UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA CIVIL

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL TEMA:

"ANÁLISIS DEL DESEMPEÑO ESTRUCTURAL SÍSMICO DE UN EDIFICIO DE MULTIFAMILIARES EN ACERO UTILIZANDO TRES SISTEMAS ESTRUCTURALES: PÓRTICOS ESPECIALES A MOMENTO, PÓRTICOS ARRIOSTRADOS CONCÉNTRICOS Y PÓRTICOS ARRIOSTRADOS EXCÉNTRICOS"

AUTOR: ANDRÉS RAFAEL ABRIL CAMINO

TUTOR: ING. Mg. CHRISTIAN MEDINA

AMBATO – ECUADOR

2020

APROBACIÓN DEL TUTOR

Certifico que el presente Trabajo Experimental bajo el tema "ANÁLISIS DEL DESEMPEÑO ESTRUCTURAL SÍSMICO DE UN EDIFICIO DE MULTIFAMILIARES EN ACERO UTILIZANDO TRES SISTEMAS ESTRUCTURALES: PÓRTICOS ESPECIALES A MOMENTO, PÓRTICOS ARRIOSTRADOS CONCÉNTRICOS Y PÓRTICOS ARRIOSTRADOS EXCÉNTRICOS", realizado por el Sr. Andrés Rafael Abril Camino, egresado de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato, previo a la obtención del título de Ingeniería Civil, se desarrolló bajo mi tutoría, el cual se ha concluido de manera satisfactoria.

Es todo cuanto puedo certificar en honor a la verdad.

Ambato, enero del 2020

Ing. Mg. Christian Medina

TUTOR DE TESIS

AUTORÍA DEL TRABAJO DE TITULACIÓN

El contenido del presente Trabajo Experimental bajo el tema "ANÁLISIS DEL DESEMPEÑO ESTRUCTURAL SÍSMICO DE UN EDIFICIO DE MULTIFAMILIARES EN ACERO UTILIZANDO TRES SISTEMAS ESTRUCTURALES: PÓRTICOS ESPECIALES A MOMENTO, PÓRTICOS ARRIOSTRADOS CONCÉNTRICOS Y PÓRTICOS ARRIOSTRADOS EXCÉNTRICOS", son de exclusiva responsabilidad de autor.

Ambato, enero del 2020

Egdo. Andrés Rafael Abril Camino

CI: 1803760402

AUTOR

DERECHO DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Trabajo Experimental o parte de él, un documento disponible para su lectura consulta y procesos de investigación, según las normas de la Institución.

Cedo los derechos en línea patrimonial de mi Trabajo Experimental con fines de difusión pública, además apruebo la reproducción de este Trabajo Experimental dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, enero del 2020

Egdo. Andrés Rafael Abril Camino

(leebeg

CI: 1803760402

AUTOR

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del tribunal examinador aprueban el Informe de Investigación, bajo el tema: ""ANÁLISIS DEL DESEMPEÑO ESTRUCTURAL SÍSMICO DE UN EDIFICIO DE MULTIFAMILIARES EN ACERO UTILIZANDO TRES SISTEMAS ESTRUCTURALES: PÓRTICOS ESPECIALES A MOMENTO, PÓRTICOS ARRIOSTRADOS CONCÉNTRICOS Y PÓRTICOS ARRIOSTRADOS EXCÉNTRICOS", de Andrés Rafael Abril Camino, egresado de la Facultad de Ingeniería Civil y Mecánica.

Ambato, febrero de 2020

Por constancia firman:

Ing. Mg. Carlos Navarro

Ing. Santiago Medina Mg.

DEDICATORIA

A quien me llevó nueve meses en su ser, me enseñó a caminar, a peinar mi cabello, a quien me acompañó en cada momento de mi vida: mi primer partido de fútbol, mi primera visita al dentista, y estuvo conmigo en los eventos más importantes de mi vida: mi cirugía, mi graduación del colegio, mi primer viaje fuera de país.

A quien me incursionó por primera vez en este maravilloso mundo de la ingeniería civil, quien confió en mi desde antes de empezar la carrera.

A quien le debo todos los valores que mantengo y todo lo bueno que soy.

Por razones de la vida ya no le tengo presente en este mundo.

A la persona que más me amó en este mundo aunque no lo supe hasta que partió del mismo.

A quién deberé y dedicaré todos los triunfos personales y profesionales venideros mí:

Mamá Jeaqueline.

Quien desde algún lugar del universo me observa y cuida.

AGRADECIMIENTO

Al Ingeniero Christian Medina quien más que un tutor ha sido un amigo, por impartirme sus conocimientos de manera explícita y desinteresada, y libros; por la paciencia de contestar cada duda cual niño preguntón, a quien admiro, respeto y estimo de sobremanera.

A mi hermano Daniel por ser la motivación para no rendirme y seguir adelante. A mi padre Jesús por ser un padre responsable y apoyarme en cada proyecto que deseo emprender. A mi tía Margot quien desde que mi mamá partió de este mundo, ha sido una madre quien me ha llenado de cariño, protección y amor.

A mi tía Gioconda y mi abuela Bertha, quienes son mi familia y siempre han estado a mi lado.

A mi compañera, cómplice, amiga y novia Clarita, por su paciencia tiempo entrega y amor.

ÍNDICE GENERAL

AUTORÍA DEL TRABAJO DE TITULACIÓN	III
DERECHO DE AUTOR	IV
APROBACIÓN DEL TRIBUNAL DE GRADO	V
DEDICATORIA	VI
AGRADECIMIENTO	VII
RESUMEN EJECUTIVO	XXII
ABSTRACT SUMMARY	XXIII
CAPÍTULO I	1
MARCO TEÓRICO	1
1.1. Antecedentes Investigativos	1
1.1.2. Justificación	16
1.1.3. Fundamentación Teórica	18
1.1.4. Hipótesis	103
1.2. Objetivos	103
1.2.1. Objetivo General	103
1.2.2. Objetivos Específicos	103
CAPÍTULO II	104
METODOLOGÍA	104
2.1. Materiales y Equipos	104
2.1.1. Equipos	104
2.2. Métodos	106
2.2.1. Plan de recolección de datos	108
2.2.2. Plan de Procesamiento y Análisis de Información	129
CAPÍTIH O III	161

RESULTADO	OS Y DISCUSIÓN161
3.1. Análisis	s y Discusión de los resultados161
3.2. Resul	ltados lineales de Pórticos Especiales a Momento PEM o SMF161
3.2.1. I	Período de vibración de la estructura161
3.2.2. V	Verificación que los modos de desplazamiento de la estructura sean
traslacion	nales162
3.2.4. V	Validación del análisis dinámico163
3.2.5. I	Derivas Estáticas166
3.2.6. I	Derivas Dinámicas167
3.2.9. V	Verificación de vigas secundarias y losa173
3.2.10. I	Resultados de elementos estructurales secundarios174
3.3. Resul	ltados estáticos no lineales de SMF o PEM178
3.3.1.	Curva de desempeño y punto de desempeño de PEM en dirección
X	
	Curva de desempeño y punto de desempeño de PEM en dirección
Y	
3.4. Análi	isis de precios unitarios de SMF188
3.5. Resulta	dos lineales de Pórticos Especiales Arriostrados Concéntricamente
SCFB o PE	AC190
3.5.1. I	Período de vibración de la estructura190
3.5.3. V	Verificar que los modos de vibración deben cumplir el 90% de la
masa	194
3.5.7. I	Buckling Factors o efectos de pandeo global210
3.5.9. I	Resultados de elementos no estructurales secundarios de SCBF.220
3.6. Resul	ltados estáticos no lineales de modelos que no cumplen con el
desempeño.	
37 Rocul	Itados estáticos no lineales de PEAC o SCRE 231

3.7.1. Curva de desempeño y punto de desempeño de PEM en dirección X
23
3.7.2. Curva de desempeño y punto de desempeño de PEM en dirección Y
234
3.8. Análisis de precios unitarios SCBF23
3.9. Pórticos Arriostrados excéntricamente PAE o EFB240
3.9.1. Período de vibración de la estructura240
3.9.2. Verificación que los modos de desplazamiento de la estructura sear
traslacionales24
3.9.5. Derivas Estáticas24
3.9.6. Derivas Dinámicas240
3.9.7. Buckling Factors o efectos de pandeo global24
3.9.8. Diseño de elementos demanda capacidad según AISC 360-1024
3.9.9. Resultados de elementos estructurales secundarios para EBF25
3.10. Resultados no lineales estáticos de PAE o EBF258
3.10.1. Curva de y punto de desempeño de PAE o EBF en dirección X259
3.10.2. Curva de y punto de desempeño de PAE o EBF en dirección Y262
3.11. Análisis de precios unitarios EBF265
3.11. Verificación de la hipótesis269
3.11.1. Comparación del desempeño de SMF, SCFB Y EFB269
CAPÍTULO IV272
CONCLUSIONES Y RECOMENDACIONES273
4.1. Conclusiones27.
4.2. Recomendaciones275
MATERIALES DE REFERENCIA270
Referencias Bibliográficas27
Anexos

ÍNDICE DE TABLAS

Tabla 2: Combinaciones de carga para una consideradas por la NEC-SE-CG 2016. 3 Tabla 3: Secciones propuestas considerando un período de vibración T = 1,04 s 4 Tabla 4: Secciones propuestas considerando un período de vibración T = 1,20 s 5 Tabla 5: Edificios de acero evaluados y nomenclatura usada
Tabla 3: Secciones propuestas considerando un período de vibración T = 1,04 s 4 Tabla 4: Secciones propuestas considerando un período de vibración T = 1,20 s 5 Tabla 5: Edificios de acero evaluados y nomenclatura usada
Tabla 4: Secciones propuestas considerando un período de vibración T = 1,20 s 5 Tabla 5: Edificios de acero evaluados y nomenclatura usada
Tabla 5: Edificios de acero evaluados y nomenclatura usada. 9 Tabla 6: Período de vibración fundamental de cada tipología estructural. 9 Tabla 7: Valores T1, W, PF1 y α1 de las edificaciones analizadas. 12 Tabla 8: Períodos de Vibración Deseados, Obtenidos y sin arriostramiento concéntrico. 15 Tabla 9: Relación ancho espesor para secciones de acero considerando elementos
Tabla 6: Período de vibración fundamental de cada tipología estructural. 9 Tabla 7: Valores T1, W, PF1 y α1 de las edificaciones analizadas. 12 Tabla 8: Períodos de Vibración Deseados, Obtenidos y sin arriostramiento concéntrico. 15 Tabla 9: Relación ancho espesor para secciones de acero considerando elementos
Tabla 7: Valores T1, W, PF1 y α1 de las edificaciones analizadas. 12 Tabla 8: Períodos de Vibración Deseados, Obtenidos y sin arriostramiento concéntrico. 15 Tabla 9: Relación ancho espesor para secciones de acero considerando elementos
Tabla 8: Períodos de Vibración Deseados, Obtenidos y sin arriostramiento concéntrico. 15 Tabla 9: Relación ancho espesor para secciones de acero considerando elementos
Concéntrico
Tabla 9: Relación ancho espesor para secciones de acero considerando elementos
sometidos a esfuerzos a compresión
Tabla 10: Relación ancho espesor para secciones de acero considerando elementos
sometidos a esfuerzos a compresión
Tabla 11: Parámetros para análisis del momento curvatura en elementos de pórticos
de acero en procedimientos no lineales de segundo orden90
Tabla 12: Parámetros para análisis del momento curvatura de riostras de acero en
procedimientos no lineales de segundo orden91
Tabla 13: Coeficientes para el uso en ecuaciones de amortiguamiento efectivo. 95
Tabla 14: Coeficientes para el uso en ecuaciones de período efectivo97
Tabla 15: Niveles de amenaza en función del período de retorno102
Tabla 16: Características de edificio del "Voluntarios Eplicachima" multifamiliar
N.1108
Tabla 17: Características del edificio "Oficiales Eplicachima" multifamiliar N.2. 109
Tabla 18: Características del edificio "Multifamiliares Luluncoto" multifamiliar N.3.
110
Tabla 19: Características del edificio "Terrazas del dorado" multifamiliar N.4111
Tabla 20: Características del edificio "Drom Plaza" multifamiliar N.5. 112
Tabla 21: Características del edificio "Albéniz Plaza" multifamiliar N.6

Tabla 22: Características del edificio "Multifamiliares Miñarica 1" multifa	miliar
N.7	114
Tabla 23: Características del edificio "Apartamentos Montreal" multifamil	
	115
Tabla 24: Características del edificio "Residencia Núñez" multifamiliar N.	9116
Tabla 25: Características del edificio "Multifamiliares Bellavista" multifan	niliar
N.10	117
Tabla 26: Características del edificio "Mutualista Ambato" multifamiliar N	J.11118
Tabla 27: Características del edificio "Mushuc Runa Riobamba" edificio N	[.12119
Tabla 28: Resumen de las Características de Edificios Multifamiliares	120
Tabla 29: Características genéricas de la edificación a modelar.	121
Tabla 30: Peso Específico de los materiales.	122
Tabla 31: Peso Específico de los materiales.	122
Tabla 32: Peso Específico de los materiales.	122
Tabla 33: Paredes y cargas de pared (plano anexo 4).	124
Tabla 34: Paredes y cargas de pared (plano anexo 5).	125
Tabla 35: Datos empleados para el espectro de diseño y cortante basal para	pórticos
arriostrados en acero.	126
Tabla 36: Datos empleados para el espectro de diseño y cortante basal para	pórticos
especiales sin arriostramiento.	127
Tabla 37: Secciones del prediseño a considerarse en el catálogo.	132
Tabla 38: Datos para el diseño solicitados por el manual de acero deck	133
Tabla 39: Chequeos para la verificación de un adecuado diseño	134
Tabla 40: Diseño de conectores de corte STUD.	135
Tabla 41: Releases asignados a los OMF	151
Tabla 42: Cálculo de excentricidades en vigas	158
Tabla 43: Modos de vibración de la estructura diseñada con SMF	162
Tabla 44: Coeficientes y factores para sistemas sísmicos de fuerza resistence	cia para
un simplificado proceso de diseño. [27]	166
Tabla 45: Factores de pandeo global SMF	168
Tabla 46: Diseño de recorte en vigas RBS, conectores de corte y pernos	174
Tabla 47: Diseño de recorte en vigas RBS, conectores de corte y pernos	175
Tabla 48: Análisis de precios unitarios* de SMF [28]	188

Tabla 49	Cantidades y precios de obra de la estructura SMF	190
Tabla 50	2: Modos de vibración de la estructura no definitiva N.1 diseñada con S	CBF.
		192
Tabla 51	: Modos de vibración de la estructura no definitiva N.2 diseñada con S	CBF.
		193
Tabla 52	2: Modos de vibración de la estructura definitiva diseñada con SCBF	194
Tabla 53	3: Factores de pandeo global modelo preliminar N. 1 SCBF	210
Tabla 54	: Factores de pandeo global modelo preliminar N. 2 SCBF	210
Tabla 55	Factores de pandeo global modelo definitivo SCBF	211
Tabla 56	5: Diseño de placas de corte, pernos y tuercas de SCBF	220
Tabla 57	2: Distancias mínimas de los extremos de placas de corte al centro de lo	S
pernos		221
Tabla 58	3: Diseño de placas gusset simples 1 y 2 de SCBF	222
Tabla 59	2: Diseño de placas gusset simples 3 y 4 de SCBF	223
Tabla 60	2: Diseño de placa gusset simples 5 de SCBF.	224
Tabla 61	: Diseño de placas gusset dobles 1 y 2 de SCBF.	225
Tabla 62	2: Diseño de placas gusset dobles 3 y 4 de SCBF.	226
Tabla 63	3: Análisis de precios unitarios de SCBF [28]	237
Tabla 64	: Cantidades de obra y precios de la estructura SCBF	239
Tabla 65	: Modos de vibración de la estructura diseñada con EFB	241
Tabla 60	Factores de pandeo global EBF.	247
Tabla 67	2: Diseño de placas de corte, pernos y tuercas de EBF	251
Tabla 68	3: Diseño de placas gusset 1 y 2 de EBF	252
Tabla 69	2: Diseño de placas gusset 3 y 4 de EBF	253
Tabla 70	2: Diseño de placas gusset 5 y 6 de EBF	254
Tabla 71	: Diseño de atiezadores en excentricidades.	255
Tabla 72	Análisis de precios unitarios para EBF [28]	265
Tabla 73	3: Cantidades y precios de obra de la estructura EBF	268
Tabla 74	l: Comparativa de nivel desempeño de sistemas estructurales y costo	272

ÍNDICE DE FIGURAS

Figura 1: Vanos y entrepisos un pórtico en la zona IIIb del valle de México 4
Figura 2: Curvas de Capacidad en edificios de tres pisos considerando los datos
probabilísticos y determinísticos
Figura 3: Curvas de Capacidad en edificios de siete pisos considerando los datos
probabilísticos y determinísticos
Figura 4: Curvas de Capacidad en edificios de trece pisos considerando los datos
probabilísticos y determinísticos.
Figura 5: Casos del sistema interno contra cargas de viento.
Figura 6: Dimensiones en planta de la estructura y esquema de la distribución del
sistema interno resistente a cargas de viento
Figura 7: Lugares donde se espera que ocurran las fallas inelásticas en sistema a
porticado PEM
Figura 8: Vista frontal de una unión viga columna de un PEM, para la determinación
de la sumatoria de momentos de una columna
Figura 9: Partes de la sección transversal de dos elementos estructurales en acero
tipo "I" y tipo "C".
Figura 10: Ciclo de histéresis esperado en la degradación de resistencia32
Figura 11: Deriva de piso esperada durante el ensayo cíclico a la conexión viga
columna
Figura 12: Fuerzas que intervienen internamente en la junta de un PEM el cual
posee cargas gravitacionales y laterales
Figura 13: Punto de ubicación de tapones soldados en zonas de panel de un PEM. 36
Figura 14: Disposición de las poleas para el rolado de los perfiles
Figura 15: Perfiles que pueden ser rolados
Figura 16: Perfiles armados de columnas
Figura 17: Barra de apoyo, platina de apoyo lateral de tope
Figura 18: Recorte de placas de continuidad de columnas, realizados en esquinas53
Figura 19: Conexión con viga de sección reducida y rótula plástica54
Figura 20: Características geométricas de los agujeros
Figura 21: DCL (Diagrama de cuerpo libre) entre la cara de la columna y la mitad
de la viga de la sección reducida
Figura 22: Diferentes formas en pórticos de PEAC.

Figura 23: Rótulas plásticas para PEAC del en V invertida y X	0
Figura 24: Ubicación de la placa Gusset y línea de restricción.	72
Figura 25: Conectores de los PAE que se encuentran en el rango inelástico	15
Figura 26: Tipos más comunes de Pórticos arriostrados excéntricamente	76
Figura 27: Distribución de los vínculos para perfiles tipo I	31
Figura 28: Localización de la rótula plástica en un PAE	38
Figura 29: Diagrama momento rotación y momento curvatura según el modelo del	
ASCE 41	39
Figura 30: Secciones de acero consideradas en la investigación del CEINCI LAB. 9	90
Figura 31: Curva – fuerza desplazamiento idealizada para análisis no lineal estático).
9) 4
Figura 32: Aceleración desplazamiento modificada en el período de respuesta	
MADRS, para uso con el período de secante.) 7
Figura 33: Aceleración desplazamiento en el período de respuesta (ADRS) Inicial y	7
espectro de capacidad)()
Figura 34: Representación bilineal del espectro de capacidad)1
Figura 35: Localización de los posibles puntos de desempeño usando Aceleración	
desplazamiento modificada en el período de respuesta MADRS10)2
Figura 36: Grados de libertad de un elemento frame.)5
Figura 37: Grados de libertad de un elemento membrane.)6
Figura 38: Corte de losa con placa colaborante.	21
Figura 39: Espectros elásticos e inelásticos de la NEC SE DS para pórticos	
arriostrados en acero (PEAC y PAE).	27
Figura 40: Espectros elásticos e inelásticos de la NEC SE DS para PEM	28
Figura 41: Forma y dimensiones de los ejes de la estructura genérica	31
Figura 42: Características geométricas de la placa deck dadas por el proveedor13	33
Figura 43: Características geométricas y vista frontal de un conector de corte13	35
Figura 44: Materiales principales definidos en ETABS.	37
Figura 45: Definición de propiedades mecánicas de los materiales	37
Figura 46: Definición de las características geométricas de la placa colaborante13	38
Figura 47: Definición de patrones de carga a ser asignados en la estructura13	39
Figura 48: Asignación de cargas producidas por el cortante basal	39
Figura 40: Asignación de cargas P Delta con cortante hasal Sy	10

Figura 50: Casos de carga Notional.	141
Figura 51: Tipos de Releases de un elemento frame.	141
Figura 52: Tipos de Releases de un elemento frame.	142
Figura 53: Asignación elástica de las placas dobles.	142
Figura 54: Zonas Rígidas.	143
Figura 55: Asignación de Releases de un OMF.	144
Figura 56: Cargas Notional incluidas en una combinación de carga.	144
Figura 57: Consideraciones de longitudes para vigas de sección reducida RBS.	145
Figura 58: Vista en planta de modelo preliminar PEM.	146
Figura 59: Vista en planta definitiva en el nivel N3+20 de SMF.	147
Figura 60: Vista en elevación de los ejes A y B de SMF.	147
Figura 61: Vista en elevación de los ejes C y D de SMF.	148
Figura 62: Vista en elevación del eje 1 de SMF.	148
Figura 63: Vista en elevación del eje 2 de SMF.	149
Figura 64: Vista en elevación del eje 3 de SMF.	149
Figura 65: Vista Renderizada Izq. y Vista 3D Derecha SMF.	150
Figura 66: Vista en elevación eje 5 del modelo preliminar N. 1 PEAC	152
Figura 67: Vista en elevación eje A y 3D del modelo preliminar N. 1 PEAC	152
Figura 68: Vista en elevación eje 1 del modelo preliminar N. 2 PEAC	153
Figura 69: Vista en elevación eje 3 y 3D del modelo preliminar N. 2 PEAC	153
Figura 70: Vista en planta y secciones definitiva en el nivel N3+20 de SCBF	154
Figura 71: Vista en elevación de los ejes A y H del modelo definitivo SCBF	155
Figura 72: Vista en elevación del eje 1 del modelo definitivo SCBF	155
Figura 73: Vista en elevación del eje 1 del modelo definitivo SCBF	156
Figura 74: Vista en elevación de los ejes A y 2 del modelo definitivo SCBF	156
Figura 75: Vista Renderizada Izq. y Vista 3D Derecha SCBF.	157
Figura 76: Vista en elevación de los ejes A y H del modelo EBF.	158
Figura 77: Vista en elevación del eje 1 del modelo EBF	159
Figura 78: Vista en elevación del eje 1 del modelo EBF	159
Figura 79: Vista en elevación del eje D y 3 del modelo EBF	160
Figura 80: Vista en elevación del eje D y 3 del modelo EBF	160
Figura 81: Período de vibración de la estructura SMF.	161
Figura 82: Cortante dinámico en X de la estructura SMF.	163

Figura 83: Cortante estático en X de la estructura SMF	163
Figura 84: Calibración del valor de la gravedad del espectro en dirección X de l	a
estructura SMF.	164
Figura 85: Cortante dinámico en Y de la estructura SMF.	164
Figura 86: Cortante estático en Y de la estructura SMF	165
Figura 87: Calibración del valor de la gravedad del espectro en dirección X de l	a
estructura SMF.	165
Figura 88: Deriva estática Sx de SMF.	166
Figura 89: Deriva estática Sy de SMF.	167
Figura 90: Deriva espectral en X de SMF.	167
Figura 91: Deriva espectral en Y de SMF.	168
Figura 92: Diseño de SMF ejes A y B.	169
Figura 93: Diseño de SMF ejes C y D.	170
Figura 94: Diseño de SMF eje 1	170
Figura 95: Diseño de SMF eje 2	171
Figura 96: Diseño de SMF eje 3	171
Figura 97: Diseño de SMF eje 4.	172
Figura 98: Diseño de SMF eje 5.	172
Figura 99: Diseño de Losa Deck.	173
Figura 100: Propiedades geométricas de los pernos y tuercas A325	176
Figura 101: Conexión esquinera PEM.	177
Figura 102: Conexión externa central PEM.	177
Figura 103: Conexión central PEM.	178
Figura 104: Curva esfuerzo deformación del acero 572 grado 50.	179
Figura 105: Curva esfuerzo deformación del acero 572 grado 50.	179
Figura 106: Rótulas plásticas en un PEM.	180
Figura 107: Análisis estático no lineal en dirección X previamente cargado con	
cargas gravitacionales.	181
Figura 108: Control de aplicación de cargas por desplazamiento y dirección de	
aplicación de cargas.	181
Figura 109: Curva Cortante Basal vs. Desplazamiento (U1) X para PEM	182
Figura 110: Curva de capacidad de linealización equivalente (U1) X para SMF.	183
Figure 111. Paso 14 del análisis estático no lineal X (III) de SMF	184

Figura 112: Paso 33 del análisis estático no lineal X (U1) de SMF184
Figura 113: Curva Cortante Basal vs. Desplazamiento (U2) Y para PEM185
Figura 114: Curva de capacidad de linealización equivalente (U2) Y para SMF186
Figura 115: Paso 14 del análisis estático no lineal Y (U2) de SMF
Figura 116: Paso 30 del análisis estático no lineal Y (U2) de SMF
Figura 117: Período de vibración de la estructura no definitiva N.1 de SCBF190
Figura 118: Período de vibración de la estructura no definitiva N.2 de SCBF191
Figura 119: Período de vibración de la estructura definitiva de SCBF
Figura 120: Cortante dinámico en X de la estructura no definitiva N.1 en SCBF195
Figura 121: Cortante estático en X de la estructura no definitiva N.1 en SCBF195
Figura 122: Calibración del valor de la gravedad del espectro en dirección X de la
estructura no definitiva N.1 SCBF
Figura 123: Cortante dinámico en Y de la estructura no definitiva N.1 en SCBF196
Figura 124: Cortante estático en Y de la estructura no definitiva N.1 en SCBF197
Figura 125: Calibración del valor de la gravedad del espectro en dirección Y de la
estructura no definitiva N.1 SCBF
Figura 126: Cortante dinámico en X de la estructura no definitiva N.2 en SCBF198
Figura 127: Cortante estático en X de la estructura no definitiva N.2 en SCBF198
Figura 128: Calibración del valor de la gravedad del espectro en dirección X de la
estructura no definitiva N.2 SCBF
Figura 129: Cortante dinámico en Y de la estructura no definitiva N.2 en SCBF199
Figura 130: Cortante estático en Y de la estructura no definitiva N.2 en SCBF200
Figura 131: Calibración del valor de la gravedad del espectro en dirección Y de la
estructura no definitiva N.2 SCBF
Figura 132: Cortante dinámico en X de la estructura definitiva SCBF201
Figura 133: Cortante estático en X de la estructura definitiva SCBF201
Figura 134: Calibración del valor de la gravedad del espectro en dirección X de la
estructura definitiva SCBF
Figura 135: Cortante dinámico en Y de la estructura definitiva SCBF202
Figura 136: Cortante estático en Y de la estructura definitiva SCBF203
Figura 137: Calibración del valor de la gravedad del espectro en dirección Y de la
estructura definitiva SCBF
Figura 138: Deriva estática Sx de modelo preliminar N.1 SCBF

Figura 139: Deriva estática Sy de modelo preliminar N.1 SCBF	204
Figura 140: Deriva estática Sx de modelo preliminar N.2 SCBF.	205
Figura 141: Deriva estática Sy de modelo preliminar N.2 SCBF.	205
Figura 142: Deriva estática Sx de modelo definitivo SCBF.	206
Figura 143: Deriva estática Sy de modelo definitivo SCBF	206
Figura 144: Deriva espectral X de modelo preliminar N.1 SCBF	207
Figura 145: Deriva espectral Y de modelo preliminar N.1 SCBF.	207
Figura 146: Deriva espectral X de modelo preliminar N.2 SCBF.	208
Figura 147: Deriva espectral Y de modelo preliminar N.2 SCBF	208
Figura 148: Deriva espectral X de modelo definitivo SCBF.	209
Figura 149: Deriva espectral Y de modelo definitivo SCBF.	209
Figura 150: Diseño de modelo preliminar N.1 SCBF ejes A y H.	212
Figura 151: Diseño de modelo preliminar N.1 SCBF eje 1.	212
Figura 152: Diseño de modelo preliminar N.1 SCBF eje 5.	213
Figura 153: Diseño de modelo preliminar N.1 SCBF ejes 3 y D.	213
Figura 154: Diseño de modelo preliminar N.2 SCBF ejes A y H.	214
Figura 155: Diseño de modelo preliminar N.2 SCBF eje 1.	214
Figura 156: Diseño de modelo preliminar N.2 SCBF eje 5.	215
Figura 157: Diseño de modelo preliminar N.2 SCBF ejes 2 y D.	215
Figura 158: Diseño de modelo definitivo SCBF ejes A y H.	216
Figura 159: Diseño de modelo definitivo SCBF eje 1	216
Figura 160: Diseño de modelo definitivo SCBF eje 5	217
Figura 161: Diseño de modelo definitivo SCBF eje B y C	217
Figura 162: Diseño de modelo definitivo SCBF eje 2	218
Figura 163: Diseño de modelo definitivo SCBF eje D y 3.	218
Figura 164: Distribución de las rótulas plásticas asignadas para SCFB o PEAC	2219
Figura 165: Conexión esquinera de un PEAC.	227
Figura 166: Conexión externa central de un PEAC.	227
Figura 167: Conexión interna central de un PEAC.	228
Figura 168: Conexión de una placa doble PEAC.	228
Figura 169: Curva Cortante Basal vs Desplazamiento Izq. y Curva de capacida	ad de
linealización equivalente (U1) X, para modelo preliminar N.1 de SCBF	229

Figura 170: Curva Cortante Basal vs Desplazamiento Izq. y Curva de capacidad de
linealización equivalente (U1) X, para modelo preliminar N.2 de SCBF230
Figura 171: Curva Cortante Basal vs. Desplazamiento (U1) X para PEAC231
Figura 172: Curva de capacidad de linealización equivalente (U1) X para SCBF. 232
Figura 173: Paso, 42 del análisis estático no lineal X (U1) de SCBF según criterios
de aceptación de desempeño en la vista en elevación más crítica
Figura 174: Paso, 42 del análisis estático no lineal X (U1) de SCBF según puntos de
desempeño en la vista en elevación más crítica
Figura 175: Curva Cortante Basal vs. Desplazamiento (U2) Y para PEAC234
Figura 176: Curva de capacidad de linealización equivalente (U2) Y para SCBF. 235
Figura 177: Paso, 33 del análisis estático no lineal Y (U2) de SCBF según criterios
de aceptación de desempeño en la vista en elevación más crítica
Figura 178: Paso 30 del análisis estático no lineal Y (U2) de SMF236
Figura 179: Período de vibración de la estructura EFB
Figura 180: Cortante dinámico en X de la estructura EFB
Figura 181: Cortante estático en X de la estructura EFB
Figura 182: Calibración del valor de la gravedad del espectro en dirección X de la
estructura EFB
Figura 183: Cortante dinámico en Y de la estructura EFB
Figura 184: Cortante estático en Y de la estructura EFB
Figura 185: Calibración del valor de la gravedad del espectro en dirección Y de la
estructura EBF
Figura 186: Deriva estática Sx de EBF
Figura 187: Deriva estática Sy de EBF
Figura 188: Deriva espectral en X de EBF
Figura 189: Deriva espectral en Y de EFB
Figura 190: Diseño de EBF ejes A y H
Figura 191: Diseño de EBF eje 1
Figura 192: Diseño de EBF eje 5.
Figura 193: Diseño de EBF ejes B y C
Figura 194: Diseño de EBF eje 3
Figura 195: Diseño de EBF ejes D y 2
Figura 196: Conexión esquinera EBF

Figura 197: Conexión externa central EBF
Figura 198: Conexión interna central EBF
Figura 199: Conexión a una placa excéntrica EBF
Figura 200: Rótulas plásticas asignadas en una estructura EFB
Figura 201: Curva Cortante Basal vs. Desplazamiento (U1) X para PAE259
Figura 202: Curva de capacidad de linealización equivalente (U1) X para EBF260
Figura 203: Paso, 58 del análisis estático no lineal X (U1) de EBF según criterios de
aceptación de desempeño en la vista en elevación más crítica
Figura 204: Paso, 58 del análisis estático no lineal X (U1) de EBF según puntos de
desempeño en la vista en elevación más crítica
Figura 205: Curva Cortante Basal vs. Desplazamiento (U2) Y para PAE262
Figura 206: Curva de capacidad de linealización equivalente (U2) Y para EBF263
Figura 207: Paso, 83 del análisis estático no lineal Y (U2) de EBF según criterios de
aceptación de desempeño en la vista en elevación más crítica
Figura 208: Paso, 83 del análisis estático no lineal Y (U2) de EBF según puntos de
desempeño en la vista en elevación más crítica
Figura 209: Espectro de capacidad de los tres sistemas estructurales analizados en la
presente investigación
Figura 210: Espectro de capacidad de los tres sistemas estructurales analizados en la
presente investigación
Figura 211: Espectro de capacidad de los sistemas estructurales: SCBF y EFB271
Figura 212: Espectro de capacidad de los sistemas estructurales: SCBF y EFB271

RESUMEN EJECUTIVO

TEMA: "ANÁLISIS DEL DESEMPEÑO ESTRUCTURAL SÍSMICO DE UN

EDIFICIO DE MULTIFAMILIARES EN ACERO UTILIZANDO TRES SISTEMAS

ESTRUCTURALES: PÓRTICOS ESPECIALES A MOMENTO. PÓRTICOS

CONCÉNTRICOS PÓRTICOS **ARRIOSTRADOS** Y **ARRIOSTRADOS**

EXCÉNTRICOS"

AUTOR: Andrés Rafael Abril Camino

TUTOR: Ing. Mg. Christian Medina.

El presente estudio consta en primera instancia de la visita a 12 edificaciones

multifamiliares en las ciudades de Quito, Ambato y Riobamba donde se determinó

propiedades geométricas de las estructuras, con estos datos se pudo determinar

características genéricas para modelar una edificación con los tres sistemas

estructurales en acero que indica la NEC SE AC 15: Pórticos Especiales a Momento,

Pórticos Especiales Arriostrados Concéntricamente y Pórticos Arriostrados

Excéntricamente, teniendo como resultado tres edificaciones diferentes, los cuales

tienen las mismas propiedades geométricas, cargas sísmicas y gravitacionales.

Posteriormente se modeló empleando un software de elementos finitos, para la

validación de su diseño se verificó con ocho consideraciones de diseño los cuales los

cuales constan en la NEC SE DS 15, ASCE/SEI 7/16, AISC 341-16 dentro de estas

verificaciones para diseño de los elementos en relación de demanda capacidad el AISC

360-16, se incluyó el diseño de todos los elementos metálicos presentes en las

estructuras y conexiones precalificadas para PEM con el AISC 358-16.

Finalmente se analizó el desempeño sísmico de cada sistema estructural para un

espectro con un período de retorno raro (475 años) con un análisis no lineal estático

NSP, para lo cual se empleó la metodología del FEMA 440, visualizando el nivel de

desempeño de cada estructura posterior al sismo. Se incluyó también un análisis de

precios unitarios de las estructuras, con la finalidad de determinar el costo de cada

estructura y realizar una comparación entre el costo, beneficio frente a su nivel y

puntos de desempeño.

XXII

ABSTRACT SUMMARY

The current research has for first instance, the technical visit to 12 multi-familar buildings in the next citires: Quito, Ambato and Riobamba where, It was determined geometric features of the building's structures, with this data was assigned generic features to modelate a building with three Steel structural systems that NEC-SE-AC 15 provides: Special Moment Frame, Special Concentric Braces Frames and Excentric Brace Frames, having as a result three different edifications wich have the same geometric features, sesmic and gravitational loads.

Then using a finite element software the buildings were modeled, for design validation 8 considerations wich are in: NEC SE DS 15, ASCE/SEI 7/16, AISC 341-16 were verified, one of this considerations is the relation between capacity and demand wich was verified by the AISC 360-16; furthermore the design of all Steel elements was included considering pre qualificated conections for SMF explicit in AISC 358-16.

Finally the structure performance of each stuctural system was analized using an spectrum with a rare return period (475 years) with a no linear pushover NSP, all of this was done using the FEMA 440 methodology, visualizing the level performance of each structure after a earthquake. An unitary prices analisys was included too, with the purpose of determine the final cost of each structure and making up a comparisson between the cost benefit and, the level and ponits of performance.

CAPÍTULO I

MARCO TEÓRICO

1.1. Antecedentes Investigativos

Tipología de diseño ASD y LRDF

El Ecuador al encontrarse en una zona sísmica debido a múltiples fallas geográficas y geológicas que existen (investigar), se deben realizar un diseño sismo resistente, que garantice el desempeño correcto de una estructura. La mayoría de edificaciones en el país han sido construidas y diseñadas en hormigón armado,(investigar dato) sin embargo en la búsqueda de nuevas alternativas de construcción seguras y al menor costo posible, se consideran alternativas eficientes, tal es el caso del acero laminado al caliente y sus tres principales subsistemas estructurales pórticos especiales a momento, pórticos arriostrados concéntricos y pórticos arriostrados excéntricos, analizando su comportamiento, desempeño y costos en una edificación tipo.

Al momento de diseñar estructuras en acero se tienen dos posibilidades ASD Allowable Stress Design (Diseño por esfuerzos admisibles) y también LRFD Load and Resistence Factor Design, (Cargas y Factores de Resistencia para el Diseño), el AISC 360-16, establece a ambas opciones como válidas para el diseño de un proyecto en acero estructural [1] Definir a una opción como la mejor a la hora del diseño de estructuras metálicas sin un previo análisis es irresponsable por parte del diseñador, es necesario justificar la decisión del diseñador.

El ASD, considera un análisis elástico, es decir considera únicamente las cargas de servicio a las que la estructura estará sometida y según los esfuerzos producidos por las cargas son seleccionados los perfiles para el diseño, es decir considera un análisis netamente elástico, teniendo en cuenta la resistencia de las secciones:

$$RESISTENCIA = \frac{FyAg}{\Omega}$$
 [2]

Donde Fy es el límite de fluencia según el tipo de acero a usarse, Ag el área gruesa de la sección y Ω es factor de reducción que siempre será igual o mayor a 1. [2]

En la siguiente tabla se muestra las combinaciones que sugiere el AISC 360-16 para diseño por ASD donde D, es la carga muerta; L, es la carga viva; L(a), la carga viva accidental; W carga de viento y E, en carga de Sismo.

Tabla 1: Combinaciones de carga para una estructura considerando diseño por ASD.

D + 0.75L
D+ L(a)
D + 0.75L(a) + 0.5 W
D + L(a) + E + 0.4E

Fuente: M. Jiménez, Diferencia entre los códigos ASD y LRFD

En lo referente al diseño LRFD permite hacer un análisis elasto-plástico, considerando la ductilidad total del material. Y a partir de su fórmula:

$$RESISTENCIA = \phi FyAg$$

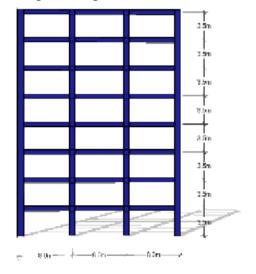
Se indica que su factor de reducción es menor a 1, este método considera las cargas últimas a las que podría estar sometido la estructura aunque sea un momento dentro de la vida útil de la misma estructura, sin que llegue al rango plástico del material ni mucho menos se provoque ruptura en el mismo, lo que permite desarrollar mayor ductilidad, siendo entre un 5% y 20% más livianas las estructuras que las diseñadas por el método ASD [2]. Proporcionando inclusive una optimización económica en el diseño de las mismas.

En la siguiente tabla se muestra las combinaciones que sugiere el NEC-SE-CG 2016 para diseño de estructuras donde D, es la carga muerta; L, es la carga viva; Lr, la sobre carga viva de cubierta; S, en carga de granizo o nieve [3], W la carga de viento y E, la carga espectral.

Tabla 2: Combinaciones de carga para una consideradas por la NEC-SE-CG 2016.

1,4 D
1,2D + 1,6L + 0,5max(Lr; S; R)
1,2D + 0,5max(Lr; S; R) + max(L; 0,5W)
1,2D + W +L + 0,5max(Lr; S; R)
1,2D + E + 0,2 S
0,9 D + W
0,9 D + E

Fuente: NEC-SE-CG 2016


En los últimos años la tendencia se ha inclinado hacia el diseño por el método LRFD, impartiendo en la mayoría de universidades del mundo, el uso predominante de este método ya que trabaja buscando la mayor ductilidad de una sección, lo que en contraparte al ASD, el cual está basado en un estudio probabilístico en función a los diseños realizadas anteriormente y colapsos de las estructuras, por ello es que ambos métodos tienen sus aspectos fuertes y débiles siendo ambos descritos y acogidos en el AISC 360-16.

Para la presente investigación al ser experimental y buscar un análisis no lineal, se tomará como consideraciones de verificación y diseño en un software especializado en elementos finitos empleando el método LRFD.

En el análisis de edificios multifamiliares en acero, cuyo análisis toma relevancia en la investigación: "Diseño Sísmico de Estructuras de Acero Basado en Confiabilidad Estructural y Conceptos de Energía", realizada por Edén Bojórquez Mora, en México, considera el diseño sísmico de estructuras de acero basado en confiabilidad estructural y conceptos de energía [4]se tiene como objetivo la comprobación del diseño sismo resistente en edificaciones de acero las deformaciones plásticas en sismos de un tiempo considerablemente largo controlando con el diseño las demandas máximas de ductilidad, derivas de piso y energía histérica, y la verificación de su aplicabilidad en estructurales de acero rectangulares.

La mayor parte de diseño en estructuras metálicas y estudios que se han realizado en el país son de naves industriales, en la mencionada investigación se analiza una edificación de características multifamiliares.

Figura 1: Vanos y entrepisos un pórtico en la zona IIIb del valle de México.

Fuente: E. Bojórquez, Diseño sísmico de estructuras en acero basado en la confiabilidad estructural y conceptos de energía

Teniendo una altura de entrepiso de 3.5 m de altura y una base una longitud de vanos de izquierda a derecha de 8,0 y los otros vanos 8.5 [4] El diseñador del proyecto emplea en su totalidad para vigas y columnas perfiles tipo W.

Para el análisis se emplea un diseño espectral tomando como base la normativa RCFD-2004 y el TAFU, las condiciones espectrales en el mencionado punto de diseño lo cual arroja los siguientes resultados:

Tabla 3: Secciones propuestas considerando un período de vibración T = 1,04 s.

Nivel	Vigas	Columnas	Columnas	
		Internas	Externas	
1	W24x94	W36x194	W36x194	
2	W24x94	W36x194	W36x194	
3	W24x94	W36x170	W36x170	
4	W24x94	W36x170	W36x170	
5	W24x84	W36x150	W36x150	
6	W21x73	W36x150	W36x150	
7	W21x57	W36x135	W36x135	
8	W21x50	W36x135	W36x135	

Fuente: E. Bojórquez, Diseño sísmico de estructuras en acero basado en la confiabilidad estructural y conceptos de energía

Tabla 4: Secciones propuestas considerando un período de vibración T = 1,20 s.

Nivel	Vigas	Columnas	Columnas
		Internas	Externas
1	W21x83	W36x210	W36x194
2	W21x93	W36x210	W36x194
3	W21x93	W36x194	W36x182
4	W21x83	W36x194	W36x182
5	W18x71	W36x170	W36x160
6	W18x65	W36x170	W36x160
7	W18x55	W36x160	W36x135
8	W18x46	W36x160	W36x135

Fuente: E. Bojórquez, Diseño sísmico de estructuras en acero basado en la confiabilidad estructural y conceptos de energía

Las conclusiones del estudio establecen que el diseño estructural considerando la energía histérica empleando la normativa TAFU, a la hora de considerar el desempeño estructural es 38% menor en si deriva de piso en relación a la normativa RCDF – 2004. Como segunda conclusión se plantea que al considerar un desempeño estructural tomando en cuenta la energía histérica, en las cuales los elementos estructurales se hallarán en el rango plástico al considerar este factor influye en el mejor desempeño de las estructuras que son sometidos a sismos de un tiempo considerablemente largo [4].

Por su parte en la tesis previo a la obtención del título de maestría: "Comparación del de dos estructuras industriales de acero diseñadas según la práctica nacional y disposiciones AISC", realizado por Cristián Antonio Urzúa, en la ciudad de Santiago de Chile, en el que se plantea como objetivos comparar el desempeño sísmico de dos estructuras en acero, las cuales pertenecen a campos donde se realiza minería, empleando normativas tanto chilenas como estadounidenses y comparándolas entre sí, con énfasis en la súper resistencia que ocasionan los arriostramientos, y en elementos no arriostrados; pernos de anclaje dúctiles en fundación y cómo actúan los disipadores sísmicos que son colocados en el anclaje de forma extra.

El análisis no lineal dinámico LRFD, comparativa entre dos estructuras porticadas industriales, las que han sido modeladas con el software SAP 2000 y el tipo de acero a emplearse será el ASTM A36 en las placas y en las conexiones ASTM A 490, lo que asemeja mucho a la presente investigación. El estudio está proyectado a su aplicación

en Santiago de Chile aplicando normativas del mencionado país e internacionales tales como: ASCE7-05, NCh2369, AISC341, FEMAP695, AISC360-05 [5].

Dentro de las principales conclusiones y resultados de este estudio podemos destacar las siguientes: Empleando netamente la normativa norteamericana uno de los dos edificios analizados, el de la tolva específicamente, tiene un 30% de peso más que al aplicar solamente la normativa chilena, ya que la demanda de marcos tipo chevron en las vigas posee secciones mucho más grandes que con la normativa chilena, lo que deriva en secciones sobre dimensionadas debido a que según el estudio no se considera en la normativa norteamericana la capacidad de estos elementos estructurales, esto debido a que en los registros sismológicos de Chile no se ha visualizado carga residual y fluencia, ambos al mismo tiempo, en arriostramientos [5], pero en la normativa norteamericana se espera la concurrencia de este fenómeno.

