13] S. Kalpakjian y S. Schmid, Manufactura, Ingeniería y Tecnología, Quinta ed., México: Pearson education, 2008, pp. 240-244.
- [14] D. Chung, «Introduction to carbon composites,» de *Carbon Composites*, Segunda ed., Buffalo (NY), Elsevier Inc, 2017, pp. 88-160.
- [15] D. Gay, S. Hoa y S. Tsai, Composite Materials Desing and Aplications, London: CRC Press LLC, 2003.
- [16] A. Miravete, Materiales compuestos I, Barcelona: Reverté, 2012.
- [17] W. Smith y J. Hashemi, Fundamentos de la ciencia e Ingeniería de materiales, Cuarta ed., México: Mc Graw Hill, 2006, pp. 648-657.
- [18] J. Ramos, «Asociación Argentina de Materiales,» [En línea]. Disponible: http://www.materiales-sam.org.ar/sitio/biblioteca/conametsam2008/.
- [19] S. Correa, J. Isaza, A. Gaviria y M. Naranjo, «Resistance of teeth restored with prefabricated posts to maximum intercuspidation loads, mastication and bruxism,» *Revista cubana de Estomatología*, nº 49, pp. 53-69, 2013.
- [20] M. Ashby y D. Jones, Materiales para Ingeniería 2 Introducción a la microestructura, el procesamiento y el diseño., España: Reverté, 2009, pp. 342-346.
- [21] «Universidad Politécnica de Madrid,» 22 Noviembre 2010. [En línea]. Disponible: http://www.upm.es/sfs/Rectorado/Gabinete%20del%20Rector/Agenda/2010/2010-11/3CargaUtil.pdf.
- [22] E. Aguilar, «UNAM,» 4 Junio 2015. [En línea]. Disponible: http://132.248.52.100:8080/xmlui/handle/132.248.52.100/7632.
- [23] K. Swartz, «Great circle mapper,» 2014. [En línea]. Disponible: http://www.gcmap.com/airport/ATF.
- [24] S. Brandt, R. Stiles, J. Bertin y R. Whitford, Introduction to Aeronautics: A desing perspective, Virginia: Board, 2004.

- [25] S. Gudmundsson, «Performance Cruise,» de General Aviation Aircraft Desing, USA, Elsevier, 2014, pp. 848-850.
- [26] «Airfoil Tools,» 2019. [En línea]. Disponible: http://airfoiltools.com/polar/details?polar=xf-ag35-il-500000.
- [27] J. Anderson, Fundamentals of Aerodynamics, Quinta ed., New York: McGraw-Hill, 2011.
- [28] S. Gudmundsson, «The Anatomy of the Tail,» de General Aviation Aircraft Desing, USA, Elsevier, 2014, pp. 489-490.
- [29] I. Redondo, «Universidad de Valladolid,» Julio 2016. [En línea]. Disponible: https://uvadoc.uva.es/bitstream/10324/18480/6/TFG-P-439.pdf.
- [30] «Wordpress,» 20 06 2014. [En línea]. Disponible: https://gatovolante.wordpress.com/2014/06/20/diseno-dimensiones-del-fuselaje-lalongitud/.
- [31] P. Sforza, «Wing Design,» de Commercial Airplane Desing Principles, Florida, Elsevier Inc., 2014, pp. 120-142.
- [32] J. Adsuar, Principios de vuelo, Madrid: Parainfo, S.A., 2007.
- [33] M. Sadraey, Aircraft Design, Reino Unido: John Wiley & sons, Ltd, 2013.
- [34] A. Kumar, «Cambridge,» 2010. [En línea]. Disponible: https://www.cambridge.org/core/books/aircraft-design/aerodynamicconsiderations/43F9776E01D013E879989ED0463BE23C.
- [35] F. Nicolosi, P. C. D. Vecchia y V. Cusati, Aerospace Science and Technology, Italia: Elsevier Masson SAS., 2016, pp. 8-32.
- [36] Federal Aviation Administration, FAR/ AIM 2019, New York: Skyhorse Publishing, 2018.
- [37] Solid Carbide Tools, «Sumec Sl,» 2012. [En línea]. Disponible: http://www.sumecsl.com/2012/pdf/productos_categorias/14CONDICIONES_DE_CO RTE.pdf.

[38] «Aircraft Spruce & Speciality Co.,» 2019. [En línea]. Disponible: https://www.aircraftspruce.com.