Considerando el desempeño estructural, el factor de reducción de respuesta R, similar al que tenemos en la NEC-DS-SE, considerando el espectro sísmico. Resulta ser similar al considerar un modelo no lineal estático y no lineal dinámico con valores de 3.0 y 2.8 respectivamente, en el caso de la primera estructura analizada correspondiente al molino, al considerar la normativa chilena; mientras que en la misma estructura 3,7 y 3,1, con la normativa estadounidense. Para la segunda estructura el factor de reducción de respuesta varía considerablemente entre el modelo estático y dinámico arrojando los siguientes resultados: 4,3 y 2,8 empleando los parámetros que establece el AISC, y para la normativa chilena 3,7 y 2,1 considerando los modelos estáticos y no lineales respectivamente. Se puede establecer como conclusión general a estos valores del factor de reducción de respuesta que son mucho menores a los que exige la norma, en ecuador estos valores parten de 8; y se van penalizando según la irregularidad en planta y elevación de las estructuras, en esta investigación se sugiere estudiar con más detenimiento los valores que nos va la normativa.

Entrando a un campo micro, la investigación que lleva por nombre "Análisis y Diseño Sísmico de Edificios Altos de Construcción Compuesta y Recomendaciones de Estudios Experimentales de Conexiones, Arriostramientos y Cruciformes Sujetos a Cargas Dinámicas, para la Ciudad de Guayaquil" realizada en la ciudad que indica el título, por el PhD.. Pedro Rojas y el Ing. Mario Aguaguiña, se plantean como objetivos:

Analizar dos tipologías estructurales de forma analítica y experimental los cuales son más implementados en edificaciones de según la investigación, en una altura mediana y de mayor altitud en países extranjeros, tal es el caso de los pórticos resistentes a momento compuestos con columnas de hormigón simple (Concrete-Filled Steel Tube Column) y también los Pórticos de Pandeo Restringido Arriostrados, la investigación plantea a estos esquemas estructurales, viables para ser implementados en Ecuador ya que la NEC, no establece parámetros para su diseño, y también busca establecer alternativas nuevas de diseño aplicables considerando el terreno en el país.

A pesar de que en Ecuador predominan las estructuras en hormigón armado en los últimos 20 años ha incrementado las construcciones en estructura metálica siendo además de los pórticos ordinarios, los pórticos especiales a momento los más ocupados por los diseñadores y constructores, sin embargo, tomando en cuenta los sismos Northridge (1994) y Kobe (1995), donde gran cantidad de edificaciones que ocupaban este sistema sufrieron fractura en las conexiones por soldaduras de sus elementos debido a no ser debidamente precalificadas. Investigaciones sugieren que las edificaciones que han sido construidas previo al 2008 en el Ecuador presentaban deficiencias en diversos aspectos tales como: diseño, detalles constructivos (falta de implementación de conexiones precalificadas, soldadura sin la correcta inspección), mano de obra deficiente. Sumado a estos factores, ciertas edificaciones se construyeron sin consideraciones establecidas en el Código Ecuatoriano de la Construcción (CEC). En normativas previas a esta no se incluían cargas sísmicas para estructuras de acero. Debido a esto se tiene una incertidumbre frente al comportamiento sísmico de del desempeño de las estructuras, pero se prevé que las mismas carezcan de un comportamiento dúctil [6].

Las conclusiones y resultados de esta investigación, se indican columnas de hormigón confinado en secciones tubulares y en las vigas secciones tipo I, con las consideraciones de las normativas ASCE/SEI 7 – 10 y AISC 341-10, para realizar un análisis por desempeño sobre las cuales se realiza el diseño en un edificio de 24 pisos de 432 metros cuadrados en planta [6], diseñado en pórticos resistentes a momento compuestos y pórticos arriostrados de pandeo restringido los cuales cumplen las demandas de rigidez y resistencia requeridas en las normativas empleadas, lo que

según los autores establece nuevas opciones de diseño en acero, que pueden emplearse en edificaciones de mediana y gran altura.

La normativa vigente en el Ecuador, la cual es mandataria y obligatoria en el diseño y construcción de estructuras, La Norma Ecuatoriana de la Construcción (NEC), sí considera lineamientos de diseño sísmico y demandas constructivas para estructuras de acero. Estas regulaciones se encuentran en el capítulo NEC-SE-AC – Estructuras de Acero [7]. Sin embargo, la NEC incluye solo tres propuestas para sistemas en acero: (1) Pórticos Especiales Resistentes a Momento (PEM); (2) Pórticos Especiales Arriostrados Concéntricamente (PEAC); y (3) Pórticos Especiales Arriostrados Excéntricamente (PEA). Los sistemas estructurales (2) y (3) no han sido diseñados ni construidos en a gran escala en Ecuador. Debido a esto en la presente investigación se busca implementar el desempeño de estos tres pórticos, así como una comparación del desempeño y costo de los tres sistemas estructurales.

En la investigación de tesis doctoral: Análisis Estructural Sísmico de Edificios de Acero: Un Enfoque Probabilista, del Ph.D. Sergio Díaz Alvarado realizado en la ciudad de Barcelona, España, se plantea como objetivos primordiales: examinar el desempeño y daños ocasionados por movimientos sísmicos en pórticos estructurales de acero de baja, media y gran elevación, considerando tres sistemas estructurales a) Pórticos especiales a momento (SMF o PEM). b) Pórticos especiales arriostrados concéntricamente (SCBF o PEAM). c) Pórticos con riostras de pandeo restringido (BRBF). Los cuáles serán analizados en edificaciones considerando las características sísmicas de México, para lo cual el estudio plantea modelar en un software especializado de elementos finitos tres estructuras, con tres tipologías estructurales cada una, la primera de tres pisos, una más alta de 7 pisos y finalmente una estructura de 13 pisos, los cuales van a ser analizados con un análisis estático y un análisis dinámico, evaluar las condiciones de capacidad de los elementos estructurales, la curva de capacidad de los mismos, y un análisis de los índices de daño considerando el modelo de Park, finalmente la investigación busca el desarrollo de un software que estime de manera rápida las metodologías presentes en el riesgo sísmico probabilista que se encuentra en la investigación.

Sobre el análisis de edificaciones en acero usando los tres sistemas estructurales que la presente investigación, se establece las siguientes consideraciones:

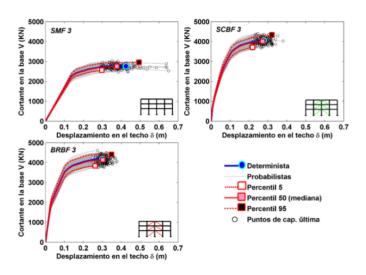
Tabla 5: Edificios de acero evaluados y nomenclatura usada.

N	Sistema estructural	Número de pisos	Denominación
1	Pórticos especiales a momento		SMF3
2	Pórticos con riostras concéntricas especiales	3 pisos	SCBF3
3	Pórticos con riostras de pandeo restringido		BRBF3
4	Pórticos especiales a momento		SMF7
5	Pórticos con riostras concéntricas especiales	7 pisos	SCBF7
6	Pórticos con riostras de pandeo restringido		BRBF7
7	Pórticos especiales a momento		SMF13
8	Pórticos con riostras concéntricas especiales	13 pisos	SCBF13
9	Pórticos con riostras de pandeo restringido		BRBF13

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

Una vez que ya se modeló en el programa Ruaumoko 2D, la investigación mediante el software arroja los siguientes datos considerando un análisis modal, para determinar los períodos de vibración.

Tabla 6: Período de vibración fundamental de cada tipología estructural.


N	Arquetipo	Periodo fundamental (T ₁)
1	SMF3	0.63 s.
2	SCBF3	0.26 s.
3	BRBF3	0.32 s.
4	SMF7	1.22 s.
5	SCBF7	0.55 s.
6	BRBF7	0.66 s.
7	SMF13	1.92 s.
8	SCBF13	1.05 s.
9	BRBF13	1.14 s.

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

Para el análisis del desempeño de las estructuras en la investigación se realizó un análisis no lineal estático conocido como espectro de capacidad o análisis "push over" aplicando la normativa (ATC-40 1996). Considerando un análisis probabilístico se obtienen 200 curvas de nivel de cada edificación, mediante el software Ruaumoko 2D del cual se saca la mediana y se referencia los datos al 5% y 95%. También el análisis

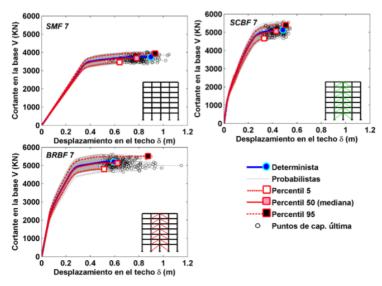

determinístico y su relación con el desplazamiento en el techo o el nivel más altos de cada estructura.

Figura 2: Curvas de Capacidad en edificios de tres pisos considerando los datos probabilísticos y determinísticos.

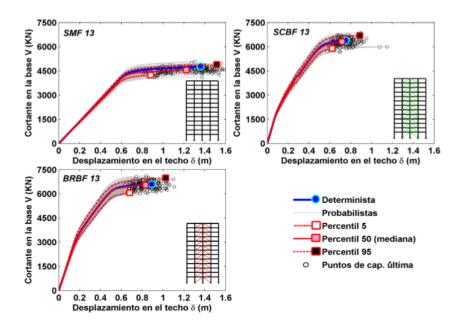

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

Figura 3: Curvas de Capacidad en edificios de siete pisos considerando los datos probabilísticos y determinísticos.

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

Figura 4: Curvas de Capacidad en edificios de trece pisos considerando los datos probabilísticos y determinísticos.

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

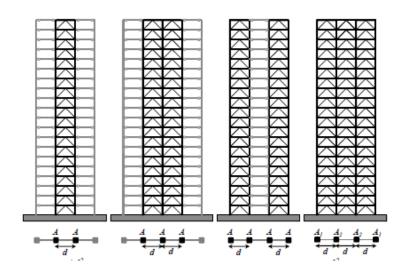
En base a la normativa ATC-40 (1996), se determinan los valores para el espectro de desempeño, tomando en consideración datos de las características de suelo de México donde proviene la investigación, Sa=V/(W * α1), donde V, es el valor del cortante basal, W, el peso de la estructura y α1 es el coeficiente de participación de la masa modal del primer modo de vibración. Sa*, es un factor dado en función de la gravedad. Para obtener los datos adicionales que establece la norma la investigación también incluye: Sd=δ/PF1, PF1 es el factor de participación modal del primer modo de vibración o periodo fundamental, T1, de la estructura; W es el peso de la estructura y δ es el máximo desplazamiento en el nivel más alto de cada estructura.

Tabla 7: Valores T1, W, PF1 y α1 de las edificaciones analizadas.

N	Arquetipo	Periodo fundamental (T1)	Peso total W (kN)	PF ₁	αι
1	SMF3	0.63 s.	2,372.86	1.286	0.891
2	SCBF3	0.26 s.	2,384.36	1.246	0.926
3	BRBF3	0.32 s.	2,379.06	1.245	0.924
4	SMF7	1.22 s.	5,941.76	1.350	0.805
5	SCBF7	0.55 s.	5,978.86	1.356	0.827
6	BRBF7	0.66 s.	5,959.86	1.329	0.837
7	SMF13	1.92 s.	11,396.26	1.397	0.754
8	SCBF13	1.05 s	11,467.06	1.429	0.762
9	BRBF13	1.14 s.	11,440.36	1.405	0.775

Fuente: S. Díaz, Análisis Estructural Sísmico en Edificios de Acero: Un Enfoque Probabilista

Las conclusiones más relevantes en la investigación del Ph.D S. Díaz son: a) los sistemas que cuentan con riostras de pandeo restringido tienen un mejor comportamiento que los otros sistemas estructurales analizados en sitios con alta peligrosidad sísmica [8]. b) El sistema estructural no es el único factor que influye a la hora de realizar una comparación de los desplazamientos producidos por los sismos, sino también se debe tomar en cuenta la intensidad de la acción sísmica, ya que cada modelo estructural presenta ventajas y desventajas. c) Por otra parte, la conclusión más trascendente para tomar en cuenta como punto referencial en la presente investigación es: según la evaluación sísmica considerando normativas mexicanas los pórticos BRBF, son los que limitan más los desplazamientos y soportan mayores intensidades de aceleración sísmica (PGA), los siguientes en controlar desplazamientos son los PEAC, sin embargo sus elementos arriostrados pueden presentar daños considerables, mientras que los PEM son los que más grandes desplazamientos presentan, de igual forma considerando el suelo y el registro sísmico mexicano los edificios más vulnerables son los de mayor altura por el registro del período de vibración de los sismos al tratarse de suelos mayoritariamente blandos.


Considerando que una estructura al diseñar dinámicamente en el Ecuador se recurre un espectro sísmico, pero no se sabe con certeza las características al del sismo, como actuará en la estructura, ni que desplazamientos generará, en los últimos 30 años se ha venido ocupando un diseño que considera los máximos desplazamientos a los que

puede ser sometidos la estructura y también una emulación de las cargas máximas a las que puede ser sometidas previo al colapso de las mismas, considerando la máxima ductilidad que puede tener una estructura, a todo esto se le conoce como diseño por desempeño.

En la investigación de Amador Terán y Guillermo Coeto, donde hacen énfasis primordial al desempeño de una edificación construida en acero estructural, la cual lleva por nombre: "Dimensionamiento Preliminar Basado en la Rigidez e Edificios Altos con Estructuras de Acero Rigidizados con Diagonales Concéntricas", la cual se llevó a cabo en la ciudad de México, la cual plantean tres objetivos en la investigación los cuales son los siguientes: Definir adecuadamente de los principios del diseño por desempeño en estructuras, escoger correctamente los registros sismológicos y la correcta aplicación de segundo orden en el análisis no lineal de la estructura. Además del uso profesional de resultados, considerando que se trata de una metodología de prediseño para un adecuado diseño por desempeño [9].

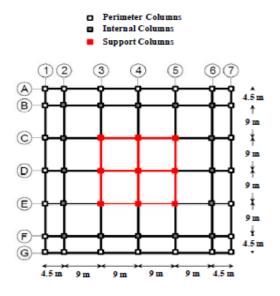

Para el análisis se considera un sistema el cual es resistente tanto a las acciones producidas sísmicas como las acciones producidas por el viento, por lo que en el centro considera un sistema de tres por tres pórticos con diagonales arriostradas concéntricamente, con dos vanos. Y se toman tres sistemas estructurales con diferente tipología, en la modelación de la estructura, para lo cual se aísla y se analiza independientemente cada tipología figura 4. Las medidas en planta se indican en la figura 5 y la altura que ha considerado la edificación es de 114,8 m, de 24 plantas.

Figura 5: Casos del sistema interno contra cargas de viento.

Fuente: A, Terán; G, Coeto; Dimensionamiento Preliminar Basado en la Rigidez e Edificios Altos con Estructuras de Acero Rigidizados con Diagonales Concéntricas.

Figura 6: Dimensiones en planta de la estructura y esquema de la distribución del sistema interno resistente a cargas de viento.

Fuente: A, Terán; G, Coeto; Dimensionamiento Preliminar Basado en la Rigidez e Edificios Altos con Estructuras de Acero Rigidizados con Diagonales Concéntricas

Los resultados que arroja la investigación se basan netamente en períodos de vibración de los sistemas a porticados arriostrados del sistema interno que se opone a las cargas de viento y un análisis del desempeño de la estructura global. Para el análisis divide el período de vibración de cada caso en período de vibración de corte, período de vibración a flexión y un período de vibración global como la resultante de sus componentes, para el análisis bajo desempeño se toma un período fundamental esperado que se contraponga a los efectos del viento, por lo que se realiza plantea un objetivo al cual se debe llegar como período de vibración, el que se estima al que llegará la estructura con el diseño que propone la investigación y el que está una estructura que carece de un sistema que se opone a cargas de viento [9].

Tabla 8: Períodos de Vibración Deseados, Obtenidos y sin arriostramiento concéntrico.

Caso		Objetivo			Estimado			Cociente	
Caso	T_{CV}	T_S	T_B	T_{CV}	T_S	T_B	T_{CV}	T_S	T_B
1	3.5	1.00	3.35	3.60	1.00	3.47	1.03	1.00	1.03
2	3.5	2.00	2.87	3.53	1.95	2.97	1.01	0.98	1.03
3	3.5	2.48	2.48	3.45	2.34	2.56	0.99	0.94	1.04
4	3.5	3.00	1.80	3.23	2.65	1.87	0.92	0.88	1.04

Fuente: A, Terán; G, Coeto; Dimensionamiento Preliminar Basado en la Rigidez e Edificios Altos con Estructuras de Acero Rigidizados con Diagonales Concéntricas.

De la publicación podemos rescatar las siguientes conclusiones principales: la metodología describe pautas sencillas para un diseño por rigidez y desempeño sismo resistente para edificios de gran altura que también tengan cargas considerables de viento, las cuales conllevan a la obtención de secciones en vigas, columnas y elementos arriostrados, puede suponerse esta metodología para sistemas con empotramientos en la base sin problema alguno, al considerar un sistema contra vientos estamos ya partiendo de un diseño adecuado para el desempeño estructural, se deberá hacer una correcta configuración en las columnas internas y externas que no forman parte del sistema arriostrada, la normativa empleada para considerar el desempeño de la estructura interna fue el FEMA 356 [9].

1.1.2. Justificación

A nivel mundial se ha incrementado el uso del acero en la construcción considerablemente en los últimos 30 años pasando de en 1980 de 715 millones de toneladas métricas a 1413 en el 2010 [10]. En sí esto se debe a la facilidad de manipulación de secciones en los perfiles, el crecimiento de toneladas métricas incrementa un 5,5% anualmente [10]. Los metales que tienen mayor demanda son el acero y el hierro, ambos empleados en construcciones de estructurales civiles.

El empleo del acero frente a otros materiales toma fuerza debido a la mayor ductilidad, menor tiempo de construcción y al ser un material sustentable, el cual puede ser reutilizado [11]. Según evaluaciones que se han realizado el impacto ambiental de las estructuras metálicas en relación al concreto es menor [11] por lo que se puede hablar de un material más amigable con el medio ambiente con una vida útil similar a la del hormigón y un costo menor [11]

A partir de la primera década del siglo 19 se empiezan a laminar perfiles de acero [12] como los conocemos actualmente, siendo este el material más versátil que existe en la actualidad, teniendo como ventaja principal que las propiedades de este material no cambian con el tiempo como es el caso del concreto [12]. Actualmente existen emblemáticas estructuras de acero a nivel mundial como es el caso del puente Golden Gate en los estados Unidos, o la Torre Eiffel, en parís y debido a la facilidad que nos da el acero estructural de vencer luces más grandes que el hormigón armado [11]. La construcción en acero se ha vuelto un método práctico rápido y viable que día a día gana adeptos a nivel mundial.

Las normativas vigentes que rigen el diseño a nivel mundial son el AISC 360 y 341 con su actualización más reciente en el año 2016. Y el Euro código 3

La tendencia en Latino América era la construcción de estructuras en hormigón armado y en menor rango en hormigón prees-forzado, una de las ventajas del acero debido a su bajo peso en relación al hormigón es la realización de un mayor número de pisos [13]. Sin embargo, a partir del 2000 ha venido un gran auge de las construcciones en estructura metálica, tal es el caso de países como Chile, Venezuela, Colombia y Perú siendo los primeros en implementar una normativa de estructuras de

acero como es el caso de la NSR-98, en Colombia [14]. Actualmente la mayoría de países latinoamericanos cuentan con normativa en referencia al AISC.

Los mayores proyectos estructurales que se están efectuado en Latinoamérica son en acero estructural tal es el caso de los aeropuertos de México y Panamá. También se aplica en proyectos de menor dimensión.

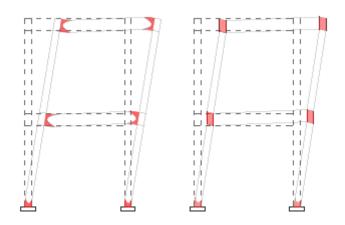
En los últimos años ha habido un cambio en los métodos constructivos empleados en el Ecuador, sí bien antes la predominancia la ocupaba el hormigón armado, actualmente esta tendencia se ha reducido empleando estructuras metálicas. Lo que ha llevado a que la actual Norma Ecuatoriana de la Construcción, en su última emisión cuente con un capítulo exclusivo que establezca las características fundamentales de diseño y máximos y mínimos valores admisibles a los cuales deberá estar sometido el acero estructural, en el país [15].

El comportamiento del acero es muy diferente al del hormigón armado, teniendo este una ductilidad mucho mayor [16], al mencionado anteriormente, otra de las ventajas entre ambos es el peso del mismo, pues el acero es mucho más ligero que el hormigón. Si bien representa un costo estructural del 20% más frente al hormigón armado este se compensa con la rapidez con la que es armado que se estima que es un 25% más rápido [17].

Las actuales superestructuras y rascacielos están diseñados con estructura metálica en la actualidad dejando de lado al hormigón armado [18], esto debido a su mayor ductilidad, menor peso, mayor facilidad en el montaje, todos estos factores se dan debido a que el acero según la ley de Hooke resiste esfuerzos mucho mayores que los del hormigón. Por lo que en el Ecuador se puede empezar a construir rascacielos de estructura metálica, de manera eficiente y segura, a partir del correcto diseño.

Por lo mencionado anteriormente se analizará el desempeño pórticos propuestos en la presente investigación, así como el costo estructural de cada uno de los tres sistemas estructurales determinando su relación costo beneficio lo que permite a los constructores emplear el conocimiento de la investigación de proyecto de investigación en la toma de decisiones, y al diseñador proponer soluciones más eficientes y económicas.

1.1.3. Fundamentación Teórica


1.1.3.1. Pórticos Especiales a Momento (PEM o SMF)

Filosofía de Diseño

En el diseño de elementos espera que sucedan deformaciones más allá del rango elástico, es decir en el rango inelástico, los cuales según este criterio de diseño cederán en las rótulas plásticas de las vigas y de forma controlada en la base de las columnas (Figura 7), es decir en los elementos tipo panel, para estas secciones se utilizaran elementos capaces de resistir el pandeo local y el pandeo lateral torsional. Dentro del diseño de pórticos especiales a momento suelen presentarse dos casos:

- a) Todos los pórticos de la estructuran están diseñados con pórticos especiales a momento.
- Solo los elementos de borde o exteriores de la estructura son diseñados con este sistema.

Figura 7: Lugares donde se espera que ocurran las fallas inelásticas en sistema a porticado PEM.

Fuente: NEC SE AC 2015

Una de las consideraciones primordiales de diseño es que es que los pórticos especiales a momento son capaces de resistir las fuerzas que produce un sismo de diseño.

Requerimientos de diseño

En el diseño de PEM prevalece el criterio columna fuerte viga débil, es por ello que se debe tomar en cuente lo siguiente:

$$\frac{\Sigma Mpc}{\Sigma Mpv} > 1$$
 Ec.1

 ΣMpc Sumatoria total de los Momentos plásticos a flexión, se deberá incluir la carga axial mayorada de intervienen en la columna.

ΣMpv Sumatoria total de los Momentos plásticos a flexión que intervienen en la viga.

Se puede determinar la sumatoria de los momentos que intervienen en las columnas y en las vigas mediante lo que establece el AISC 341. 16. A través de las siguientes ecuaciones, considerando un diseño LRFD, el cual será mediante el cual se realice el presente estudio.

Para los momentos que intervienen en las columnas:

$$\Sigma Mpc = \Sigma Zc \left(\frac{Fyc-Puc}{Aq}\right)$$
 Ec. 2

Cuya nomenclatura representa:

ΣMpc, suma de los momentos plásticos nominales de las columnas los cuales se encuentran en el nudo

Ag, área gruesa del elemento estructural en acero.

Fyc, límite de fluencia de acero, según el tipo de acero estructural empleado en las columnas

Puc, resistencia a carga axial para una columna empleando las combinaciones de carga para las columnas

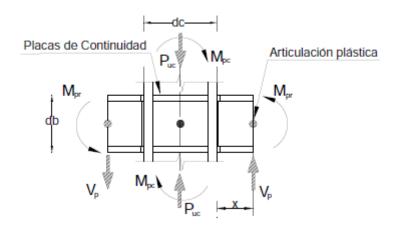
Zc, módulo plástico de la columna.

Para el cálculo de las sumatorias de momentos que se llegan a las vigas considerando un diseño según LRFD, empleamos la siguiente fórmula:

$$\Sigma Mpv = \Sigma(1.1 x Ry x Fyv x Zv + Muv)$$
 Ec.3

Cuya nomenclatura representa:

ΣΜρν, Suma de los momentos plásticos nominales de las vigas las cuales se encuentran en el nudo


Fyv, límite de fluencia de acero, según el tipo de acero estructural empleado en las vigas.

Muv, Momento adicional basado en combinaciones LRFD, producido por la fuerza de corte que se encuentra en la articulación plástica, su brazo es el resultado de la distancia entre la articulación plástica y la cara proveniente de la columna

Ry, factor de esfuerzo de que puede producir fluencia

Zv, módulo plástico de la viga

Figura 8: Vista frontal de una unión viga columna de un PEM, para la determinación de la sumatoria de momentos de una columna.

Fuente: NEC SE AC 2015

Al referirse a placas de continuidad se refiere a una viga.

Cuya nomenclatura representa:

Mpc, momento plástico de la columna

Mpr, momento plástico a flexión de la viga.

X, distancia de un extremo de la columna a la rótula o articulación plástica

dc, distancia de la altura de sección transversal de la columna

db, distancia de la altura sección transversal de la viga

Vp, resistencia a fuerzas cortantes producidas por la rótula u articulación plástica

La condición establecida en la ecuación 1 (Ec. 1); satisface la mayoría de casos en el diseño de PEM, sin embargo, se debe considerar como excepciones. En tales casos se podrá obviar el requerimiento establecido:

La carga axial resistida de la columna Prc, sea menor al 30% de la resistencia a compresión de la columna Pc, Prc < 0,3Pc, considerando todas las combinaciones de cargas y deberán satisfacer al menos una de las siguientes condiciones.

- a) Columnas empleadas en edificios de una sola planta o piso, o en la cubierta de un edificio de varias plantas.
- b) Las columnas donde:

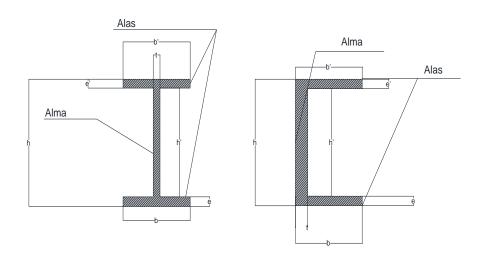
La suma de las resistencias a corte disponibles para el resto de columnas, (las columnas que no están siendo analizadas) en el entrepiso, sea un menor 20% que la suma de resistencia al corte disponible en todas las columnas tipo PEM en el entrepiso, las cuales actúan en la misma dirección;

La suma de las resistencias a corte disponibles para el resto columnas que se encuentran en el eje de columnas de PEM del entrepiso, sea menor que el 33% de la resistencia disponible a corte de todas las columnas que se encuentren en el mismo eje y pertenezcan al pórtico a analizar

 c) Las columnas que cualquier entrepiso las cuales posean una relación de resistencia de corte mayor a resistencia requerida en un 50% comparado con el piso superior

El cálculo de la carga axial de la columna y de la carga a compresión está dada por:

$$Pc = Fyc \times Ag$$
 Ec. 4
 $Prc = Puc$ Ec. 5


Sistemas de estabilización en conexiones viga columna mediante riostras.

En los elementos estructurales que forman las columnas requieren arriostramiento en sus alas, en el caso de las vigas requieren arriostramiento solamente en la sección del ala superior, siempre y cuando las almas de viga y columna se hallen en el mismo plano, además la columna indique que se comporta de forma elástica sin encontrarse

en la zona de panel. Se asume que la columna permanece elástica mediante la relación de momentos de columna y viga mayor a 2.

$$\frac{\Sigma Mpc}{\Sigma Mpv} > 2$$
 Ec.6

Figura 9: Partes de la sección transversal de dos elementos estructurales en acero tipo "I" y tipo "C".

Fuente: Autor

Se debe considerar que el alma es la parte de la sección que conecta las dos alas.

La nomenclatura representa lo siguiente:

- t, espesor del alma
- e, espesor del ala inferior
- e', espesor del ala superior
- **b**, longitud de la base del ala inferior
- b', longitud de la base del ala superior
- h, altura del alma
- h', altura efectiva del alma

En caso de que la columna se comporte elásticamente fuera de la zona de panel (zona de la columna donde se mantenga con la conexión a la viga, se deben cumplir los siguientes requisitos:

• El arriostramiento lateral de las alas de las columnas deben estar al mismo nivel de los elementos alas de las vigas superior e inferior. Los soportes o arriostramientos pueden ser directo o indirecto.

Cuando se trata de arriostramiento directo se obtiene por los siguientes elementos: arriostramientos, placa colaborante y losa, las cuales están conectadas a las alas que pertenecen a la columna en la ubicación próxima a la resistencia del pandeo lateral. Por su parte el arriostramiento lateral indirecto se obtiene a través de rigidizar miembros y conexiones los cuales no permanecen conectados columna y sus alas, pero funcionan por medio del alma de la columna y placas que rigidicen.

• La resistencia de cada elemento lateral arriostramiento en sus alas que pertenece a la columna, debe ser diseñado para cumplir lo siguiente:

$$0.02 x Fy x bf x tvf$$
 Ec.7

Cuya nomenclatura representa:

tvf, espesor del ala de la sección

bf, ancho del ala

Fy, límite fluencia especificado según el tipo de acero empleado

Sistemas de estabilización en conexiones viga columna sin riostras

Para el diseño de una columna se considerará la distancia entre los arriostramientos laterales adyacentes como la altura de la columna debido al pandeo que produce el pórtico resistente a momento, en dicha dirección. El diseño se realizará de acuerdo a lo estipulado en el AISC 360-16 en el capítulo H, como se detalla a continuación. Sin embargo, cuando se presentan las siguientes consideraciones quedan exentos de ser diseñados con el capítulo H del AISC 360-16:

• El requerimiento de resistencia que demande una columna debe ser determinado mediante a las combinaciones de carga que establece la normativa ecuatoriana NEC-SE-CG, excepto si el valor de E (Efecto de carga sísmica horizontal, incluyendo el

factor de sobre resistencia), ha sido calculado considerando 1.25 veces la resistencia que posee el elemento estructural considerando la resistencia a flexión de la viga o la resistencia a corte en la zona de panel.

- La esbeltez L/r de la columna no debe ser mayor a 60.
- La resistencia demandada a flexión de la columna transversal al pórtico resistente a momento, debe poseer el momento que, por la aplicación de la carga en el ala de la viga, considerando lo que se establece en sistemas de estabilización en conexiones viga columna mediante riostras, adicionando el momento de segundo orden resultante del desplazamiento que produce el ala de la columna.

El diseño de las columnas según lo que establece el capítulo H del AISC 341-16, se considera el diseño para los siguientes elementos:

- Elementos estructurales en acero con simetría simple y doble con solicitación a flexión y carga axial
- Elementos estructurales en acero asimétricos con solicitación a flexión y carga axial

$$\mathrm{Si} \frac{Pr}{Pc} \ge 0.2:$$

$$\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0 \qquad \mathrm{Ec.7}$$

$$\mathrm{Si} \frac{Pr}{Pc} < 0.2$$

$$\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$$
 Ec.8

Cuya nomenclatura representa:

Pr, resistencia de compresión axial demandada, empleando combinaciones de carga LRFD.

Pc, resistencia de compresión axial, kgf (kN)

Mr, resistencia de flexión requerida. kgf-m (N-mm)

Mc, resistencia de flexión disponible kgf-m (N-mm)

x, subíndice que representa flexión en alrededor del eje fuerte

y, subíndice que indica flexión en torno al eje débil

Elementos estructurales laminados compactos que presentan simetría doble y están sometidos a flexión y compresión.

Generalmente los miembros estructurales se diseñan bajo las consideraciones de las ecuaciones 7 y 8 respectivamente, con la excepción de que no cumpla la siguiente consideración a flexión:

$$Lcz \le Lcy$$
 Ec. 14

Cuya nomenclatura representa:

Lcy, longitud efectiva para pandeo por flexión alrededor del eje y cm (mm)

Lcz, longitud efectiva para pandeo alrededor del eje longitudinal, cm (mm)

En caso de que la relación de momentos $Mr / Mc \ge 0,05$, se mantendrán las consideraciones dispuestas ecuaciones 7 y 8 respectivamente. Sí ambos casos no se cumplen tanto la relación de momentos como la longitud efectiva por flexión al rededor del eje "y", así como la longitud efectiva alrededor del eje longitudinal entonces se diseñará según lo siguiente:

La ecuación para determinar Pc se empleará según lo que indica la ecuación 9, la cual considera la resistencia en compresión disponible en el plano de flexión y Mcx como la resistencia en flexión disponible para el límite de fluencia que establece el tipo de acero seleccionado.

Según el estado límite de pandeo fuera del plano y pandeo flexo-torsural:

$$\frac{P_r}{P_{cv}} \left(1.5 - 0.5 \frac{P_r}{P_{cv}} \right) + \left(\frac{M_{rx}}{C_b M_{cx}} \right) \le 1.0$$
 Ec. 15

Cuya nomenclatura representa:

Pcy, resistencia de compresión axial que se encuentra fuera del plano de flexión, kgf (kN)

Cb, factor de modificación por pandeo flexo-torsural.

Mcx, resistencia de flexo-torsural que se encuentra para flexión en el eje fuerte, (N-mm)

Requisitos básicos en vigas y columnas

Se debe identificar que cada sección representa un espesor diferente en sus alas y su alma según lo que demande la sección, respetando el pandeo local según las consideraciones que demanda el AISC, así como las variaciones representadas en vigas y columnas. Como se indica en la tabla 9

Tabla 9: Relación ancho espesor para secciones de acero considerando elementos sometidos a esfuerzos a compresión.

	Límite de la relación ancho a espesor para					
	elementos de compresión para medianamente dúctiles					
	y altamente dúctiles					
		Proporción	Límite de la relación ancho-espesor			
D	escripción del	ancho	Miembros de alta Miembros de		Descripción de sus	
	elemento	espesor	ductilidad	ductilidad limitada	elementos	
	Flexión en alas					
	de vigas "I"					
	canales y					
	vigas "T";					
	Lados de					
	ángulos simples				1 <u>p</u> 1 1' 1 <u>p</u> 1 1'	
田	О	b/t				
eme	dobles con	D/ L			.b	
Elementos Rigidizados	separadores;		E	E E		
	Lados salientes		$0.32\sqrt{\frac{L}{RyFy}}$	$0,40\sqrt{\frac{2}{RyFy}}$		
idiza	de pares de		,			
sop	ángulos en				0 . 08	
	contacto				±1	
	continuo				OH	
	Alas de				, b ,	
	secciones para	h/4	No aplica		t t	
	pilotes	b/t		$0.48 \left[\frac{E}{R} \right]$		
	"H"			\sqrt{RyFy}		

Alma de vigas "T"	d/t	$0,32\sqrt{\frac{E}{RyFy}}$	$0,40\sqrt{\frac{E}{RyFy}}$	t d
Paredes de HSS rectangulares; Alas de perfiles "I" encajonados, y secciones cajón armadas; Placas laterales de secciones laminadas "I" encajonadas y paredes de perfiles armados encajonados usados como arriostramientos diagonales	b/t h/t	$0,65\sqrt{\frac{E}{RyFy}}$	$0.76\sqrt{\frac{E}{RyFy}}$	
Redes de laminado "I" construido en forma secciones y canales utilizados como tirantes diagonales	h/tw	$1,57\sqrt{\frac{E}{RyFy}}$	$1,57\sqrt{\frac{E}{RyFy}}$	$-t_w$ h $-t_w$ h

D 1 1 ***			Ī	
Paredes de HSS				
rectangulares;				
Alas de perfiles				
"I"				
encajonados,				
y secciones				
cajón armadas;				
Placas laterales				
de secciones	b/t			
laminadas "I"	h/t			
encajonadas y		E	$1,18\sqrt{\frac{E}{RyFy}}$	
paredes de		$0,65\sqrt{\frac{E}{RyFy}}$	\sqrt{RyFy}	
perfiles		·		
armados				t
encajonados				h
usados como				\(\frac{\darkararar}{\darkarararararararararararararararararar
arriostramientos				
diagonales				
Almas de				
perfiles "I"				
armados o				
rolados usados		C: C~ < 0.114		
para vigas o		$Si, Ca \leq 0,114$	$Si, Ca \leq 0,114$	
columnas;		$2,57\sqrt{\frac{E}{RyFy}}(1-1,04Ca)$	$2,57\sqrt{\frac{E}{RyFy}}(1-3,04Ca)$	
Placas laterales	h/tw	,	\sqrt{RyFy}	$-t_w h -t_w h$
de secciones	b/t	Si, Ca > 0,114	Si, Ca > 0.114	<u>, t</u>
laminadas "I"	h/t	$0.88\sqrt{\frac{E}{RyFy}}(2.68 - Ca)$	$1,29\sqrt{\frac{E}{RyFy}}(2,12-Ca)$	
encajonados			\sqrt{RyFy}	
usados como		$\geq 1,57 \sqrt{\frac{E}{RyFy}}$	$\geq 1,57\sqrt{\frac{E}{RyFy}}$	
vigas o		$\frac{Pu}{\phi_c P_v}$	•	h
columnas;			$\frac{Pu}{\phi_c P_v}$	
Almas de		Pv = RyFyAg	Pv = RyFyAg	<u> </u>
secciones cajón				

armadas usados como vigas o columnas				
Almas de secciones para pilotes "H"	h/tw	No aplica	$1,57\sqrt{\frac{E}{RyFy}}$	-t _w h
Paredes de HSS de sección circular	D/t	$0,053 \frac{E}{RyFy}$	$0,062\frac{E}{RyFy}$	
Redes de una edificación de secciones de caja utilizadas como enlaces EBF	h/t	$0,67\sqrt{\frac{E}{RyFy}}$	$1,75\sqrt{\frac{E}{RyFy}}$	h
Secciones rectangulares compuestas (miembros con relleno)	b/t	$1,48\sqrt{\frac{E}{RyFy}}$	$2,37\sqrt{\frac{E}{RyFy}}$	t t
Secciones circulares compuesto (miembros con relleno)	D/t	$0,085 \frac{E}{RyFy}$	$0,17\frac{E}{RyFy}$	D It

Fuente: ANSI/AISC 341-16

Cuya nomenclatura representa:

E, módulo de elasticidad del acero = 29,000 ksi (200 000 MPa, 2040000 kg/cm2)

 $\mathbf{F}\mathbf{y}$, límite fluencia especificado según el tipo de acero empleado

Pu, fuerza axial demandada empleando combinaciones de carga LRFD, kips (N)

Ry, relación entre la tensión de rendimiento esperada y la tensión de rendimiento mínima demandada

Φc, factor de resistencia para la compresión

 Ω c, factor de seguridad para la compresión

Para el diseño de pórticos especiales a momento se empleará secciones con alta ductilidad no compuestas, tanto para vigas como columnas.

Alas de las vigas

En los lugares donde se estipula que se producirá la rótula plástica queda prohibido realizar cambios en sus alas; se podrá taladrar solamente sí los agujeros en alas o el área neta que se realiza a la sección de la viga, cumplen con las pruebas necesarias en sus articulaciones plásticas se comportan según lo esperado, se debe mantener las especificaciones técnicas de la tabla 9, y el diseño de conexiones según lo que establece el AISC, con énfasis en la normativa 358, y además se detallará a continuación.

Zonas protegidas (Rótulas Plásticas)

Es aquella donde se formarán las rótulas plásticas y estas, se deberá considerar que las deformaciones inelásticas, es por ello que no debe ser rigidizada ni alterada dichas zonas deberán cumplir con los siguientes requerimientos de diseño:

- Dentro de la zona protegida, los orificios, las soldaduras por puntos, las ayudas de montaje, el ranurado del arco de aire, y el corte térmico no especificado de las operaciones de fabricación o montaje se repararán para mantener sus condiciones ideales originales según lo que establezca un ingeniero calificado [1].
- No se colocarán remaches ni anclajes con cabeza de acero en las vigas de la zona protegida.
- Está permitido el uso en zonas protegidas de soldaduras por puntos de arco para unir cubiertas.
- En caso de unión de cubiertas en la rótula plástica no se permitirán accesorios en ala de la viga. Salvo en caso de sujetadores los cuales deberán tener un espesor máximo de 0,18 pulgadas sujetadas a sus alas

• No se colocarán uniones soldadas, atornilladas, sujetadores de borde perimetral, conductos, tuberías, elementos de fachada en la zona protegida.

La ubicación de las zonas protegidas en los PEM, y elementos no arriostrados se ubica desde la cara de la columna a una longitud igual a 0,5 el peralte de la viga; es decir un poco más desplazado del centroide de la articulación plástica.

Conexiones de PEM

El primero caso que se tiene es: Soldaduras de demanda crítica

Las mismas deben cumplir con las siguientes consideraciones:

- Emplear soldaduras de ranura con empalmes de columna.
- Emplear soldaduras en las conexiones de la placa a la placa base, e

Las soldaduras no serán consideradas de demanda crítica sí:

- La bisagra de la columna en o cerca de la placa base está excluida por las condiciones de restricción.
- No existe tensión neta en las combinaciones de carga, incluida la sobre resistencia excesiva a carga sísmica.
- Emplear soldaduras de ranura de penetración de juntas completas de las alas de viga y alma de viga dirigido a columnas, a menos que se indique lo contrario por ANSI/AISC 358-16, o sea determinado de otra forma en una conexión precalificada de acuerdo con la Sección K1, o mediante un programa de pruebas de calificación de acuerdo con la Sección K2.

Como segunda alternativa se encuentra: Conexiones Viga-Columna

- Tener la capacidad de crear una deriva de piso que se representará por "q" (rotación plástica) mayor o igual que: ± 0.04 rad.
- Las conexiones están obligadas a tener como mínimo un Momento Resistente igual a 0.80Mp provenientes de la viga conectada, para una deriva de piso que se representará por "q" (rotación plástica) con un valor de ± 0.04 rad.

En cuyo caso:

Mp, el momento plástico de flexión.

Demostración de aprobación:

Deberán cumplir todos los siguientes aspectos:

- Uso de conexiones PEM o SMF diseñadas según lo establecido en el ANSI/AISC 358-16.
- 2. Uso de una conexión precalificada para SMF o PEM según las regulaciones teóricas de la sección K1 del AISC 341-16.
- 3. Sí se requiere resultados sujetos a comprobación por ensayos de pruebas cíclicas deberán estar de acuerdo con lo que establece en la sección K2 K1 del AISC 341-16.

Resistencia a flexión de las conexiones a momento.

Se debe por lo menos realizar un ciclo de carga con \pm 0.04 radianes, en la conexión, la resistencia a flexión medida sobre la cara de la columna, debe ser al menos el 80% Mp (momento plástico a flexión) de la viga conectada.

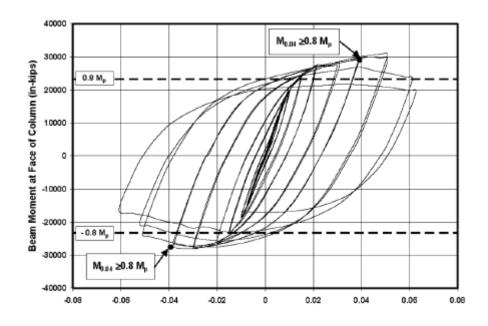
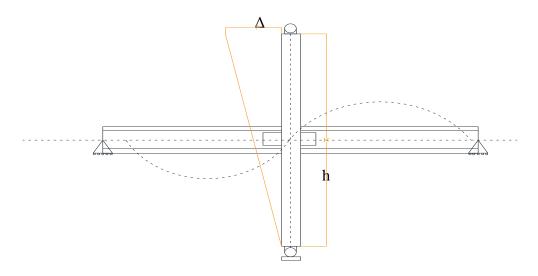



Figura 10: Ciclo de histéresis esperado en la degradación de resistencia.

Fuente: NEC SE AC 2015

El proceso deberá realizar para determinar si la conexión cumple los estándares demandados, en donde la deriva de piso deberá ser igual a \pm 0.04 radianes.

Figura 11: Deriva de piso esperada durante el ensayo cíclico a la conexión viga columna.

Fuente: Autor.

Cálculo de la deriva de piso:

$$\theta = \frac{\Delta}{H_{COLUMNA}}$$
 Ec. 16

Resistencia Requerida a la cortante.

Las conexiones PEM deben presentar la resistencia a cortante según el cortante que produzcan cargas gravitacionales, más la resistencia al corte, producido por la formación de rótulas plásticas lo que se denomina como VE, la cual deberá estar localizada en los extremos de la viga.

Bajo los parámetros del método de diseño por factores de carga y resistencia (LRFD), se calcula de la siguiente manera:

$$V_E = \frac{2(1.1R_y M_p)}{L_h}$$
 Ec. 17

Cuya nomenclatura representa:

Lh, Longitud entre las articulaciones o rótulas plásticas

El factor de esfuerzo a fluencia se determina mediante la siguiente tabla:

Tabla 10: Relación ancho espesor para secciones de acero considerando elementos sometidos a esfuerzos a compresión.

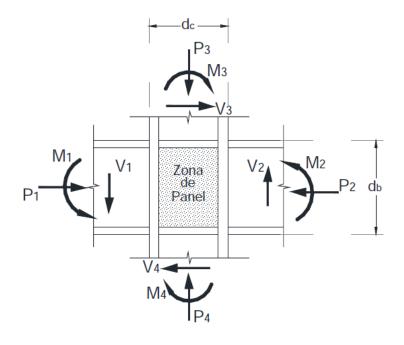
Especificación ASTM	Factor de Fluencia Probable (R_y)	Factor de Tensión Probable (R _t)
ASTM A36	1.3	1.15
ASTM A572 Gr. 50	1.1	1.25
ASTM A588 Gr. 50	1.15	1.15

Fuente: NEC SE AC 2015

Estabilidad

Se debe diseñar con un análisis no lineal de segundo orden para determinar que se mantenga la estabilidad del pórtico. Con el fin de demostrar que cualquier deriva adicional producido en la deformación de la conexión puede ser acomodada por la **estructura** [15].

Soldadura


Las soldaduras de ranura de penetración completa (SRPC) empleadas en las alas de vigas, placas cortantes y almas de vigas incrustadas en columnas tienen que ser diseñadas bajo soldaduras de demanda crítica (SDC) [15].

Zonas de panel en la conexión viga columna

Definición

Es la sección rectangular del alma de la columna confinada por las alas de la columna (límites verticales) y las placas de continuidad (límites horizontales). Normalmente, la zona de panel está sometida a múltiples fuerzas tal es el caso de: fuerzas axiales, cortantes y momentos los cuales provienen las columnas y vigas como se indica en la figura 12.

Figura 12: Fuerzas que intervienen internamente en la junta de un PEM el cual posee cargas gravitacionales y laterales.

Fuente: NEC SE AC 2015

Espesor requerido en el panel

Tiene que emplearse de acuerdo con el método usado en la conexión precalificada o ensayada para su dimensionamiento. En el caso de los espesores individuales "t" que conforman las almas de la columna y doble placas, se aplica la siguiente ecuación:

$$t \ge \frac{d_z + w_z}{90}$$
 Ec. 18

Cuya nomenclatura representa:

- t, Espesor del alma de la columna o de la doble placa en (mm) [15].
- dZ, Peralte de la zona de panel medido entre las placas de continuidad en (mm) [15].
- wZ, Ancho de la zona de panel entre alas de columna (mm) [15].

Otra opción es el uso, de al menos cuatro soldaduras en forma de tapón para conectar el alma de la columna con las placas dobles con la finalidad de prevenir el pandeo local de las mismas. Bajo estas circunstancias, el espesor total de la zona de panel, se ilustra en la siguiente figura su ubicación.

Figura 13: Punto de ubicación de tapones soldados en zonas de panel de un PEM.

Fuente: NEC SE AC 2015

Resistencia al Cortante

La demanda de resistencia al corte de la zona de panel, deberá calcularse a partir de la suma momentos en las caras de las columnas los cuales se obtiene mediante los momentos probables donde se ubican las rótulas plásticas.

Bajo los parámetros del método de diseño por factores de carga y resistencia (LRFD):

Resistencia de diseño al cortante = ΦvRv Ec. 19

Cuya nomenclatura representa:

 $\Phi \mathbf{v} = 1.0$

Rv, resistencia nominal al corte.

Cálculo de la resistencia nominal al corte:

Se empleará para cargas concentradas dobles cuya aplicación este dirigida hacia una o ambas alas de un miembro, pero en el mismo punto.

La resistencia disponible de la zona panel del alma para el estado límite de fluencia [1] en corte será calculada como se establece a continuación

$$\phi = 0.90 (LRFD)$$

La resistencia nominal, Rn, se determinada según las siguientes consideraciones:

(a) En caso de no considerar el análisis del efecto de la deformación de la zona panel en la estabilidad del marco [1]:

Para $Pr \le 0.4 P$

$$Rn = 0,60Fy \ dc \ tw$$
 Ec. 20

Para Pr > 0.4 P

$$Rn = 0.60 \ Fy \ dc \ tw \left(1.4 - \frac{Pr}{Pc}\right)$$
 Ec. 21

(b) Al considerar en el análisis de estabilidad en el marco, considerando la deformación plástica en la zona panel:

Para $Pr \le 0.75 Pc$

$$Rn = 0.60 \, Fy \, dc \, tw \left(1 + \frac{3b_{cf}t_{cf}^2}{db \, dc \, tw}\right) \qquad \text{Ec. 22}$$

Para Pr > 0.75 Pc

$$Rn = 0.60 \ Fy \ dc \ tw \left(1 + \frac{3b_{cf}t_{cf}^2}{db \ dc \ tw}\right) \left(1.9 - \frac{1.2Pr}{Pc}\right)$$
 Ec. 23

Cuya nomenclatura representa en las ecuaciones 20-23:

bcf, ancho del ala de la columna, cm (mm)

Pc, Py, kgf (kN) (LRFD)

Py = Fy Ag, resistencia axial de fluencia de la columna, kgf (kN)

tcf, espesor del ala de la columna, cm (mm)

tw, espesor del alma de la columna o sección, cm (mm)

En caso de requerir se debo colocar, plancha(s) de refuerzo o un par de rigidizadores diagonales dentro de los límites de conexión rígida cuyas almas se junten en un plano común.

Placas dobles en la zona de panel

El espesor de las placas dobles, en caso de ser empleadas, no debe ser inferior a 4 pulg. (6 mm). Cuando se utilizan, las placas dobles se deben cumplir los siguientes requerimientos:

Sí la resistencia requerida de la zona del panel excede la resistencia del diseño, o donde la zona del panel no cumpla con la Ecuación 18, se proporcionarán placas dobles, las mismas se colocarán en contacto con el alma, alejando las placas dobles del alma con una separación de hasta 2 (mm) entre la placa doble y el panel de la columna. En caso de diseñar en contacto con el alma.

Cuando las placas de dobles están separadas del alma, se colocarán simétricamente en pares en lados opuestos del alma de la columna, placas dobles en contacto con la banda las cuales deben soldarse con las correas de la columna utilizando soldaduras de ranura de juntas de penetración parcial (PJP) de acuerdo con AWS D1.8 / D1.8M cláusula 4.3 que se extiende desde la superficie de la placa doble a la brida de la columna, o utilizando soldaduras de filete. Las placas dobles espaciadas serán soldadas con las correas de la columna utilizando una ranura de juntas penetración completa (CJP), soldaduras de ranura PJP, o soldaduras de filete. La fuerza requerida de la penetración parcial de las articulaciones correspondientes soldaduras de ranura o soldaduras de filete será igual al rendimiento de corte disponible.

Resistencia del espesor de la doble placa.

(a) Placas dobles que no poseen placas de continuidad.

En las placas dobles y las soldaduras que conectan las placas dobles a la columna las correas deben extenderse por lo menos 6 pulg. (150 mm) por encima y por debajo de la parte superior y parte inferior de la viga del marco de momento más profundo. Para placas dobles en contacto con el alma, si el espesor de la placa de doble y el alma de la columna ambos espesores satisfacen la ecuación 18, entonces no se requiere soldadura a lo largo tanto para los bordes superiores e inferior de la placa doble. Si por su parte el espesor de la placa doble o el espesor del alma de la columna uno de los dos no satisface la ecuación 18, entonces, la soldadura de filete de tamaño mínimo, se realizará como estipula en las especificaciones de la tabla J2.4 del AISC 341-16, en los cuales establece que las soldaduras se proporcionarán a lo largo de los bordes

superior e inferior del plato doble. Estas soldaduras terminarán 1.5 pulg. (38 mm) desde la punta de la columna filete.

(b) Placas dobles utilizadas con placas de continuidad.

Se permite que las placas dobles se extiendan por encima y por debajo de las placas de continuidad o colocadas entre las mismas.

(1) Placas dobles extendidas

Las placas dobles extendidas deberán estar en contacto con el alma. Ampliando la información, las correas de las placas dobles y las soldaduras que las conectan a la columna, deben extenderse por lo menos 150 mm por encima y por debajo de la parte superior e inferior de la viga de marco de momento más profundo. Las placas de continuidad deberán soldarse en las placas dobles extendidas de acuerdo con los requisitos en la sección E3.6 f.2 (c) del AISC 341-16. No se requieren soldaduras en la parte superior y bordes inferiores de la placa doble.

(2) Placas dobles colocadas entre placas de continuidad.

Se permite que las placas dobles estén colocadas entre las placas de continuidad si están en contacto con el alma o estando fuera del alma. Soldaduras entre las placas dobles y las correas de la columna se extenderán entre las placas de continuidad, se les permite detenerse máximo a de 25 (mm) de la placa de continuidad. La parte superior e inferior de la placa doble se soldarán con las placas de continuidad en toda la longitud de las placas de continuidad en contacto, con el alma de la columna. La fuerza requerida de la placa doble - plato continuidad, corresponde a la soldadura de la placa será la cual será igual al 75% del rendimiento de corte disponible de la resistencia completa del espesor de la placa doble - plato continuidad sobre la longitud de contacto con la placa de continuidad.

Empalmes de columnas

Los empalmes de columnas deben cumplir lo establecido en la sección 7.4.de la NEC SE AC 2015. Cuando se juntan soldaduras de ranura en los empalmes, dichas soldaduras deben ser de ranura de penetración completa, que cumpla con los

requerimientos de los pórticos arriostrados a momento. Adicionalmente, se debe remover las barras de respaldo.

En caso de que los empalmes de las columnas no sean efectuados mediante soldadura de ranura, éstas deben poseer una resistencia demanda a flexión al menos de la columna de menor sección igual a:

Bajo los parámetros del método de diseño por factores de carga y resistencia (LRFD):

$$M\mathbf{r} = M\mathbf{u} = R\mathbf{y}F\mathbf{y}Z$$
 Ec. 24

Cuya nomenclatura representa:

Mu, Resistencia a la flexión requerida usando las combinaciones de carga LRFDZ, Módulo plástico de sección

Placas de continuidad

Se diseñarán bajo los siguientes parámetros:

(a) Cuando la resistencia requerida en la cara de la columna exceda a la resistencia disponible, se determina utilizando los estados límite locales aplicables estipulados en especificación sección J10 del AISC 360-16, según la ubicación de la placa de continuidad. Por su parte, las placas deben cumplir con los requisitos de la sección de especificación J10.8, que a su dirige a lo estipulado en la sección J4.1, J4.4, J7 y para rigidizadores J10.3 J10.5 y J10.7, según lo estipulado en el AISC 360-16

Para las conexiones en las que un ala de la viga está soldada al ala de la columna, la columna tendrá una resistencia disponible suficiente para resistir una fuerza igual al momento máximo probable frente a la columna, Mf.

Nota:

La fuerza del ala de la viga, Pf, correspondiente al máximo momento probable en la cara de la columna, Mf, se puede determinar de la siguiente manera:

$$Pf = \frac{Mf}{\alpha s d^*}$$
 Ec. 25

Para conexiones del alma de viga con una conexión atornillada a la columna, Pf se puede determinar asumiendo que solo las alas de la viga participan en transfiriendo el momento Mf.

$$Pf = \frac{0.85Mf}{\alpha s d^*}$$
 Ec. 26

Cuya nomenclatura representa:

Mf, momento máximo probable en la cara de la columna como se define en ANSI / AISC 358 para una conexión de momento precalificado o como determinado a partir de las pruebas de calificación. (N-mm)

Pf, fuerza requerida en la cara de la columna para estados límite locales en la columna (N)

- **d***, distancia entre los centroides de las alas de la viga, o de un ala de la viga conexiones hacia la cara de la columna, en. (mm)
- (b) Cuando el grosor de las alas de la columna es menor que el grosor límite, t (lim), se establecen los siguientes casos:
 - (1) Donde un ala de la viga está soldada al ala de forma de W o acumulada a la columna en forma de I, el espesor del ala de la columna como límite es:

$$t_{lim} = \frac{b_{bf}}{6}$$
 Ec. 27

(2) Donde un ala de la viga está soldada a un ala de forma I en una caja completa de ala de la columna, el espesor del ala de la columna como límite es:

$$t_{lim} = \frac{b_{bf}}{12}$$
 Ec. 28

Resistencias y tipos de conexiones para pórticos arriostrados a momento.

El AISC 358-16, nos provee las siguientes opciones de diseño de una conexión tipo PEM:

- Reduced Beam Section (RBS)
- Bolted Unstiffened and Stiffened Extended End-plate

- Bolted Flange Plate (BFP)
- Welded Unreinforced Flange-Welded Web (WUF-W)
- Kaiser Bolted Bracket (KBB)
- Conxtech Conxl
- Sideplate
- Simpson Strong-tie strong frame
- Double-Tee
- Slotted Web (SW)

Para la presente investigación se usará la conexión RBS y se modelará los pórticos PEM bajo está conexión.

Debido a que en la década de los 90, las conexiones de PEM, sufrieron fractura en sus elementos se debe diseñar contemplando las siguientes dos opciones, este hecho se evidencio principalmente en el sismo de Northridge en 1994.

Con las siguientes consideraciones se pretende que las conexiones de los PEM poseen una adecuada ductilidad.

Método 1. Ensayos pre establecidos según la conexión a ser utilizadas en el proyecto, a través un número específico de ejemplares a escala real, representando las conexiones a ser implementadas en la estructura, son construidas y ensayadas de acuerdo a lo indicado en el anexo S de las disposiciones sísmicas de ANSI/AISC.

En caso de modificar a alguna de las conexiones ya preestablecidas.

Método 2. Precalificación de las conexiones el cuál será efectuado, por calificadores independientes con experticia en el tema mediante la realización de un programa riguroso de ensayos, evaluación analítica y examinación de los resultados, previos a ser publicados como válidos.

Cabe destacar que dicho procedimiento se empleará en nuevas conexiones que aún no han sido establecidas por el AISC 358-16

Rigidez de las conexiones

El modelo matemático de la estructura se planteará bajo cargas sísmicas, las conexiones empleadas en PEM deben ser consideradas totalmente restringidas (Conexiones tipo TR). Las cuales deben tener suficiente resistencia y rigidez para transmitir momentos y mantener la posición angular de los miembros conectados.

Método de diseño

Las conexiones deberán ser diseñadas de acuerdo a lo estipulado en el método de diseño de los Factores de Carga y Resistencia (DFCR o LRFD).

Elementos

Elementos rolados de ala ancha

Para entender mejor se debe conocer el concepto de rolar perfiles de acero, los cuales se somete a doblarlos en frío mediante un proceso controlado de poleas fijas y móviles para modificar su sección.

Figura 14: Disposición de las poleas para el rolado de los perfiles.

Fuente: MIPSA

Figura 15: Perfiles que pueden ser rolados.

Fuente: MIPSA

Se aceptan elementos rolados de ala ancha según las limitaciones de la sección transversal, que se consideran en las siguientes páginas.

Miembros Armados

Se aceptan elementos armados con simetría doble y perfiles "I" en los siguientes casos:

- Alas y alma posean un ancho, peralte y espesores similares a los elementos que han sufrido el proceso de rolado con ala ancha y cumplan las consideraciones que se indicarán a continuación.
- Almas que se conecten de forma continua a las alas y de acuerdo con los siguientes requerimientos:

Vigas

En el interior de la zona que se comprende a partir del extremo de la viga hacia una distancia igual o mayor que el peralte de la viga, sobrepasando la localización de la rótula plástica, Sh, el alma y las alas deben estar unidas mediante soldadura de ranura de penetración completa (SRPC) incluyendo un refuerzo de soldadura tipo filete (SF). El valor mínimo de la soldadura tipo filete necesita ser el menor entre 8 mm (5/16 pulg.) o el espesor del alma de la viga. Esta se aplica solo para conexiones especiales a momento no aplica en conexiones individuales los cuales deberán satisfacer otros requerimientos.

Columnas

Las columnas armadas deberán ser diseñadas según lo establecido en los numerales 1 a 4 del AISC 360-16 en la sección E6, done se indica los requerimientos para secciones armadas. La incorporación de fuerzas internas y esfuerzos entre elementos de la columna armada deben efectuarse a través de la soldadura. Existen cuatro tipos de secciones transversales para columnas armadas, que constan en la Figura 15, y serán descritos a continuación.

• Columnas de sección "I" soldadas

Los miembros de las columnas de sección "I" deben cumplir los siguientes requerimientos:

A partir de la zona que se extiende desde 300 mm (12 pulg.) sobre el ala superior de la viga, hasta 300 mm por debajo del ala inferior de la viga [15], el alma y las alas de la columna deben permanecer juntas mediante soldadura de ranura de penetración completa (SRPC) incluyendo un refuerzo de soldadura tipo filete (SF). El mínimo valor permitido de la soldadura tipo filete deberá ser el menor de los valores entre 8 mm o el espesor del alma de la columna.

Columnas cruciformes

Los elementos de columnas cruciformes, construidas a partir de perfiles rolados o armados con placas al caliente, deben cumplir con los siguientes requerimientos y tal cual todas las columnas armadas en la sección E6 del AISC 360-16.

A partir de la zona que se extiende desde 300 mm (12 pulg.) sobre el ala superior de la viga, hasta 300 mm por debajo del ala inferior de la viga [15], el alma del perfil tipo "T" deberá ser soldado continuamente con la sección "I" empleando soldadura de ranura de penetración completa (SRPC) incluyendo un refuerzo de soldadura tipo filete. El mínimo valor permitido de la soldadura tipo filete deberá ser el menor entre 8 mm (5/16 pulg.) o el espesor del alma de la columna. Cuando se use placas de continuidad, estas deben ser colocadas según las disposiciones de columnas con ala ancha.

Columnas cajón armadas

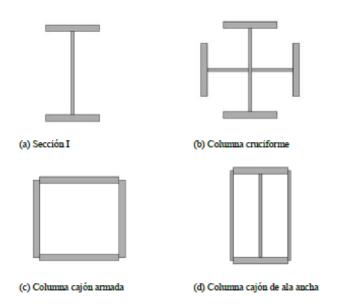
La relación ancho-espesor (b/t) de placas empleadas en las alas no debe ser mayor que,

$$0.6\sqrt{\frac{E}{Fy}}$$

Y el valor del ancho (b) debe ser mayor que la distancia libre entre placas.

La relación ancho-espesor (h/tw) de las placas usadas para el alma debe cumplir las indicaciones especificadas en la tabla 10 y tabla 9 de la presente investigación.

A partir de la zona que se extiende desde 300 mm (12 pulg.) sobre el ala superior de la viga, hasta 300 mm por debajo del ala inferior de la viga [15] debajo el ala inferior de la viga, las placas de las alas y alma de la columna cajón deben estar unidas por medio de una soldadura de ranura de penetración completa (SRPC). Afuera de esta zona, las placas deben ser juntadas continuamente con soldadura tipo filete o de ranura.


· Columnas cajón de ala ancha

Las columnas cajón de ala ancha son las que están formadas por un perfil tipo W y dos alas las cuales son soldadas con placas de perfil W. Las mismas deben cumplir con las siguientes disposiciones:

Las relaciones ancho-espesor (b/t) y ancho-espesor (h/tw) siguen exactamente lo mismo estipulado en las relaciones de columnas de cajón armadas.

De igual manera las dentro de zona que se extienden sobre el ala superior de la viga hasta bajo el ala inferior de la viga, fuera de la misma las placas estarán estipuladas bajo las mismas condiciones de columnas de cajón armadas.

Figura 16: Perfiles armados de columnas.

Fuente: NEC SE AC 2015

Especificaciones para el diseño de conexiones viga columna

Sí las resistencias disponibles son calculadas según la normativa AISC 360-16, los factores de resistencia serán establecidos según lo que estipula dicha normativa, los factores de resistencia φd y φn para el cálculo de resistencia disponible:

- Al tratar estados en límites dúctiles: $\varphi d = 1.00$
- Al tratar estados en límites no-dúctiles $\varphi n = 0.90$

Máximo momento probable en la articulación plástica

El máximo momento probable en la rótula plástica se calculará con la siguiente fórmula:

$$Mpr = CpRyFyZe$$
 Ec. 29

Cuya nomenclatura representa:

Cpr, Factor que considera la resistencia máxima de la conexión, además otros factores como el endurecimiento por deformación, restricciones locales, reforzamiento adicional y otras propiedades dentro de la conexión.

Mpr, Máximo momento probable en la rótula plástica.

Ze, Módulo plástico efectivo de la conexión localizada en la rótula plástica.

El cálculo de Cr se lo realiza de la siguiente manera:

$$C_{pr} = \frac{Fy - 2Fu}{2Fy} \le 1,20 \text{ Ec.}30$$

Cuya nomenclatura representa:

Fu, Resistencia mínima a tensión especificada del acero

Placa de continuidad para alas de viga

Se debe colocar placas de continuidad solamente en caso en los siguientes casos pueden ser obviadas las mismas:

• En caso que el ala de una viga esté conectada al ala de una columna con ala ancha o sección "I" armada que posea un espesor que cumpla lo siguientes:

$$t_{cf} \ge 0.4 \sqrt{1.8 b_{vf} t_{vf} \frac{FyvRyv}{FycRyc}}$$
 Ec.31
$$t_{cf} \ge \frac{b_{vf}}{6}$$
 Ec.32

Cuya nomenclatura representa:

bvf, Ancho del ala de la viga

Ryv, Factor de esfuerzo de fluencia probable de la viga

Ryc, Factor de esfuerzo de fluencia probable de la columna

tvf, Espesor del ala de la viga

• En caso de que el ala de la viga se mantenga conectada al ala de una columna con sección "I" con ala ancha encajonada con un espesor que cumpla con lo siguiente:

$$t_{cf} = 0.4 \sqrt{\left[1 - \frac{b_{vf}}{b_{cf}^2} \left(b_{cf} - \frac{b_{vf}}{4}\right)\right] 1.8 b_{vf} t_{vf} \frac{FyvRyv}{FycRyc}}$$
 Ec.33
$$t_{cf} \ge \frac{b_{vf}}{6}$$
 Ec.34

La nomenclatura es la misma que en la ecuación 30, se añade, bcf es el ancho del ala de la columna.

Espesor de Placas de Continuidad

En caso de que se requiera emplear placas de continuidad, su espesor tiene que ser establecido bajo los siguientes parámetros:

- Conexiones exteriores, el espesor de la placa tiene que ser mayor o igual a la mitad del espesor del ala de la viga.
- En conexiones interiores, el espesor de la placa tiene que ser mayor o igual al espesor mayor de las alas de las vigas que se localizan en los extremos de la sección de la columna.

Las placas de continuidad también tienen que cumplir los parámetros establecidos en la sección J10 de la normativa AISC 360-16.

Conexión entre placas de Continuidad y las columnas

En caso de colocar placas de continuidad, es necesario que sean soldadas a las alas de la columna usando (SRPC).

Las placas deben ser soldadas al alma de la columna empleando soldadura de ranura o de filete. La suma de la resistencia requerida de las juntas soldadas de las placas en este caso continuidad al alma de la columna cuyo valor debe ser el menor de los parámetros:

- La suma de las resistencias de diseño a tensión del área en que estén contacto placas de continuidad con las alas de la columna y a su vez con a las alas de las vigas, todas mediante conexiones.
- La resistencia corte del área en contacto de la placa con el alma de la columna.
- La resistencia de diseño a cortante entra la zona de panel de la columna.
- La suma esfuerzos de fluencia probable en las alas de las vigas las cuales transmiten fuerzas hacia las placas de continuidad.

Zona de panel

Las zonas de panel deberán ser diseñados según lo que se establece en las partes precias a la presente investigación en la sección donde se describe el diseño de zonas de panel en PEM

Zonas protegidas

Las zonas protegidas deberán ser diseñadas mediante lo que establezca cada conexión precalificada establecida en el AISC 360-16. Las zonas protegidas deben seguir las consideraciones establecidas en la tabla 9 de la presente investigación.

La definición de zonas protegidas de vigas se explica como el área desde la cara del ala de la columna y está limitada en un medio el peralte de la viga pasando ubicación teórica de la rótula. Se pueden colocar agujeros para pernos en el alma de la viga de según las disposiciones de cada conexión precalificada [15].

Especificaciones de soldadura

En relación al metal de aporte y al proceso de soldado se sigue de acuerdo a lo estipulado en el capítulo 11 de la NEC SE AC 14.

Barras de respaldo en uniones viga-columna y placas de continuidad en uniones de columna

Barras de apoyo en placas de Continuidad

En las placas de continuidad de columnas no se requiere que sean removidas. En este caso considerando las alas de la columna, deben ser conectadas al ala de la columna mediante una soldadura de filete continua de 8 mm en el extremo de la (SRPC).

En caso de que las barras de apoyo sean removidas, posterior a este proceso, la soldadura de raíz tiene que ser limpiada, pulida y luego reforzarla con una soldadura de filete de las mismas dimensiones que en el caso de no ser removidas (8mm).

Barras de apoyo en el ala inferior de la viga

En este caso deberán ser removidas y se aplicarán el mismo criterio de dimensión y tipo de soldadura que en las placas de continuidad cuyo respaldo fue removido,

incluyendo la soldadura sobre el lado adyacente al ala de la viga deberá hasta el metal base del ala de la viga.

Barras de apoyo en el ala superior de la viga

Se cumplirá los mismos parámetros establecidos en barras de respaldo y placas de continuidad de una sección de la viga.

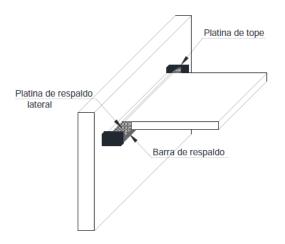
Soldaduras prohibidas en las barras de apoyo

Las barras de apoyo entre el ala de la viga y el ala de la columna no deben estar soldadas en la cara inferior del ala de la viga, ningún punto de soldadura es permitido en esta zona.

En caso de que se haya producido este error se debe reparar de la siguiente manera:

- La soldadura tendrá que ser removida de manera considerando que los puntos de soldadura no unan la barra de respaldo con el ala de la viga.
- La superficie del ala de la viga debe permanecer nivelada y sin ningún residuo o impureza.
- Cualquier imperfección debe ser reparado. La refacción se debe realizar mediante el proceso SMAW empleando electrodos E7018 o metales de relleno que cumplan los requisitos de la sección 11.1 NEC SE AC considerando, soldadura de demanda crítica. En caso de requerir un procedimiento especial la Especificación (EPS) en procesos especiales. Finalmente se debe pulir la soldadura.

Barras de apoyo no fusionables en uniones del ala de viga con columna


En caso de emplearse barras de respaldo de metales que no pueden ser fusionados al realizar la (SRPC) entre el ala de la viga y la columna, las barras de apoyo deberán ser removidas, la soldadura de raíz debe ser pulida hasta llegar a metal brillante y se debe soldar de nuevo con soldadura tipo filete, la misma deberá ser mayor o igual a 8mm y se extenderá en lado adyacente al ala de la viga hasta el metal base del ala de la viga.

Detalles o tratamientos a las platinas de respaldo lateral

En caso de usar platinas de respaldo lateral Figura 17, pueden ser desplazadas hasta 3 mm de la superficie del metal base y del extremo de la soldadura, con excepción de

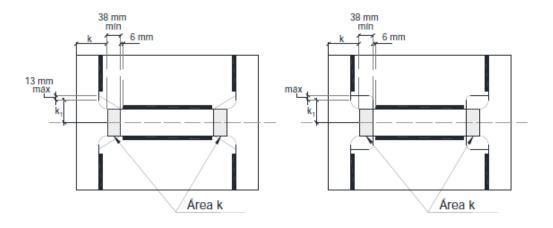
placas de continuidad en cuyo caso se puede desplazar hasta 6 mm del borde de la placa.

Figura 17: Barra de apoyo, platina de apoyo lateral de tope.

Fuente: NEC SE AC 2015

Es posible la remoción de barras por uno de los siguientes métodos: corte con electrodo de carbono, pulidora, cincelado y corte térmico. El proceso debe ser controlado para evitar imperfecciones. Los extremos en donde se han removido las platinas de apoyo lateral deben poseer una superficie con una rugosidad igual o mayor a 13 micrones. El perímetro del borde de la soldadura tiene que poseer transiciones lisas hacia las superficies adyacentes, sin imperfecciones, orificios vacíos o esquinas afiladas. Los defectos en soldadura mayores a 1.6 mm deben ser eliminados y refaccionados por medio de EPS. En caso de poseer otros defectos, estos deben ser removidos mediante pulido, y poseer una pendiente no menor o igual que 1:5.

Soldadura de pre armado


Se debe colocar donde puedan ser insertadas con la soldadura final.

Placas de continuidad

A lo largo del ala, el corte de esquina tiene que ser especificado de forma que el corte se extienda una distancia mayor o igual a 38 mm (1½ pulg.) bajo del valor de "k" Figura 18, de la sección doblada. En la longitud del ala, la placa no debe interferir con el radio de la sección doblada y tiene que especificarse de forma que el corte de la esquina no sobrepase una distancia de 12mm (½ pulg.) bajo el del valor "k1" de la

sección. El corte esquinero tiene que ser especificado con el fin de facilitar el acabado entre la soldadura en el ala y alma. En caso de emplear recortes curvos, el radio debe ser mayor o igual a 12 mm.

Figura 18: Recorte de placas de continuidad de columnas, realizados en esquinas.

Fuente: NEC SE AC 2015

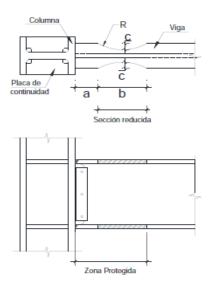
En el borde de la soldadura junto a la unión ala-alma, no se debe emplear un apoyo lateral para las placas de continuidad, solo en caso de que el fiscalizador permita dejarlas en esta zona.

En caso de que la soldadura de las placas de continuidad sea efectuada empleando barras de apoyo lateral próximo al radio de chaflán de la columna, se puede utilizar capas de soldadura para el desplazamiento de un ángulo entre 0° y 45° medidos desde el plano vertical. La longitud efectiva de la soldadura se definida como el segmento de la soldadura el cual posee tamaño completo. No es necesaria la realización de ensayos no destructivos, en dicha longitud.

Conexión precalificada vigas con sección reducida (RBS o CVRS)

General

La Conexión con Viga de Sección Reducida (CVSR) tiene la característica de ser una conexión totalmente restringida (TR).


Este tipo de conexión tiene un corte, el cual en su mayoría es de radio circular, localizado en el ala superior y el ala inferior de la viga, el cual se encuentra zona adyacente a la conexión viga - columna. La razón de realizar este corte en este lugar

es: forzar la formación de la rótula plástica dentro de la sección reducida de la viga, como se indica en la figura 19.

Sistemas estructurales

La (CVSR) es una conexión precalificada la cual puede ser empleada en pórticos especiales a momento (PEM) si cumplen las especificaciones establecidas en el AISC 358, del año más reciente la cual será descrita en esta investigación.

Figura 19: Conexión con viga de sección reducida y rótula plástica.

Fuente: NEC SE AC 2015

La ecuación para el cálculo de "R" o el radio a reducir en las alas está dada por:

$$R = \frac{4c^2 + b^2}{8c}$$
Ec. 35

Límites para que se considera como conexión precalificada

Límites en vigas:

Las vigas deben ser perfiles tipo "I" roladas o armadas según parámetros vistos previos en la presente investigación

• El peralte de las vigas está definido por una sección rolada W36 (W920). El peralte de las secciones armadas no debe ser mayor que el peralte establecido para perfiles rolados de ala ancha.

- El peso máximo de las vigas debe ser 450 kg/m
- El espesor de las alas de la viga debe ser igual o menor a 44.5 mm (1¾ pulg.).
- La división de luz libre sobre peralte no deberá ser mayor o igual 7.
- Las relaciones ancho espesor para alas y alma de la viga tienen que cumplir los parámetros establecidos para vigas sísmicamente compactas.

En caso de determinar la relación ancho-espesor del ala, el valor de bf debe ser mayor o igual que el ancho del ala en los extremos de los dos tercios medios de la sección reducida [19] solamente si las cargas gravitacionales no desplacen la ubicación de la rótula plástica una distancia considerable a partir de la mitad de la sección reducida de la viga.

El arriostramiento lateral de las vigas tendrá que ser diseñado según lo estipulado en la sección de la presente investigación: Arriostramiento lateral en vigas y arriostramiento lateral complementario para arriostramiento lugares en lugares junto a rotulas plásticas. No es necesario realizar ensayos de ensamblaje bajo el criterio de columna fuerte-viga débil.

Si se coloca arriostramiento lateral complementario, debe ser ubicado a una distancia igual o menor a d/2 del borde de sección reducida de la viga más alejada de la cara de la columna, en cuyo caso d es el peralte de la viga. No está permitido colocar arriostramiento lateral en la zona que empieza en la cara de la columna y llega al borde de la sección reducida más alejada a la cara de la columna.

Si la viga soporta una losa de hormigón que la cual permanezca unida a la zona protegida con conectores de corte soldados con una distancia de separación de 300mm entre centros, no es necesario colocar arriostramientos complementarios en el ala inferior y superior de la sección reducida.

• Una zona protegida está definida como la zona de la viga entre la cara de la columna y el borde de la sección reducida de la viga que se encuentra con mayor lejanía de la cara de la columna.

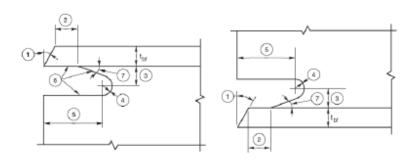
Limitaciones en columnas

- Las columnas deberán ser perfiles que han sido rolados o previamente armados según lo estipulado previamente en secciones roladas y armadas en esta investigación o en el capítulo 9 sección 1 de la NEC SE AC
- La viga debe estar unida mediante conexiones al ala de la columna.
- El peralte de las columnas dobladas o roladas está definido a un perfil rolado W36 (W920). El peralte de las columnas armadas de ala ancha no debe ser mayor que el peralte establecido en perfiles rolados. Las columnas en forma de cruz o cruciformes que posean alas no deben poseer un ancho o peralte de mayor magnitud que el peralte establecido en perfiles rolados. Las columnas armadas tipo cajón no deben poseer un ancho o peralte el cual sea mayor a 600 mm. El ala ancha encajonada en columnas no debe poseer un ancho o peralte mayor a 600 mm en caso de que forme parte de un pórtico ortogonal a momento.
- No se ha establecido un límite para el peso de las columnas.
- No se ha establecido un límite del espesor de las alas.
- Las divisiones ancho-espesor para alas y alma de las columnas necesitan obligatoriamente estar limitadas para cumplir los requerimientos de una sección sísmicamente compacta.
- El arriostramiento lateral en columnas tendrá que ser diseñado según lo estipulado en la sección de la presente investigación: Arriostramiento lateral en columnas, o en el capítulo 8 sección 1 de la NEC SE AC

Limitaciones para las conexiones viga-columna

Las conexiones viga-columna deben satisfacer las siguientes limitaciones:

 Referente a la zona de panel debe cumplir los parámetros establecidos anteriormente en la presente investigación o en el capítulo 8 sección 1 de la NEC SE AC referente a zonas de panel.


Para mantener la filosofía columna fuerte viga débil se debe cumplir los requerimientos siguiente requerimientos, junto a los especificados previamente: El valor de ΣM^*pv debe calcularse igual a $\Sigma (Mpr+Mv)$, cuya nomenclatura significa

Mpr es el máximo momento probable en la mitad de la sección reducida y se calcula de la siguiente manera: Cpr x Ry x Fy x Ze, y Mv se calcula: VVSR(a + b/2 + dC/2), en cuyo caso VVSR es el cortante en la mitad de la sección reducida de la viga, a y b son las longitudes establecidas en la Figura 19, y dc representa el peralte de la columna.

Limitaciones en la conexión del ala de la columna y el ala de la viga

- Las alas de la viga tiene que estar unidas al ala de la columna a través de soldadura de ranura de penetración completa (SRPC). Las soldaduras del ala de la viga deben efectuarse según lo establecido para soldaduras de demanda crítica el capítulo 11 de la NEC SE AC.
- Las características geométricas de agujeros de ingreso deben poseer la forma igual a la figura 20 el área del agujero de acceso debe poseer una rugosidad que no exceda los 13 µm, y no poseer imperfecciones ni agujeros; si por alguna razón existen, éstos necesitan ser reparados según lo que establezca el fiscalizador de estructuras. Los agujeros de ingreso no están permitidos en el alma de la viga adyacente a la placa de borde en una conexión empernada a momento.

Figura 20: Características geométricas de los agujeros.

Fuente: NEC SE AC 2015

Los agujeros de acceso necesariamente tienen que respetar las siguientes consideraciones:

- Bisel necesario para (SRPC).
- El más alto valor entre tbf o 13 mm (más ½tbf, o menos ¼tbf).
- $\frac{3}{4}$ tbf a tbf, mayor o igual a 19 mm (\pm 6 mm).
- Mayor o igual a 10 mm de radio.

- 3 tbf (± 13 mm)
- Buscar el FEMA-353, "Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications" para detalles de elaboración el cual posee métodos de corte y especificaciones para los detalles finales superficiales.

El límite no se debe acumular en la medida, que el ángulo del agujero de ingreso corte el área del ala sea mayor a 25°.

Límites para la unión entre el alma de la viga y el ala de la columna

- La resistencia demandada a corte de la unión de la viga deberá satisfacer lo indicado en las ecuaciones de la presente investigación 31-34 o lo estipulado en el capítulo 9 sección 2, placa de continuidad para alas de viga, según la NEC SE AC.
- El alma de la viga tiene que estar conectada al ala de la columna mediante (SRPC) que debe cubrir los agujeros de acceso de la soldadura. Sé permite que la placa de conexión a cortante sea empleada como barra de apoyo para la (SRPC). El espesor de la placa debe ser al menos de 10 mm. No es necesario colocar platinas de apoyo lateral en los extremos de la soldadura en el alma de la viga. Se pueden usar agujeros para pernos en el alma de la viga durante el montaje.

Limitaciones para la conexión entre el alma de la viga y la columna

La disminución de la sección de la viga tiene que ser realizada mediante corte térmico con el fin de conseguir una curva no brusca. La máxima rugosidad en el área de corte tiene que tener 13 micrones de según el ANSI B46.1 y medido empleando la muestra 4 de la AWS C4.1-77 o similar. Todas las transiciones entre la sección reducida de la viga y el ala no modificada de la viga tienen ser chanfleadas en dirección del largo del ala para reducir fallas que ocasionen transiciones no suaves. Las esquinas entre el área de la sección reducida y las alas superior e inferior de la viga necesitan ser pulidas para retirar bordes afilados. No es necesario colocar biseles.

La variación permitida en el corte térmico es de ± 6 mm a partir de la línea teórica de corte. El ala efectiva de la viga sin importar el tipo de sección tiene que poseer una variación de ± 10 mm.

Imperfecciones o agujeros los cuales se encuentren en el corte térmico del área de la viga de sección reducida debe ser refaccionada empleando pulido a una profundidad menor o igual a 6 mm. La sección que posea imperfecciones tiene que ser alisada empleando pulido con el fin de producir una transición suavizada, y la distancia total del área pulida no debe ser mayor o igual que cinco veces la altura de las trazas removidas a cada lado de la misma. En caso de presentarse una imperfección profunda, la sección tiene que ser inspeccionada empleando un ensayo de partículas magnéticas (MT) al finalizar el pulido con el fin de asegurar que la altura total de la muesca sea removida. El pulido no puede incrementarse más de 6 mm el corte de la VSR.

Las imperfecciones o agujeros las cuales sobrepase los 6 mm de profundidad, y no superen los 12 mm, también las imperfecciones o agujeros los cuales han sido reparadas empleando pulido y que aumente el peralte efectivo del corte de la viga de sección reducida (VCR) inferior a la tolerancia permitida, deben ser refaccionadas con soldadura. Se debe sustraer las imperfecciones o agujeros y pulir hasta alcanzar un radio suavizado y mayor o igual a 6 mm para la elaboración de la soldadura. La sección reparada tiene que estar previamente calentada a una temperatura de 150°F o el valor establecido en la Tabla 5.2 de la AWS D1.1, entre ambos se tomará el mayor, considerado desde el sector de la soldadura a refaccionar.

Imperfecciones y agujeros los cuales sean mayores a 12 mm de profundidad deberán ser reparados solamente mediante una metodología aprobada por el fiscalizador de estructuras.

Procedimiento de diseño

Consideración 1: Calcular los valores de "a", "b" y "c" de la figura 19, según los siguientes intervalos permitidos:

$$0.5b_f \le a \le 0.75b_f$$
 Ec. 36

$$0.65d \le b \le 0.85d$$
 Ec. 37

$$0.1b_f \le c \le 0.25b_f$$
 Ec. 38

Cuya nomenclatura representa:

d, peralte de la viga

a, longitud a partir la cara de la columna y finaliza en el lugar que empieza el corte de la viga de sección reducida (VSR).

b, distancia de corte de la viga de sección reducida (VSR)

c, altura del corte a la mitad de la viga de sección reducida

Consideración 2: Módulo plástico de la viga de la mitad de la viga con sección reducida.

$$Z_{VCR} = Z_V - 2ct_f(d - tf)$$
 Ec. 39

Cuya nomenclatura representa:

tf, espesor del ala de la sección

ZVSR, módulo plástico perteneciente a la VSR.

Consideración 3: Módulo plástico de la mitad de la viga con sección reducida.

$$M_{pr} = C_{pr}R_{\nu}F_{\nu}Z_{VCR}$$
 Ec. 40

$$C_{pr} = \frac{Fy + Fu}{2Fy} \le 1.2 \text{ Ec. } 41$$

Cuya nomenclatura representa:

Cpr, factor ya establecido en la ecuación 41.

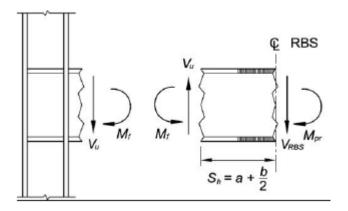
Mpr, momento máximo probable al centro de la viga de sección reducida

Consideración 4: Fuerza cortante de la mitad de la viga con sección reducida.

$$V_{VSR} = \frac{2M_{pr}}{Ih} + V_{grav}$$
 Ec. 42

Cuya nomenclatura representa:

VVSR, el máximo valor de la fuerza cortante en la mitad de la viga de sección reducida en uno de sus bordes.


Vgrav, Fuerza cortante en la viga la cual es el resultado de la siguiente combinación de carga: 1.2D + (f1)L en cuyo caso f1 es el factor de carga que varía según lo estipulado en la NEC, pero no puede ser menor a 0.5 y generalmente es 1,6.

Consideración 5: Momento máximo probable en la cara de la columna

$$M_f = M_{pr} + V_{VSR}Sh$$
 Ec. 43
 $Sh = a + \frac{b}{2}$ Ec. 44

Sh, longitud desde la cara de la columna hasta el centroide de la rótula plástica.

Figura 21: DCL (Diagrama de cuerpo libre) entre la cara de la columna y la mitad de la viga de la sección reducida.

Fuente: ANSI/AISC 358-16

Consideración 6: momento plástico de la viga basado en el esfuerzo de fluencia probable Mpc.

$$Mpe = R_v Z_v F_v$$
 Ec. 45

Cuya nomenclatura representa:

Ry, factor de esfuerzo de fluencia probable

Zv, módulo plástico de la viga

Consideración 7: Verificación de la siguiente inecuación

$$M_f \leq \emptyset_d M_{pe}$$
 Ec. 46

Cuya nomenclatura representa:

Mpe, esfuerzo de fluencia probable

$\varphi d = 1$

Consideración 8: Resistencia demanda en la unión viga-columna y en la viga.

Cuya nomenclatura representa:

$$Vu = V_{RRS} + Vg$$
 Ec. 47

Vu, resistencia requerida a corte de la viga y en la unión viga-columna

Vg, fuerza cortante producida por las cargas gravitacionales en la zona de la viga situado entre la cara de la columna y el centroide de la rótula plástica

Consideración 9: Diseño de la placa de corte en la conexión ala de la columna con alma de la viga

$$\phi_v V_V \ge Vu$$
 Ec. 48

$$\phi_v V_V = \phi_v d_{pc} t_{cp} F_{ypc}$$
 Ec. 49

Cuya nomenclatura representa:

φvVv, resistencia de diseño de la placa de corte

Fypc, límite de fluencia determinado para la placa de corte

dpc, peralte de la placa de cortante

tpc, espesor de la placa de cortante

Consideración 10: Diseño de la zona de panel

$$\varphi R_n \ge Ru \text{ Ec. } 50$$

$$Ru = \frac{\Sigma Mf}{d-tf}$$
 Ec. 51

Cuya nomenclatura representa:

φRn, resistencia de diseño en la zona de panel

ru, resistencia requerida a corte en la zona de panel

Las última consideraciones tienen que ver con el diseño de la placa doble en la zona de panel, la cual se revisó con anterioridad; o queda establecido en el capítulo 9 sección 1 de la NEC SE AC; y finalmente se realiza el chequeo de la columna fuerte viga débil la cual también está detallado previamente en este documento o se puede revisar en el capítulo 8 sección 1 de la NEC SE AC

1.1.3.2 Pórticos Especiales Arriostrados Concéntricos (PEAC o SCBF)

Filosofía de Diseño

Los pórticos de acero concéntricamente arriostrados son sistemas estructurales los cuales en los centroides de los ejes que pertenecen miembros que se unen a una junta y en un punto se interceptan con el fin de configurar una armadura vertical resistente a cargas laterales.

La resistencia solicitada de columnas, vigas, puntales y conexiones en PEAM será determinada usando el efecto de carga sísmica de capacidad limitada horizontal. El efecto de carga sísmica, denominado Ecl, se tomará como la fuerza mayor determinada a partir de las siguientes consideraciones:

- (a) Suponiendo que todos los arriostramientos resisten las fuerzas esperadas en compresión o en tensión.
- **(b)** Suponiendo que todos los arriostramientos en tensión resisten las fuerzas esperadas y se supone todos los arriostramientos pueden resistir su resistencia esperada post pandeo.
- (c) Para pórticos reforzados de varios niveles, los análisis que representan el rendimiento progresivo y pandeo de las riostras de nivel más débil a más fuerte. Los análisis tendrán en cuenta ambas direcciones de carga del pórtico.

Se determinará que las riostras estén en compresión o tensión, sin considerar los efectos de cargas gravitacionales los análisis deben considerar ambas direcciones de en el que los pórticos se encuentran sometidos a cargas.

La fuerza de refuerzo esperada en la tensión es igual a RyFyAg, donde Ag es el área gruesa.