ANEXOS

ANEXO A. Certificado de culminación de proyecto

	FUERZA AÉREA
	CENTRO DE INVESTIGACIÓN Y DESARROLLO
ptin konzisien*	CERTIFICADO
El suscrito, Teniente Desarrollo CIDFAE, a	Coronel E.M.T. Avc. Freddy Pérez Arias, Jefe del Centro de Investig a petición del interesado,
	CERTIFICA:
Qua el señor ALEX 1 1804592739, realizó ESTRUCTURAL DE MODULAR DESMON FUERZA AÉREA EC	DANIEL CHIPANTIZA BOMBON, portador de la cédula de ciudadanía el proyecto de investigación sobre el terna: "DISEÑO Y CONSTRU UN PROTOTIPO DE AVIÓN NO TRIPULADO TÁCTICO CON SI NTABLE PARA EL CENTRO DE INVESTIGACIÓN Y DESARROLLO UATORIANA DE LA CIUDAD DE AMBATO", con los siguientes objetivos:
Objetivo general:	
 Desarrollar ut 	n prototipo UAV táctico con sistema modular desmontable.
Objetivos específicos	r.
 Determinar lo Disefiar los el Construir el j requerimiento Analizar el co 	os parametros necesanos para el desarrollo del prototipo UAV. lementos constitutivos del prototipo UAV. prototipo mediante moldes de fuselaje, alas y estabilizadores, cumplier os del diseño establecido. omportamiento aerodinámico del prototipo mediante elementos finitos.
Quien ha concluido planteados para el efe	el proyecto de conformidad a los intereses de este Centro y a los ol ecto.
El interesado podrá u trámites iudiciales	utilizar este documento como respaldo para el trámite de titulación, excep
Denniss Judicisies.	Ambato, 28 de junio d
Fieddy Pérez Arias Teniente Coronel E.M JEFE DEL CIDFAE Copie: Archivo	DIRECC'

1

HexTow[®] Carbon Fiber

Continuous fiber can be combined with all thermoset and thermoplastic resin systems. They are used for weaving, braiding, filament winding applications, unidirectional tapes for ATL and AFP processes and prepreg tow for fiber placement. Hexcel offers standard, intermediate and high modulus carbon fibers. While our IM fibers have become an industry standard, particularly the HexTow[®] IM7 carbon fiber, we continue to innovate and look for better ways to meet customers' growing needs.

Fiber Type	Number of	Ter Stre	nslle Ingth	Ten Mod	islle ulus"	Strain**	Weight/ Length	Density
	Fildificities	(ksi)	(MPa)	(Msi)	(GPa)	(%)	(g/m)	(g/cm²)
AS4A	12000	640	4413	33.5	231	1.8	0.858	1.79
	3000	685	4723	33.5	231	1.8	0.210	1.79
AS4	6000	650	4482	33.5	231	1.7	0.427	1.79
	12000	645	4447	33.5	231	1.7	0.858	1.79
	3000	685	4723	33.5	231	1.8	0.200	1.78
AS4C	6000	670	4619	33.5	231	1.7	0.400	1.78
	12000	660	4550	33.5	231	1.8	0.800	1.78
AS4D	12000	680	4688	35.0	241	1.8	0.765	1.79
AS7	12000	710	4964	35.4	244	1.7	0.800	1.79
IM5	12000	775	5343	40.5	276	1.8	0.740	1.79
IM2A	12000	770	5309	40.0	276	1.7	0.446	1.78
IM2C	12000	830	5723	43.0	296	1.8	0.446	1.78
IM6	12000	840	5792	40.5	279	1.9	0.446	1.76
1.47	6000	800	5516	40.0	276	1.9	0.223	1.78
INT/	12000	825	5688	40.0	276	1.9	0.446	1.78
IMA	12000	880	6067	43.1	297	1.8	0.445	1.79
IMB	12000	880	6067	44.3	305	1.8	0.446	1.79
IM10	12000	985	6791	45.0	310	2.0	0.324	1.79
HM50	12000	850	5860	50.0	345	1.5	0.390	1.79
HM63	12000	690	4754	63.5	438	1.0	0.420	1.84

Refer to specific product data sheets for more datails on each product. * Tensile Modulus Calculated as Chord (6000 - 1000) ** Strain at Failure

Fiber Type	Number of Filaments	Weight/Length	Density	Carbon Content
HexTow® 85	24000	1.75 g/m	1.79 g/cm ^a	85%

HaxTow® 85 carbon fiber is designed for ablative applications.