Está permitido ocupar la resistencia de refuerzo esperada en la compresión como la menor entre Ry*Fy*Ag y (1/0.877) Fcre*Ag, donde Fcr se determina a partir de la siguiente ecuación según el AISC 360-16:

Sí:
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{Fy}}$$
 Ec. 52

$$Fcr = \left(0.658 \frac{Fy}{Fe}\right) Fy \quad \text{Ec. 53}$$

Sí:
$$\frac{KL}{r} > 4,71 \sqrt{\frac{E}{Fy}}$$
 Ec. 54

$$Fcr = 0.877Fe$$
 Ec. 55

Cuya nomenclatura representa:

K, factor de longitud efectiva

L, longitud no arriostrada lateral del miembro, cm (mm).

r, radio de giro, cm (mm).

Fe, tensión de pandeo elástico determinada con la siguiente ecuación, kgf/cm2 (MPa).

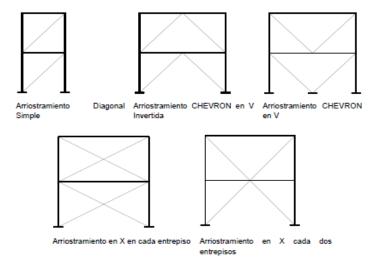
$$\frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$
 Ec 56.

Con la excepción de que la tensión de rendimiento esperada, RyFy, se sustituye Fy. La longitud de la riostra utilizada para la determinación de Fcr no debe exceder la distancia de extremo de refuerzo a extremo de refuerzo.

La resistencia esperada de riostra después del pandeo se empleará como máximo de 0,3 veces la fuerza de refuerzo esperado en compresión.

Excepciones:

- (a) Se puede descartar las fuerzas de flexión resultantes de la deriva sísmica.
- (b) La resistencia demanda de las columnas no debe ser menor que las dos siguientes consideraciones:
 - (1) Las fuerzas correspondientes a la resistencia de la cimentación al vuelco de la edificación


- (2) Fuerzas según lo establecido en análisis no lineal según lo que estipula la Sección C3 del AISC 341-16.
- (c) La resistencia requerida de las conexiones de arriostramiento será según lo que se establece en los siguientes temas de la presente investigación o lo que estípula el AISC 341-16 F2.6c.

Mecanismo de disipación de energía

El sistema de pórticos especiales arriostrados concéntricamente (PEAC) necesita tener la capacidad de soportar deformaciones inelásticas considerables en caso de estar sujetos a fuerzas resultantes provenientes del sismo de diseño.

Dada su geometría, los PEAC brindan una acción de armadura cuyos miembros permanecen sujetos principalmente a cargas axiales dentro del rango elástico. Sin embargo, en caso de que los PEAC se encuentren sujetos a fuerzas resultantes provenientes del sismo de diseño, se espera que los elementos arriostrados (denominados también diagonales o contravientos) y sus conexiones se desenvuelvan mostrando considerables deformaciones inelásticas cíclicas en tracción y compresión en el sector de post-pandeo.

Figura 22: Diferentes formas en pórticos de PEAC.

Fuente: NEC SE AC 2015

Requerimientos del sistema

Definición de línea de arriostramiento

Es una línea simple o líneas paralelas la cual posea una distancia de separación en planta menor o máximo al 10% de la dimensión del edificio perpendicular a la línea de arriostramiento.

Distribución de fuerzas laterales

Por la longitud de una línea de arriostramiento, las diagonales tienen que ser colocadas alternadamente, con el fin de que cualquier dirección de fuerza paralela a la línea de arriostramiento, al menos el 30% pero menor o igual que el 70% de la fuerza total horizontal en todo lo largo de esta línea sea soportada mediante las diagonales en tracción, salvo que la resistencia aceptada de cada diagonal en compresión tenga un mayor valor que la resistencia resultante demandada de la colocación de las combinaciones de cargas establecidas en la NEC-SE-CG.

Pórticos que posean arrostramiento chevron "V" y "V" invertidas propiedades de un PEAC deben mantener los siguientes requerimientos:

- Las vigas deben ser hiperestáticas entre columnas.
- Las vigas se necesitan arriostrarse de forma que cumplan lo estipulado en el capítulo 6 sección 2 de la NEC SE AC o lo que será descrito a continuación:

Arriostramiento para la estabilidad en vigas

Las vigas de acero estructural que están sujetas a flexión deben ser diseñadas con la capacidad de restringir el pandeo torsional lateral (PTL). El arriostramiento debe cumplir los siguientes requisitos:

- Las dos alas de las vigas tienen que estar arriostradas lateralmente o el perfil transversal de la viga debe estar arriostrada torsionalmente.
- La resistencia a la flexión probable de los arriostramientos de las vigas deberá cumplir lo demandado del apéndice 6 del AISC 360-16, con Cd = 1, y deberá calcularse según la siguiente ecuación:

Según LRFD:

$$M\mathbf{r} = M\mathbf{u} = R\mathbf{y}F\mathbf{y}Z$$
 Ec. 57

El máximo desplazamiento permitido de un arriostramiento de la viga es:

$$Lb = \frac{0.17ryFy}{Fy} \quad \text{Ec. 58}$$

Cuya nomenclatura representa:

ry, radio de giro que circunvala el eje Y

Lb, distancia entre puntos arriostrados lateralmente con el fin de que no se produzcan desplazamientos en el ala por compresión o para que no se produzca pandeo en la sección transversal.

• La resistencia requerida en vigas interceptadas por los arriostramientos, sus conectores y miembros deberá determinarse en base a las combinaciones de carga estipuladas en la NEC-SE-CG asumiendo que los arriostramientos no proporcionan soporte para la carga viva ni para la carga muerta. Para las combinaciones de carga que incluyan el efecto sísmico, la fuerza sísmica, E, en la viga debe ser determinada de la siguiente manera:

Fuerzas a tracción de todos los arrostramientos = RyFyAg Ec. 59

Fuerza a compresión de todos los arriostramientos = 0,3Pn Ec. 60

Cuya nomenclatura representa:

Pn, resistencia nominal a carga axial del arriostramiento a compresión

• Como mínimo, un conjunto de arriostramientos laterales se requiere en la intersección de la diagonal tipo V o V invertida, a menos que la viga tenga la suficiente resistencia y rigidez fuera del plano para asegurar la estabilidad entre los puntos de los arriostramientos adyacentes. Un método para demostrar la suficiencia de resistencia y rigidez de la viga fuera del plano consiste en aplicar la fuerza de arriostramiento definida en la ecuación A6-7 Apéndice 6 de la Especificación a cada ala para formar un par torsional; esta carga debe actuar conjuntamente con las fuerzas de flexión definidas en el numeral 34). La rigidez de la viga (y sus restricciones) con respecto a esta carga torsional debe satisfacer la ecuación A6-8 Apéndice 6 de la Especificación.

1b. Arriostramiento Puntual

En la dirección perpendicular al eje longitudinal de la viga, La resistencia requerida del arriostramiento puntual en extremos y puntos intermedio es:

$$Pbr = 0.02 \left(\frac{MrCd}{ho}\right)$$
 Ec. 61

La rigidez necesaria para el arriostramiento es:

$$\beta br = \frac{1}{\phi} \left(\frac{10MrCd}{Lbrho} \right) \text{ Ec. } 62$$

$$\phi = 0.75$$

Cuya nomenclatura representa:

Cd, generalmente es 1.0, con la siguiente excepción: en caso de que una viga diseñada a flexión presente doble curvatura cuando el arriostramiento está cerca a al punto donde se produce la mencionada inflexión en cuyo caso es 2.0.

Lbr, Segmento longitudinal lateral no arriostrado en la zona de unión.

ho, distancia de los centroides a las alas

Especificaciones para columnas y vigas

Deberá cumplir lo establecido en la tabla 9 de la presente investigación o en caso de cambiar la especificación 360 AISC será lo que la mencionada entidad norme.

Para la relación de esbeltez de las columnas se determinará bajo el siguiente criterio:

$$\frac{KL}{r} \le 4\sqrt{\frac{E}{Fy}}$$
 Ec. 63

La resistencia a tensión de las riostras está dada por la siguiente ecuación por LRFD:

$$Fy = RyFyAg$$
 Ec. 64

Consideraciones adicionales que deben cumplir las riostras diagonales

Las riostras deben cumplir con los siguientes requisitos:

(a) Esbeltez: los elementos arriostrados deben tener una relación de esbeltez de $Lc/r \le 200$ Ec. 65

Cuya nomenclatura representa:

Lc, longitud efectiva de la riostra

(b) Riostras incorporadas: el espacio entre conectores debe ser tal que la esbeltez la relación, a / ri, de miembros individuales entre los conectores no exceda 0.4 veces la esbeltez gobernante del miembro acumulado.

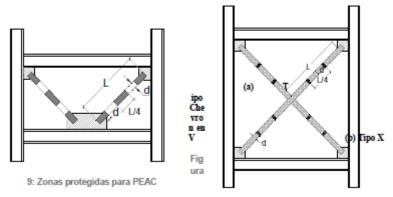
Cuya nomenclatura representa:

a, distancia entre conectores.

ri, radio mínimo de giro del componente individual.

Se mantendrán el mismo criterio que en vigas y columnas armadas además de la ecuación vista anteriormente.

Excepción: donde se produzca el pandeo de las riostras sobre su eje crítico, no causar cizallamiento en los conectores, el diseño de los conectores no debe cumplir con esta disposición.


- (c) El área neta efectiva de la riostra no debe ser mayor o igual que el área bruta del refuerzo. Dónde se utiliza refuerzo sobre las riostras se aplicarán los siguientes criterios:
- (1) El límite de elasticidad especificado del refuerzo deberá ser mayor o igual a la fuerza de elasticidad mínima especificada de la riostra.
- (2) Los conectores del refuerzo a la riostra deberán tener suficiente resistencia para desarrollar la resistencia de refuerzo esperada en cada lado de una sección reducida.

Zonas protegidas (Rótulas plásticas)

En un PEAC es necesario colocar una rótula plástica junto a cada conexión cuya longitud es igual al peralte del arriostramiento en el plano de pandeo y el cuarto central de la longitud del arriostramiento, adicionalmente deben incluir elementos que unan los arriostramientos a las vigas y columnas y debe satisfacer lo estipulado en el capítulo

6 sección 2 de la NEC referente a zonas protegida. La Figura 23 se visualiza diferentes rótulas plásticas para PEAC del en V invertida y X.

Figura 23: Rótulas plásticas para PEAC del en V invertida y X.

Fuente: NEC SE AC 2015

Elementos Link o conectores

Los conectores de los PEAC deben satisfacer los requisitos indicados en anteriormente para pórticos excéntricos arriostrados concéntricamente.

Unión viga-columna

En caso de emplear un arriostramiento o la placa Gusset esté conectada a ambos miembros de una unión viga columna, la conexión necesariamente tiene que cumplir uno de los siguientes requerimientos:

- La unión debe ser una conexión simple que cumpla lo siguiente: trasmitir momentos de magnitud despreciable. El análisis de la estructura, puede asumir que los conectores simples tienen la capacidad de rotación relativa entre los miembros que se unen. Tiene la facultad de rotación suficiente para colocar las rotaciones establecidas por el análisis de la estructura. La rotación requerida deberá tomarse como 0.025 radianes.
- La conexión tiene que ser diseñada para soportar un momento igual o no mayor a los siguientes valores:

Para vigas y columnas se aplica la siguiente ecuación considerando que para migas y columnas se aplica la siguiente ecuación. Pero en columnas se sumará todos los momentos existentes en la misma:

M = 1.1RyFyZ Ec. 66

Adicionalmente al tratarse de columnas este momento se debe considerar la combinación con la resistencia demandada de la conexión entre el arriostramiento y la viga, considerando las fuerzas colectoras amplificadas del diafragma.

Resistencias requeridas de los elementos link o conectores

La resistencia demandada a tracción, compresión y flexión de los elementos link (tomando en cuenta la unión viga-columna si forma parte del sistema arriostrado) deberá calcularse según lo estipulado a continuación. Se permite tomar en cuenta sin realizar ninguna iteración las resistencias requeridas por separado.

Resistencia solicitada a tracción

Se diseñará según el menor valor de los siguientes parámetros:

- Para arriostramientos sin sección reducida se aplica lo expuesto en la ecuación
 59 de la presente investigación en caso de que posean sección reducida se empleará:
 - (a) Considerando que los elementos fluyan en tracción de elementos conectores:

$$Rn = FyAg Ec. 67$$

b) Para ruptura en tracción de elementos conectores:

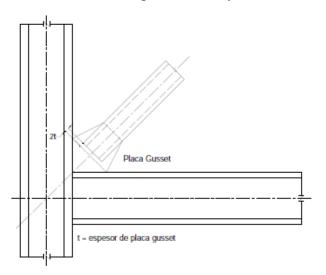
$$Rn = FuAe Ec. 68$$

Cuya nomenclatura representa:

Ae, área neta efectiva.

 La máxima carga indicada en el análisis que pueda ser transferida a los arriostramientos del sistema.

La resistencia demandada para el límite de deslizamiento del perno no tiene que ser mayor el efecto de la combinación de carga establecida en la NEC-SE-CG, en caso de que se usen agujeros holgados.


Resistencia requerida a flexión

Se calculará según lo establecido en la ecuación 66. Adicionalmente deben cumplir lo estipulado en la resistencia demanda a tracción y de ser necesario soportan rotaciones

inelásticas vinculadas con las deformaciones del arriostramiento post-pandeo sin embargo no es un requerimiento obligatorio.

El ordenamiento de la rotación inelástica se obtiene por lo general mediante la implementación de una placa Gusset finalizando el arriostramiento posterior a la línea de restricción.

Figura 24: Ubicación de la placa Gusset y línea de restricción.

Fuente: NEC SE AC 2015

Resistencia solicitada a compresión

Los elementos link o conectores de arriostramiento es necesario su diseño para una resistencia solicitada a compresión cuyo estado límite de pandeo debe ser mayor o igual a:

1.1*RyPn* Ec. 69

Placas Gusset

Para el pandeo de refuerzo fuera del plano, las soldaduras que sujetan una placa de refuerzo directamente a un ala de viga o ala de columna tendrán una resistencia al corte disponible igual a

0.6RyFytp/αs Ec. 70

Cuya nomenclatura representa:

tp, espesor de la placa de refuerzo

αs, número de veces la longitud de la junta

Soldaduras de demanda crítica

Este tipo de soldaduras debe satisfacer con lo estipulado en la normativa de la AWS D1.8.

- Soldaduras de ranura en empalmes de columnas.
- Soldaduras en la unión de la placa base con la columna. Solamente en caso de que se demuestre que no es posible la formación de rótulas plásticas en la columna, en o en junto a la placa base y careciendo de tensión neta bajo las combinaciones de carga que incluyan la sísmica, en estos casos, no es necesario la soldadura de demanda crítica.
- Soldaduras en las uniones viga-columna de acuerdo visto anteriormente para PEAC.

Empalmes en columnas

Además de los requerimientos indicados anteriormente, las columnas pertenecientes a los PEAC deben ser diseñadas considerando el 50% de la resistencia a flexión que poseen los elementos conectados.

La resistencia a cortante requerida debe ser:

$$\frac{\frac{2}{3}\Sigma Mpc}{H}$$
 Ec. 71

H, altura de entrepiso.

1.1.3.3. Pórticos Arriostrados Excéntricamente (PEA o EBF)

Es una tipología estructural conformados columnas, vigas y arriostramientos diagonales tiene similitud con los pórticos arriostrados concéntricamente (PAC). Su diferencia principal radica que los PAC al menos uno de los extremos de cada arriostramiento diagonal está conectado a un segmento de viga con el fin de aislarlo el mismo recibe el nombre de vínculo. Lo que produce, se transmita al vínculo los esfuerzos de corte y flexión por la fuerza en el arriostramiento diagonal.

La finalidad de los PAE es soportar cargas laterales empleando una combinación de uso del pórtico y uso de la armadura. Es por ello que se puede considerar a los PAE como un sistema dual entre pórticos resistentes a momento y pórticos arriostrados concéntricamente.

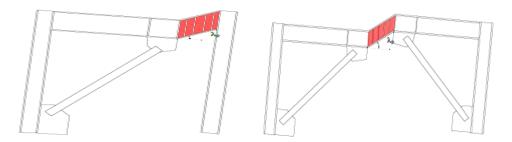
Análisis

La resistencia requerida de los arriostramientos diagonales y sus conectores, vigas de enlaces externos, y columnas se determinará empleando el efecto de carga sísmica de ductilidad limitada. Los el efecto de carga sísmica horizontal de ductilidad limitada, se tomará como las fuerzas desarrolladas en el miembro que asume que las fuerzas en los extremos de los enlaces corresponden a la fuerza cortante ajustada de la conexión. La resistencia a corte del enlace se denominará como Ry y se multiplicará por la resistencia nominal al cortante del enlace, Vn, la cual se calculará según la Sección F3.5b.2, del AISC 341-16. O sé multiplicada 1.25 para enlaces en forma de I y 1.4 para secciones tipo cajón o tubulares rectangulares.

Excepciones

- (a) El efecto de las fuerzas horizontales de ductilidad limitada, Ecl, se puede tomar como 0.88 veces las fuerzas determinadas en esta sección para el diseño de las porciones de vigas fuera de los conectores.
- (b) Se permite despreciar las fuerzas de flexión resultantes de la deriva sísmica en esta determinación. El Momento resultante de una carga aplicada a la columna entre los puntos de apoyo lateral deben ser considerados.
- (c) La resistencia requerida de las columnas necesita no superar el menor valor de los siguientes:

(1) Fuerzas correspondientes a la resistencia de la cimentación al vuelco de la edificación


(2) Fuerzas determinadas a partir del análisis no lineal como se define en la Sección C3 del AISC 341-16.

Mecanismo de disipación de energía

Los conectores de los pórticos arriostrados excéntricamente necesitan ser capaces de soportar deformaciones inelásticas considerables en caso de estar sometidas a fuerzas resultantes provenientes por el sismo de diseño. La Figura 25 indica dos tipos de PAE cuyos conectores se encuentran incursionando el rango inelástico.

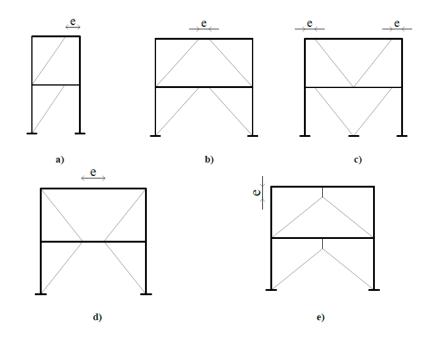

Las columnas, segmentos de vigas y arriostramientos diagonales que se encuentren fuera de los conectores deben ser diseñados para mantenerse en el rango elástico ante las máximas cargas generadas por la conexión ya que se encuentran en la zona de fluencia y de endurecimiento por deformación.

Figura 25: Conectores de los PAE que se encuentran en el rango inelástico.

Fuente: NEC SE AC 2015

Figura 26: Tipos más comunes de Pórticos arriostrados excéntricamente.

Fuente: NEC SE AC 2015

Esquema del sistema estructural

Clasificación de los conectores

La respuesta inelástica de los conectores tiene que ver esencialmente con la longitud de la conexión. Las longitudes de los conectores son las siguientes: cortas, intermedias y largas. Él conector es considerado largo cuando su longitud es mayor o igual a 2.6 Mp/Vp, El estado límite predominante en la respuesta inelástica de los vínculos cortos es fluencia por cortante. El límite inelástico predominante en los conectores largos es fluencia por flexión. Se considerada conexión intermedia cuando su longitud es mayor a 1.6 Mp/Vp y menor a 2.6 Mp/Vp. El límite mandatorio que gobierna la respuesta inelástica de los conectores intermedias es una combinación de fluencia por corte y flexión.

Los conectores son consideradas cortas si longitud no mayor que 1.6 Mp/Vp:,

El cálculo de Mp y Vp se determinan mediante:

$$Mp = Fy Z Ec. 72$$

$$Vp = 0.6 \text{ FyAw}$$
 Ec. 73

$$Aw = (d-2tf) tw Ec. 74$$

Cuya nomenclatura representa:

Aw, Área del alma de la conexión

Ángulo de rotación de la conexión

Es el ángulo inelástico entre la viga fuera del conector y el conector, si la deriva de entrepiso total es la misma que la deriva de piso de diseño Δ . El ángulo de rotación de la conexión no debe ser mayor que los siguientes parámetros:

- 0.08 radianes en conectores cortas.
- 0.02 radianes en conectores largas.
- El valor para conectores intermedios resultará de una interpolación lineal entre los valores estipulados en la parte de superior (0.08 y 0.02).

Arriostramiento del vínculo

Es necesario colocar arriostramiento en las alas inferior y superior de la conexión en los extremos en secciones laminadas tipo I. El arriostramiento necesita poseer una resistencia y rigidez que satisfaga los requerimientos de arriostramientos especiales en zonas de rótulas plásticas establecidos en la Sección D1.2c. del AISC 341-16 o en el capítulo 6 de la NEC SE AC 15 (Arriostramiento especial en zonas de articulación plásticas).

Miembros

Relaciones ancho-espesor

Los conectores, columnas, arriostramientos diagonales, vigas fuera del vínculo deben cumplir con según lo establecido en la tabla 9 de la presente investigación.

Las vigas fuera de los conectores y los arriostramientos en su mayoría suelen estar sometidos a la combinación de grandes fuerzas axiales y momento flector, y por lo ende necesitan ser diseñados, de acuerdo a lo estipulado en el capítulo H del AISC 360-16 donde establece el diseño de solicitaciones combinadas.

Si la viga fuera del conector tiene la misma área que la del conector, su resistencia será calculada empleando las resistencias probables del material especificadas el capítulo

D sección 1.1 del AISC 341-16 o el capítulo 5 de la NEC SE AC (Resistencia probable del material).

Conectores

Limitaciones

Los conectores necesariamente tienen que ser perfiles laminados en caliente o armados. El área transversal de los conectores puede ser W o cajón. En caso de que se usen perfiles cajón, éstas necesariamente tienen que ser secciones armadas.

La alma o almas de un conector necesitan poseer un mismo espesor, no se permiten aberturas en las almas o alma de los conectores de la misma manera no está permite usar placas de refuerzo.

Es necesario emplear soldadura de ranura de penetración completa para unir el alma o las almas a las alas, esta consideración en el caso de conectores armados.

Los conectores con tipo cajón deben poseer un momento de inercia, Iy, alrededor del eje contenido en el plano del PAE no menor a (2/3) Ix, en cuyo caso Ix es el momento de inercia alrededor del eje perpendicular al plano del PAE.

Resistencia al Corte

Los conectores necesitan poseer una resistencia a cortante de diseño ϕvVn , y una resistencia al cortante admisible $Vn/\Omega v$, según el estado límite de fluencia por cortante y debe ser calculado así:

Vn= resistencia al corte nominal del vínculo, igual al menor valor entre Vp o 2Mp/e

$$\Phi v = 0.9 (LRFD)$$

Cuya nomenclatura representa:

e, la longitud del conector

Mp, Vp y Aw se obtiene de la siguiente manera:

$$Mp = FyZ$$
 Ec. 75
 $Vp = 0.6FyAw$ Ec. 76

Aw se calculará según la Ecuación 74

Está permitido ignorar en el conector el efecto de la carga axial en la resistencia a cortante si:

$$Pu \le 0.15 Py$$

No se puede ignorar en el conector el efecto de la carga axial en la resistencia a cortante si:

$$Pu \ge 0.15 Py$$

Py, resistencia nominal a la fluencia por corte calculada según:

$$Py = FyAg$$
 Ec. 77

Además:

• La resistencia disponible al corte del vínculo debe ser la menor de:

$$\frac{2\emptyset vMpa}{e}$$
 Ec. 79

Cuya nomenclatura representa:

$$\phi v = 0.9$$

Vp, resistencia a corte nominal de un conector activo influenciado por carga axial

Mp, resistencia plástica nominal influenciada por carga axial

e, longitud del conector en un PAE

Y de donde se obtiene:

$$Vpa = Vp\sqrt{1 - \left(\frac{Pu}{Pc}\right)^2}$$
 Ec. 80

$$Mpa = 1,18Mp\left(1 - \frac{Pu}{Pc}\right)$$
 Ec. 81

Cuya nomenclatura representa:

$$Pc = Py$$
 Ec. 82

Sí:

$$p'\left(\frac{Aw}{Ag}\right) \ge 0.3$$

La longitud del vínculo no debe ser mayor que:

$$e = \left[1,15 - 0,5p'\left(\frac{Aw}{Ag}\right)\right]1,6\frac{Mp}{Vp}$$
 Ec. 83

Cuya nomenclatura representa:

Mp, resistencia nominal plástica a la flexión

Aw, área del alma del vínculo

Ag, área gruesa

Sí:

$$p'\left(\frac{Aw}{Ag}\right) < 0.3$$

La longitud del vínculo no debe ser mayor que:

$$e = 1.6 \frac{Mp}{Vp}$$
 Ec. 84

$$\rho' = Pr Vr$$
 Ec. 85

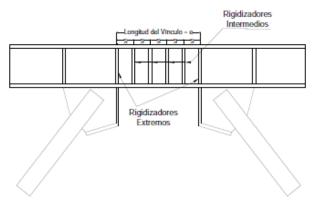
$$Vr = Vu$$
 Ec. 86

Vu, resistencia demandada a cortante empleando las combinaciones de carga LRFD

tw, espesor del alma de la sección

tf, espesor del ala de la sección

Pr, resistencia a la compresión requerida


 ρ' , relación de fuerza axial demandada

Rigidizadores en los Extremos del conector para Secciones I

Se necesita instalar rigidizadores en las dos caras del alma del conector en el peralte total del alma en el extremo del conector al que se unen los arriostramientos. Los rigidizadores necesitan poseer un ancho combinado mayor o igual a (bf-2tw) y el

espesor debe estar entre y se toma el menor de los mismos 0.75 tw o 10 mm, donde bf es el ancho del ala del conector y tw es el espesor del alma. La Figura 27 muestra el lugar de colocación de los rigidizadores en los extremos del vínculo cuando se trata de perfiles tipo I.

Figura 27: Distribución de los vínculos para perfiles tipo I.

Fuente: NEC SE AC 2015

Rigidizadores Intermedios del conector para Secciones I

Los conectores necesitan poseer rigidizadores intermedios (ver Figura 27) en el alma como se detalla en lo siguiente:

- Conectores cortos deben poseer rigidizadores intermedios en el alma separados en intervalos no mayores (30tw 0.2d) si se tiene un ángulo de rotación del conector de 0.08 rad. Y (52tw-0.2d) para ángulos de rotación de conectores menores a 0.02 rad. Está permitido interpolar valores entre 0.08 y 0.02 rad.
- Conectores largos con longitudes no mayores a 5Mp/Vp deben poseer de rigidizadores intermedios separados en el alma cada 1.5 bf a partir de cada extremo del conector.
- Conectores intermedios se debe instalar rigidizadores intermedios en el alma siguiendo los dos requerimientos anteriores.
- No es necesario rigidizadores intermedios en el alma en caso de que la longitud del conector sea mayor a 5Mp/Vp.
- Se debe deben colocarse en el peralte total del alma rigidizadores intermedios. Para conectores que tengan un peralte no mayor a 640 mm (25 pulg.), está permitido utilizar un solo rigidizador en un lado del vínculo. El espesor del rigidizador no tiene que estar

entre y se tomará el menor valor de ambos two 10 mm, y el ancho no puede ser mayor a (bf/2) – tw. Para conectores con peralte mayor a 640 mm se necesita rigidizadores en los dos lados del alma.

La resistencia demandada de la soldadura de filete en la unión del rigidizador con el conector del alma del mismo, se calcula así: AstFy (LRFD), en cuyo caso Ast es el área del rigidizador. La resistencia demandada de la soldadura de filete que une el rigidizador con el ala del conector es AstFy/4 (LRFD).

Rigidizadores en la unión del conector con los arrostramientos para perfiles tipo cajón.

Se debe colocar rigidizadores en una cara de cada alma del conector. Se puede soldar los rigidizadores en la cara interior o exterior de las almas del conector. Los rigidizadores necesitan poseer un ancho mayor o igual a b/2, en cuyo caso b es el ancho interno del cajón. El espesor debe ser igual o mayor a 0.75tw o 13 mm, en el caso de los rigidizadores.

Rigidizadores Intermedios del conector para Secciones Cajón

Se debe implementar a los conectores de rigidizadores intermedios en el alma como se indica en los siguientes parámetros:

- En conectores cortos y una relación alma-espesor del peralte, h/tw, mayor o igual a $0.67\sqrt{E/RyFy}$ es necesario colocar rigidizadores en el peralte total del alma en un lado de cada alma del conector, separados a intervalos menores o iguales a 20 tw -0.125(d-2tf).
- En conectores cortos y con una relación peralte del alma-espesor h/tw, menor a y $0.67\sqrt{E/RyFy}$, no es necesario colocar rigidizadores intermedios en el alma.
- En conectores intermedios y largos, no es necesario colocar de rigidizadores intermedios en el alma.

La resistencia demandada de la soldadura de filete en la conexión del rigidizador con el conector del alma del mismo es AstFy (LRFD), en cuyo caso Ast es el área del rigidizador del conector.

En los conectores cajón, los rigidizadores no necesitan ser soldados a las alas del conector.

Riostras diagonales

La resistencia demandada a la combinación de momento flexionante y carga axial y del arriostramiento diagonal necesita ser calculada en base a las combinaciones de carga estipuladas en Tabla 2 de la presente investigación.

En las combinaciones de carga en las cuáles se existe el efecto sísmico, es necesario reemplazar el sustituir término E por Q1, el mismo está definido como fuerza axial y momentos generados por 1.25 veces o más la resistencia a corte nominal probable del conector RyVn, en donde Vn está definido anteriormente en PAE en la sección (Vínculos, Resistencia al corte). La resistencia necesaria del arriostramiento diagonal debe cumplir con el Capítulo H del AISC 360-16.

Viga fuera del conector

La resistencia necesaria a la combinación momento flexionante de la viga y de carga axial y fuera del conector se debe establecer en base a las combinaciones de carga estipuladas en Tabla 2 de la presente investigación.

En las combinaciones de carga en las cuáles se existe el efecto sísmico, es necesario reemplazar el sustituir término E por Q1, el mismo como las fuerzas generadas por 1.1 o más, veces o más la resistencia a corte nominal probable del conector RyVn, en donde Vn está definido anteriormente en PAE en la sección (Vínculos, Resistencia al corte). La resistencia necesaria de la viga fuera del conector debe ser calculada en base al AISC 360-16, multiplicada por Ry.

En la unión entre la viga y la riostra diagonal, en el extremo del conector, la intersección de los ejes centrales de la viga y el arriostramiento, debe localizarse en el extremo o en el interior del conector.

Resistencia requerida en columnas

Se debe diseñar según los requerimientos del capítulo 6 sección 2 de la NEC SE AC 2015, la resistencia solicitada debe incluir las combinaciones de carga estipuladas en Tabla 2 de la presente investigación, tomando en cuenta que la carga sísmica E es

generada por 1.1 la resistencia a cortante nominal probable de todos los conectores por encima del entrepiso considerado. La resistencia a cortante nominal probable del conector es RyVn, en cuyo caso Vn está definido anteriormente en PAE en la sección (Vínculos, Resistencia al corte).

Conexiones

Rótulas plásticas (zonas protegidas)

Las conexiones son las zonas protegidas en PAE y debe ser diseñados según lo que establece el capítulo D sección 1.3 de AISC 341-16.

Requerimientos

Las conexiones de los PAE necesariamente tienen que cumplir los requisitos para soldadura y ensayos expuestos en conexiones de pórticos especiales a momento.

Uniones viga-columna

La conexión necesita cumplir con uno de los siguientes parámetros, en caso de que el arriostramiento o la placa Gusset esté conectada a ambos miembros en una unión viga columna:

- Debe ser una conexión simple que cumpla los requisitos: trasmitir momentos de magnitud despreciable. El análisis de la estructura, puede asumir que los conectores simples tienen la capacidad de rotación relativa entre los miembros que se unen. Tiene la facultad de rotación suficiente para colocar las rotaciones establecidas por el análisis de la estructura. La rotación requerida deberá tomarse como 0.025 radianes.
- El diseño de las conexiones debe resistir un momento simultáneo con la resistencia solicitada por parte de la conexión del arriostramiento, la cual será igual o menor a los siguientes cálculos los siguientes valores:
 - En vigas momento igual a 1.1RyFyZ (LRFD)
 - En columnas momento igual a $\Sigma(1.1\text{RyFyZ})$ (LRFD)

Se debe considerar como combinación entre la resistencia solicitada de la conexión del arriostramiento y de la viga para el cálculo de momentos.

Uniones conector-columna

Las uniones conector-columna deben tener la capacidad de soportar el ángulo de mayor rotación del conector considerando la longitud del mismo, según lo detallado anteriormente (Ángulo de rotación del conector) La resistencia de la conexión tiene que ser medida en la cara de la columna, así como ser igual o mayor a la resistencia a corte nominal del conector, Vn, como se estipulo anteriormente (Conectores, Resistencia al corte) para el ángulo mayor de rotación del conector.

Las uniones conector-columna deben cumplir las estipulaciones anteriores empleando de uno de los siguientes métodos:

- Empleo de una conexión precalificada para PAE de acuerdo al capítulo K sección 2 de ANSI/AISC 341-16.
- Informe de resultados de ensayos cíclicos de calificación según el capítulo K de ANSI/AISC 341-16. Se deben por lo menos realizar dos ensayos cíclicos en las conexiones para la obtención de resultados, los cuales deberán cumplir las siguientes especificaciones:
- a) Ensayos reportados deberán estar dentro de los límites especificados en el capítulo K sección 2, del ANSI/AISC 341-16.
- b) Ensayos específicos para el proyecto de elementos con tamaños, resistencia de materiales, opciones de las conexiones y procesos de conexión, dentro de los límites establecidos en el capítulo K sección 2 de ANSI/AISC 341-16.

Excepciones: No se requiere ensayo cíclico en las conexiones si se cumple lo siguiente:

- Si el refuerzo que se posea la conexión viga-columna en el extremo del conector carezca de la posibilidad de que fluya la viga en la longitud donde se localiza el refuerzo.
- En caso de que la resistencia actual de la sección reforzada y de la conexión es igual o mayor la resistencia demandada calculada en función a la resistencia a corte del conector, establecida anteriormente en (Conectores, Resistencia al corte).
- Cuando se usen conectores cuyas longitudes no sean mayores a 1.6Mp/Vp.

• El peralte del alma de la viga debe ser el mismo que el del rigidizador y estar colocados entre cara del reforzamiento y del vínculo.

Soldadura de demanda crítica

Las soldaduras de ranura de penetración completa que conectan las alas y el alma del conector a la columna tienen la característica de ser soldaduras de demanda crítica, las cuales deberán cumplir con lo estipulado en el capítulo F, sección 3.5b4 del ANSI/AISC 341-16 o según lo descrito en el en el capítulo 7, sección 3 de la NEC SE AC 16.

1.1.3.3. Desempeño Estructural Del Acero

Desempeño Sísmico

La definición de desempeño sísmica no aplica solamente a edificios sino a todo tipo de estructuras y tiene que ver con la utilización apropiada para el dimensionamiento de elementos estructurales y no estructurales los cuales resistan una excitación sísmica cumpliendo ciertos niveles de desempeño, los cuales garanticen ciertos parámetros en la estructura, otra forma es visualizar hasta que nivel de desempeño llega una estructural ya diseñada o calculada según el espectro de diseño. El desempeño se determina según el daño que ha sufrido una estructura al ser sometida a una excitación sísmica y las condiciones de la estructura posterior al evento sísmico.

La formación de rótulas en los lugares esperados es algo fundamental en el diseño por desempeño, en acero estructural las rótulas plásticas se formarán según la tipología estructural empleada siendo diferente en lugar de formación de las rótulas plásticas en PEM, PEAC y PAE.

El criterio fundamental del análisis por desempeño es predecir y controlar, tanto el comportamiento como los posibles daños que se presenten en la estructura [20].

Definición de rótulas plásticas en elementos de acero

Criterios de aceptación

Una rótula plástica deberá considerar las siguientes disposiciones estipuladas en el ANSI / AISC 358:

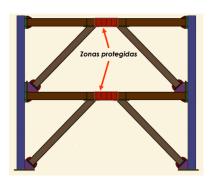
- (a) Dentro de la rótula plástica, agujeros, soldaduras por puntos, ayudas de montaje, ranurado por arco de aire, y el corte térmico no especificado de las operaciones de fabricación o montaje debe ser reparado según lo requerido por el ingeniero especialista residente en estructuras.
- (b) Las cabezas de anclaje de acero no se colocarán en las alas de vigas dentro de la rótula plástica.
- (c) Se permiten soldaduras por puntos de arco según sea necesario para unir la plataforma.
- (d) Los accesorios de la losa que penetren en las alas de las vigas no se colocarán en las alas de las vigas dentro de la zona protegida, excepto sujetadores accionados por fuerza de hasta 0.18 pulg. Diámetro permitido.
- (e) Conexiones soldadas, atornilladas o atornilladas o sujetadores de accionamiento eléctrico para ángulos de borde perimetral, fachadas exteriores, particiones, conductos, tuberías u otros la construcción no se colocará dentro de la zona protegida.

Rótulas plásticas en vigas en PEM

La ubicación de las zonas protegidas en los PEM, y elementos no arriostrados se ubica desde la cara de la columna a una longitud igual a 0,5 el peralte de la viga; es decir un poco más desplazado del centroide de la articulación plástica.

La definición de zonas protegidas de vigas se explica como el área desde la cara del ala de la columna y está limitada en un medio el peralte de la viga pasando ubicación teórica de la rótula. Se pueden colocar agujeros para pernos en el alma de la viga de según las disposiciones de cada conexión precalificada.

Rótulas plásticas en riostras en PEAC


Se debe colocar una rótula plástica, junto a cada conexión con las siguientes especificaciones: longitud igual al peralte del arriostramiento en el plano de pandeo y el cuarto central de la longitud del arriostramiento.

Rótulas plásticas en conectores en PAE

Deben mantener un comportamiento dúctil y mantener los criterios de aceptación vistos anteriormente, su localización es netamente en los conectores vínculos o enlacen

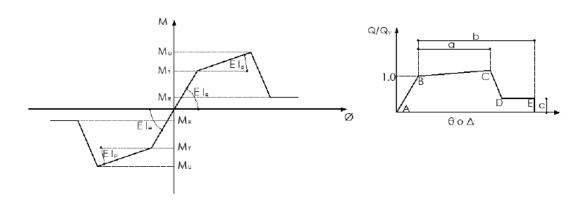
y deben ser diseñados como se vio anteriormente y también cumplir los criterios de aceptación está prohibido conexiones o discontinuidades en las rótulas plásticas, referidas a los enlaces [21].

Figura 28: Localización de la rótula plástica en un PAE.

Fuente: EVALUACIÓN DE LA RESPUESTA NO LINEAL DE PÓRTICOS DE ACERO CON ARRIOSTRAMIENTOS EXCÉNTRICOS

Diagrama momento curvatura y momento rotación

En el gráfico izquierdo de la figura 29, se presenta las relaciones momento curvatura, para un esquema que presenta tres zonas de trabajo del elemento; elástica (no presenta daño) sucede en caso de que el momento actuante $M \le My$; cuando My es el momento de fluencia; en este lugar la rigidez a flexión es igual a EIe. En cuyo caso E representa el módulo de elasticidad del material, E es el momento de inercia del área gruesa, que se calcula en función de la geometría de la sección; E0 h 3 12 será para una viga rectangular de área constante, en cuyo caso, E1, b, son la altura y la base respectivamente; de manera que la rigidez elástica se calcula en función a la geometría del área transversal del elemento no es necesario emplear el ASCE 41. De la misma forma se calcula el momento de fluencia E1.


Posteriormente se encuentra la segunda zona y es la de post fluencia, en esta se cumple, $My < M \le Mu$ y la rigidez de la sección es igual a EIp; en este lugar es necesario lo propuesto en el ASCE 41. La última de las zonas es la residual terminando con las zonas, la cual tiene un momento Mr.

El diagrama expuesto en la parte izquierda de la figura 29 se emplea en secciones asimétricas en su comportamiento es decir si la parte inferior está traccionada y la superior trabaja a compresión; o viceversa.

En la parte derecha de la figura 29, se muestra la nomenclatura del ASCE 41 para obtener las relaciones momento rotación. En el eje de las "x" se o desplazamiento Δ o θ (giro); y en el eje de las "y" o vertical Q/Qy. En caso de la flexión esta relación será M/My y el valor para el punto B, es uno, por ende, el momento es el de fluencia My, y está relacionado a una rotación θ y.

A partir del punto My θy se localiza el punto U (imagen de la izquierda) el cual corresponde al punto C (imagen de la derecha) empleando la variable a establecida por ASCE 41. Se calcula también el momento residual, Mr, con la variable c; y el segmento \overline{DE} con su rotación final por medio de la variable.

Figura 29: Diagrama momento rotación y momento curvatura según el modelo del ASCE 41.

Fuente: Diagrama Momento-Curvatura y Momento Rotación para elementos de hormigón armado y acero con ASCE/SEI 41 y sistema de computación CEINCI LAB

Cálculo del diagrama momento rotación

En la tabla 11 se indica la propuesta del ASCE 41 para hallar el diagrama momentorotación empezando en el punto de fluencia; la parte superior analiza vigas y la parte
inferior columnas [22]. La definición de variables, de manera general es el siguiente:

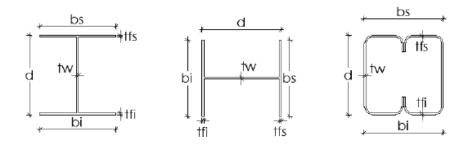

tf, bf, son el espesor del patín, y ancho del mismo respectivamente; h es la altura del
perfil; tw es el espesor del alma en el caso de los perfiles 1 y 2 es el espesor del perfil
tubular.

Tabla 11: Parámetros para análisis del momento curvatura en elementos de pórticos de acero en procedimientos no lineales de segundo orden.

Vigas - Flexión	A	b	c		
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{f_{ye}}} \mathbf{y} \frac{h}{t_w} \le \frac{418}{\sqrt{f_{ye}}}$	$9\theta_y$	$11 heta_{ m y}$	0.6		
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{fye}} \circ \frac{h}{t_W} \ge \frac{640}{\sqrt{fye}}$	$4\theta_y$	$6\theta_{y}$	0.2		
c. Otros	Interpolación	lineal, se usará el res	sultado menor.		
Columnas - Flexión	A	b	c		
Para $P/P_{CL} < 0.2$					
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{f_{ye}}} y \frac{h}{t_w} \le \frac{300}{\sqrt{f_{ye}}}$	$9\theta_y$	$11 heta_{ m y}$	0.6		
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{f_{ye}}} \circ \frac{h}{t_w} \ge \frac{460}{\sqrt{f_{ye}}}$	$4\theta_y$	$6\theta_{y}$	0.2		
c. Otros	Interpolación lineal, se usará el resultado menor.				
Para $0.2 \leq P/P_{CL} \leq 0.5$					
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{f_{ye}}} \mathbf{y} \frac{h}{t_w} \le \frac{260}{\sqrt{f_{ye}}}$	$11\left(1-\frac{5}{3}\frac{P}{P_{CL}}\right)\theta_{y}$	$17\left(1 - \frac{5}{3} \frac{P}{P_{CL}}\right) \theta_y$	0.6		
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{fye}} \circ \frac{h}{t_W} \ge \frac{400}{\sqrt{fye}}$	$1\theta_{y}$	$1.5\theta_y$	0.2		
c. Otros	Interpolación	lineal, se usará el res	sultado menor.		

Fuente: Diagrama Momento-Curvatura y Momento Rotación para elementos de hormigón armado y acero con ASCE/SEI 41 y sistema de computación CEINCI LAB

Figura 30: Secciones de acero consideradas en la investigación del CEINCI LAB.

Fuente: Diagrama Momento-Curvatura y Momento Rotación para elementos de hormigón armado y acero con ASCE/SEI 41 y sistema de computación CEINCI LAB

^{*} En columnas que se cumpla P/P_{CL} > 0,5 deberán ser diseñadas por fuerza axial.

Diagonales rigidizadores de acero

En la tabla 12 se muestran los valores de *A*, *b*, *c*, con los cuales se obtiene el diagrama momento-rotación de diagonales rigidizadores o riostras de acero, indistintamente estén trabajando a compresión o a tracción. El criterio de verificación para el caso de las diagonales que trabajan a compresión está dado por la longitud efectiva de pandeo *kl*.

En cuyo caso K es el factor de longitud efectiva y r es el radio de giro del perfil. El procedimiento consiste en comprobar si el elemento es compacto o no para lo cual existen las primeras expresiones [22].

Tabla 12: Parámetros para análisis del momento curvatura de riostras de acero en procedimientos no lineales de segundo orden.

Diagonal Rigidizadora en			
Compresión	A	b	c
a. Para Secciones Esbeltas			
$Kl/r \ge 4.2\sqrt{E/fy}$			
Secciones W,I,2L,2C en plano	0.5∆ _c	10Δ _c	0.3
2. 2L,2C fuera de plano	0.5Δ _c	9∆ _c	0.3
HSS, Tubos redondos y rectangulares	10.5	79	0.3
b. Para Secciones compactas			
$Kl/r \le 2.1\sqrt{E/fy}$			
Secciones W,I,2L,2C en plano	1∆ _C	8Δ _C	0.5
2. 2L,2C fuera de plano	$1\Delta_C$	7∆ _c	0.5
HSS, Tubos redondos y rectangulares	$1\Delta_C$	7 Δ _{<i>c</i>}	0.5
Diagonal Rigidizadora en Tensión	$11\Delta_T$	$14\Delta_T$	0.8
Vigas, Columnas en tensión	$5\Delta_T$	$7\Delta_T$	1.0

Fuente: Diagrama Momento-Curvatura y Momento Rotación para elementos de hormigón armado y acero con ASCE/SEI 41 y sistema de computación CEINCI

LAB

Niveles de desempeño

El nivel de desempeño indica los límites de daño de una estructura. En función de tres principios básicos establece límites permitidos establecidos según lo siguiente: 1) posibles daños físicos en elementos estructurales y no estructurales, 2) según los daños producidos en la etapa previa, el peligro sobre la seguridad de quienes habitan la estructura, 3) la funcionalidad de la edificación posterior al sismo. [23]

Los siguientes puntos son los niveles dispuestos por el comité VISION 2000.

Totalmente Operacional: Es un nivel en el cual principalmente no sucede daño. La estructura se mantiene totalmente segura para sus habitantes. Toda la estructura y los servicios de la misma (agua, instalaciones, eléctricas, acabados) se mantienen funcionales y disponibles para su uso. Mayoritariamente no es necesario efectuar reparaciones

Operacional: Este nivel presenta daños moderados tanto en los elementos no estructurales como lo que conforma la edificación inclusive ciertos daños leves en los miembros estructurales. El daño es limitado y no presenta daño en la seguridad de la edificación para continuar siendo ocupada inmediatamente posterior al sismo, el daño es limitado, sin embargo, los daños en algunas partes y elementos no estructurales pueden causar parcialmente la interrupción de ciertas funciones de la vivienda. Por lo general son necesarias ciertas reparaciones menores.

Seguridad de Vida: Permanece vinculado a que incidan daños moderados en miembros estructurales y no estructurales, también ciertos elementos de la construcción como tuberías y acabados. Son reducidas en gran escala la capacidad de resistir cargas laterales adicionales y también la rigidez lateral de la estructura, pero se mantiene un margen de seguridad frente al colapso. Es probable que la estructura no pueda ser ocupada inmediatamente posterior al sismo, por dicha razón existe la posibilidad de requerir múltiples reparaciones estructurales y no estructurales, esto solamente si es viable y se no demande un costo exagerado económicamente hablando.

Próximo al Colapso: Se produce pérdida de rigidez lateral y capacidad resistente compromete la estabilidad de la estructura acercándose al colapso. Las rutas de evacuación posiblemente se encuentren interrumpidas por fallas puntuales, aunque los miembros estructurales que están sometidas a cargas verticales permanecen en funcionamiento. En estas condiciones, la estructura se mantiene insegura para sus habitantes y el precio de su refacción puede demasiado alto, incluso es más económico demolerla y hacer otra de cero.

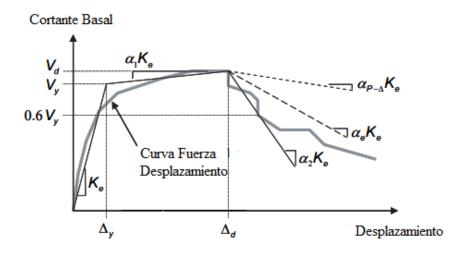
Procedimiento para encontrar el punto desempeño según el FEMA 440.

Delimitación de la fuerza para el ciclo de disminución de la misma considerando el efecto $P\Delta$

El límite recomendado sobre la fuerza de diseño, la reducción, Rmax, es la siguiente:

$$R_{max} = \frac{\Delta_d}{\Delta_v} + \frac{|\alpha_e|^{-t}}{4}$$
 Ec. 87

En cuyo caso:


$$t = 1 + 0.15 \ln T$$
 Ec. 88

Si esta limite no se cumple, entonces debe implementarse un análisis no lineal dinámico utilizando movimiento de tierra representativo los registros del sitio deben ser considerados para investigar el potencial de inestabilidad dinámica, los modelos estructurales deben ser modelados adecuadamente, la pérdida de resistencia característica de degradación de la estructura y sus componentes. [24]

La ecuación 87 es una simplificación de una expresión, que fue obtenida empleando sistemas de un solo grado de libertad. Cabe señalar que existe una variabilidad significativa en la fuerza requerida para evitar la inestabilidad dinámica; por lo tanto, esta ecuación está dirigida solo a identificar casos donde la inestabilidad dinámica debe investigarse más a fondo utilizando análisis de historial de respuesta y no como una precisa medida de la resistencia lateral requerida para evitar inestabilidad dinámica en estructuras múltiples grados de libertad.

El uso de las técnicas para encontrar el punto de desempeño equivalente (Capítulo 6 FEMA 440) puede proporcionar información inicial sobre si el análisis dinámico no lineal, es necesario. En particular, el procedimiento de solución C produce un lugar de potencial puntos de desempeño. Si este lugar tiende a ser paralelo y por encima de la curva de capacidad, se puede producir inestabilidad dinámica. Sin embargo, si el lugar interseca la curva de capacidad, la inestabilidad no es la apropiada; por ende, es necesario emplear un análisis dinámico no lineal. [24]

Figura 31: Curva – fuerza desplazamiento idealizada para análisis no lineal estático.

Amortiguación efectiva

Los valores efectivos de amortiguamiento, expresados como porcentaje de amortiguamiento crítico, para todos los modelos histéricos los tipos y valores alfa tienen la siguiente forma:

Para $1.0 < \mu < 4.0$:

$$Beff = A(u-1)^2 + B(u-1)^3 + \beta o$$
 Ec. 89

Para $4.0 < \mu < 6.5$

Beff =
$$C + D(u-1) + \beta o$$
 Ec. 90

Para $\mu > 6.5$:

$$Beff = 19 \left[\frac{0.64 (u-1)-1}{[0.64 (u-1)^2]} \right] \left(\frac{Teff}{To} \right)^2 + \beta o$$
 Ec. 94

Tabla 13: Coeficientes para el uso en ecuaciones de amortiguamiento efectivo.

Modelo	α(%)	A	В	С	D	E	F
Bilineal Histérico	0	3.2	-0.66	11	0.12	19	0.73
Bilineal Histérico	2	3.3	-0.64	9.4	1.1	19	0.42
Bilineal Histérico	5	4.2	-0.83	10	1.6	22	0.40
Bilineal Histérico	10	5.1	-1.1	12	1.6	24	0.36
Bilineal Histérico	20	4.6	-0.99	12	1.1	25	0.37
Pérdida de la rigidez	0	5.1	-1.1	12	1.4	20	0.62
Pérdida de la rigidez	2	5.3	-1.2	11	1.6	20	0.51
Pérdida de la rigidez	5	5.6	-1.3	10	1.8	20	0.38
Pérdida de la rigidez	10	5.3	-1.2	9.2	1.9	21	0.37
Pérdida de la rigidez	20	4.6	-1.0	9.6	1.3	23	0.34
Degradación de la fuerza	-3 ^a	5.3	-1.2	14	0.69	24	0.90
Degradación de la fuerza	-5 ^a	5.6	-1.3	14	0.61	22	0.90

Período efectivo

Los valores de períodos efectivos para todos los tipos de modelos histéricos y los valores alfa tienen la siguiente forma:

Para $1.0 < \mu < 4.0$:

$$Teff = (G(u-1)^2 + H(u-1)^3 + 1)To Ec. 95$$

Para $4.0 < \mu < 6.5$

$$Teff = (I + J(u-1) + 1) To$$
 Ec. 96

Para $\mu > 6.5$:

$$Teff = \left\{ K \left[\sqrt{\frac{(u-1)}{1 + L(u-2)}} - 1 \right] + 1 \right\} To$$
 Ec. 97

Para $\mu > 6.5$:

$$Beff = E\left[\frac{F(u-1)-1}{[F(u-1)^2]}\right] \left(\frac{Teff}{To}\right)^2 + \beta o$$
 Ec. 91

Los valores de los coeficientes en las ecuaciones para efectivo la amortiguación de los osciladores modelo se tabula en Tabla 14. Se debe considerar que estos son una función de las características de la curva de capacidad para el oscilador en términos de tipo histérico básico y rigidez posterior al límite elástico, α.

Los coeficientes de la tabla 14 se han optimizado para ajustarse los resultados empíricos para osciladores modelo idealizados que tiene un comportamiento histérico

bien definido, degradación de la rigidez (DE) fuerza y rigidez degradadas (SSD). Edificios reales, comprendidos de una combinación de muchos elementos.

La adaptación de estos coeficientes para construir modelos con un número de los componentes debe ser hecho con precaución. Si todos los componentes exhiben un comportamiento similar entonces es razonable inferir que la histéresis. El comportamiento del edificio en general será similar al comportamiento de los osciladores idealizados simples en los que, la tabla 14 está basada. Para construir modelos en los que los componentes exhiben una deformación forzada de diferente comportamiento, es menos claro qué coeficientes usar. Cuando en caso de duda, el profesional debe usar el más general ecuaciones optimizadas a continuación.

Las siguientes ecuaciones aproximadas para el valor de amortiguación efectivo se ha optimizado para su aplicación a cualquier curva de capacidad, independiente del modelo histérico tipo o valor alfa utilizado para el estudio:

Para $1.0 < \mu < 4.0$:

$$Beff = 4.9(u-1)^2 + 1.1(u-1)^3 + \beta o$$
 Ec. 92

Para $4.0 < \mu < 6.5$

$$Beff = 14.0 + 0.32 (u-1) + \beta o$$
 Ec. 93

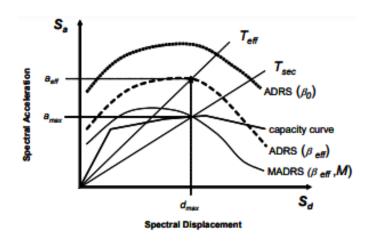
Los valores de los coeficientes en las ecuaciones para efectivo período de los osciladores modelo se tabulan en Tabla 14. Se debe tomar en cuenta que estos son una función de las características del espectro de capacidad para el oscilador en términos de tipo histérico básico y rigidez posterior al límite elástico, α.

En caso de duda, el profesional debe usar las siguientes ecuaciones para el valor del período efectivo que han sido optimizadas para su aplicación a cualquier espectro de capacidad, independiente del tipo de modelo histérico o valor alfa:

Para $1.0 < \mu < 4.0$:

$$Teff = (0.20(u-1)^2 - 0.038(u-1)^3 + 1)To$$
 Ec. 98

Para $4.0 < \mu < 6.5$


$$Teff = (0.28 + 0.13(u-1)+1) To$$
 Ec. 99

Para $\mu > 6.5$:

$$Teff = \left\{0.89 \left[\sqrt{\frac{(u-1)}{1+0.05(u-2)}} - 1 \right] + 1 \right\} To \quad Ec. \ 100$$

Estas expresiones se aplican solo para T0 = 0.2 a 2.0 s

Figura 32: Aceleración desplazamiento modificada en el período de respuesta MADRS, para uso con el período de secante.

Fuente: FEMA 440

Tabla 14: Coeficientes para el uso en ecuaciones de período efectivo.

Modelo	α (%)	G	Н	1	J	K	L
Bilineal histérico	0	0.11	-0.017	0.27	0.090	0.57	0.00
Bilineal histérico	2	0.10	-0.014	0.17	0.12	0.67	0.02
Bilineal histérico	5	0.11	-0.018	0.09	0.14	0.77	0.05
Bilineal histérico	10	0.13	-0.022	0.27	0.10	0.87	0.10
Bilineal histérico	20	0.10	-0.015	0.17	0.094	0.98	0.20
Degradación de la rigidez	0	0.17	-0.032	0.10	0.19	0.85	0.00
Degradación de la rigidez	2	0.18	-0.034	0.22	0.16	0.88	0.02
Degradación de la rigidez	5	0.18	-0.037	0.15	0.16	0.92	0.05
Degradación de la rigidez	10	0.17	-0.034	0.26	0.12	0.97	0.10
Degradación de la rigidez	20	0.13	-0.027	0.11	0.11	1.0	0.20
Degradación de la fuerza	-3 ^a	0.18	-0.033	0.17	0.18	0.76	-0.03
Degradación de la fuerza	-5 ^a	0.20	-0.038	0.25	0.17	0.71	-0.05

Fuente: FEMA 440

Curva de demanda con el período secante

El método convencional de capacidad-espectro (ATC-40) utiliza el período secante como el período lineal efectivo para determinar el desplazamiento máximo (punto de desempeño). Esta suposición da como resultado el máximo desplazamiento que ocurre en la intersección de la curva de capacidad de la estructura y una curva de demanda para la amortiguación efectiva. Esta característica es útil por dos razones. Primero, proporciona al ingeniero con una herramienta de visualización, facilitando una directa comparación gráfica de demanda y capacidad. Segundo, existen estrategias de solución muy efectivas para linealización equivalente que se basa en una modificación de la curva de demanda que cruza la capacidad curva en el desplazamiento máximo.

El período efectivo del "procedimiento mejorado", Teff, es generalmente más corto que el período secante, Tsec, definido por el punto en la curva de capacidad correspondiente al máximo desplazamiento, dmax. La aceleración efectiva, aeff, es no significativa desde la aceleración máxima real, amax, debe estar en la curva de capacidad y coincidir con el desplazamiento máximo, dmáx. Multiplicando las ordenadas de la demanda del ADRS (Aceleración desplazamiento en el período de respuesta) correspondiente a la amortiguación efectiva, βeff, por el factor de modificación, da como resultado la curva de demanda ADRS modificada (MADRS) que ahora puede intersecar la curva de capacidad en el punto de rendimiento. Dado que los valores de aceleración son directamente relacionados con los períodos correspondientes, el factor de modificación se puede calcular como

$$M = \frac{a_{max}}{a_{eff}} \quad Ec. \ 101$$

$$M = \left(\frac{Teff}{Tsec}\right)^2 = \left(\frac{Teff}{To}\right)^2 \left(\frac{To}{Tsec}\right)^2 \quad Ec. \ 102$$

$$\left(\frac{To}{Tsec}\right)^2 = \frac{1+\alpha(u-1)}{u} \quad Ec. \ 103$$

Donde α es la rigidez post-elástica.

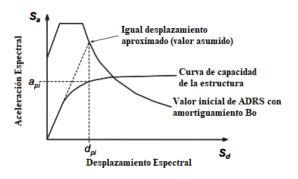
Reducción espectral para el amortiguamiento efectivo

Los procedimientos de linealización equivalentes aplicados en la práctica normalmente requieren el uso de factores de reducción espectral para ajustar un espectro de respuesta inicial apropiado nivel de amortiguación efectiva, βeff. En el caso de la fundación amortiguación, el valor de amortiguación inicial, β0, para un modelo estructural de base flexible se modifica desde la base fija valor lineal, βi (p. ej., 5%). Estos factores son una función de la amortiguación efectiva y se denominan coeficientes de amortiguación, B (βeff). Se usan para ajustar el espectro la aceleración ordena de la siguiente manera:

$$(Sa)_{\beta} = \frac{(Sa)_0}{B(Beff)}$$
 Ec. 98

Existen diversas opciones en los procedimientos actuales para determinando B (βeff). Algunos de estos se trazan en Figura 32. También se muestra en la siguiente expresión.

$$B = \frac{4}{5.6 - lnBeff(in\%)} \qquad Ec. 99$$


Nota: Si son empleadas las ecuaciones del ATC- 40 los límites de reducción no deben ser aplicados

Procesos de solución.

- Seleccionar una representación espectral del terreno movimiento de interés con una amortiguación inicial, βi (normalmente 5%). Esta puede ser un espectro de diseño de ATC-40 o FEMA 356, un determinista específico del sitio espectro, o un espectro probabilístico de igual riesgo.
- 2. Modificar el espectro seleccionado, según corresponda, para interacción suelo-estructura (SSI) de acuerdo con los procedimientos del Capítulo 9 del FEMA 440. Esto implica tanta reducción potencial en ordenadas espectrales para interacción cinemática y una modificación en el sistema amortiguación desde el valor inicial, βi a β0, una cuenta para amortiguación de cimientos. Si la amortiguación de la base es ignorada, β0 es igual a βi
- Convertir el espectro seleccionado, modificado para SSI cuando sea permitido, un desplazamiento de aceleración formato de espectro de respuesta

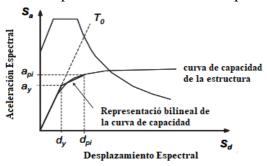

- de acuerdo con la orientación en ATC-40. Este espectro es la inicial demanda de ADRS (Figura 32).
- 4. Generar una curva de capacidad para que la estructura sea analizada. Esta es una relación fundamental para un Modelo de múltiples grados de libertad SDOF de la estructura entre espectral aceleración y desplazamiento espectral (Figura 32). Detallada en ATC-40 y FEMA 356. Se debe considerara que los procedimientos del FEMA 356 dan como resultado una relación entre la base Cizallamiento y desplazamiento del techo. Esto requiere la conversión al formato ADRS para una linealización equivalente procedimientos (ver ATC-40)

Figura 33: Aceleración desplazamiento en el período de respuesta (ADRS) Inicial y espectro de capacidad.

- 5. Seleccione un punto de desempeño inicial (máximo aceleración, api y desplazamiento). Esto puede basarse en una aproximación de desplazamiento igual como se muestra en la Figura 32 o cualquier otro punto basado en juicio de ingeniería.
- 6. Desarrollar una representación bilineal de la capacidad espectro de acuerdo con los procedimientos en ATC-40. Esto define el período inicial, T0, rendimiento desplazamiento, d_y, y aceleración del rendimiento, a_y. (Figura 33). Tenga en cuenta que estos parámetros pueden variar para diferentes supuestos api y dpi.

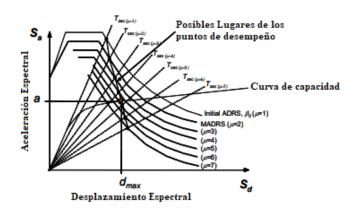
Figura 34: Representación bilineal del espectro de capacidad.

7. Para la representación bilineal expuesta en el paso 6, se calcula los valores de rigidez post-elástica, α y ductilidad, μ, como se indica a continuación:

$$\alpha = \frac{\left(\frac{a_{pi} - a_{y}}{d_{pi} - d_{y}}\right)}{\left(\frac{a_{y}}{d_{y}}\right)} Ec. \ 100$$

$$u = \frac{d_{pi}}{d_y} Ec. 101$$

8. Empleando los valores calculados para la rigidez post-elástica, α y ductilidad, μ , del paso 7, se debe calcular la amortiguación efectiva correspondiente, β eff, y el calcule el período efectivo correspondiente, Teff.


Procedimiento (MADRS Posible lugar donde se encuentran los puntos de desempeño)

Este enfoque utiliza el modificado espectro de aceleración-respuesta para múltiples supuestos soluciones (api, dpi) y las ductilidades correspondientes a generar un lugar de posibles puntos de rendimiento. Los puntos de rendimiento real se encuentran en la intersección de este lugar y el espectro de capacidad.

- Usando la amortiguación efectiva determinada a partir de paso 8, ajuste la Aceleración desplazamiento en el período de respuesta inicial ADSR a βeff (Reducción espectral para el amortiguamiento efectivo)
- Multiplica las ordenadas de aceleración de ADRS para βeff por el factor de modificación, M, determinado utilizando el período efectivo calculado, Teff, en de acuerdo con al punto secante para generar la respuesta de aceleracióndesplazamiento modificada espectro (MADRS).
- Un posible punto de rendimiento es generado por la intersección del período secante radial, Tsec, con el MADRS (Figura 34).

- Aumentar o disminuir el rendimiento asumido señalar y repetir el proceso para generar una serie de posibles puntos de rendimiento.
- El punto de rendimiento real está definido por la intersección del lugar de puntos del anterior y el espectro de capacidad.

Figura 35: Localización de los posibles puntos de desempeño usando Aceleración desplazamiento modificada en el período de respuesta MADRS.

Niveles de amenaza sísmica

En el diseño por desempeño se verifica según los niveles de amenaza sísmica.

Los niveles de amenaza están en función de la probabilidad que ocurra un determinado sismo, y el período de retorno en años es decir cada cuantos años se estima que se producirá un determinado sismo.

Tabla 15: Niveles de amenaza en función del período de retorno.

Nivel de sismo	Sismo	Probabilidad de excedencia en 50 años	Período de retorno T _r (años)	Tasa anual de excedencia (1/T _r)
1	Frecuente (menor)	50%	72	0.01389
2	Ocasional (moderado)	20%	225	0.00444
3	Raro (severo)	10%	475	0.00211
4	Muy raro* (extremo)	2%	2 500	0.00040

Fuente: NEC SE DS 2015

1.1.4. Hipótesis

El tipo de sistema estructural influye en el desempeño estructural de un edificio de tipo multifamiliar

1.2. Objetivos

1.2.1. Objetivo General

Analizar los pórticos estructurales en acero: especiales a momento, arriostrados concéntricos y arriostrados excéntricos y su desempeño estructural sísmico en un edificio multifamiliar.

1.2.2. Objetivos Específicos

- Determinar un modelo estructural que represente a la tipología de una edificación de tipo multifamiliar.
- Realizar el diseño sismo resistente del modelo utilizando los sistemas: Pórticos
 Especiales a Momento (PEM), Pórticos Especiales Arriostrados
 Concéntricamente (PEAC), Pórticos Arriostrados Excéntricamente (PAE).
- Realizar un análisis comparativo del desempeño de los tres sistemas ante el espectro de diseño que propone la NEC 2015.

CAPÍTULO II

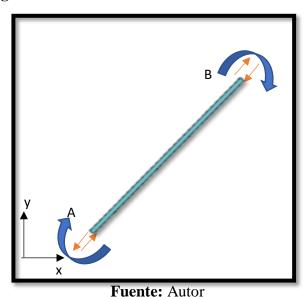
METODOLOGÍA

2.1. Materiales y Equipos

2.1.1. Equipos

- Computadora
- Flexómetro
- Cinta métrica
- Cámara fotográfica
- Software de elementos finitos para la modelación de la estructura (Etabs V 16.2.1)

Descripción del software empleado


Etabs un software creado por la compañía Computers and Structures Inc. (CSI) especializado en ingeniería estructural que permite modelar edificaciones, principalmente está diseñado para la modelación en edificios, casas, mientras que su programa complementario SAP 2000, es para estructuras de otro tipo, como tanques cilíndricos, torres eléctricas etc. ETABS 16.2.1 considera todos los detalles posibles en el diseño dando una respuesta lo más cercana a la realidad, empleando métodos de elementos finitos, así como métodos de resistencia de materiales para hallar valores de deformaciones, momentos, desplazamientos, etc. El software permite la visualización gráfica de la estructura en 3D. Además, incorpora múltiples chequeos posterior al modelado de la estructura según las principales normativas a nivel mundial, tal es la aceptación del mencionado software que se empleó para el diseño del edificio más alto del mundo Burj Khalifa.

Elementos frame

Diseñados para soportar cargas perpendiculares, considerando entonces, momento flector, torsor y corte. Es posible asignar, cargas puntuales o cargas distribuidas (presiones) a lo largo de toda la sección.

Características:

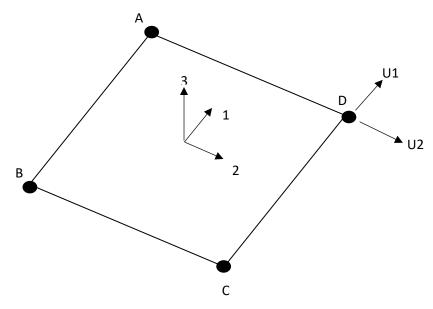
- •Datos que solicita el programa: Área transversal (constante), Inercia del área transversal, Dimensiones de la sección transversal, Constante de deflexión por cortante. Esfuerzo inicial.
- •Nodos: 2, (A, B)
- •Grados de libertad: Máximo 6 en cada nodo. Momento en (X,Y y Z) y traslación en (X,Y y Z).

Figura 36: Grados de libertad de un elemento frame.

Losas Deck (Slab Membrane)

Es un elemento de área que tiene tres o cuatro nodos y en cada nodo posee dos grados de libertad, es decir no se producen momentos en los nodos, el mismo está en función de su grados de libertad, se caracteriza por qué se debe discretizar o mallar su área con el fin de tener desplazamientos lo más cercanos a la realidad los mismos se producirán paralelos a su eje en caso de ocurrir deformaciones perpendiculares a su plano etabs convierte el elemento membrane en Shell, su uso es básicamente para losas simplemente apoyadas que no influyan como elementos estructurales.

Se emplea en losas rectangulares


Características:

•Datos que solicita el programa: Área transversal (constante), Dimensiones de la sección transversal, Datos de la placa.

•Nodos: 4, (A, B, C, D)

•Grados de libertad: 2 en cada nodo, traslación en (X, Y).

Figura 37: Grados de libertad de un elemento membrane.

Fuente: Autor

2.2. Métodos

En la presente investigación Se realizará un recorrido donde se mediará los ejes de nueve edificaciones multifamiliares en las ciudades de Ambato y Quito midiendo los ejes de columna a columna tanto en sentido horizontal como vertical, para lo cual se realizará una memoria fotográfica indicando los detalles estructurales esenciales de la edificación, su ubicación y características geométricas de planta y elevación, con el fin de obtener características geométricas estándar de las estructuras.

Posteriormente se modelara una estructura con tres tipologías estructurales en acero diferentes: PEM, PEAC, PAE realizando un análisis del desempeño de la estructura en acero por lo que se empleará elementos tipo frame y tipo deck, se partirá el espectro de diseño establecido por la NEC SE DS 2015, delimitando las características de suelo

y ubicación, una vez estabilizada la estructura según las revisiones que propone la misma normativa se procederá a realizar un análisis no lineal estático, así como el posterior diseño de las conexiones, esto con la finalidad de obtener una comparativa tanto en el desempeño como en el costo de cada sistema estructural, según los costos actuales en el Ecuador, realizando un APU (Análisis de Precios Unitarios).

2.2.1. Plan de recolección de datos

Tabla 16: Características de edificio del "Voluntarios Eplicachima" multifamiliar N.1.

Facultad de Ingenier	cnica de Ambato ría Civil y Mecánica geniería Civil	
Ciudad:	gemeria civii	Quito
Cladid.	ZONA:	17 S
Localización:	DIRECCIÓN:	Av. Pedro Vicente Maldonado y Teodoro Gómez
	NORTE:	9970587,26
	ESTE:	775321,08
Sistema Estructural:		paciales sin muros ni ales rigidizadores
Material:		nigón Armado
Configuración estructural:		ectangular
Altura de entrepiso:		2,30
		5
Número de Pisos		
Número de Pisos	Número Ejes X	7
Número de Pisos Luces de pisos	Número Ejes X Distancia X (m)	7 2,90-2,90-2,50-2,50- 2,90-2,90
		2,90-2,90-2,50-2,50-
Luces de pisos	Distancia X (m) Número Ejes Y Distancia Y (m)	2,90-2,90-2,50-2,50- 2,90-2,90
Luces de pisos	Distancia X (m) Número Ejes Y	2,90-2,90-2,50-2,50- 2,90-2,90 3

Tabla 17: Características del edificio "Oficiales Eplicachima" multifamiliar N.2.

UTA

Universidad Técnica de Ambato Facultad de Ingeniería Civil y Mecánica Carrera de Ingeniería Civil

Ciudad:	Quito		
	ZONA:	17 S	
Localización:	DIRECCIÓN:	Palenque y Av. Pedro Vicente Maldonado	
	NORTE:	9970375,52	
	ESTE:	775421,08	

	Pórticos espaciales sin muros ni		
Sistema Estructural:	diagonales rigidizadores		
Material:	Hormigón Armado		
Configuración estructural:	Rectangular		
Altura de entrepiso:	2,60		
Número de Pisos	4		
	Número Ejes X	3	
Luces de pisos	Distancia X (m)	4,75-4,75	
Luces de pisos	Número Ejes Y	2	
	Distancia Y (m)	6,00	

MEMORÍA FOTOGRÁFICA

Nota: La edificación presenta tres estructuras con juntas de dilatación: bloque 1, gradas, bloque 2

Tabla 18: Características del edificio "Multifamiliares Luluncoto" multifamiliar N.3.

Ciudad:	Quito		
	ZONA:	17 S	
Localización:	DIRECCIÓN:	Av. Pedro Pinto Guzmán y Av, Napo	
	NORTE:	9973713,97	
	ESTE:	777489,49	

Sistema Estructural:	Pórticos espaciales sin muros ni diagonales rigidizadores
Material:	Hormigón Armado
Configuración estructural:	Rectangular
Altura de entrepiso:	2,60
Número de Pisos	4
	Número Ejes X 8
Luces de pisos	Distancia X (m) 3,00 (7)
	Número Ejes Y 3
	Distancia Y (m) 3,00 (2)

MEMORÍA FOTOGRÁFICA

Tabla 19: Características del edificio "Terrazas del dorado" multifamiliar N.4.

Universidad Técnica de Ambato Facultad de Ingeniería Civil y Mecánica Carrera de Ingeniería Civil Ciudad: Quito ZONA: 17 S Calle Ote y, Telmo Paz y DIRECCIÓN: Localización: Miño NORTE: 9976420,81 ESTE: 778758,91 Pórticos espaciales sin muros ni Sistema Estructural: diagonales rigidizadores Material: Hormigón Armado Configuración estructural: Rectangular Altura de entrepiso: 2,30 Número de Pisos 6 Número Ejes X 2,80-2,80-2,50-2,50-2,80-2,80 Distancia X (m) Luces de pisos Número Ejes Y 2 4,40 Distancia Y (m)

MEMORÍA FOTOGRÁFICA

Nota: Dos bloques están conectados por gradas con estructura independiente con juntas de dilatación

Tabla 20: Características del edificio "Drom Plaza" multifamiliar N.5.

Ciudad:	Quito		
	ZONA:	17 S	
Localización:		Jorge Drom y Juan José Villalengua	
	NORTE:	9980844,41	
	ESTE:	779832,00	

Sistema Estructural:	Pórticos espaciales sin muros ni diagonales rigidizadores
Material:	Hormigón Armado
Configuración estructural:	Rectangular
Altura de entrepiso:	3,06
Número de Pisos	8
	Número Ejes X 12
Luces de pisos	Distancia X (m) 7,50 (11)
	Número Ejes Y 4
	Distancia Y (m) 7,07-6,45-1,62

MEMORÍA FOTOGRÁFICA

Tabla 21: Características del edificio "Albéniz Plaza" multifamiliar N.6.

Ciudad:	Quito		
	ZONA:	17 S	
Localización:	DIRECCIÓN:	Av. Galo Plaza y Av. Issac Albeniz	
	NORTE:	9983069,47	
	ESTE:	779897,77	

Sistema Estructural:	Pórticos espaciales con muros o diagonales rigidizadores
Material:	Hormigón Armado
Configuración estructural:	Rectangular
Altura de entrepiso:	3,96
Número de Pisos	20
	Número Ejes X 4
Luces de pisos	Distancia X (m) 8,10-9,10-8,10
	Número Ejes Y 5
	Distancia Y (m) 9,20-6,80-9,20-6,80

MEMORÍA FOTOGRÁFICA

Tabla 22: Características del edificio "Multifamiliares Miñarica 1" multifamiliar N.7.

Ciudad:	Ambato		
Localización:	ZONA:	17 S	
	DIRECCIÓN:	Av. Antonio Clavijo y Pío Baroja	
	NORTE:	9860292,85	
	ESTE:	763068,19	

Sistema Estructural:	Pórticos espaciales sin muros ni diagonales rigidizadores	
Material:	Hormigón Armado	
Configuración estructural:	Asimétrico	
Altura de entrepiso:	2,60	
Número de Pisos	5	
Luces de pisos	Número Ejes X 5	
	Distancia X (m) 3,80-2,50(2)- 2,75	
	Número Ejes Y 5	
	Distancia Y (m) 2,60-2,60-3,60-2,60	
MEMORÍA FOTOGRÁFICA		

Nota: Dos edificios espejo con juntas de dilatación

Tabla 23: Características del edificio "Apartamentos Montreal" multifamiliar N.8.

Ciudad:	Ambato		
	ZONA:	17 S	
Localización:	DIRECCIÓN:	Miguel de Cervantes y Luis Ernesto Alvarado	
	NORTE:	9860292,85	
	ESTE	763068,19	

Sistema Estructural:	Pórticos espaciales sin muros ni diagonales rigidizadores	
Material:	Hormigón Armado	
Configuración estructural:	Rectangular	
Altura de entrepiso:	2,50	
Número de Pisos	7	
Luces de pisos	Número Ejes X 3	
	Distancia X (m) 6,00(2)	
	Número Ejes Y 6	
	Distancia Y (m) 6,00(5)	
MEMORÍA FOTOGRÁFICA		

Nota: Dos edificios conectados con estructura independiente para el ascensor juntas de dilatación en cada estructura

Tabla 24: Características del edificio "Residencia Núñez" multifamiliar N.9.

Ciudad:	Ambato		
	ZONA:	17 S	
	DIRECCIÓN:	Av. Los Incas y Pichincha Alta	
	NORTE:	9862885,29	
	ESTE:	764162,67	

Sistema Estructural:	Pórticos espaciales sin muros ni diagonales rigidizadores
Material:	Hormigón Armado
Configuración estructural:	Rectangular
Altura de entrepiso:	2,30
Número de Pisos	4
Luces de pisos	Número Ejes X 4
	Distancia X (m) 4,30 - 4,10 - 4,30
	Número Ejes Y 4
	Distancia Y (m) 3,90 (3)

MEMORÍA FOTOGRÁFICA

Tabla 25: Características del edificio "Multifamiliares Bellavista" multifamiliar N.10.

	1 4 1 .			
Universidad Técnic Facultad de Ingeniería C Carrera de Ingen	Civil y Mecánica	FICM		
Ciudad:		Ambato		
	ZONA:	17 S		
Localización:	DIRECCIÓN:	Av. Oriente Ecuatoriano y Quiz Quiz		
	NORTE:	9862271,28		
	SUR:	764418,22		
Multifamiliares 10 Sector Entire Between Google Earth	Leyenda 2 200 de Afaltos			
City on Francisco		Pórticos espaciales sin muros ni		
Sistema Estructural: Material:	diagonales rigidizadores Hormigón Armado			
Configuración estructural:		ectangular		
Altura de entrepiso:	2,30			
Número de Pisos	5			
	Número Ejes X	6		
Luces de pisos	Distancia X (m)	3,60 - 4,00 - 2,50 - 3,60 - 4,00		
•	Número Ejes Y	3		
	Distancia Y (m)	4,40 (2)		
MEMORÍA FOTO				
	ICHIRO.			

Tabla 26: Características del edificio "Mutualista Ambato" multifamiliar N.11.

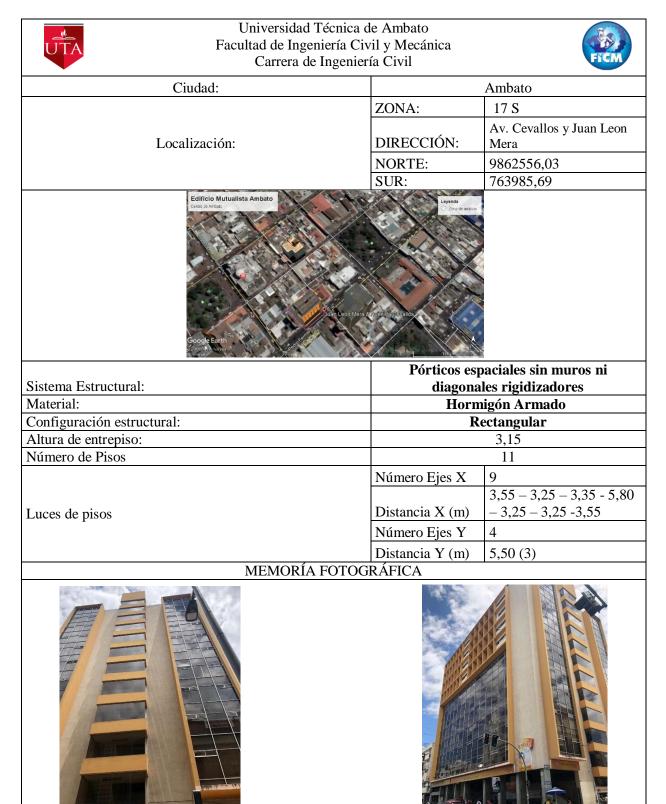


Tabla 27: Características del edificio "Mushuc Runa Riobamba" edificio N.12.

Ciudad:	Riobamba		
Localización:	ZONA:	17 S	
	DIRECCIÓN:	Carabobo y Esmeraldas	
	NORTE:	9814861,76	
	SUR:	760783,81	

Sistema Estructural:	Pórticos de acero con arriostramiento
Material:	Acero Estructural
Configuración estructural:	Rectangular
Altura de entrepiso:	3,42
Número de Pisos	8
Luces de pisos	Número Ejes X 4
	Distancia X (m) 5,03-3,71 – 4,44
	Número Ejes Y 4
	Distancia Y (m) 5,36 –6,81 - 3,76

MEMORÍA FOTOGRÁFICA

Tabla 28: Resumen de las Características de Edificios Multifamiliares.

			Altura					Distancia
	Nombre de	N. de	Entrepisos		N. de	N. de	Distancia	Ejes Y
N	Multifamiliar	Pisos	(m)	Geometría	Ejes X	Ejes Y	Ejes X (m)	(m)
	Malamataniaa						2,90 - 2,90 -	2.25
	Voluntarios	_	2.20	Destar les		2	2,50 - 2,50 -	3,35 -
1	'	5	2,30	Rectangular	6	2	2,90 - 2,90	2,35
	Oficiales				_			
2		4	2,60	Rectangular	2	1	4,75 - 4,75	6,00
	Multifamiliares							
3	Luluncoto	4	2,60	Rectangular	7	2	3,00 (7)	3,00 (7)
	Terrazas del						2,80 (2) -	
4	dorado	6	2,30	Rectangular	6	1	2,50 (2) -	4,00
-	dorado	0	2,30	Rectangular	0	1	2,80 (2)	
5	Drom Plaza	10	3,06	Rectangular	11	3	7 50 (11)	7,07 - 6,45
	DIOIII FIAZA	10	3,00	Rectangular	11	3	7,50 (11)	- 1,62 9,20 - 6,80
							8,10 - 9,10 -	- 9,20 - 0,80 - 9,20 -
6	Albeniz Plaza	24	3,96	Rectangular	3	4	9,10	6,80
	N 4 + : f = : : = =							2,60 - 2,60
_	Multifamiliares	_	2.50			_	3,80 - 2,50	- 3,60 -
7		5	2,60	Asimétrica	4	5	(2) - 2,75	2,60
	Apartamentos							
8	Montreal	7	2,60	Rectangular	5	2	6,00 (2)	6,00 (2)
	Residencia						4,30 - 4,10 -	
9	Núñez	4	2,30	Rectangular	3	3	4,30	3,90 (3)
	Multifamiliares			_				
10		5	2,30	Rectangular	5	2	3,00 (7)	3,00 (7)
10	IVIIII ar ica 1		2,30	rectarigatar			3,55 – 3,25 –	3,00 (7)
							3,35 - 5,80 -	
	Mutualista						3,25 – 3,25 -	
11	Ambato	11	3,15	Rectangular	9	4,00	3,55	5,50 (3)
				Rectangular				
	Mushuc Runa			con vértice			5,03- 3,71 –	5,36 –6,81 -
12	Riobamba	8	3,20	inclinado	4	4	4,44	3,76
PRC	OMEDIO	7,75	2,75		5,20	2,50		

Fuente: Autor

Se obtendrá características genéricas de los edificios multifamiliares en relación a los promedios obtenidos en la anterior tabla, para el dimensionamiento de los ejes se considera que las luces máximas son de 9,20 m; y la mínima 2,35 m por lo que se empleará luces máximas de 6,50 metros y mínimas de 3,60 metros la geometría del edificio se empleará rectangular, esto con el fin de obtener características estándar de edificaciones multifamiliares en Ecuador.

Tabla 29: Características genéricas de la edificación a modelar.

Número de Pisos	10
	3,20 (Con el fin de tener una luz libre de
Altura de entrepiso	2,60)
N. Ejes X	6
N. Ejes Y	4
	6,50 - 4,40 - 5,40 – 4,50 - 5,40 - 4,40 -
Distancia Ejes X (m)	6,50
Distancia Ejes Y (m)	5,75 - 4,50 - 5,75 - 4,50

Fuente: Autor

Cuantificación de adicionales de carga

El software empleado (ETABS) considera el peso propio de los elementos: losas, vigas, columnas y riostras, pero se debe adicionar el peso de paredes y el de los acabados y detalles de la losa como el masillado, material de recubrimiento (cerámica, baldosa, madera y otros), y en el inferior para dar un acabado más estético techo falso o gypsum, es por ello que se cuantificará cargas adicionales. La losa empleada al tratarse de diseño en acero es una losa con placa colaborante y vigas secundarías.

MACILLADO

PLACA DECK

PLANCHA DE YESO

1 m

Figura 38: Corte de losa con placa colaborante.

Tabla 30: Peso Específico de los materiales.

Peso específico de los materiales (kg/m3)						
	Enlucido	1900				
Acabado	Piso Flotante -					
Acabado	Cerámica	1500				
	Masillado	1900				
Loseta	Hormigón Armado	2400				
Loseia	Acero	7850				
	Ladrillo	1700				
Otros	Vidrio	2500				

Tabla 31: Peso Específico de los materiales.

	PROPIEDADES DEL PANEL							
ESPESOR	PESO	ls (+)	ls (*)	Ss (+)	Ss (*)			
(mm)	(Kg/m²)	(cm+/m)	(cm*/m)	(cm ³ /m)	(cm ³ /m)			
0.65	6.37	29.30	28.86	9.61	14.54			
0.70	6.85	32.29	31.83	10.72	15.71			
0.76	7.44	35.97	35.47	12.10	17.13			

Fuente: Catálogo de distribuidor en Ecuador

Tabla 32: Peso Específico de los materiales.

	VOLUMEN HORMIGON /m²							
	*ESPESOR DE LOSA(cm)	HORMIGON (m³/m²)						
23	5	0.06950						
* Hormigón sobre la cresta	6	0.07954						
Sobre	7	0.08954						
-6	8	0.09954						
Hode	10	0.ff954						
•	12	0.13954						

Fuente: Catálogo de distribuidor en Ecuador

• Peso Losa Entrepiso

P.P Acero =	6,37 kg c/m2
P.P Hormigón + M. Electrosoldada = 0.0659m*1m*1m*2400 =	= 158,16 kg c/m2
P.P Masillado += 0.02m * 1m * 1m * 1900 =	38 kg c/m2
P.P Acabados = 0.02m * 1m * 1m * 1500 =	30 kg c/m2
Planchas de Yeso Inferiores = 0,0125*1*1*800 =	10 kg c/m2

242,53 kg c/m2

Peso propio losa = P.P. Placa + P.P. Malla + P.P. Loseta

PP. LOSA=
$$(158,16 + 6,37) \text{ kg/m2} = 164,53 \text{ kg/m2}$$

Carga Muerta Adicional = P. Enlucido + P. Masillado + P. Acabados + P. Yeso

$$CMA = (38 + 30 + 10) \text{ kg/m2} = 78 \text{ kg/m2}$$

Para el cálculo de la carga muerta de paredes se empleará dos planos arquitectónicos en planta multifamiliares, las cuales se encuentran en los anexos de la presente investigación y según el tipo de pared, finalmente se sacará un promedio de las cargas a colocar en el software con la finalidad de generar características estándar.

Cálculo de ACM (Adicional Carga Muerta) Plano Anexo 4

Área = 122,79 m2

Altura de entrepiso libre = 2,70 m

Tabla 33: Paredes y cargas de pared (plano anexo 4).

Ladril	lo 0,20	Pared + v	ventana 1	Pared + ventana 2		Ladrillo 0	,20; h=1,2	Ladrillo 0,1	
8.	16	63	6,8	3	36	40	08	40)8
Px	Py	Px	Py	Px	Py	Px	Py	Px	Py
3,6	3,2	5,6	0,8	4,2	0,8	5,6	0,4	1,6	0,1
3,6	1	6	,4	1		(6	1	,7
3,2	3,3	4075,	52 kgf	0,8		2448	8 kgf	693,6 kgf	
1	0,4			2					
2,4	2,1			2		=			
2	2,1			10	0,8	=			
2,5	3,7			10	0,8				
0,8	0,6			3628	,8 kgf				
1,7	3,2					_			
0,8	0,4								
2,8	2,2								
0,4	1								
3,5	0,8								
2	2								

Fuente: Autor

Altura de entrepiso libre = 2,40

3,5

33,8

60,4 **49286,4 kgf**

0,6 26,6

Suma total de cargas = 60132,32 kgf

Carga total en metros cuadrados = Aréa/Suma Total de cargas

Carga total en metros cuadrados = 60132,32 kgf/122,79 m2

Carga total en metros cuadrados = 489,72 kg/m2

Cálculo de ACM (Adicional Carga Muerta) Plano Anexo 5

Área = 458,67 m2

Altura de entrepiso libre = 2,70 m

Tabla 34: Paredes y cargas de pared plano anexo 5.