Strength vs. Modulus

General properties Designation		
Polyetheretherketone (30% Carbon Fiber)		
Density	1.42e3 - 1.44e3 ka/m^3	
Price	* 90.7 - 99.8 USD/kg	
Tradenames		
Edgetek; Gatone; HiMod; Ketron; Larpeek; Luvocom; N	Murpec; Sustatec; Tecapeek; Victrex	
Composition overview		
Composition (summary) (O-(C6H4)-O-(C6H4)-C(O)-(C6H4))n + C filler		
Base	Polymer	
Polymer class	Thermoplastic : semi-crystalline	
Polymer type	PEEK	
% filler	30 %	
Filler type	Carbon fiber	
Composition detail		
Polymer	70 %	
Carbon (fiber)	30 %	
Mechanical properties		
Young's modulus	12.8 - 24.1 GPa	
Compressive modulus	* 12.8 - 24.1 GPa	
Flexural modulus	12.8 - 22.2 GPa	
Shear modulus	* 4.81 - 9.06 GPa	
Bulk modulus	* 16.8 - 17.7 GPa	
Poisson's ratio	0.319 - 0.345	
Shape factor	8.3	
Yield strength (elastic limit)	* 190 - 228 MPa	
Tensile strength	190 - 228 MPa	
Compressive strength	172 - 240 MPa	

ANEXO C. Propiedades de resina epóxica

	PR2032 PH3630	Neat Resin (Unreinforced)	PR2032 w With Fiberglass	ith PH3660 With Graphite	With Kevlar	PR2032 PH3663	PR2032 PH3665	ASTM Method			
Mix Ratio		100 : 27 By	Weight or 3t	o 1 By Volume		100 : 25 By Weight	100:27 By Wt. 3 to 1 By Vol.	PTM&W			
Pot Life, @ 77°F	30 minutes		11	our		1.5 Hour	2 hours	D2471			
Color	Lt. Amber		Light	Amber		Light Amber	Lt. Amber	Visual			
Mixed Viscosity, @77°F, cps	800-875 cps		900 -	950 cps		440 cps	925-975 cps	D2393			
Cured Hardness, Shore D	88 Shore D		88 S	hore D		87 Shore D	87 Shore D	D2240			
Specific Gravity, grams, cc	1.16		1.	.11		1.109	1.12	D1475			
Density, Ib./cu. Inch	.0420		.0	401		.0401	.0410	D792			
Specific Volume, cu. in./lb.	23.8		2	5.0		24.96	24.4	D792			
Tensile Strength, psi (1)	45,350 psi	9828 psi	45,170 psi	75,640 psi	45,400 psi	40,010 psi	45,870 psi	D638			
Elongation at Break, % 🕫	1.91%	1.90 %	1.96 %	0.91 %	1.31 %	1.67 %	1.98 %	D638			
Tensile modulus, psi 🕫	2,800,000 psi	418,525 psi	2,620,000 psi	8,170,000 psi	3, 770, 000 psi	2,647,520 psi	2,520,000 psi	D638			
Flexural Strength, psi (1)	68,167 psi	16,827 psi	62,285 psi	96,541 psi	34,524 psi	65,461 psi	66,667 psi	D790			
Flexural Modulus, psi 🕫	2,770,000 psi	462,910 psi	2,560,000 psi	6,480,000 psi	2, 500, 000 psi	2,639,766 psi	3,050,000 psi	D790			
Glass Transition Temp., To	194•F		19	16•F		194-F	194•F	TMA			
Thermal Coef. of Expansion Range:	3.7 x 10 ⁻⁵ in_/n_/4F		4.3 x 10 ⁻⁵ in./in./ ⁴ F 4.14 x 10 ⁻⁵ 4.15 x 10 ⁻⁵ in./in./ ⁴ F D6 ⁶								
(1) Fiberglass Properties Deriv	ed with A 10 Pl	y Laminate, Han	d Lay-up, Style 1	181 Glass Fabric,	, 55% Glass Cont	tent; sincts of E.o.s. K	(autor				

PR2032 Laminating Resin For Composite Parts, Page 2

PACKAGING WEIGHTS

	Qua	rt Kit	Gallo	on Kit	Pai	l Kit	Dru	m Kit
PR 2032	2.25 lb.		7.5 lb.		48 lb.		500 lb.	
PH3630, PH3660 or PH3665	.66 lb.		2 lb.		13 lb.		135 lb.	
PH3663		.6 lb.		1.9 lb.		12 lb.		126 lb.
Kit	2.9 lb.	2.851b.	9.5 lb.	9.4 lb.	61 lb.	60 lb.	635 lb.	626 lb.