Ladrillo	Ladrillo 0,10 Ladrillo			Ladr	illo 0,20	Pared con vi	drio T1	
Px	Ру	Px	Ру	Px	Ру	Px	Ру	
2,94	2,81	3,35	0,15	0,2	1,9	1,8	0,65	
0,1	0,25	0,95	2,2	7,65	2,1	3,6	1,3	
0,6	0,2	0,15	2,3	6,14	2,2	4,9		
0,6	0,7	0,15	3,73	5,4	1,64	377,75	<u> </u>	
1,64	3,6	0,45	0,95	2,94	0,35	1850,97	'5	
						Pared de espe		
2,9	1,02	0,4	0,81	1,45	2,65	vidrio		
0,1	1,34	0,35	2,19		0,4	Px	Ру	
0,8	0,8	1,2	0,2		3,95	1,15	5,25	
2,53	0,63	0,3	3,85		1,55	2,3	10,5	
0,1	0,6	1,81	0,5	23,78	10,84	12,8		
0,45	2,7	0,15	0,3	47,56	21,68	547,5		
1,5	3,35	2,81		6	9,24	7008		
0,1	2,1	0,6		!	918	Pared con vidrio T2		
1,36	0,6	0,15			562,32	Px	Ру	
					espesor 0,55			
1,7	0,9	4			idrio	12	0,75	
2,27		0,4		Px	Ру		1,2	
1,41		0,9		0,55	1,84		0,9	
0,7		0,95		1,1	3,68	12	2,85	
1,51		1			4,78		5,7	
1,5		20,07	17,18		L59,5	29,7		
2,11		40,14	34,36	55	42,41	343,5		
26,92	21,6		1,5			10201,9	5	
53,84	43,2		8,5					
97,0			3,25					
459			55cm	3	2524,5	7573,5		
44541	L ,3 6	Pared	25cm	4	1147,5	4590		

Fuente: Autor

Suma total de cargas =196163,765 kgf

Carga total en metros cuadrados = Aréa/Suma Total de cargas

Carga total en metros cuadrados = 60132,32 kgf/458,67 m2

Carga total en metros cuadrados = 427,6848972 (kg/m2)

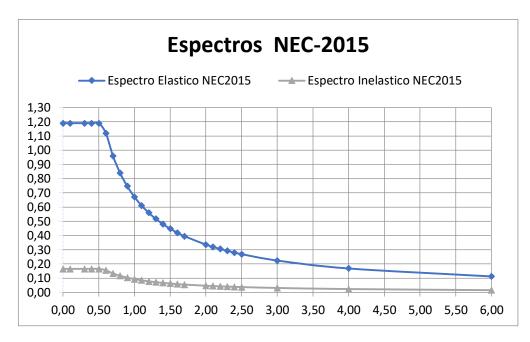
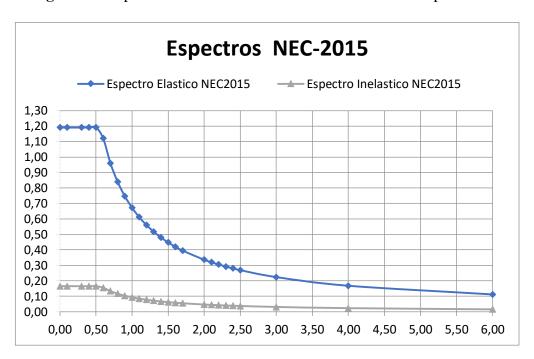

Se empleará una carga viva para edificaciones multifamiliares de 200 kg/m² como lo establece la NEC SE CG [3] por lo que emplearán las siguientes cargas adicionales, además se empleará a partir de las mismas para el prediseño de elementos: losa vigas y columnas. Se empleará también un análisis dinámico con el espectro sísmico que propone la NEC SE DS. Considerando de igual forma las siguientes características que se verán en la siguiente tabla.

Tabla 35: Datos empleados para el espectro de diseño y cortante basal para pórticos arriostrados en acero.

Factor de importancia	I=	1,000
Categoría Sísmica	Zona Sísmica=	V
Valor de factor Z	Z=	0,400
Perfil del Suelo	Suelo Tipo=	С
Coef. Amplificación del suelo en la zona de periodo corto	Fa=	1,200
Coef. Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca	Fd=	1,110
Comportamiento no lineal de los suelos	Fs=	1,110
Factor usado en el espectro de diseño elástico	r=	1,000
relación de amplificación espectral	η=	2,480
Altura de la edificación	hn=	32,000
Tipo Estructura	De Acero con arriostramientos	
Coeficiente que depende del tipo de edificio	Ct=	0,073
	α=	0,750
Período de Vibración Método 1	Ta CODIGO=	0,982
Período de Vibración Método 2	1.3 * Ta Codigo	1,277
Período de vibración Programa	T (SAP o ETABS)=	
Período de Vibración	Ta=	0,982
Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño	Te=	0,565
Coeficiente relacionado con el período de vibración de la estructura T	k=	1,241
Aceleración Espectral	Sa(Ta)=	0,684
Coeficiente de Reducción de Respuesta Estructural	R=	8
Irregularidad en planta	ФР=	0,900
Irregularidad en elevación	ФЕ=	1,000
	Corte Basal	
	V=	0,095

Fuente: NEC SE DS 2015

Figura 39: Espectros elásticos e inelásticos de la NEC SE DS para pórticos arriostrados en acero (PEAC y PAE).


Tabla 36: Datos empleados para el espectro de diseño y cortante basal para pórticos especiales sin arriostramiento.

E . 1	т	1.000
Factor de importancia	I=	1,000
Categoría Sísmica	Zona Sísmica=	V
Valor de factor Z	Z=	0,400
Perfil del Suelo	Suelo Tipo=	C
Coef. Amplificación del suelo en la zona de periodo corto	Fa=	1,200
Coef. Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca	Fd=	1,110
Comportamiento no lineal de los suelos	Fs=	1,110
Factor usado en el espectro de diseño elástico	r=	1,000
relación de amplificación espectral	η=	2,480
Altura de la edificación	hn=	32,000
Tipo Estructura	De Acero sin arriostramientos	
Coeficiente que depende del tipo de edificio	Ct=	0,072
	α=	0,800
Período de Vibración Método 1	Ta CODIGO=	1,152
Período de Vibración Método 2	1.3 * Ta Codigo	1,498
Período de vibración Programa	T (SAP o ETABS)=	
Período de Vibración	Ta=	1,152

Período límite de vibración en el espectro sísmico elástico de aceleraciones que representa el sismo de diseño	Tc=	0,565
Coeficiente relacionado con el período de vibración de la estructura T	k=	1,326
Aceleración Espectral	Sa(Ta)=	0,584
Coeficiente de Reducción de Respuesta Estructural	R=	8
Irregularidad en planta	ФР=	0,900
Irregularidad en elevación	ФЕ=	1,000
	Corte Basal	
	V=	0,081

Fuente: NEC SE DS 2015

Figura 40: Espectros elásticos e inelásticos de la NEC SE DS para PEM.

Fuente: Autor

Cargas no sísmicas a colocar

Adicional de Carga muerta 78 + 425 (kg/m2) = 503 kg/m2

Carga Viva = 200 kg/m2

2.2.2. Plan de Procesamiento y Análisis de Información

Forma de la estructura

Partiendo de los datos de los se plantea la forma de la edificación multifamiliar genérica con forma rectangular simétrica y con volados no mayores a dos metros de longitud, con las dimensiones y ejes expuestos anteriormente. Donde se colocarán las vigas principales y columnas. Tal como se muestra en la Figura 41.

Predimensionamiento de elementos estructurales

Se predimensionará columnas, vigas principales y secundarías y se establecerá las secciones predimensionadas en la Tabla 37.

Para el cálculo de se ocupará la carga muerta total de pared más el adicional de carga muerta de pared, más los acabados; ocupando la carga viva que establece la normativa de 200 kg/m², NEC SE CG para multifamiliares. Con la combinación 1,2 D + 1,6L. Carga Muerta Total de Losa + Carga muerta de pared: (425 + 242,53) kg/m².

Cu = Carga de prediseño $1,2*(667,53 \text{ kg/m}^2) + 1.6(200 \text{ kg/m}^2) = 1121,036$

Prediseño de columnas.

Se ocupará Pu = Cu* Área Tributaria * Número de Pisos y para el Pu (diseño) se multiplica por 3 la relación de esbeltez KL/r debe estar entre 40 y 60 según la recomendación del manual de construcción en acero del AISC se trabajará con acero A572 grado 50 según eso se determinará de la tabla 4-22 "Available Critical Stress for Compression Members" [25] manual de construcción en acero del AISC para obtener el Fcr (Esfuerzo Crítico a Pandeo) y cuya área mínima de diseño se obtendrá de la división del Pu/ ØFcr, posteriormente se buscará en un catálogo.

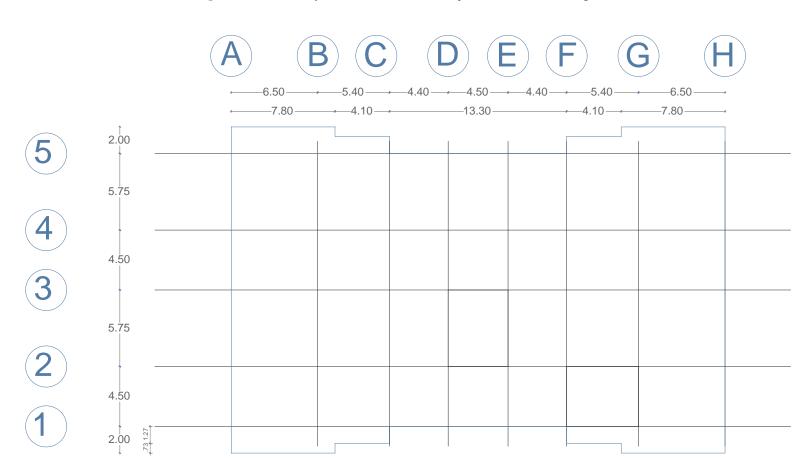
Prediseño de vigas

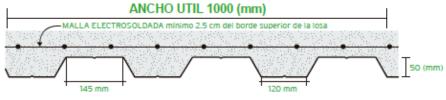
Es fundamental obtener el área tributaria de las vigas y se multiplicará por el Cu obtenido anteriormente, dando como resultado un qu, posterior a eso se hallará un momento gravitacional de prediseño cuyo resultado es de ql²/10 y un momento sísmico que resulte del cortante basal multiplicado por el momento gravitacional y el número de pisos, sumando ambos momentos se dividirá estos valores para el ØFcr, posteriormente se buscará en un catálogo.

Prediseño de vigas secundarias.

Se aplicará los mismos pasos que en vigas principales considerando solo el momento gravitacional y un área tributaria mucho menor como es obvio, para considerar un momento relativamente mayor se empleará un $ql^2/8$

Figura 41: Forma y dimensiones de los ejes de la estructura genérica.




Tabla 37: Secciones del prediseño a considerarse en el catálogo.

									со	LUMNAS											
ÁREA TRIBUTARIA	18,69	33,32	33,32	33,32	14,63	31,34		55,87	55,86	55,86	24,52	28,17	50,22	50,22	50,22	22,05	28,46	50,63	50,63	50,63	22,17
CARGA ULTIMA	1121,036	1121,04	1121,04	1121,04	1121,04	1121,04	11	21,036 1	121,04	1121,036	1121,036	1121,036	1121,04	1121,04	1121,036	1121,04	1121,036	1121,04	1121,04	1121,04	1121,036
NÚMERO PISOS	10	10	10	10	10	10		10	10	10	10	10	10	10	10	10	10	10	10	10	10
	A5	A4	A3	A2	A1	B5	B4	В3	3	B2	B1	C5	C4	C3	C2	C1	D5	D4	D3	D4	D5
P DISEÑO	628564,9	1120588	1120588	1120588	492023	1053998	1878	968,44 18	878632	1878632	824634,1	947387,5	1688953	1688953	1688953	741565	957140,5	1702742	1702742	1702742	745601
2372,49	264,9389	472,326	472,326	472,326	207,387	444,258	791,98	16057	791,84	791,8399	347,5817	399,322	711,89	711,89	711,8904	312,568	403,4329	717,702	717,702	717,702	314,2694
ÁREA TRIBUTARIA	18,69	33,32	33,32	33,32	14,63	31,34		55,87	55,86	55,86	24,52	28,17	50,22	50,22	50,22	22,05	28,46	50,63	50,63	50,63	22,17
CARGA ULTIMA	1121,036	1121,04	1121,04	1121,04	1121,04	1121,04	11	21,036 1	121,04	1121,036	1121,036	1121,036	1121,04	1121,04	1121,036	1121,04	1121,036	1121,04	1121,04	1121,04	1121,036
NÚMERO PISOS	6	6	6	6	6	6		6	6	6	6	6	6	6	6	6	6	6	6	6	6
	A5	A4	A3	A2	A1		B4	В3	_		B1	C5	C4	C3		C1				D2	D1
P DISEÑO	377138,9	672353	672353	672353	295214			31,064 11		1127179	,	568432,5			1013372	444939	574284,3	1021645	1021645	1021645	447360,6
2372,49	158,9633		283,395	283,395		266,555	475,18	89634 4	175,104	475,1039		239,5932				187,541	242,0597	430,621	430,621		188,5616
ÁREA TRIBUTARIA	18,69	33,32	33,32	33,32		31,34		55,87	55,86	55,86	24,52	/	50,22	50,22	50,22	22,05	28,46	50,63	50,63	50,63	22,17
CARGA ULTIMA	1121,036				1121,04	1121,04	11	21,036 1	1121,04	1121,036	1121,036	1121,036	1121,04	1121,04	1121,036	1121,04	1121,036	1121,04	1121,04	1121,04	1121,036
NÚMERO PISOS	3	3	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3	3	3	3
	A5	A4	A3	A2	A1		B4	B3	_		B1	C5	C4	C3					D3		D1
P DISEÑO	188569,5		336176	336176			56369	,		, .	,	284216,3			506685,9	222470	287142,2	510822	510822	510822	223680,3
2372,49	79,48167	141,698	141,698	141,698	62,216	133,277	237,59	44817 2	237,552	237,552	104,2745	119,7966	213,567	213,567	213,5671	93,7705	121,0299	215,311	215,311	215,311	94,28082
				1	1					VIGAS											
ÁREA TRIBUTARIA	18,69		33,32	33,32				55,87	55,86	55,86	24,52			50,22	50,22	22,05		50,63	50,63	50,63	22,17
LONGITUD	6,5	-,-	6,5	6,5	-,-			5,4	5,4	5,4	5,4		4,4	4,4	4,4	4,4	4,5	4,5	4,5	4,5	4,5
CARGA ULTIMA	1121,036			1121,04		1121,04	11					1121,036					1121,036				1121,036
NÚMERO PISOS	10			10				10	10	10	10		10	10	10	10	10	10	10	10	10
CORTANTE BASAL	0,165			0,165		-,		0,165	0,165	0,165	0,165	-,	-,		0,165	0,165		0,165	0,165	0,165	
	AB5			AB2	AB1		BC4	BC				CD5	CD4	CD3							DE1
Mu	88522,89			157816	,	102449	18263	,	182603		,	61138,07			, .	47855,7	,	114935	114935		50328,07
М	146062,8	260397	260397	260397	114334		30134	,	301295		/-	100877,8			,	78961,9	106601,5	189643	189643		83041,32
Mt	234585,7	418213	418213	418213	183627	271489	48398	,			,	162015,9		288833		126818	,-	304578	304578		133369,4
2372,49	98,8774	176,276	176,276	176,276	77,3984	114,432	203,9		,	,	,	68,28939	121,743	121,743	121,7427	53,4534	72,16406	128,379	128,379	128,379	56,21494
		1								ECUNDA		I	ı	I							
							CARGA ULTIN	/IA 1:				1121,036	-								
							LONGITUD	4 DI 4	5,75	5,4	4,4	4,5	-								
							ÁREA TRIBUT		14,9	9,18	7,48	-,	-								
							Mu		59032,2			23637,39	-								
							2	372,49 2 5	29,0969	15,81086	8,553269	9,963117]								

Diseño de Losa

Se empleará una losa deck debido a ser una estructura de acero y se empleará las especificaciones de diseño establecidas en el manual de acero deck. [26] Se emplearán los datos de las tablas 31 y 32, dados por un distribuidor local.

Figura 42: Características geométricas de la placa deck dadas por el proveedor.

Fuente: Kubiec

Tabla 38: Datos para el diseño solicitados por el manual de acero deck.

DATOS DE DISEÑO	
Límite de fluencia de la plac deck kg/m2	2600
Altura de la placa deck (m)	0,05
Peso específico del hormigón kg/m2	2400
Espesor del hormigón (m)	0,05
Módulo de elasticidad del acero kg/cm2	2039000
Espesor de Placa(m)	0,65
Peso de la placa	6,37
Luz Libre de Losa Lsd (m)	1,8
Número de tramos	3
Inercia según el espesor	29,3
Momento Positivo kg-m	123,44
Momento Negativo kg-m	213,02
Ss+	9,61
Ss-	14,54
n	9
phi de la malla electrosoldada (cm)	0,8
Wr Ancho superior del valle deck utilizado (cm)	14,5
Cs Espacio entre ejes de valle contiguos (cm)	26,5
Carga Muerta total	751,87
Carga viva total	200
Resistencia a compresión del hormigón kg/cm2	240
Límire de fluencia de la malla electrosoldada kg/cm2	6000
Wr Ancho inferior del valle deck utilizado (cm)	12

Tabla 39: Chequeos para la verificación de un adecuado diseño.

1 39: Cl	nequeos para la verificación	de un adecuado								
	CHEQUEOS									
Peso	del hormigón kg/m2	120								
	total Wd	126,37								
Esfu	erzo Admisible*	1								
	DEFLEXIÓN DE LA P	LACA								
Para	un tramo	0,288663925								
Para	dos tramos	0,119906553								
Para	tres tramos	0,153213929								
	ok ESFUERZOS DE LA P	LACA								
f+		1284,495317								
f-		1465,061898								
Fy a	dmisible	1560								
	ok ESFUERZOS EN EL SISTEMA COMPUESTO									
As (em)e	5,026548246								
p		0,010053096								
d (cr	n)	8								
Ycc		2,755413581								
Espe	esor total de la losa (cm)	10								
Ycc	2	3,512834946								
Ycs		4,487165054								
Ic		1164,025816								
Iu		7192,459788								
Ie		4178,242802								
Ypro	om	3,134124263								
Stc		608,5520569								
Msd		222,2903655								
Mlsc		81								
	49,83803145 RESISTENCIA A FLE									
	El diseñodebe ser subref	orzado								
pb		7,63361E-06								
	El diseño es subreforzado									
	RESISTENCIA A CO	RTE								
	ØVn>Vu									
Ac		66,25								
Vn		1631,881533								
Vu		673,97859								

Diseño de conectores de corte (STUD)

La función de dichos elementos es asumir esfuerzos de corte, mediante el cual se controlan y limitan las deformaciones de la losa compuesta.

Figura 43: Características geométricas y vista frontal de un conector de corte.

	TIPO DE CONECTORES	NS- 500/250	NS- 625/250	NS- 625/300	NS- 625/400	NS- 750/300	NS- 750/400	
ZES	Diámetro del vástago (C)	1/2"	5/8"	5/8"	5/8"	3/4"	3/4"	
5	Longitud del vástago (L)	2 1/2"	2 1/2"	3"	4"	3"	4"	-
2	Diámetro de la cabeza (D)	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	
	Altura de la cabeza (H)	8,5 mm	8,5 mm	8,5 mm	8,5 mm	10 mm	10 mm	+ =

Fuente: Acero-Deck.com

Tabla 40: Diseño de conectores de corte STUD.

Diseño de conectore	S
Fluencia de la placa	2600
Fluencia del conector	3772,95
f'c concreto	240
Longitud del vástago	6,35
Diámetro del vástago	1,27
Diámetro de la cabeza	2,54
Altura de la cabeza	0,85
Wrinfer	12
Wrsuper	14,5
Número de conectores por valle	1
Altura de la placa deck	5
Área efectiva del ala la losa	145
Área de la viga de apoyo	29,1
Área transversal	10,2235
Ec concreto	202944,327
Ac*Fu	38572,7543
35674,9756	ok
Wr/2	13,25
Hs	7,2
0,9911	ok
Wr/hr	2,65

MODELACIÓN DE LAS EDIFICACIONES

Se modelará tres edificaciones, cada uno empleando un sistema estructural diferente PEM o SMF, PEAC o SCBF y PAE o EBF, los cuales deberán cumplir considerando un análisis espectral y estático equivalente para ser una análisis dinámico con el sismo de diseño de la NEC SE DS. Los chequeos de los elementos estructurales y análisis cumplen los estándares del AISC 360-16, la NEC SE DS, AISC 358-16 y AISC 341-16. Para lo cual deberá cumplir los siguientes chequeos indistintamente del sistema a emplearse:

- 1. Calibración del Período Ta ≤ 1,3Ta₁.
- 2. Los modos de desplazamiento de la estructura deben ser traslacionales.
- 3. Verificación que los modos de vibración deben cumplir el 90% de la participación de masa.
- 4. Validación del estado dinámico
- 5. Derivas estáticas < 2%
- 6. Derivas dinámicas < 2%
- 7. Pandeo global de la estructura mayor o igual 1 y menor o igual a -1
- 8. Diseño de factores con el AISC mediante factores de demanda capacidad.

Las modelaciones en la presente investigación, cumplen con los chequeos después de un extenso proceso de diseño y se presentará en el capítulo tres cada uno de los chequeos.

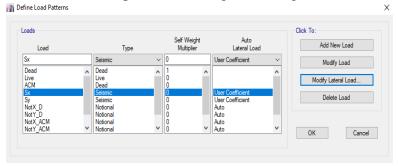
A continuación se presentan las vistas en plantas y elevación con sus respectivos elementos estructurales finales de diseño para tipo de estructura. Así los principales pasos para el proceso de modelación.

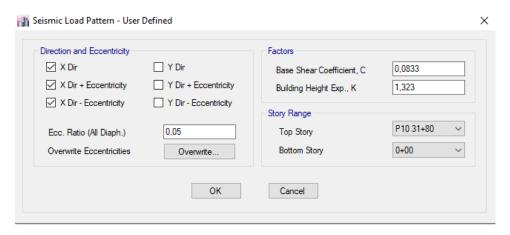
Primero se definirá las materiales: el hormigón de la losa, acero estructural A572, la placa colaborante de acero A653 Grado 33.

Figura 44: Materiales principales definidos en ETABS.

Figura 45: Definición de propiedades mecánicas de los materiales.

Posteriormente se importará los catálogos para las secciones de acero especialmente catálogos europeos y el AISC 341 y basándose en el diseño realizado en la tabla 39 se colocará en el software las propiedades de la losa la cual será chequeada tanto en sus secciones como en vigas secundarias posteriormente


Figura 46: Definición de las características geométricas de la placa colaborante.


Fuente: Autor

Se definirá los casos de carga, viva, muerta, adicional de carga muerta, notional, así como los valores del cortante basal. Posteriormente se importará el espectro de diseño el cual puede o no ser definido por el software, el mismo permite la incorporación de diversas normativas de diseño sísmico con su respectivo espectro de diseño, la masa donde se incluirá la el adicional de carga muerta, así como los modos de vibración de la estructura.

Figura 47: Definición de patrones de carga a ser asignados en la estructura.

Figura 48: Asignación de cargas producidas por el cortante basal.

Fuente: Autor

El cálculo de los factores de cortante basal de la Figura 48. C y K se debe realizar, primeramente el valor del modo de vibración de la estructura multiplicado por el factor de importancia de la misma y dividido para el producto de los factores de irregularidad en planta, elevación y el coeficiente según el tipo de sistema estructural empleado, por su parte K, si el período de la estructura es menor o igual a 0,5 segundos este coeficiente adopta el valor de 1; en caso de que el periodo sea mayor a 0,5 seg. Y menor o igual a 2,5 seg. Entonces 0,75 + la mitad del período de vibración, en caso de que el período de la estructura sea mayor a 2,5 seg k adoptará con valor de 2. Esta explicación se da en función a que se debe calibrar múltiples veces estos factores para garantizar el adecuado diseño de la estructura la normativa NEC SE DS da una tolerancia de error del 10% caso contrario deberá ser recalibrado.

En el caso de los patrones de carga notional se definen en dirección X y Y la carga viva, muerta y el adicional de carga muerta con un valor de 0,003 o 0,002 según el tipo de acero.

En la participación de la masa es imprescindible incluir el valor del adicional de carga muerta.

En estructuras de acero se debe considerar el efecto del pandeo por lo que es necesario incluir una análisis del efecto P Delta iterativo basado en cargas, para lo cual se incluirá la carga viva y la muerta aumentada un 20%, considerando las cargas notional viva y muerta en sus dos direcciones, y el cortante basal en una dirección X o Y. En la presente investigación se ha realizado un modelo incluyendo la carga del cortante basal X y Y, para garantizar un diseño verdaderamente sismo resistente. No se puede asignar ambos valores P Delta sino el programa no converge divido a que físicamente no es posible un movimiento con efectos P Delta en ambas direcciones, por lo que es necesario crear otro archivo y ejecutar el P Delta cambiado la dirección.

Automation Method

None

Non-terrative - Based on Mass

Iterative P-Delta Load Case

Load Pattern

Scale Factor

ACM

1,2

NotX_D

NotY_L

NotY_ACM

1,2

NotY_ACM

1,2

NotY_D

1,2

NotY_D

NotY_L

NotY_D

1,2

NotY_D

NotY_L

NotY_D

NotY_L

NotY_L

NotY_L

NotY_D

OR

Relative Convergence Tolerance

OK

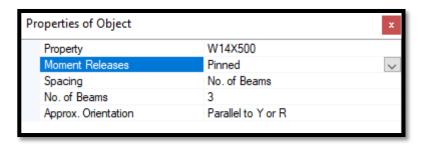
Cancel

Figura 49: Asignación de cargas P Delta con cortante basal Sx.

Fuente: Autor

Finalmente previo a la modelación para considerar chequeos se debe asignar los casos de pandeo global de la estructura. Considerando Pandeo Gravitacional, con cortante basal en dirección X y Y cada uno con 6 casos de pandeo. Es importante incluir los efectos P-Delta.

🔓 Load Case Data Load Case Name Design... Load Case Type Exclude Objects in this Group Not Applicable P-Delta/Nonlinear Stiffness Modify/Show... Iterative based on loads Use Nonlinear Case (Loads at End of Case NOT Included) Nonlinear Case Load Type Load Name Scale Factor Add ACM Load Pattern Delete Sx Load Pattern Load Pattern Number of Buckling Modes 1E-09 Eigenvalue Convergence Tolerance OK Cancel


Figura 50: Casos de carga Notional.

Ya en el proceso de modelación se realiza mediante elementos frame, para vigas, vigas secundarias, columnas y riostras, siguiendo los ejes previamente determinados y asignados en el software, con la consideración de asignar uniones en columnas (Splice Height) a 1,20 m. del entre piso Figura 51. En el caso el caso de vigas secundarias se emplea realeases tipo "Pinned" Figura 52. En el caso de vigas principales se realiza mediante realices continuos Para efectuar una liberación a momento y que estas trabajen solo a carga axial y tracción. El caso de la losa es un elemento tipo membrane.

Figura 51: Tipos de Releases de un elemento frame.

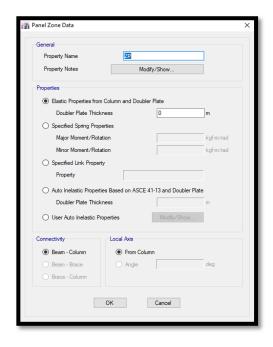

Story	Height m	Elevation m	Master Story	Similar To	Splice Story	Splice Height m	Story Color
P10 32+00	3,2	32	No	P8 25+60	No	0	
P9 28+60	3,2	28,8	No	P8 25+60	No	0	
P8 25+60	3,2	25,6	Yes	None	Yes	0	
P7 22+40	3,2	22,4	No	P5 16+00	No	0	
P6 19+20	3,2	19,2	No	P5 16+00	Yes	1,2	
P5 16+00	3,2	16	Yes	None	No	0	
P4 12+80	3,2	12,8	No	P1 3+20	No	0	
P3 9+60	3,2	9,6	No	P1 3+20	No	1,2	
P2 6+40	3,2	6,4	No	P1 3+20	No	0	
P1 3+20	3,2	3,2	Yes	None	No	1,2	
0+00		0					

Figura 52: Tipos de Releases de un elemento frame.

La asignación apoyos en el nivel 0+00 será de simplemente apoyados para OMF (Pórticos Ordinarios a Momento) y totalmente empotrados para SMF, SCBF, EBF. En el caso del modelo efectuado por SMF, se han empleado todos los pórticos de este tipo; en SCBF Y EBF, los pórticos exteriores están totalmente empotrados y los interiores son del grupo OMF. Al ser una losa con placa deck se asigna un diafragma semi rígido, para todos los entre pisos. Las zonas de panel o placas dobles mientras no se pueda determinar la necesidad o no de las mismas es mejor asignarlas con un valor de 0; Figura 53, en todos los nudos, de la estructura sin considerar los apoyos.

Figura 53: Asignación elástica de las placas dobles.

Las zonas rígidas se establece el criterio de que a los pórticos que resistan carga sísmica se asigna un valor de 1 (SMF, SCBF, EBF) mientras que en el caso de pórticos gravitacionales se asigna un valor de 0, Figura 54. De igual forma se realiza la liberación de momentos (Releases), en vigas, en el caso de Pórticos Ordinarios a Momento, OMF, mediante la siguiente ecuación:

Liberación de momentos =
$$0.05x \frac{4EI}{L}$$
 Ec. 102

Donde:

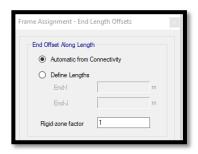
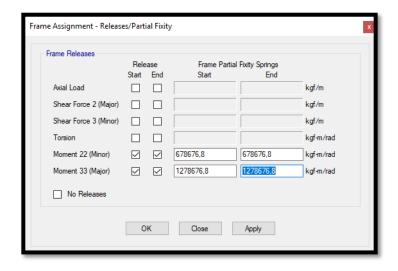
L = Longitud de la viga.

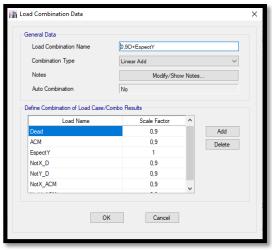
E= Módulo elástico del acero empleado.

I= Inercia del alma sección de viga

Previamente ya se ha definido si se trata de un pórtico gravitacional o pórtico sísmico y la sección del mismo. La inercia se coloca en X y Y, tal cual como los catálogos nos dan.

Figura 54: Zonas Rígidas.

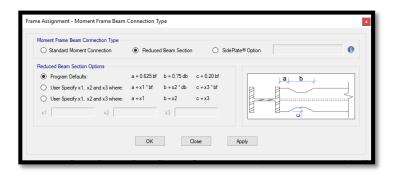




Figura 55: Asignación de Releases de un OMF.

Los pasos posteriores son generales para cualquier modelación en acero, se ha hecho hincapié en las variaciones principales y consideraciones adicionales que se debe tomar en cuenta en relación a otros sistemas estructurales. Definiciones particulares como conexiones pre-calificadas se indicarán en cada sistema estructural.

Posteriormente se debe asignar cargas a la estructura: viva, adicional de carga muerta y las combinaciones de carga respectiva incluyendo cargas Notional, en las combinaciones. Figura 56. Las combinaciones de cargas serán las establecidas por la NEC.

Figura 56: Cargas Notional incluidas en una combinación de carga.



En la tabla 2 se establecen las combinaciones de cargas a usarse con el detalle de que las cargas espectrales y de cortante lateral serán colocadas tanto en dirección X como en dirección Y y con valores positivos y negativos lo que da un total de 18 combinaciones de carga.

Edificio modelado con SMF

La primera consideración adicional para el caso de SMF, es seleccionar el tipo de conexión precalificada y según lo dispuesto por el AISC 341-16 ocuparemos las vigas de sección reducida VSR o RBS.

Figura 57: Consideraciones de longitudes para vigas de sección reducida RBS.

Fuente: Autor

Las asignaciones de longitudes, figura 57, con el promedio de lo que establece el AISC 341, posteriormente se realizará el diseño definitivo de las conexiones precalificadas.

Se realizó diversos diseños, para que cumplan los chequeos establecidos anteriormente y presentados posteriormente en el capítulo tres, como se muestra en la figura 58. Colocando la menor cantidad posible de pórticos especiales a momento, sin embargo debido a derivas menores al 2% se tuvo que realizar todos los pórticos de la estructura con SMF.

Figura 58: Vista en planta de modelo preliminar PEM.

El color cian representa a vigas secundarias y vigas principales OMF, con lo cual se indica que se realizó múltiples intentos para establecer todos los ocho chequeos establecidos anteriormente por normativas internacionales.

El resultado final se muestra a continuación e indica una totalidad de pórticos especiales a momento en toda la estructura.

Figura 59: Vista en planta definitiva en el nivel N3+20 de SMF.

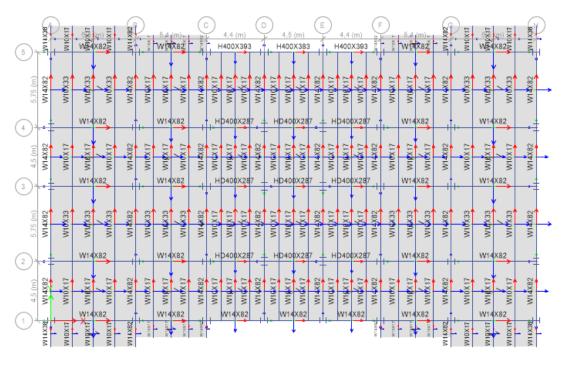


Figura 60: Vista en elevación de los ejes A y B de SMF.

(1 A	2 (A	}	(3 (A	3 8	4 A	{	5 A	(1 B) (2 B		(3 (B	}	4 B	(5 B
W14X38	RBS W14X82	RBS W14X82	Ī	RBS W14X82	RBS W14X82		W14X2810 32+00	W14X82	RBS W14X82	Ĭ	RBS W14X82	Ī	RBS W14X82	RBS W14X	82	W14X#2 0 32+00
W14X82	W14X87 W14X176	RBS W14X82	W14X176	W14X82 W14X176	RBS W14X82	W14X176		M14X82 W14X176	RBS W14X82	W14X170	RBS W14X82	W14X176	RBS W14X82	RBS W14X	W14X176	W14X89 28+80
605X200 W14X98	RBS W14X82	RBS W14X82	H400X288	RBS RBS W14X82 H	RBS W14X82	H400X509	W14X248 25+80	\$24000X744	RBS 9	LINGY 2003	RBS W14X82	H400X509	RBS 9	RBS W14X	78 H400X744	W14X#88 25+80
8400X383	RBS W14X82	RBS W14X82	H400X288	RBS W14X82	RBS W14X82	H400X383	W14X387 22+40	605X509 M14X 8 5	RBS 9	Henryana	RBS W14X82	H400X509	RBS 9	RBS W14X	H400X509	W14X 82 7 22+40
8400X383	RBS W14X82	RBS W14X82	H400X288	RBS W14X82	RBS W14X82	H400X383		₩2400X509	RBS 9	Hannyana	RBS W14X82	H400X509	RBS 9	RBS W14X	H400X509	W14X##B 19+20
W14X83	RBS W14X82	RBS W14X82	H400X288	RBS W14X82	RBS W14X82	X383		%14X6	RBS 9	Hennyana	RBS W14X82	H400X509	RBS 9	RBS W14X	M400X509	W14X#85 16+00
8400X678	RBS W14X82	RBS W14X82	H400X593	RBS W14X82	RBS W14X82	H400X678		W14X 8 2	RBS W14X82	D400YO I	RBS W14X82	H400X818	RBS W14X82	RBS W14X	H400X818	W14X#24 12+80
W14X88	RBS W14X82	RBS W14X82	H400X678	RBS W14X82 H	RBS W14X82	X818		₩14X4100X3000	RBS 9	LINGYY SOO	RBS W14X82	H400X900	RBS 9	RBS W14X	H400X900	W14X#23 9+60
W14X98	RBS W14X82	RBS W14X82	H400X678	RBS W14X82	RBS W14X82	X818	_	W14X82	RBS W14X82	Decoryage a	RBS W14X82	H400X900	RBS W14X82	RBS W14X	006X00PH	W14X#22 6+40
W14X98	RBS W14X82	RBS W14X82	H400X678	RBS W14X82 H	RBS W14X82	X818		000 X 300 X	RBS 9	DOSYDON A	RBS W14X82	H400X900	RBS W14X82	RBS W14X	H400X900	W14X₱₽ 3+20
H400X818	H400X678		H400X678	H400X678		H400X818		H400X900	-> Y	14000300		H400X900	COOLOGGE		H400X900	0+00
ф	, , , , , , , , , , , , , , , , , , ,	1	ф		ь		ф	ш				-	•			

Figura 61: Vista en elevación de los ejes C y D de SMF.

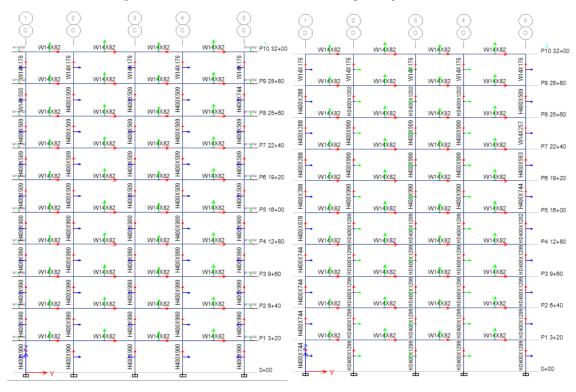


Figura 62: Vista en elevación del eje 1 de SMF.

(1	3	1 B	1			3 (1 F		(1	3
	RBS W14X82	RBS W14X82	RB W14		RBS W14X82	RBS W14X82	RBS W14X82	<u> </u>	RBS V14X82	P10 32+00
W14X82	RBS W14X82	RBS W14X82	911X110 RE W14	S 882 M14X176	RBS W14X82	9,11X RBS 1A W14X82 M	RBS W14X82	W14X176	RBS M	P9 28+80
H400X509		## RBS W14X82	009X+1M RB W14		RBS W14X82	RBS W14X82	RBS W14X82	## LX007#	RBS 914X82 H	P8 25+60
H400X383	RBS W14X82	609X00+ RBS W14X82	609X00†H RE		RBS W14X82 H	RBS 01 W14X82 H	RBS W14X82	H100X509	RBS 074 V14X82 H	P7 22+40
H400X383	RBS W14X82	RBS W14X82	609X00†H RE		RBS W14X82	RBS 091 W14X82 H	RBS W14X82	. н400х209	RBS 074 V14X82 H	P6 19+20
H400X383	RBS W14X82	609X001 RBS W14X82	609X001H		RBS W14X82	RBS W14X82 H	RBS W14X82	609X001H	RBS V14X82 H	P5 16+00
H400X678	RBS W14X82	818 8X00 RBS W14X82	006X00 1 H W14		RBS W14X82 H	RBS 07 W14X82 H	RBS W14X82	H+00X818	RBS 914X82 H	P4 12+80
H400X818	RBS W14X82	006 X00 RBS W14X82	066X00+H RE	S 82	RBS W14X82 H	RBS 04 W14X82 H	RBS W14X82	. 000х3001 н	RBS 04 V14X82 H	P3 9+60
H400X818	RBS W14X82	006 X004 RBS W14X82	066X00+H W14		RBS W14X82 H	RBS 01 W14X82 H	RBS W14X82	. н 100х300	RBS 01 V14X82 H	P2 6+40
H400X818	RBS W14X82	006X001 RBS W14X82	066X00†H		RBS W14X82 H	RBS 04 W14X82 H	RBS W14X82	. н+00хэоо	RBS 01 V14X82 H	P1 3+20
H400XB18		1006X00+H	H400X990	H + 000X + + +	H + 000 X 7 4 4	*066X00†H		H400X900	H400X818	0+00
	×	ф	ф	ф		ь .	ь	ф	ф	

Figura 63: Vista en elevación del eje 2 de SMF.

Figura 64: Vista en elevación del eje 3 de SMF.

(3 (A)))	(3 (B	}		3	3) (3 E	3 F		(3 (G))	3 H	
T	RBS W14X82	Ĭ	RBS W14X82		RBS W14X82	RBS W14X82	RBS W14X82	Ĭ	RBS W14X82	Ī	RBS W14X82	Ī	P10 32+00
W14X176	RBS W14X82	W14X176	RBS W14X82	W14X176	9L1X RBS HD400X287	RBS HD400X287	RBS = HD400X287≥	4	RBS W14X82	W14X176	RBS W14X82	W14X176	P9 28+80
H400X288	RBS W14X82	H400X509	RBS W14X82	H400X509	RBS HD400X287H	RBS HD400X287	RBS 9 HD400X287=	2000	RBS W14X82	H 400X509	RBS W14X82	H+00X288	P8 25+60
H400X288	RBS W14X82	H400X509	RBS W14X82	H400X509	RBS HD400X287 H	RBS 97	RBS 9 HD400X287=		RBS W14X82	H400X509	RBS W14X82	H+00X288	P7 22+40
H400X288	RBS W14X82	H400X509,	RBS W14X82	H +00X509	RBS HD400X287H	RBS HD400X287	RBS HD400X287±		RBS W14X82	H400X509	RBS W14X82	H+00X288	P6 19+20
H400X288	RBS W14X82	H400X509	RBS W14X82	. H400X509	RBS HD400X287 H	RBS 01 HD400X287 H		20000001	RBS W14X82	H400X509	RBS W14X82	H+00X288	P5 16+00
H 400X593	RBS W14X82	H #00X818	RBS W14X82	H +00X900	RBS HD400X287 QF	RBS HD400X287 F	RBS 9	200000	RBS W14X82	H400X818	RBS W14X82	H400X593	P4 12+80
H400X678	RBS W14X82	H +000×900	RBS W14X82	H400X990	RBS HD400X287	RBS HD400X287	RBS 9 HD400X287=	2000	RBS W14X82	Н400Х900	RBS W14X82	H400X678	P3 9+60
H400X678	RBS W14X82	H +000X900	RBS W14X82	H +000X990	RBS HD400X287	280	96	2000	RBS W14X82	H400X900	RBS W14X82	H +00X678	P2 6+40
H400X678	RBS W14X82	H +000X900	RBS W14X82	H +000X990	RBS HD400X28746651	RBS HD400X287 G	06	200000	RBS W14X82	H400X900	RBS W14X82	H400X678	P1 3+20
H400X678		H400X900		H 400X990	XIO9 OH	XDOTOH	7066X00†H	0000000		H400X900		H400X678	0+00
ф		ф	ı		ь .	ь .	ф	ф		ф		ф	

Figura 65: Vista Renderizada Izq. y Vista 3D Derecha SMF.

Edificio modelado con SCBF

Para su diseño se definió pórticos sismo- resistentes los pórticos exteriores netamente por razones arquitectónicas y funcionales de la edificación, el resto de pórticos son netamente gravitacionales OMF. Por lo que fue necesario definir releases mediante la ecuación 102, según cada sección.