SAFETY and HANDLING

PTM&WAEROPOXY epoxy products are made from raw materials carefully chosen to minimize or even eliminatetoxic chemicals, and therefore offer the user high performance products with minimum hazard potential when properly used. <u>Generally, the PTM&WAEROPOXY epoxy resins and hardeners will present</u> <u>no handling problems if users exercise care to protect the skin and eyes, and if good ventilation is provided in the work areas</u>. However, all epoxy resins and hardeners and hardeners can be irritating to thes kin, and prolonged contact mayresult in sensitization; and breathing of mist or vapor s may cause allergenic respiratory weator, especially in highly sensitive individuals. As such, avoid contact with eyes and skin, and avoid breathing vapors. We arprotective rubber apron, clothing goves, faceshield or other items as required to prevent contact with theskin. In case of skin contact, immediately wash with scop and water, followed by a rinseof the area with vinegar, and then a further wash with scop and water. The vinegar will neutralize the hardener and lessen the chances of long term effects.</u> Use goggies, a faceshield, safetyglasses or other items as required to prevent contact with the eyes. If material gets into the eyes, immediately flush with water for at least 15 minutes and call aphysician. Generally, keep the work area as uncluttered and clean as possible, and clean up any minor spills immediately to prevent accidental skin contact at latertime. Keep tools clean and properly stored. Dispose of trash and empty containers properly. Do not use any of these types of products until Material Safety Data Sheets have been read and understood.

ANEXO D. Imágenes de proceso de elaboración de moldes de ala

ANEXO E. Imágenes de proceso de elaboración de moldes de cabina

ANEXO F. Imágenes de proceso de laminado de ala

ANEXO G. Imágenes de proceso de elaboración laminado de cabina

PLANOS

N.º DE ELEMENTO	N.º	DE PIEZA			DESCRIPCIÓN	CANTIDA		С
13	C	Cabina			Fibra de carbono	1		
12	Тара	a de nariz			Fibra de carbono	1		
11	So	oporte			-	1		
10	Mote	or Turnigy			-	1		
9	ŀ	Helice			-	1		
8	Soporte	de unión cola	de		ABS	1		
7	Tubo de	union cab -ala	oina		Fibra de carbono	2		
6		ala		Balsa	y material compuesto para piel del ala.	1		E
5	Wingle	glet Derecho			Balsa	1		
4	Sime	netríade ala Balsa y material compuesto para piel del ala.			para 1			
3	wingle	et Izquierd	0	Material compuesto		1		
2	Co	ola en T			Material Compuesto	1		
1	Tubo cab	de unión Vina cola			Fibra de carbono	1		
		Tolerancia: ± 0,1 mm	Peso: 37	17gr	Material: Varios			
		FECHA Dibujó: 28/06/2019 Revisó: 01/07/2019 Aprobó: 01/07/2019	Chipanti Chipanti Ing. Víctor I Ing. Víctor I	DMBRE iza A. Espín Espín	PROTOTIPO UAV TÁC	TICO	Escala: 1:10	
			.A.		N.º De Lámina HOJA 1 DE 9			_ }
Ealcion: Modificación:	recna: Nombre:		MLCP		2021110C10U:		$ \lor \lor$	/

	1	2	3	4
A				<u>N7</u>
В				
С			365	
D				
E		Contraction of the second seco	237	
		± 0,01 mm 50 gr	Fibra de c	arbono
		FECHA NOMBRE Dibujó: 28/06/2019 Chipantiza Alex Revisó: 01/07/2019 Ing. Victor Espín Aprobó: 01/07/2019 Ing. Victor Espín	Título: Tubo de union cat	pina-cola 1:10
	Edición: Modificación: Fecha: Nombre:	U.T.A. Ingeniería mecánica	N.º DE Lámina: HOJA 2 [Sustitucíon:	DE 9

7	0
	O
AND	B A B A B A B A B A B A B A B A
	C
	D
	E
Balsa y Material compuesto	
Estrctura d	e ala 1:5
N.º De Lámina HOJA Sustitución:	5 DE 9