Tabla 41: Releases asignados a los OMF

W1222	E (kg/m2)																
No.		W12	x22	W12	2x19	W12	2x26	W1	4x26		W14	X120	W14	X145	W14	X176	
March Marc		LONGITUD	4,5	LONGITUD	4,5	LONGITUD	5,75	LONGITUD	5,75		LONGITUD	5,75	LONGITUD	5,75	LONGITUD	5,75	
	l .	Ix (m4) 22	0,000002	Ix (m4) 22	0,000002	Ix (m4) 22	0,000007	Ix (m4) 22	0,000004		Ix (m4)	0,000574	Ix (m4)	0,000712	Ix (m4)	0,000891	
m32 1997,74468 m32 1997,74468 m32 2525,5599 m32 2886,0848 m33 42896 m33 53154,020 m33 665183,761 m33 5890,610 m33 46933,646 m33 655183,761 m32 14699,755 m22 14699,755 m22 24750,963 m34	A	ly (m4) 33	0,000065	ly (m4) 33	0,000054	ly (m4) 33	0,000085	ly (m4) 33	0,000102		ly (m4)	0,000206	ly (m4)	0,000282	ly (m4)	0,000349	
W14X257		m22	1907,74448	m22	1907,74448	m22	5225,56097	m22	2986,03484			428496	m33	531514,202	m33	665139,261	
W14X257		m33	58901,6109	m33	48933,646	m33	60280,5784	m33	72336,6941		m22	146091,755	m22	199989,684	m22	247504,963	
LONGTIUD 5.75 LONGTIUD							,		,								
A		W14	(257	W14	X233	W14	X211		W14	1X38			W14	X193			
		LONGITUD	5,75	LONGITUD		LONGITUD	5,75		LONGITUD	2			LONGITUD	5,75			
by (m4) 0,000537 y (m4) 0,000459 y (m4) 0,000459 y (m4) 0,000011 y (m4) 0,000388 m33 10569388 m33 10569375,141 m33 243585,143 m33 343394,007 m33 2475762,202 m32 275163,111 m32 275163,111 m32 275163,111 m32 275163,111 m32 275163,111 m33 277562,202 m32 275163,111 m33 275762,202 m32 275163,111 m33 275363,111 m33 275163,111 m33 275363,111 m33		Ix (m4)	0,001415	Ix (m4)	0,001253	Ix (m4)	0,001107		Ix (m4)	0,00016		_	Ix (m4)	0,000999			
M12X158	A	ly (m4)	0,000537	ly (m4)	0,000479	ly (m4)	0,000429		ly (m4)	0,000011		U	ly (m4)	0,000388			
W12X58 W12X53 W14X10 W14x61 W14x61 W14x62 W14X193 W14x61 W14x61 W14x61 W14x61 W14x61 W14x62 W14x193 W14x61 W14x62 W14x193 W14x62 W14x193 W14x62 W14x62 W14x193 W14x62 W14x6		m33			935375,414	m33	826385,143		m33	343394,007			m33	745762,202			
B IDNGITUD 6.5 LONGITUD 5.4 LONGITUD 4.5 LONGITUD 6.5 Ix (m4) 22 0,000062 X (m4) 22 X (m4) 24		m22	380831,419	m22	339698,789	m22	304239,625		m22	22427,9211			m22	275163,111			
B IDNGITUD 6.5 LONGITUD 5.4 LONGITUD 4.5 LONGITUD 6.5 Ix (m4) 22 0,000062 X (m4) 22 X (m4) 24		•															
B		W12	X58	W12	2x53	W14	1X30		W14	4x61		W14X82		W14X193			
		LONGITUD	6,5	LONGITUD	5,4	LONGITUD	4,5		LONGITUD	6,5		LONGITUD	6,5	LONGITUD	4,5		
		Ix (m4) 22	0,000045	Ix (m4) 22	0,00004	Ix (m4)	0,000008		Ix (m4) 22	0,000045		Ix (m4) 22	0,000062	Ix (m4)	0,000999		
M22 29716,7891 M22 31795,7814 M22 7630,97793 M22 29716,7891 M33 40943,1316 M33 52918,369 M22 230239,078 M22 M34822	В	ly (m4) 33	0,000198	ly (m4) 33	0,000177	ly (m4)33	0,000121		ly (m4) 33	0,000266	·	ly (m4) 33	0,000367	ly (m4)	0,000388		
W14X82 W14X211 W14X120 W12X30 W14X82 W14X121 W14X120 W12X30 W14X82 W14X121 W14X120 W12X30 W14X82 W14X121 W14X120 W12X30 W14X82 W14X120 W12X30 W14X82 W14X120 W12X30 W14X82 W14X130 W14X82 W14X130 W14X82		m22	29716,7891	m22	31795,7414	m22	7630,97793			29716,7891	1	m33	40943,1316	m33	952918,369		
LONGITUD 6,5 LONGITUD 6,5 LONGITUD 5,4 LONGITUD 5,4 LONGITUD 4,4 LONGITUD 4,5 LONG		m33	124216,178	m33	133661,348	m33	109647,614		m33	166876,28		m22	230239,078	m22	351597,308		
LONGITUD 6,5 LONGITUD 6,5 LONGITUD 5,4 LONGITUD 5,4 LONGITUD 4,4 LONGITUD 4,5 LONG																	
1		W14X82		W14	X211	W:		X211	W14	X120		W12	X30	W14	1X82		
1		LONGITUD	6,5	LONGITUD	6,5		LONGITUD	5,4	LONGITUD	5,4		LONGITUD	4,4	LONGITUD	4,4		
		Ix (m4) 22	0,000062	Ix (m4)	0,001107		Ix (m4)	0,001107	Ix (m4)	0,000574		Ix (m4)	0,000099	Ix (m4)	0,000367		
M22 230239,078 m22 269135,053 m22 323958,86 m22 155560,665 m22 7414,1878 m22 57459,9631	1	ly (m4) 33	0,000367	ly (m4)	0,000429		ly (m4)	0,000429	ly (m4)	0,000206		ly (m4)	0,000008	ly (m4)	0,000062		
W12X30		m33	40943,1316	m33	731033,011		m33	879947,143	m33	456268,889		m33	96579,5644	m33	358027,274		
LONGITUD		m22	230239,078	m22	269135,053		m22	323958,86	m22	155560,665		m22	7414,18878	m22	57459,9631		
LONGITUD		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 															
1		W12	X30	W14X82			W14	4X82		HD40	0X287	W12	X106		W14	IX82	
1		LONGITUD	4,5	LONGITUD	4,5		LONGITUD	4,5		LONGITUD	4,5	LONGITUD	5,4		LONGITUD	5,4	
Iy (m4) 0,000008 Iy (m4) 0,000062 m33 0,000367 m33 0,00036	1	Ix (m4)	0,000099	Ix (m4)	0,000367	2	Ix (m4) 22	0,000062		Ix (m4) 22	0,000388	Ix (m4)	0,000388		Ix (m4) 22	0,000062	
M14X120	1	ly (m4)	0,000008	ly (m4)	0,000062	2	ly (m4) 33	0,000367		ly (m4) 33	0,000997	ly (m4)	0,000125		ly (m4) 33	0,000367	
2 W14X211 W14X120 LONGITUD 4,4 LONGITUD 4,5 LONGITUD 6,5		m33	94433,3519	m33	350071,113		m33	59140,079		m33	370102,43	m33	308418,691		m33	49283,3991	
2 LONGITUD		m22	7249,42903	m22	56183,075		m22	332567,557		m22	903460,093	m22	94393,6072		m22	277139,631	
2 LONGITUD																	
2																	
2 y (m4) 0,000429 y (m4) 0,000349 y (m4) 0,000349 y (m4) 0,000206 y (m4) 0,000206 y (m4) 0,000206 y (m4) 0,000349		LONGITUD	4,4		LONGITUD	4,5		LONGITUD	6,5			LONGITUD	5,4		LONGITUD	6,5	
Iy (m4) 0,000429 Iy (m4) 0,000349 Iy (m4) 0,000349 m33 1079935,13 m33 849900,167 m33 379054,154 m33 456268,889 m33 588392,423 m22 19235,014 m22 155560,665 m22 218946,698 m22 155500,665 m22 218946,698 m23 m24 m25 m2	2	Ix (m4)	,		Ix (m4)		4	Ix (m4)	0,000574		4		0,000574	5	lx (m4)		
m22 397585,874 m22 316256,342 m22 129235,014 m22 155560,665 m22 218946,698	-	ly (m4)	0,000429		ly (m4)	0,000349	·	ly (m4)	0,000206		i i	ly (m4)	0,000206	,	ly (m4)	0,000349	
W14X159 W14X176 W14X145 W14X		m33	1079935,13		m33	849900,167		m33	379054,154			m33	456268,889		m33	588392,423	
5 LONGITUD 6,5 LONGITUD 5,4 LONGITUD 4,4 LONGITUD 4,5		m22	397585,874		m22	316256,342		m22	129235,014			m22	155560,665		m22	218946,698	
5 LONGITUD 6,5 LONGITUD 5,4 LONGITUD 4,4 LONGITUD 4,5																	
5 ix (m4) 0,000791 ix (m4) 0,000891 ix (m4) 0,000712 ix (m		W14	W14X159		W14				X145								
by (m4) 0,000311 by (m4) 0,000349 by (m4) 0,000282 by (m4) 0,000282 m33 522355,114 m33 708250,139 m33 694592,423 m33 679157,036		LONGITUD			LONGITUD			LONGITUD			LONGITUD						
ly (m4) 0,000311 ly (m4) 0,000349 ly (m4) 0,000282 ly (m4) 0,000282 m33 522355,114 m33 708250,139 m33 694592,423 m33 679157,036	5	Ix (m4)	0,000791		Ix (m4)	0,000891		Ix (m4)	0,000712		Ix (m4)	0,000712					
		ly (m4)	0,000311		ly (m4)	0,000349		ly (m4)	0,000282		ly (m4)	0,000282					
m22 195107,229 m22 263546,951 m22 261350,155 m22 255542,373			522355,114			708250,139		m33	694592,423		m33	679157,036		,			
		m22	195107,229		m22	263546,951		m22	261350,155		m22	255542,373					

De igual forma se realizó múltiples diseños hasta cumplir con los chequeos, establecidos por normativas nacionales e internacionales, sin embargo pese a cumplir con los chequeos, cuando se ejecutó el análisis estático no lineal ciertos diseños no cumplían con el desempeño mínimo requerido para un sismo con período de retorno de 475 años. Por lo que se indicará brevemente los diseños previos y el diseño final así como en el capítulo 3 se verificará que los diseños mencionados si cumplen los chequeos requeridos sin embargo el desempeño de los mismos no.

Figura 66: Vista en elevación eje 5 del modelo preliminar N. 1 PEAC.

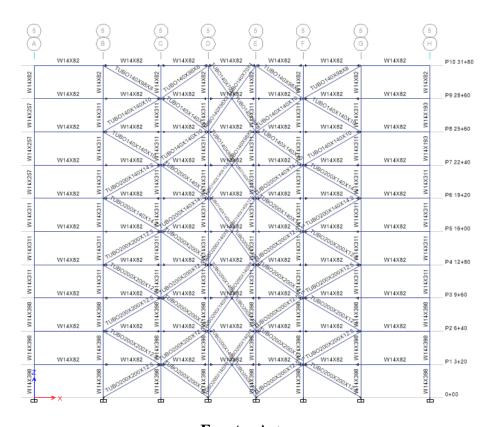


Figura 67: Vista en elevación eje A y 3D del modelo preliminar N. 1 PEAC.

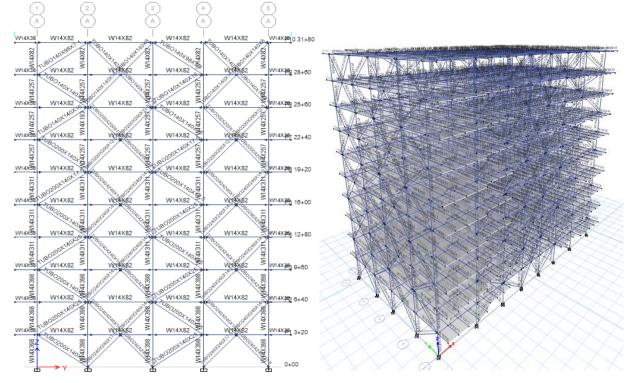


Figura 68: Vista en elevación eje 1 del modelo preliminar N. 2 PEAC.

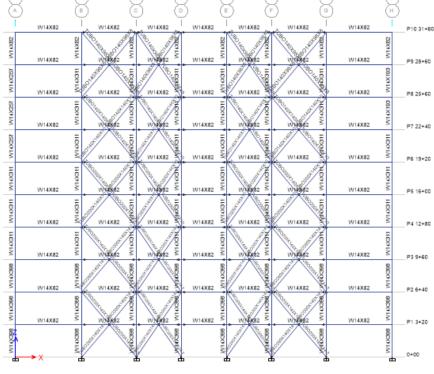
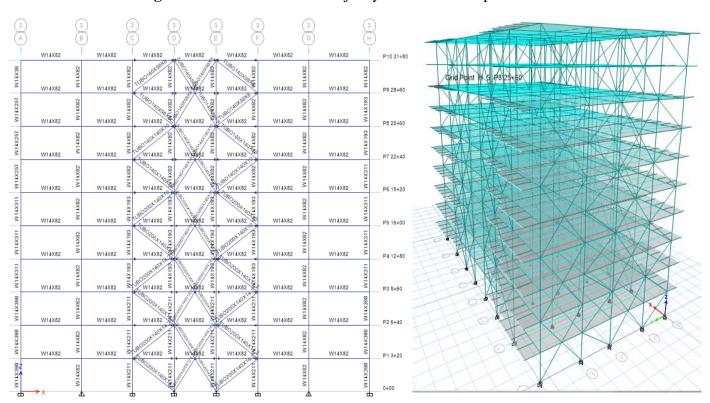



Figura 69: Vista en elevación eje 3 y 3D del modelo preliminar N. 2 PEAC

Como se observa en la figura 69 incluso el modelo cuenta con riostras internas, esto con el fin de cumplir un punto de desempeño, sin embargo no se logró el objetivo deseado con los dos modelos previos. Las conclusiones referentes a este hecho efectuadas en la presente investigación servirán de base para decisiones a la hora de diseño en estructura metálicas y con riostras ya que no era necesario como se verá a continuación arriostrar internamente, sino la adecuada colocación y distribución de las riostras.

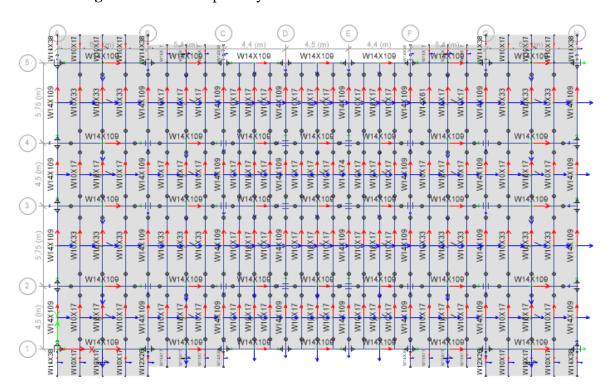


Figura 70: Vista en planta y secciones definitiva en el nivel N3+20 de SCBF.

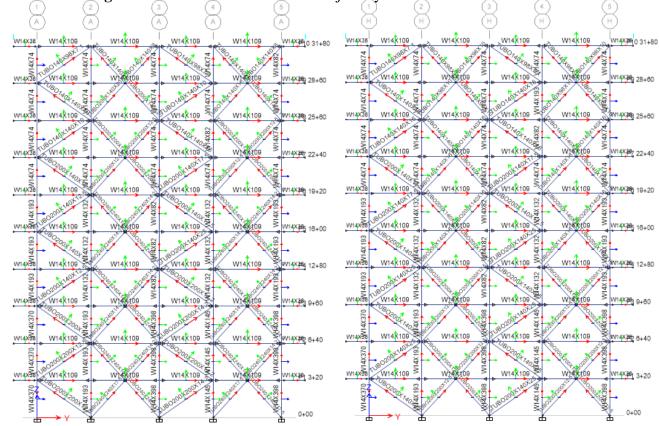


Figura 71: Vista en elevación de los ejes A y H del modelo definitivo SCBF.

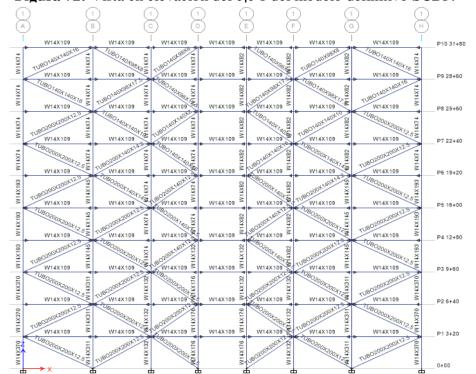


Figura 72: Vista en elevación del eje 1 del modelo definitivo SCBF.

Figura 73: Vista en elevación del eje 1 del modelo definitivo SCBF.

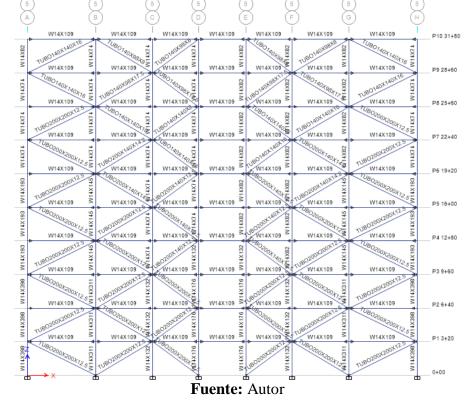


Figura 74: Vista en elevación de los ejes A y 2 del modelo definitivo SCBF.

Figura 75: Vista Renderizada Izq. y Vista 3D Derecha SCBF.

Edificio modelado con EBF

Además de la liberación a momento (Releases), ya definido anteriormente es necesario el cálculo de las excentricidades las cuales están establecidas en la presente investigación en las ecuaciones 72 a 83 donde se establece el procedimiento para el cálculo de las mismas en la tabla 42, consta el cálculo de las dichas excentricidades.

Tabla 42: Cálculo de excentricidades en vigas.

A-B	G-H (1)	В	-C (1)	C-	·D (1)	2-3	4-5 (A)	1-2	3-4(A)	
Z (m)	0,003146	Z (m)	0,003146	Z (m)	0,003146	Z (m)	0,003146	Z (m)	0,003146	
Fy (kg/m2)	35153481,31	Fy (kg/m2)	35153481,31	Fy (kg/m2)	35153481,31	Fy (kg/m2)	35153481,31	Fy (kg/m2)	35153481,31	
d (m)	0,36322	d (m)	0,36322	d (m)	0,36322	d (m)	0,36322	d (m)	0,36322	
tw (m)	0,01334	tw (m)	0,01334	tw (m)	0,01334	tw (m)	0,01334	tw (m)	0,01334	
tf (m)	0,02184	tf (m)	0,02184	tf (m)	0,02184	tf (m)	0,02184	tf (m)	0,02184	
Ag (m2)	0,0206	Ag (m2)	0,0206	Ag (m2)	0,0206	Ag (m2)	0,0206	Ag (m2)	0,0206	
Vr (kg)	12492,07	Vr (kg)	11249,94	Vr (kg)	6343,08	Vr (kg)	4356,77	Vr (kg)	5528,45	
Pr (axial) kg	7440,95	Pr (axial) kg	3596,67	Pr (axial) kg	4458,96	Pr (axial) kg	22530,17	Pr (axial) kg	9350,39	
Mp (kg/m)	110592,8522	Mp (kg/m)	110592,8522	Mp (kg/m)	110592,8522	Mp (kg/m)	110592,8522	Mp (kg/m)	110592,8522	
Aw (m2)	0,004262664	Aw (m2)	0,004262664	Aw (m2)	0,004262664	Aw (m2)	0,004262664	Aw (m2)	0,004262664	
Vp (kg)	89908,47912	Vp (kg)	89908,47912	Vp (kg)	89908,47912	Vp (kg)	89908,47912	Vp (kg)	89908,47912	
e11,6	1,968096505	e11,6	1,968096505	e11,6	1,968096505	e1 1,6	1,968096505	e11,6	1,968096505	
e2 2,6	3,198156821	e2 2,6	3,198156821	e2 2,6	3,198156821	e2 2,6	3,198156821	e2 2,6	3,198156821	
p'	0,595653883	p'	0,319705705	p'	0,70296449	p'	5,171301216	p'	1,691322161	
0,12	3255928	0,06	6155236	0,14	0,145461221		1,070073663		9977544	
OP	CION 2	CION 2 OPCION 2		OP	CION 2	OP	CION 1	OP	CION 1	
OPCION 1	2,1420212	OPCION 1 2,198211036 O		OPCION 1	2,120170121	OPCION 1	1,210306863	OPCION 1	1,91891619	
OPCION 2	1,968096505	OPCION 2	1,968096505	OPCION 2	1,968096505	OPCION 2	1,968096505	OPCION 2	1,968096505	
Py	y 724161,715 Py 72		724161,715	Ру	724161,715	Ру	724161,715	Ру	724161,715	
SE IGNORA E	FECTOS AXIALES	SE IGNORA E	FECTOS AXIALES	SE IGNORA E	FECTOS AXIALES	SE IGNORA EFECTOS AXIALES		S SE IGNORA EFECTOS AXIALES		

El resultado son excentricidades cortas, las mismas que serán colocadas en la modelación como se indica en los siguientes gráficos.

Figura 76: Vista en elevación de los ejes A y H del modelo EBF.

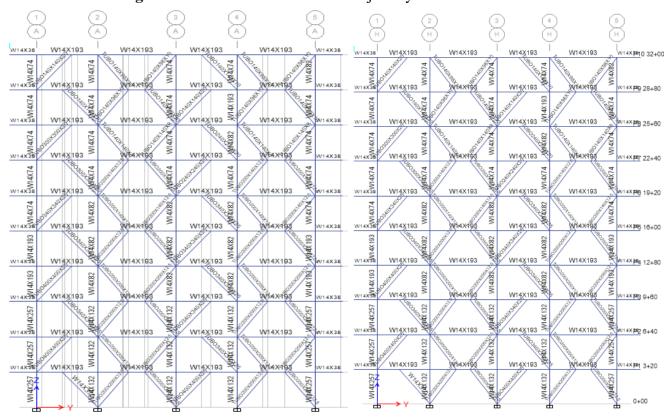


Figura 77: Vista en elevación del eje 1 del modelo EBF.

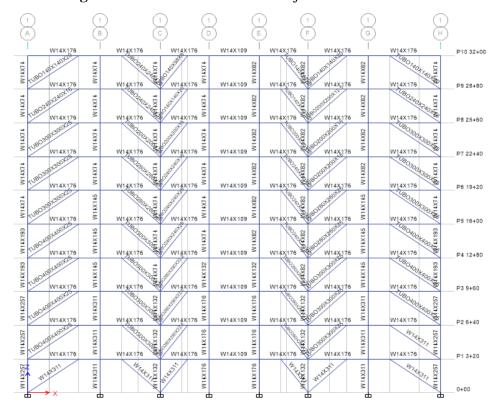


Figura 78: Vista en elevación del eje 1 del modelo EBF.

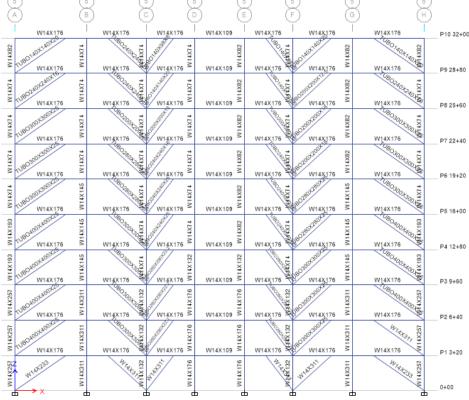


Figura 79: Vista en elevación del eje D y 3 del modelo EBF.

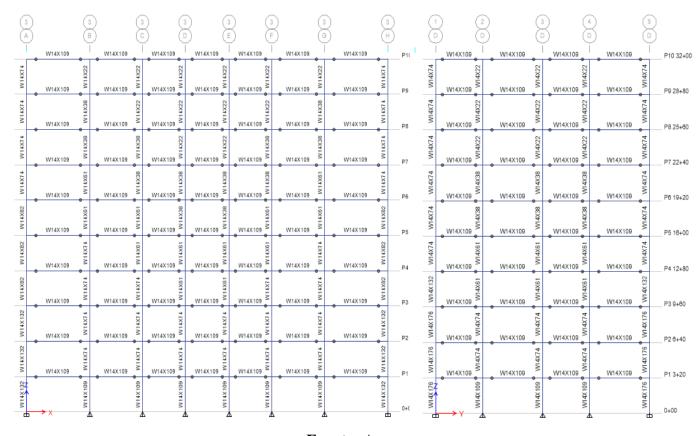
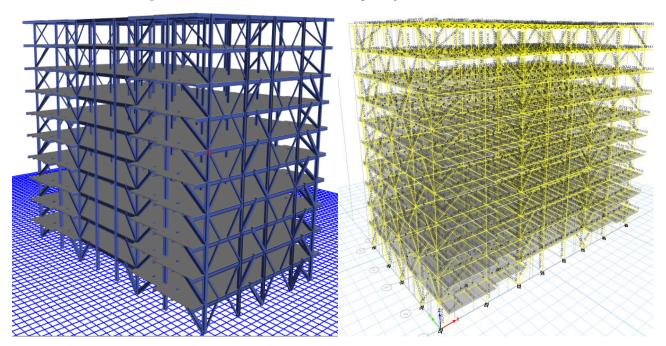



Figura 80: Vista en elevación del eje D y 3 del modelo EBF.

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1. Análisis y Discusión de los resultados

Una vez que se han modelado y ejecutado el análisis de las estructuras se procede a visualizar los resultados de los mismos, realizar diseños de elementos complementarios de ser necesarios: placas dobles, placas de continuidad, conectores de corte, distancias de reducción en vigas de sección reducida para pórticos especiales a momento, placas Gusset en elementos arriostrados, atiezadores en excentricidades determinación de las secciones de tuercas y tornillos. Dibujando las conexiones principales de las mismas.

Posteriormente con estos elementos ya conocidos se puede realizar un análisis no lineal estático donde se visualizará el desempeño del acero. Y mediante un análisis de precios unitarios (APU) se puede establecer una relación costo, desempeño, de cada tipología estructural.

3.2. Resultados lineales de Pórticos Especiales a Momento PEM o SMF.

3.2.1. Período de vibración de la estructura

∏ 3-D View Mode Shape (Modal) - Mode 1 - Period 1,445

Figura 81: Período de vibración de la estructura SMF.

$T \le 1,445 \le 1,3T$ $1,152 \le 1,445 \le 1,498 \text{ OK}$

3.2.2. Verificación que los modos de desplazamiento de la estructura sean traslacionales.

Tabla 43: Modos de vibración de la estructura diseñada con SMF.

Case	Modal Partio	Period	UX	UY	UZ	Sum LIX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
Cusc	Would	sec	OX.	01	- 02	Juniox	Julii 01	Julii 02	100		- 112	Junitor	Juniti	Junite
Modal	1	1,445	0	0,7613	0	0	0,7613	0	0,2489	0	0	0,2489	0	0
Modal	2	1,327	0,451	0	0	0,0451	0,7613	0	0	0,0145	0,12116	0,2489	0,0145	0,7116
Modal	3	1,141	0,713	0	0	0,7581	0,7613	0	0	0,2384	0,0436	0,2489	0,253	0,7553
Modal	4	0,468	0	0,1137	0	0,7581	0,875	0	0,4447	0	0	0,6936	0,253	0,7553
Modal	5	0,444	0,002	0	0	0,76	0,875	0	0	0,0099	0,1147	0,6936	0,2629	0,87
Modal	6	0,386	0,1139	0	0	0,8739	0,875	0	0	0,4222	0,0026	0,6936	0,6851	0,8726
Modal	7	0,249	0	0,0472	0	0,8739	0,9222	0	0,0788	0	0	0,7725	0,6851	0,8726
Modal	8	0,238	0,0006	0	0	0,8745	0,9222	0	0	0,0007	0,0465	0,7725	0,6858	0,9191
Modal	9	0,208	0,461	0	0	0,9206	0,9222	0	0	0,0806	0,0006	0,7725	0,7664	0,9198
Modal	10	0,16	0	0,0266	0	0,9206	0,9488	0	0,0881	0	0	0,8606	0,7664	0,9198
Modal	11	0,155	0,0002	0	0	0,9208	0,9488	0	0	0,0008	0,0272	0,8606	0,7672	0,947
Modal	12	0,137	0,026	0	0	0,9468	0,9488	0	0	0,0872	0,0003	0,8606	0,8544	0,9472
Modal	13	0,114	0	0,015	0	0,9468	0,9637	0	0,0342	0	0	0,8948	0,8544	0,9472
Modal	14	0,111	0,0001	0	0	0,9469	0,9637	0	0	0,0001	0,0155	0,8948	0,8545	0,9627
Modal	15	0,099	0,0151	0	0	0,962	0,9637	0	0	0,0362	0,0001	0,8948	0,8907	0,9628
Modal	16	0,089	0	0,0115	0	0,962	0,9753	0	0,0343	0	0	0,9291	0,8907	0,9628
Modal	17	0,087	0,00002476	0	0	0,962	0,9753	0	0	0,0001	0,0115	0,9291	0,8908	0,9743
Modal	18	0,082	0	0	0	0,962	0,9753	0	0	0	0	0,9291	0,8908	0,9743
Modal	19	0,081	0	0,00002722	0	0,962	0,9753	0	0,0001	0	0	0,9292	0,8908	0,9743
Modal	20	0,076	0,0129	0	0	0,9749	0,9753	0	0	0,0365	0,00002131	0,9292	0,9273	0,9743
Modal	21	0,075	0	0,00004352	0	0,9749	0,9753	0	0,0001	0	0	0,9293	0,9273	0,9743
Modal	22	0,072	0	0,0085	0	0,9749	0,9838	0	0,0232	0	0	0,9525	0,9273	0,9743
Modal	23	0,07	0,000003221	0	0	0,9749	0,9838	0	0	0,000007596	0,0083	0,9525	0,9273	0,9826
Modal	24	0,068	0	0,00002828	0	0,9749	0,9839	0	0,0001	0	0	0,9526	0,9273	0,9826
Modal	25	0,066	0	0	0	0,9749	0,9839	0	0	0	0,00001364	0,9526	0,9273	0,9826
Modal	26	0,064	9,282E-07	0	0	0,9749	0,9839	0	0	0,000003715	0,00001348	0,9526	0,9273	0,9826
Modal	27	0,062	0,00001424	0	0	0,9749	0,9839	0	0	0,00004299	0,0001	0,9526	0,9274	0,9827
Modal	28	0,06	0,0093	0	0	0,9842	0,9839	0	0	0,0262	0,00001337	0,9526	0,9535	0,9827
Modal	29	0,059	0	0,0046	0	0,9842	0,9885	0	0,0133	0	0	0,9659	0,9535	0,9827
Modal	30	0,059	0,0001	0	0	0,9842	0,9885	0	0	0,0002	0,004	0,9659	0,9538	0,9868

Fuente: Autor

Modo 1

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

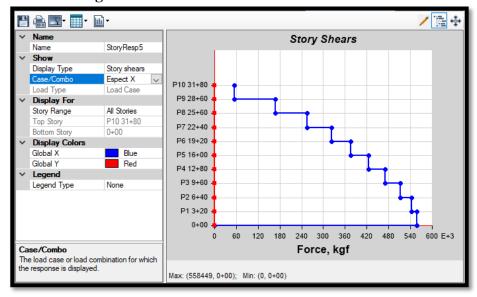
$$\frac{0}{0{,}7613} = Indeterminaci\'{o}n$$

Modo 2

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{0,12116}{0,451} = 26,86\%$$

3.2.3. Verificar que los modos de vibración deben cumplir el 90% de la masa.


En la tabla 43 se observa que cumple esta condición en el décimo segundo modo de vibración de la estructura.

3.2.4. Validación del análisis dinámico

Cortante Vx

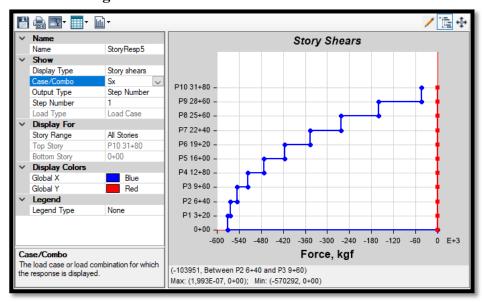

$$\frac{V_{X\,DIN\acute{A}MICO}}{V_{X\,EST\acute{A}TICO}} \geq 80\%$$

Figura 82: Cortante dinámico en X de la estructura SMF.

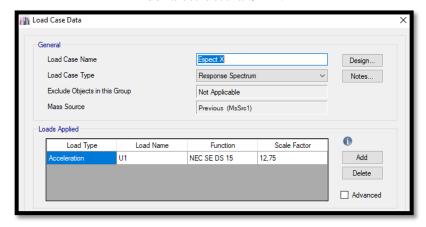
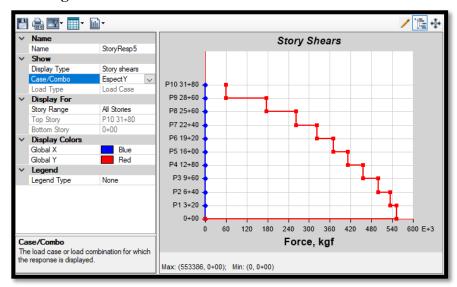

Fuente: Autor

Figura 83: Cortante estático en X de la estructura SMF.

La gravedad fue calibrada para el espectro en dirección hasta 12,75 m/s² para validar el análisis dinámico, figura 84.

Figura 84: Calibración del valor de la gravedad del espectro en dirección X de la estructura SMF.

Fuente: Autor


$$\frac{558449}{570292} \ge 80\%$$

 $97,92\% \ge 80\%$

Cortante Vy

$$\frac{V_{Y\;DIN\acute{A}MICO}}{V_{Y\;EST\acute{A}TICO}} \geq 80\%$$

Figura 85: Cortante dinámico en Y de la estructura SMF.

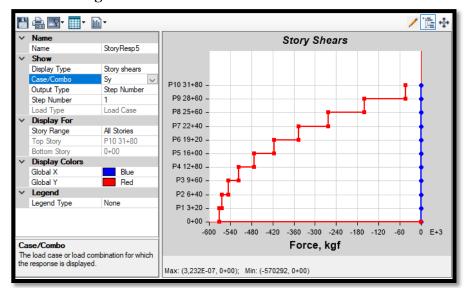
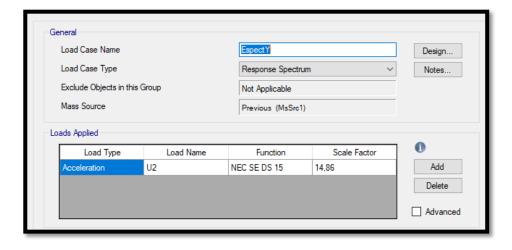



Figura 86: Cortante estático en Y de la estructura SMF.

La gravedad fue calibrada para el espectro en dirección hasta $14,86~\text{m/s}^2$ para validar el análisis dinámico, figura 87.

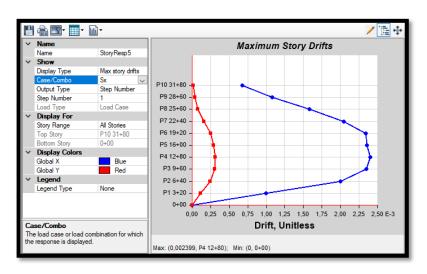
Figura 87: Calibración del valor de la gravedad del espectro en dirección X de la estructura SMF.

Fuente: Autor

$$\frac{553386}{570292} \ge 80\%$$

 $97,03 \ge 80\%$

3.2.5. Derivas Estáticas


Tabla 44: Coeficientes y factores para sistemas sísmicos de fuerza resistencia para un simplificado proceso de diseño. [27]

							Bystem Lit rai Height	mitations , h _n (ft) Lin	nita ⁴
	ASCE 7 Section Where Detailing	Response		Deflection		Seismlo	Design Ca	tegory	
Seismic Force-Resisting System	Requirements Are Specified	Modification Coefficient, R*	Overetrength Factor, Ω ₂ ²	Amplification Festor, C _d *	В	С	D*	E.	P"
B. BUILDING FRAME SYSTEMS									
1. Steel eccentrically braced frames	14.1	8	2	4	NL	NL	160	160	100
2. Steel special concentrically braced frames	14.1	6	2	5	NL	NL	160	160	100
3. Steel ordinary concentrically braced frames	14.1	314	2	354	NL	NL	351	35	NP'
 Special reinforced concrete shear walls ^{g,n} 	14.2	6	259	5	NL	NL	160	160	100
 Ordinary reinforced concrete shear walls^g 	14.2	5	259	41/4	NL	NL	NP	NP	NP
 Detailed plain concrete shear walls^g 	14.2 and 14.2.2.7	2	21/2	2	NL	NP	NP	NP	NP
 Ordinary plain concrete shear walls[#] 	14.2	13/2	294	11/2	NL	NP	NP	NP	NP
 Intermediate precast shear walls^e 	14.2	5	292	41/2	NL	NL	40°	401	40'
 Ordinary precast shear walls* 	14.2	4	294	4	NL	NP	NP	NP	NP
 Steel and concrete composite eccentrically braced frames 	14.3	8	254	4	NL	NL	160	160	100
 Steel and concrete composite special concentrically braced frames 	14.3	5	2	41/4	NL	NL	160	160	100
12. Steel and concrete composite ordinary braced frames	14.3	3	2	3	NL	NL	NP	NP	NP
Steel and concrete composite plate shear walls	14.3	614	259	51/2	NL	NL	160	160	100
 Steel and concrete composite special shear walls 	14.3	6	259	5	NL	NL	160	160	100
 Steel and concrete composite ordinary shear walls 	14.3	5	21/2	41/2	NL	NL	NP	NP	NP
 Special reinforced masonry shear walls 	14.4	51/4	21/2	4	NL	NL	160	160	100
 Intermediate reinforced masonry shear walls 	14.4	4	294	4	NL	NL	NP	NP	NP
C. MOMENT-RESISTING FRAME SYSTEMS									
Steel special moment frames	14.1 and 12.2.5.5	8	3	51/2	NL	NL	NL	NL	NL
2. Steel special truss moment frames	14.1	7	3	59/2	NL	NL	160	100	NP
3. Steel intermediate moment frames	12.2.5.7 and 14.1	414	3	4	NL	NL	35*	NP^k	NP^k
4. Steel ordinary moment frames	12.2.5.6 and 14.1	31/4	3	3	NL	NL	NP'	NP^I	NP
 Special reinforced concrete moment frames^{rt} 	12.2.5.5 and 14.2	8	3	5%	NL	NL	NL	NL	NL
Intermediate reinforced concrete moment frames	14.2	5	3	454	NL	NL	NP	NP	NP
Ordinary reinforced concrete moment frames	14.2	3	3	259	NL	NP	NP	NP	NP
8. Steel and concrete composite special moment frames	12.2.5.5 and 14.3	8	3	51/2	NL	NL	NL	NL	NL
Steel and concrete composite intermediate moment frames	14.3	5	3	41/2	NL	NL	NP	NP	NP
 Steel and concrete composite partially restrained moment frames 	14.3	6	3	51/2	160	160	100	NP	NP
11. Steel and concrete composite ordinary moment frames	14.3	3	3	296	NL	NP	NP	NP	NP
 Cold-formed steel—special bolted moment frame* 	14.1	31/2	3"	31/2	35	35	35	35	35

Fuente: ASCE/SEI 7-16

Deriva estática Sx

Figura 88: Deriva estática Sx de SMF.

$$\Delta_m = Cd * \Delta_{ELAST} \le 2\%$$

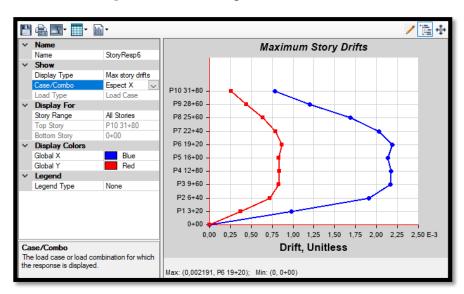
$$\Delta_m = 5.5 * 0.002399 = 1.32\%$$

Deriva estática Sy

💾 🖶 🕎- 🏢- 🔟-Maximum Story Drifts StoryResp5 Show Display Type Case/Combo Max story drifts P10 31+80 Step Number Output Type Step Number P9 28+60 Load Case P8 25+60 Display For P7 22+40 · All Stories Story Range P10 31+80 0+00 P6 19+20 -P5 16+00 Display Colors P4 12+80 -Blue Red P3 9+60 -Global Y Legend P2 6+40 -Legend Type P1 3+20 0+00 0,00 0,40 0,80 1,20 1,60 2,00 2,40 2,80 3,20 3,60 4,00 E-3 Drift, Unitless The load case or load combination for which the response is displayed. Max: (0,003627, P4 12+80); Min: (0, 0+00)

Figura 89: Deriva estática Sy de SMF.

Fuente: Autor


$$\Delta_m = Cd * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 5.5 * 0.003627 = 1.99\%$$

3.2.6. Derivas Dinámicas

Espectral en X

Figura 90: Deriva espectral en X de SMF.

$$\Delta_m = Cd * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 5.5 * 0.002191 = 1.2\%$$

🖺 🔒 🕎 · 🟢 · 🔟 · Name Maximum Story Drifts StoryResp6 Name ∨ Show Display Type Max story drifts EspectY P10 31+80 Load Type Load Case P9 28+60 Display For All Stories Story Range P8 25+60 Top Story Bottom Story P10 31+80 P7 22+40 0+00 P6 19+20 **Display Colors** P5 16+00 Global Y P4 12+80 Legend P3 9+60 Legend Type P2 6+40 P1 3+20 0+00 0,00 0,40 0,80 1,20 1,60 2,00 2,40 2,80 3,20 3,60 4,00 E-3 Drift, Unitless Case/Combo The load case or load combination for which the response is displayed. Max: (0,00301, P4 12+80); Min: (0, 0+00)

Figura 91: Deriva espectral en Y de SMF.

$$\Delta_m = Cd * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 5.5 * 0.00301 = 1.65\%$$

3.2.7. Buckling Factors o efectos de pandeo global

-1 > Scale Factor > 1

Tabla 45: Factores de pandeo global SMF.

TABLE: Buckling Factor	s	
Case	Mode	Scale Factor
Pandeo Gravitacional	1	10,689
Pandeo Gravitacional	2	14,415
Pandeo Gravitacional	3	15,263
Pandeo Gravitacional	4	15,901
Pandeo Gravitacional	5	18,944
Pandeo Gravitacional	6	20,575
Pandeo Sx	1	8,935
Pandeo Sx	2	11,673
Pandeo Sx	3	12,545
Pandeo Sx	4	15,748
Pandeo Sx	5	16,82
Pandeo Sx	6	19,3

Pandeo Sy	1	5,371
Pandeo Sy	2	6,923
Pandeo Sy	3	7,897
Pandeo Sy	4	9,708
Pandeo Sy	5	10,253
Pandeo Sy	6	-11,534

3.2.8. Diseño de elementos demanda capacidad según AISC 360-16

El color rojo indica que la capacidad del elemento excede a su demanda, que existe pandeo o no cumple una consideración de diseño del elemento el color magenta, indica que está la capacidad al límite de la demanda del elemento pero es admisible, los valores verde y amarillo indican que el diseño es óptimo. El color cian por su parte indica que la capacidad supera por mucho a la demanda, llegando a estar sobre dimensionado, sin embargo para cumplir los chequeos en ciertas ocasiones es necesario que este en color cian algunos elementos estructurales.

Se debe evitar totalmente el color rojo en el diseño de estructura metálica

| WINDS | WIAKE | WIAK

Figura 92: Diseño de SMF ejes A y B.

Figura 93: Diseño de SMF ejes C y D.

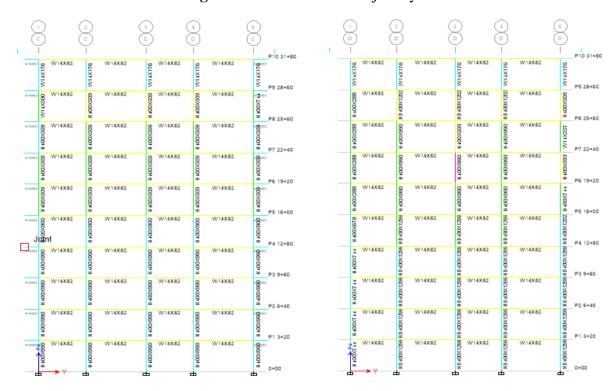


Figura 94: Diseño de SMF eje 1.

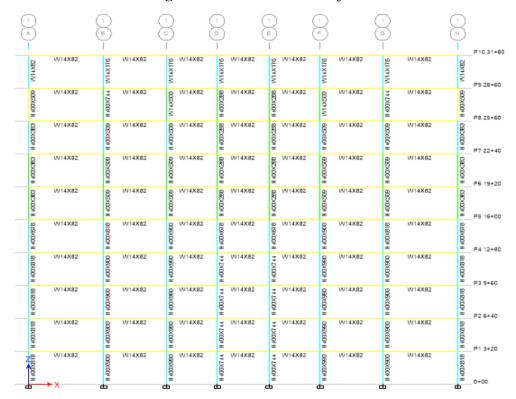
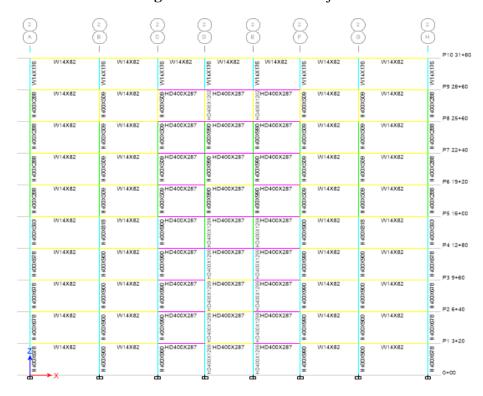
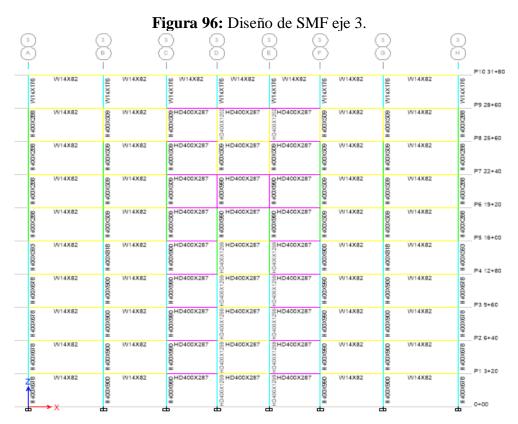
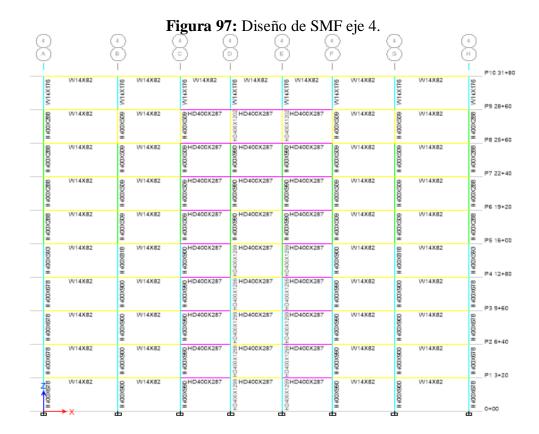
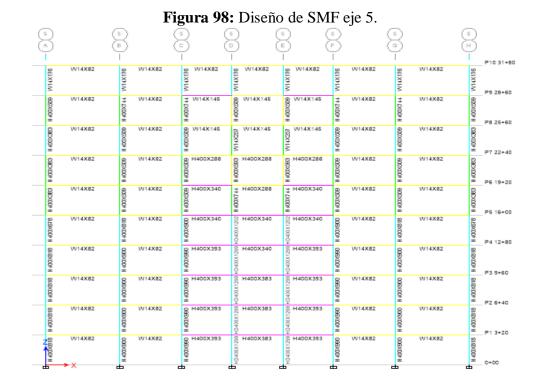






Figura 95: Diseño de SMF eje 2

3.2.9. Verificación de vigas secundarias y losa

El diseño de la losa, vigas secundarias y conectores de corte stud se mantendrá el mismo para todos los sistemas estructurales, y de igual forma al ser diseñado por ETABS se debe verificar que los colores no sean rojos, teniendo la consideración anteriormente expresada que el color magenta, indica que está la capacidad al límite de la demanda del elemento pero es admisible, los valores verde y amarillo indican que el diseño es óptimo. El color cian por su parte indica que la capacidad supera por mucho a la demanda, llegando a estar sobre dimensionado, pese a que en ciertas ocasiones es tolerable e incluso necesario.

El caso de los conectores de corte deben, ser colocados cada 0,80 cm por lo que para distancias de 5,75 m se requerirán 7 conectores y 4,5m 6 esta consideraciones se las hace previamente debido a que si el software nos arroja valores demasiados extensos de conectores el diseño tampoco es el adecuado.

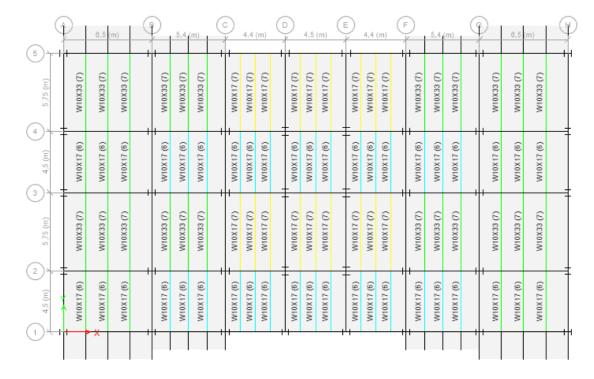


Figura 99: Diseño de Losa Deck.

3.2.10. Resultados de elementos estructurales secundarios.

Se debe definir las características finales de los elementos previos como placas dobles y cantidad de recorte en las vigas para tener un modelo más realista en ETABS previo al análisis por desempeño.

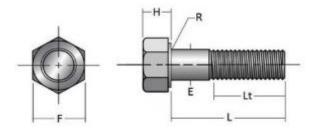
Sin embargo también para la determinación real del costo de las estructuras pese a que no es necesario la colocación de dichos elementos en el software se diseñará placas de corte y pernos. Tablas 46 y 47.

Tabla 46: Diseño de recorte en vigas RBS, conectores de corte y pernos.

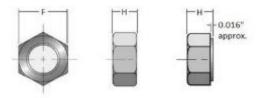
			U			• 1		
DAT	TOS DE VIGA	RBS		DA	ATOS DE VIGA	RBS		
	4X82, L 5,75;				W14X82, L 6,			
Zv		0,002278		Zv		0,002278		
bf		0,25654		bf		0,25654		
d		0,36322		d		0,36322		
tf		0,02172		tf		0,02172		
Ry		0,15389		Ry	0,15389			
Fy		35153481,3	1	Fy 35153481,31				
Fu		45699525,7	7	Fu				
Vgrav		5451,57		Vgrav	14049,65			
L		5,75		L		6,5		
Lh		4,6		Lh		5,2		
Vg		5451,57		Vg		14049,65		
CO	NSIDERACIO	ÍN I		C	ONSIDERACIÓ	ÓΝΙ		
0,12827	<a<< td=""><td>0,192405</td><td>0,1603375</td><td>0,12827</td><td><a<< td=""><td>0,192405</td><td>0,12827</td></a<<></td></a<<>	0,192405	0,1603375	0,12827	<a<< td=""><td>0,192405</td><td>0,12827</td></a<<>	0,192405	0,12827	
0,236093	< b <	0,308737	0,272415	0,236093	<b<< td=""><td>0,308737</td><td>0,236093</td></b<<>	0,308737	0,236093	
0,025654	< c <	0,064135	0,051308	0,025654	<c<< td=""><td>0,064135</td><td>0,0667004</td></c<<>	0,064135	0,0667004	
CO	NSIDERACIĆ	N II		C	ONSIDERACIÓ	N II		
Zvsr		0,001	516858	Zvsr	0,0012	88516		
COI	NSIDERACIÓ	N III		CO	ÓN III			
Cpr		1	,15	Cpr	1,	15		
Mpr	9436,	730343	Mpr		8016,1	57704		
COI	NSIDERACIÓ	NIV		CO	ONSIDERACIÓ	N IV		
Vvsr		9554,	496236	Vvsr		17132,	78758	
CO	NSIDERACIÓ	N V		C	ONSIDERACIÓ	N V		
Sh		0,29	96545	Sh		0,246	3165	
Mf		12270),06843	Mf	12236,	24598		
COI	NSIDERACIÓ	N VI		CC	IÓN VI			
Mpe		12323	3,45433	Mpe	12323,45433			
	NSIDERACIÓ					NSIDERACIÓN VII		
Mpe > Mf			RECTO	Mpe > Mf		CORRECTO		
	ISIDERACIÓ				N VIII			
Vu			5,06624	Vu		31182,	43758	
	NSIDERACIÓ				ONSIDERACIÓ		1	
Fy (Placa de corte)	25310507		15186,3039	Fy (Placa de corte)	25310506,5	φv VV	37965,7598	
dcp(Placa de corte)	0,1	$100 \lor \lor \lor > \lor \Box$	CORRECTO	dcp(Placa de corte)	0,2	φν VV> Vu	CORRECTO	
tcp(Placa de corte)	0,008			tcp(Placa de corte)	0,01	'		
DISEÑO DE PER				DISEÑO DE PER				
Fnv kg/m2)	47800000			Fnv kg/m2)	47800000			
ФD	0,01905			ФD	0,01905			
LR	0,035052			LR	0,035052			
Ag	0,0006677			Ag	0,00066774			
Ry	31918,001			Ry	31918,0007			
Cantidad de tornillos 1			Cantidad de tornillos	1				
Ancho de la placa 0,04155				Ancho de la placa	0,04155			
Largo de la placa	0,04155			Largo de la placa	0,04155			
CORRECTO				CORRECTO)			

Tabla 47: Diseño de recorte en vigas RBS, conectores de corte y pernos.

DATOS DE VIGA RBS											
H400X	393; H400X34	0, L 4,5									
Zv		0,006997									
bf		0,403									
d		0,406									
tf		0,0429									
Ry		0,16827									
Fy		35153481,31									
Fu		45699525,7									
Vgrav		7242,49									
L Lh		4,5 3,6									
Vg		7242,49									
	NSIDERACIÓ										
0,2015		0,30225	0,251875								
0,2639		0,3451	0,3045								
0,0403		0,10075	0,0806								
	NSIDERACIÓ	-	3,0000								
Zvsr			185989								
	NSIDERACIÓI										
Cpr		1,	15								
Mpr		30516,24552									
	NSIDERACIÓI										
Vvsr		24195	,95973								
CO	NSIDERACIÓ	N V									
Sh	0,404125										
Mf	40294,43774										
CO	NSIDERACIÓN VI										
Mpe	41389,18827										
	NSIDERACIÓN										
Mpe > Mf		CORR	ECTO								
	ISIDERACIÓN										
Vu			,44973								
	NSIDERACIÓI										
Fy (Placa de corte)	25310506,5	φννν	37965,7598								
dcp(Placa de corte)	0,2	φν VV> Vu	CORRECTO								
tcp(Placa de corte) DISEÑO DE PERM	0,01										
Fnv kg/m2) ΦD	47800000										
LR	0,01905 0,035052										
Ag	0,00066774										
Ry	31918,0007										
Cantidad de tornillos	1										
Ancho de la placa	0,04155										
Largo de la placa	0,04155										
CORRECTO	0,04133										
COMMECTO											


Para la realización de las tablas 46 y 45 se empleó las ecuaciones 36-51 de la presente investigación de igual manera, para la realización de la placa de corte se debe calcular mediante la capacidad de resistencia corte y bloque de cortante y dicha resistencia debe ser mayor a la demanda. Según lo establecido en la ecuación 18, no es necesario la colocación de placas dobles debido a que el espesor de las columnas supera considerablemente, al de las vigas, en el caso de placas de continuidad, se mantiene el espesor de la viga de entrada así como el mínimo de longitud con este se cumple lo

establecido en las ecuaciones 25-28. A continuación se muestra las dimensiones de pernos empleados y posteriormente las principales conexiones del diseño en SMF.


Figura 100: Propiedades geométricas de los pernos y tuercas A325.

Heavy Hex Structural Bolts, A325, Type 1, ASTM A563 Grade DH Heavy Hex Nut, Hot Dip Galvanized

FIGH. DISP C-SUP-VAILECT.
The information below lists the sequired dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier conserves action request, which could properlize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.

222.0				E		H	3	A.	Lt
Minal -	Full Body D	Size iameter		Across ats		ad ight	Fillet	Thread Langth	
nch)	Max	Min.	Max	Min.	Max.	.Min.	Max.	Min.	Basic
1/2	0.515	0.462	0.875	0.85	0.323	0.302	0.031	0.009	. 1
5/8	0.642	0.605	1.063	1.031	0.403	0.378	0.062	0.021	1.25
3/4	0.768	0.729	1.25	1.212	0.483	0.455	0.062	0.021	1.38
7/8	0.895	0.852	1,438	1.394	0.583	0.531	0.082	0.031	1.5
1	1.022	0.976	1.625	1.575	0.627	0.591	0.093	0.062	1.75
1/8	1.149	1.098	1.813	1.756	0.718	0.658	0.093	0.062	2
1/4	1.277	1.223	2	1.938	0.813	0.749	0.093	0.062	2
3/8	1.404	1,345	2 188	2.119	0.878	0.81	0.093	0.062	2.25
-1/2	1,531	1.47	2:375	2.3	0.974	0.902	0.093	0.062	2.25
1/4 3/8	1.277	1.223	2 2 188	1.936 2.119	0.813	0.749 0.81	0.093	0	062

Fuente: FASTENAL [27]

320 190 310

W14x82 98 77 320 97

W14x82 PL1 26mm

Figura 101: Conexión esquinera PEM.

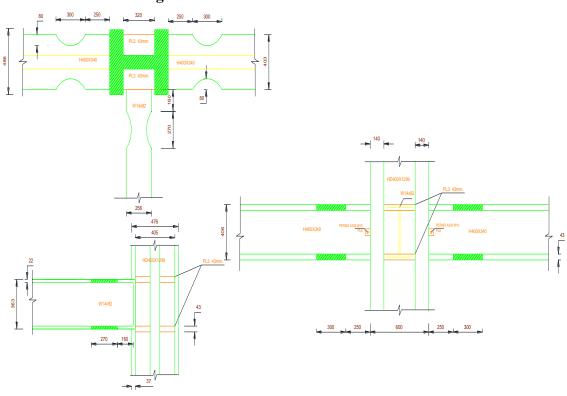
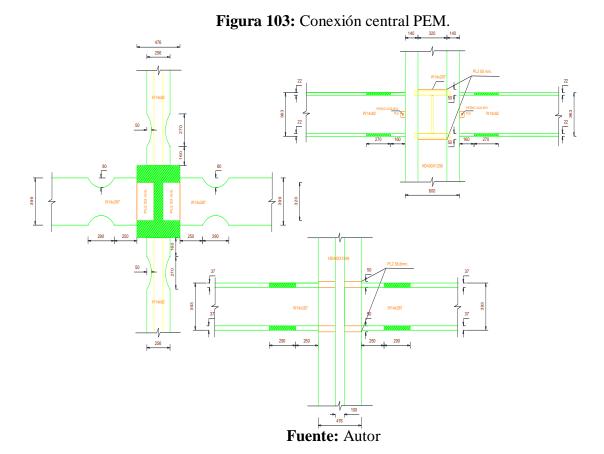



Figura 102: Conexión externa central PEM.

El anexo 1 constará con las principales conexiones PEM o SMF y su respectiva escala y despiece. Los dibujos anteriores son referenciales de conexiones de un pórtico especial a momento.

3.3. Resultados estáticos no lineales de SMF o PEM

Partiendo del concepto de rango elástico, las estructuras han sido modeladas con acero A572 grado 50, la figura 104 muestra las curva esfuerzo deformación del material, mediante el análisis estático no lineal se somete la estructura a fuerzas de empuje hasta que la estructura colapse, el acero pasará de su rango elástico hasta haber fallado por las fuerzas de empuje, y se analizará en que punto de los niveles de desempeño establecidos por el comité visión 2000 se encuentra cada estructura

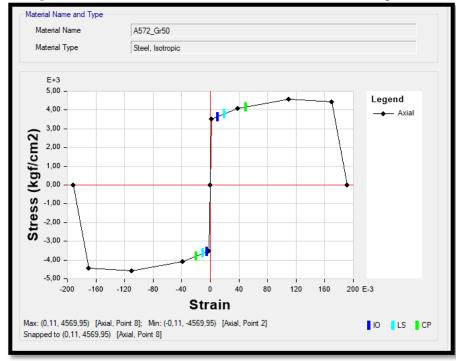


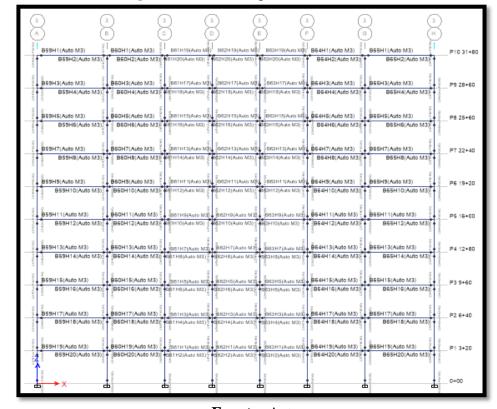
Figura 104: Curva esfuerzo deformación del acero 572 grado 50.

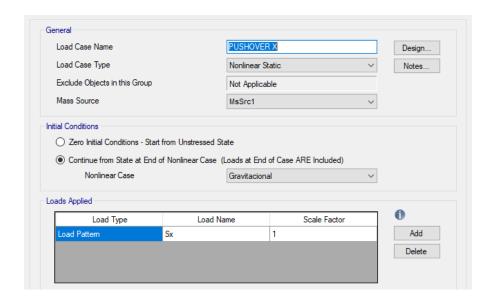
Para ejecutar el análisis no lineal estático se descartó el efecto P Delta, el espectro de diseño no debe ser reducido es decir el valor de R será igual a 1. La carga del cortante basal tanto en Sx como en Sy debe considerarse solamente una opción en la excentricidad, figura 105, debido a que si se considera un efecto doble o mayor encuentra problemas de convergencia.

Seismic Load Pattern - User Defined Direction and Eccentricity Factors Y Dir X Dir 0,1438 Base Shear Coefficient, C ✓ X Dir + Eccentricity Y Dir + Eccentricity Building Height Exp., K 1,133 X Dir - Eccentricity Y Dir - Eccentricity Story Range P10 31+80 0,05 Top Story Ecc. Ratio (All Diaph.) Bottom Story 0+00 Overwrite Eccentricities Overwrite. ОК Cancel

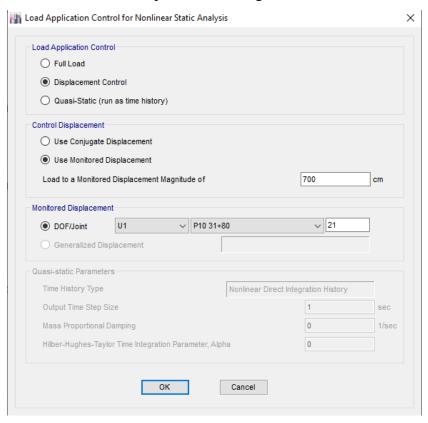
Figura 105: Curva esfuerzo deformación del acero 572 grado 50.

La asignación de rótulas plásticas figura 106 se realizará en todas las columnas y vigas de SMF, considerando que 2 rótulas por vano y eje para las columnas y de la misma manera en vigas, las rótulas para columnas estarán serán asignadas entre el 10% y 90% de la columna, mientras que en el caso de las vigas entre el 5% y el 95% de las mismas




Figura 106: Rótulas plásticas en un PEM.

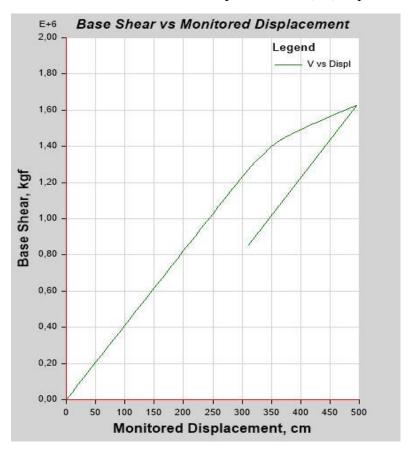
Fuente: Autor


Posteriormente se las cargas no lineales primero una gravitacional que incluya el 100% de la carga muerta y un 25% de la carga viva, la edificación debe estar previamente cargada para empezar a colocar las cargas estáticas no lineales de empuje. Figura 107, la asignación de cargas se correrá en sentido X (U1) y sentido Y (U2) por lo que es necesario crear dos casos de carga estáticos no lineales. Figura 108, el FEMA 440 recomienda realizar cargas de empuje en sentido positivo y negativo, al ser una estructura 100% simétrica el resultado será el mismo, ya sea que se ejecute con valores positivos y negativos.

La aplicación de cargas será controlada con el desplazamiento el mismo que será medido desde el nudo más cercado al centro de la estructura, y la longitud de desplazamiento será teóricamente el 4% de la altura total del edificio aunque este valor varía.

Figura 107: Análisis estático no lineal en dirección X previamente cargado con cargas gravitacionales.

Figura 108: Control de aplicación de cargas por desplazamiento y dirección de aplicación de cargas.



La definición de parámetros no lineales dependerá del sistema estructural y número de pisos para SMF se puede dejar las consideraciones por defecto, pero si es recomendable aumentar el número de resultados de pasos guardados. No es necesario ejecutar los casos modales, buckling ni espectrales se requiere solamente correr los casos no lineales.

A continuación se mostrará los resultados de las curvas push over así como los puntos de desempeño tanto para X como para Y y su nivel de desempeño.

3.3.1. Curva de desempeño y punto de desempeño de PEM en dirección X

Figura 109: Curva Cortante Basal vs. Desplazamiento (U1) X para PEM.

Fuente: Autor

El total de pasos guardados es de 48, se observa que la estructura estará en el rango elástico hasta los 33 cm. Y posterior a esto empezará a incursionar en el rango inelástico hasta el colapso a continuación se verá según la metodología del FEMA 440, expuestos en las ecuaciones 87-101 y tabla 13 y 14 el punto de desempeño y nivel de

daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.

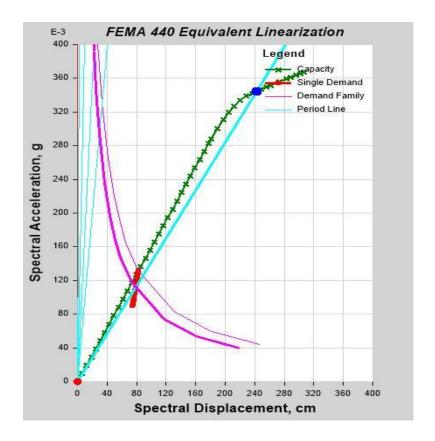
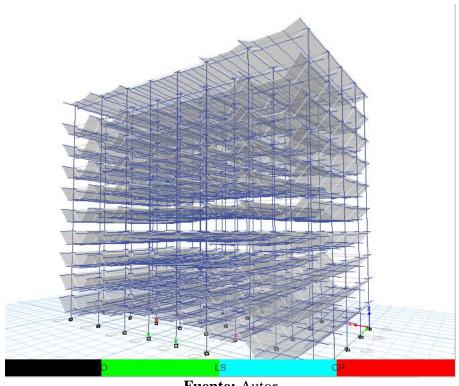


Figura 110: Curva de capacidad de linealización equivalente (U1) X para SMF.

Fuente: Autor


La figura 110, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango elástico, en dirección X, el paso 14 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 82,58 cm y una aceleración de 0,1316 de gravedad. El Período secante (T sec.) y período efectivo (T effec.) en dicho punto es de 5,025 s es de con la tabla 13 y 14 de la presente investigación para un amortiguamiento efectivo Beff de 0,5 y un radio de ductilidad de 1.

La estructura permanece intacta y aun no incursiona en el rango inelástico en el paso 14, por lo que no sufre ningún daño tras el sismo de diseño de 475 años. Figura 111, por su parte en la Figura 112 a manera explicativa se verá la estructura cuando ya ha incursionado en el rango inelástico.

3-D View - Displacements (PUSHOVER X) Step 14/48 [cm]

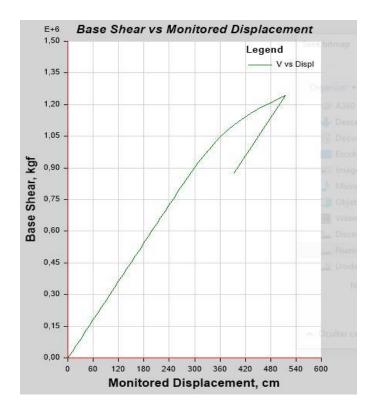

Figura 111: Paso 14 del análisis estático no lineal X (U1) de SMF.

Figura 112: Paso 33 del análisis estático no lineal X (U1) de SMF.

3.3.2. Curva de desempeño y punto de desempeño de PEM en dirección Y

Figura 113: Curva Cortante Basal vs. Desplazamiento (U2) Y para PEM.

Fuente: Autor

El total de pasos guardados es de 48, se observa que la estructura estará en el rango elástico hasta los 30 cm. Y posterior a esto empezará a incursionar en el rango inelástico hasta el colapso a continuación se verá según la metodología del FEMA 440, punto de desempeño y nivel de daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.

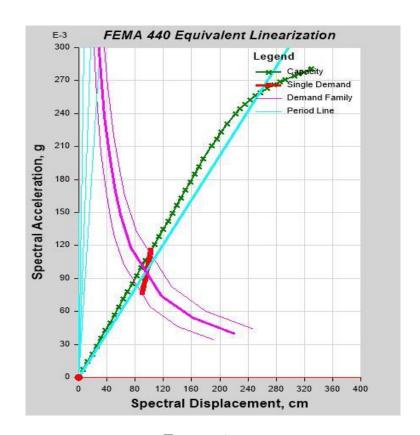


Figura 114: Curva de capacidad de linealización equivalente (U2) Y para SMF.

La figura 114, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango elástico, en dirección Y, el paso 17 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 102,90 cm y una aceleración de 0,1158 de gravedad. El Período secante (T sec.) y período efectivo (T effec.) en dicho punto es de 5,98 s es de con la tabla 13 y 14 de la presente investigación para un amortiguamiento efectivo Beff de 0,5 y un radio de ductilidad de 1.

La estructura permanece intacta y aun no incursiona en el rango inelástico en el paso 14, por lo que no sufre ningún daño tras el sismo de diseño de 475 años. Figura 115, por su parte en la Figura 116 a manera explicativa se verá la estructura cuando ya ha incursionado en el rango inelástico.

Figura 115: Paso 14 del análisis estático no lineal Y (U2) de SMF.

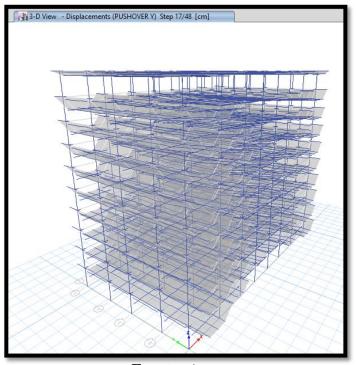
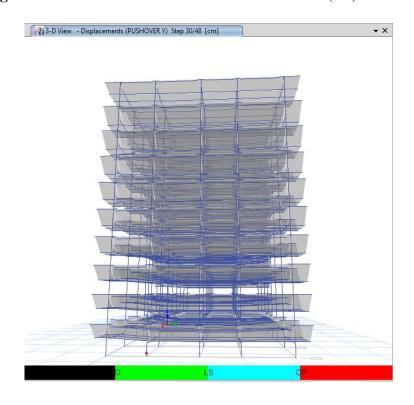



Figura 116: Paso 30 del análisis estático no lineal Y (U2) de SMF.

3.4. Análisis de precios unitarios de SMF

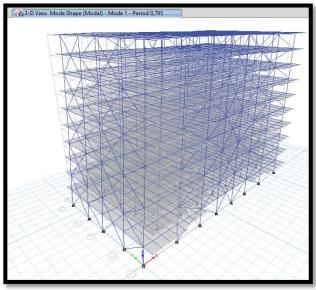
Tabla 48: Análisis de precios unitarios* de SMF [28].

				COLUMN	AS			
ITEM	DESCRIPCIÓN	LONGITUD (m)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones
1	W14X500	6,4	kg.	2	4764,11	5,27	25106,8597	
2	W14X257	6,4	kg.	2	2450,11	5,27	12912,0797	
3	W14X176	121,6	kg.	38	31896,85	5,27	168096,3995	
4	W14X82	6,4	kg.	2	777,81	5,27	4099,0587	
5	HD400X1202	25,6	kg.	8	30743,15	5,27	162016,4005	
6	HD400X1299	121,6	kg.	38	157483,29	5,27	829936,9383	
7	H400X288	102,4	kg.	32	29497,35	5,27	155451,0345	
8	H400X383	38,4	kg.	12	14708,49	5,27	77513,7423	
9	H400X509	256	kg.	80	130206,28	5,27	686187,0956	
10	H400X593	25,6	kg.	8	15170,64	5,27	79949,2728	
11	H400X678	96	kg.	30	65103,14	5,27	343093,5478	
12	H400X744	51,2	kg.	16	38097,39	5,27	200773,2453	
13	H400X818	83,2	kg.	26	68112,15	5,27	358951,0305	
14	H400X900	160	kg.	50	144296,89	5,27	760444,6103	
15	H400X990	179,2	kg.	56	177506,52	5,27	935459,3604	
				VIGAS				
16	W14X145	26,6	kg.	6	5174,96	5,27	27272,0392	
17	W14X82	3148,2	kg.	642	349159,81	5,27	1840072,199	
18	W10X33	1069,5	kg.	186	52587,73	5,27	277137,3371	
19	W14X38	80	kg.	40	4068,02	5,27	21438,4654	
20	W10X17	3631,5	kg.	894	91763,72	5,27	483594,8044	
21	HD400X287	359,1	kg.	81	92135,94	5,27	485556,4038	
22	H400X288	17,8	kg.	4	4587,64	5,27	24176,8628	
23	H400X340	26,6	kg.	6	7940,92	5,27	41848,6484	
24	H400X383	13,5	kg.	3	4481,49	5,27	23617,4523	
25	H400X393	35,2	kg.	8	12033,06	5,27	63414,2262	

						PLACAS	;				
ITEM	DESCRIPCIÓN	Espesor (m)	Base (m)	Altura(m)	Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones	
26	PL1	0,026	0,094	0,32	620	0,4848896	3806,38336	5,27	20059,64031		
27	PL2	0,05	0,188	0,32	116	0,348928	2739,0848	5,27	14434,9769		
28	PL3	0,043	0,132	0,28	16	0,02542848	199,613568	5,27	1051,963503		
29	PL4	0,028	0,37	0,16	16	0,0265216	208,19456	5,27	1097,185331		
30	PL5	0,049	0,133	0,32	32	0,06673408	523,862528	5,27	2760,755523		
									Se a reducido el volumen		
										del diámetro de ingreso 1	
31	PL6	0,01	0,055	0,055	716	0,02101281	164,9505585	5,27	869,2894433	tornillo (Item 35)	
										Se a reducido el volumen	
		del diámetro de ingreso 2									
32	32 PL7 0,01 0,051 0,09 22 0,00097009 7,6152065 5,27 40,132138									tornillos (Item 35)	
	VIGAS SECUNDARIAS										
ITEM	DESCRIPCIÓN	LON	IGITUD (n	n)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones	
33	W10X17		3631,5		kg. 8		91763,72 5,27		483594,8044		
34	W10X33		1069,5		kg.	186	52587,73	5,27	277137,3371		
						PERNOS Y TU	ERCAS				
ITEM	DESCRIPCIÓN	Volum	en por un	idad	Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones	
35	Tornillo 3/4' o 19mm	7,	5937E-06		760	0,005771211	45,30400827	5,27	238,7521236		
36	Tuerca 3/4' o 19mm	2,	1182E-06		760	0,001609834	12,63719626	5,27	66,59802428		
		•	PRECIO	DE LA ESTR	UCTURA N	1ETÁLICA			8889470,549		
	PES	O TOTAL DE L	A ESTRUC	TURA (Ton)			1	686,806556		
						LOSA					
ITEM	DESCRIPCIÓN	UNIDAD	Número	de pisos	Ca	antidad	Precio por	unidad	Precio Total	Observaciones	
37	Hórmigòn f'c = 240	m3		10	58	34,23785	250,2	7	146217,2067		
38	Malla electrosoldada	m2		10		8406,3	6,04		50774,052		
										El precio unitario es por 50	
										unidades, ya consta en	
39	Conectores Stud	es Stud u 10 5892					2,85		335,844	precio total	
40 Placa colaborante m2 10 8406,3							9,72		81709,236		
				PRECIO D	E LA LOSA				279036,3387		
			PRECIO	O TOTAL DE	LA ESTRU	CTURA			9168506,888		

Tabla 49: Cantidades y precios de obra de la estructura SMF.

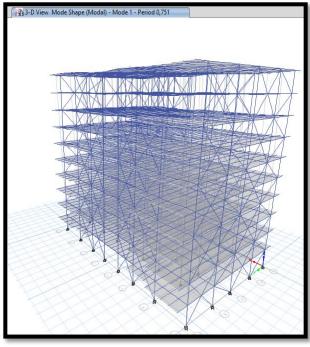
#	DESCRIPCIÓN	U	CANT.	P. UNIT	PRECIO TOTAL
1	Acero estructural A572	kg.	1686806,56	5,27	8889470,549
2	Hormigón f'c 240	m^3	584,23785	250,27	146217,2067
	Malla electro soldada				
3	6mm x 10	m^2	8406,3	6,04	50774,052
4	Placa colaborante 65	m^2	8406,3	9,72	81709,236
	Conectores de Corte Stud				
5	1"	u	5892	2,85	335,844
	SUBTO		9168506,888		


3.5. Resultados lineales de Pórticos Especiales Arriostrados Concéntricamente SCFB o PEAC

Como se especificó en el capítulo 2 se realizó diversos modelos los cuales sí cumplían con los chequeos de diseño de normativas internacionales, sin embargo solo uno cumplió con el desempeño se indicará a continuación los chequeos para los tres modelos indicando cual es el definitivo. Posteriormente se verificará que el desempeño de dos de ellos no cumple y se analizará el desempeño de la estructura definitiva.

Chequeos de diseño

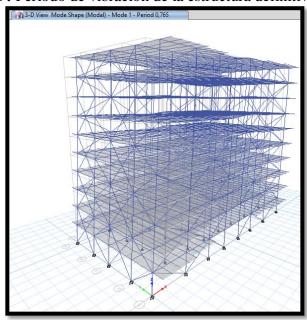
3.5.1. Período de vibración de la estructura


Figura 117: Período de vibración de la estructura no definitiva N.1 de SCBF.

^{*}Los precios unitarios fueron tomados de la Revista Modus Vivendi, edición 57 [28]

$0,795 \le 1,3T$ $0,795 \le 1,277 \text{ OK}$

Figura 118: Período de vibración de la estructura no definitiva N.2 de SCBF.



Fuente: Autor

 $0,751 \leq 1,3T$

 $0,751 \le 1,277 \text{ OK}$

Figura 119: Período de vibración de la estructura definitiva de SCBF.

$$0,765 \le 1,3T$$

 $0,765 \le 1,277 \text{ OK}$

3.5.2. Verificación que los modos de desplazamiento de la estructura sean traslacionales

Tabla 50: Modos de vibración de la estructura no definitiva N.1 diseñada con SCBF.

TABLE: N	lodal Partio	cipating N	lass Ratios											
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
		sec												
Modal	1	0,795	0,7979	0	0	0,7979	0	0	0	0,207	0	0	0,207	0
Modal	2	0,701	0	0,7718	0	0,7979	0,7718	0	0,2344	0	6,794E-07	0,2344	0,207	7,561E-07
Modal	3	0,444	0	8,457E-07	0	0,7979	0,7718	0	0	0	0,7789	0,2344	0,207	0,7789
Modal	4	0,284	0,1108	0	0	0,9087	0,7718	0	0	0,5175	0	0,2344	0,7245	0,7789
Modal	5	0,27	0	0,1328	0	0,9087	0,9046	0	0,478	0	0	0,7124	0,7245	0,7789
Modal	6	0,184	0	0,035	0	0,9087	0,9396	0	0,0896	0	0,000001156	0,802	0,7245	0,7789
Modal	7	0,171	0,0398	0	0	0,9486	0,9396	0	0	0,1072	0,000001513	0,802	0,8317	0,7789
Modal	8	0,16	0	0,000002878	0	0,9486	0,9396	0	0,00001024	7,658E-07	0,1317	0,802	0,8317	0,9106
Modal	9	0,152	0	0,0171	0	0,9486	0,9567	0	0,0661	0	0,00001386	0,868	0,8317	0,9106
Modal	10	0,13	0	0,0101	0	0,9486	0,9668	0	0,0225	0	0	0,8906	0,8317	0,9106
Modal	11	0,125	0,0183	0	0	0,9668	0,9668	0	0	0,0663	0	0,8906	0,898	0,9106
Modal	12	0,118	0	0,0063	0	0,9668	0,973	0	0,0263	0	0	0,9169	0,898	0,9106
Modal	13	0,103	0	0,0058	0	0,9668	0,9788	0	0,0163	0	0	0,9332	0,898	0,9106
Modal	14	0,103	0,0102	0	0	0,9771	0,9788	0	0	0,025	0,000002863	0,9332	0,923	0,9106
Modal	15	0,098	0,000001145	0	0	0,9771	0,9788	0	0	0,000003501	0,0385	0,9332	0,923	0,9491
Modal	16	0,089	0,0081	0	0	0,9852	0,9788	0	0	0,0306	7,592E-07	0,9332	0,9536	0,9491
Modal	17	0,088	0	0,0045	0	0,9852	0,9834	0	0,0148	0	0	0,948	0,9536	0,9491
Modal	18	0,081	0	0,0011	0	0,9852	0,9845	0	0,0011	0	0	0,9491	0,9536	0,9491
Modal	19	0,078	0,0049	0	0	0,9901	0,9845	0	0	0,0149	0,000001458	0,9491	0,9685	0,9491
Modal	20	0,077	5,858E-07	0	0	0,9901	0,9845	0	0,000001117	0,000001494	0,0165	0,9491	0,9685	0,9656
Modal	21	0,076	0	0,0024	0	0,9901	0,9869	0	0,0077	0	0,000003843	0,9568	0,9685	0,9656
Modal	22	0,072	0	0,0023	0	0,9901	0,9892	0	0,0085	0	0	0,9654	0,9685	0,9656
Modal	23	0,069	0,0039	0	0	0,994	0,9892	0	0	0,0122	0,000003295	0,9654	0,9807	0,9656
Modal	24	0,069	0	0,0017	0	0,994	0,9909	0	0,0053	0	0,000006292	0,9707	0,9807	0,9656
Modal	25	0,068	0,000002115	0,000001071	0	0,994	0,9909	0	0,000003118	0,000006424	0,008	0,9707	0,9807	0,9736
Modal	26	0,065	0	0	0	0,994	0,9909	0	0	0	0,003	0,9707	0,9807	0,9766
Modal	27	0,064	0	0	0	0,994	0,9909	0	0	0	0,0004	0,9707	0,9807	0,977
Modal	28	0,062	0,00000585	0	0	0,994	0,9909	0	0	0,00001918	0,0005	0,9707	0,9807	0,9775
Modal	29	0,062	0,0024	0	0	0,9964	0,9909	0	0	0,0079	0,00001444	0,9707	0,9886	0,9776
Modal	30	0.062	0.00001133	0	0	0.9964	0.9909	0	0	0.00003734	0.0021	0.9707	0.9886	0,9797

Fuente: Autor

Modo 1

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{0}{0,7979} = 0$$

Modo 2

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{6,794x10^{-4}}{0,7718} = 8,8x10^{-3}\%$$

Tabla 51: Modos de vibración de la estructura no definitiva N.2 diseñada con SCBF.

Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
		sec												
Modal	1	0,751	0,7494	0,000002537	0	0,7494	0,000002537	0	6,187E-07	0,2577	0,0002	6,187E-07	0,2577	0,0002
Modal	2	0,742	0,000002392	0,7811	0	0,7494	0,7811	0	0,225	7,774E-07	0	0,225	0,2577	0,0002
Modal	3	0,468	0,0003	0	0	0,7497	0,7811	0	0	0,00001643	0,7789	0,225	0,2577	0,7791
Modal	4	0,283	0	0,1258	0	0,7497	0,9069	0	0,4946	0	0,000001882	0,7195	0,2577	0,7791
Modal	5	0,256	0,1541	0	0	0,9038	0,9069	0	0	0,4603	0,0001	0,7196	0,718	0,7793
Modal	6	0,19	0	0,034	0	0,9038	0,9409	0	0,0869	0	0,0000254	0,8064	0,718	0,7793
Modal	7	0,167	0,0001	0,00001725	0	0,9039	0,9409	0	0,00004464	0,0003	0,1332	0,8065	0,7184	0,9125
Modal	8	0,154	0,000001349	0,0171	0	0,9039	0,958	0	0,0642	0,000002553	0,0001	0,8707	0,7184	0,9126
Modal	9	0,15	0,0415	0,000001129	0	0,9453	0,958	0	0,000003676	0,0982	0,0001	0,8707	0,8165	0,9126
Modal	10	0,129	0	0,0109	0	0,9453	0,9689	0	0,0255	0,000001095	0,000002326	0,8962	0,8165	0,9126
Modal	11	0,115	0	0,0049	0	0,9453	0,9738	0	0,023	0	0,00000264	0,9193	0,8165	0,9126
Modal	12	0,108	0,0202	0	0	0,9655	0,9738	0	0	0,0739	0,00000838	0,9193	0,8904	0,9127
Modal	13	0,102	0,000002199	0,0003	0	0,9655	0,9741	0	0,0008	0,00001528	0,0359	0,9201	0,8904	0,9485
Modal	14	0,102	0	0,0061	0	0,9655	0,9802	0	0,0167	0	0,0018	0,9368	0,8904	0,9503
Modal	15	0,086	0,0003	0,0047	0	0,9658	0,985	0	0,0158	0,0009	0,000003344	0,9526	0,8913	0,9503
Modal	16	0,086	0,013	0,0001	0	0,9788	0,9851	0	0,0004	0,0386	0,000001189	0,9529	0,9299	0,9503
Modal	17	0,082	0	0,001	0	0,9788	0,9861	0	0,0012	0	7,796E-07	0,9541	0,9299	0,9503
Modal	18	0,08	0	0,000001036	0	0,9788	0,9861	0	0,00000221	0	0,0164	0,9541	0,9299	0,9667
Modal	19	0,075	0,005	0	0	0,9838	0,9861	0	0	0,0196	0,000001845	0,9541	0,9495	0,9667
Modal	20	0,074	0	0,0034	0	0,9838	0,9895	0	0,0107	0	0,000003003	0,9648	0,9495	0,9667
Modal	21	0,073	0	0,0015	0	0,9838	0,991	0	0,0061	0	6,386E-07	0,9709	0,9495	0,9667
Modal	22	0,069	8,631E-07	0,000001532	0	0,9838	0,991	0	0,000005745	0,000002415	0,0093	0,9709	0,9495	0,9761
Modal	23	0,066	0,0051	0	0	0,9889	0,991	0	0	0,0149	0,000003276	0,9709	0,9643	0,9761
Modal	24	0,066	0	0,0024	0	0,9889	0,9934	0	0,0075	0	0,000001381	0,9783	0,9643	0,9761
Modal	25	0,065	0,000001389	0	0	0,9889	0,9934	0	0	0,000004859	0,0013	0,9783	0,9643	0,9774
Modal	26	0,064	0	0	0	0,9889	0,9934	0	0	0,000001469	0,0014	0,9783	0,9643	0,9788
Modal	27	0,063	0,000002357	6,508E-07	0	0,9889	0,9934	0	0,000002312	0,000008454	0,0009	0,9783	0,9643	0,9796
Modal	28	0,062	0	0,0017	0	0,9889	0,9951	0	0,0048	0,000001321	0,000008488	0,9832	0,9644	0,9796
Modal	29	0,061	0,000002306	0,000003261	0	0,9889	0,9951	0	0,00001017	0,000007175	0,0015	0,9832	0,9644	0,9812
Modal	30	0,059	0,0043	0	0	0,9932	0,9951	0	0	0,0143	0,00002238	0,9832	0,9786	0,9812

Modo 1

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{0,0002}{0,7494} = 0,0266\%$$

Modo 2

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{0}{0,7811} = 0$$

Tabla 52: Modos de vibración de la estructura definitiva diseñada con SCBF.

TABLE: M	TABLE: Modal Participating Mass Ratios													
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
		sec												
Modal	1	0,765	0,7841	0,0066	0	0,7841	0,0066	0	0,002	0,2111	9,441E-07	0,002	0,2111	9,441E-07
Modal	2	0,745	0,0068	0,7733	0	0,7909	0,7799	0	0,2225	0,0018	0,0003	0,2244	0,2129	0,0003
Modal	3	0,439	0,000001934	0,0001	0	0,7909	0,78	0	0,0004	0	0,8021	0,2248	0,2129	0,8024
Modal	4	0,291	0,0001	0,1276	0	0,791	0,9076	0	0,4875	0,0004	0,000003022	0,7123	0,2133	0,8024
Modal	5	0,271	0,1229	0,0001	0	0,9139	0,9077	0	0,0005	0,5266	0,000001101	0,7128	0,7399	0,8024
Modal	6	0,194	0,000001234	0,0383	0	0,9139	0,9461	0	0,1052	0,000002038	0,000005227	0,8179	0,7399	0,8024
Modal	7	0,163	0,0116	0,0009	0	0,9254	0,947	0	0,0038	0,0289	0,0712	0,8218	0,7688	0,8736
Modal	8	0,162	0,0294	0,0003	0	0,9549	0,9472	0	0,0012	0,0743	0,0283	0,823	0,8431	0,9019
Modal	9	0,16	0,000008902	0,0154	0	0,9549	0,9627	0	0,0583	0,00001814	0,0131	0,8813	0,8431	0,915
Modal	10	0,141	0	0,0091	0	0,9549	0,9718	0	0,0237	7,628E-07	0,00001302	0,905	0,8431	0,915
Modal	11	0,129	0	0,0057	0	0,9549	0,9775	0	0,0234	0	0,00001244	0,9283	0,8431	0,915
Modal	12	0,121	0,00002649	0,0024	0	0,9549	0,98	0	0,0048	0,0001	0,00001682	0,9331	0,8432	0,9151
Modal	13	0,12	0,0175	0,000003012	0	0,9724	0,98	0	0,000006591	0,0692	0,000001653	0,9331	0,9125	0,9151
Modal	14	0,115	0	0,003	0	0,9724	0,983	0	0,0118	0,000001134	0,0001	0,9449	0,9125	0,9151
Modal	15	0,104	0	0,0035	0	0,9724	0,9865	0	0,0111	0	0,0001	0,956	0,9125	0,9152
Modal	16	0,102	0,00001591	0,00002755	0	0,9724	0,9865	0	0,00003407	0,00003736	0,0379	0,956	0,9125	0,9531
Modal	17	0,1	0,0085	0	0	0,981	0,9865	0	0	0,0207	0,00004638	0,956	0,9332	0,9532
Modal	18	0,089	0,0068	0	0	0,9878	0,9865	0	0	0,0284	0	0,956	0,9616	0,9532
Modal	19	0,088	0	0,0041	0	0,9878	0,9907	0	0,0135	0	0	0,9696	0,9616	0,9532
Modal	20	0,081	0	0,000002648	0	0,9878	0,9907	0	0,000005106	0	0,0157	0,9696	0,9616	0,9689
Modal	21	0,081	0,0027	0	0	0,9905	0,9907	0	0	0,0065	0	0,9696	0,9681	0,9689
Modal	22	0,077	0,0019	0	0	0,9924	0,9907	0	0	0,0071	0	0,9696	0,9751	0,9689
Modal	23	0,077	0	0,0007	0	0,9924	0,9914	0	0,0007	0,000001402	0,00003741	0,9703	0,9751	0,9689
Modal	24	0,071	0	0	0	0,9924	0,9914	0	0,000005642	0	0,0081	0,9703	0,9751	0,977
Modal	25	0,071	0,0023	0	0	0,9947	0,9914	0	0	0,0078	7,197E-07	0,9703	0,9829	0,977
Modal	26	0,068	0	0,0016	0	0,9947	0,993	0	0,0069	0	0	0,9772	0,9829	0,977
Modal	27	0,068	0	0,0000219	0	0,9947	0,993	0	0,0001	8,998E-07	0,0041	0,9773	0,9829	0,9812
Modal	28	0,065	0	0,000001109	0	0,9947	0,993	0	0,000006149	0	0,0009	0,9773	0,9829	0,982
Modal	29	0,064	0	0	0	0,9947	0,993	0	0	0	0,0013	0,9773	0,9829	0,9834
Modal	30	0,064	0,0032	0	0	0,9979	0,993	0	0	0,0102	0	0,9773	0,9931	0,9834

Modo 1

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{9,441x10^{-7}}{0,7841} = 1,2x10^{-4}\%$$

Modo 2

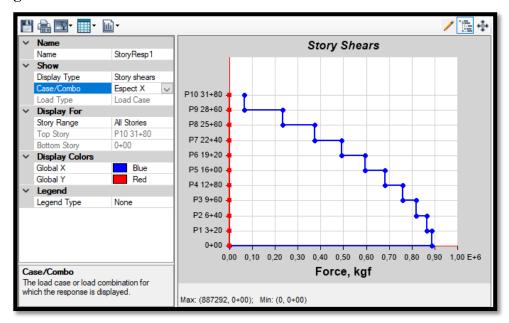
$$\frac{Rz}{Umax(x,y)} \le 30\%$$
$$\frac{0,0003}{0.7733} = 0,03\%$$

3.5.3. Verificar que los modos de vibración deben cumplir el 90% de la masa.

En la tabla 50 se observa que cumple esta condición en el décimo cuarto modo de vibración de la estructura.

En la tabla 51 se observa que cumple esta condición en el décimo cuarto modo de vibración de la estructura.

En la tabla 52 se observa que cumple esta condición en el décimo tercer modo de vibración de la estructura.


3.5.4. Validación del análisis dinámico

Estructura no definitiva 1.

Cortante Vx

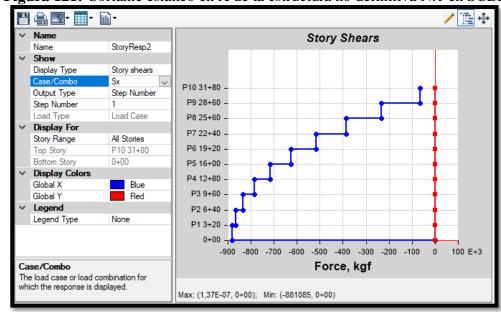

$$\frac{V_{X\,DIN\acute{\text{A}}MICO}}{V_{X\,EST\acute{\text{A}}TICO}} \geq 80\%$$

Figura 120: Cortante dinámico en X de la estructura no definitiva N.1 en SCBF.

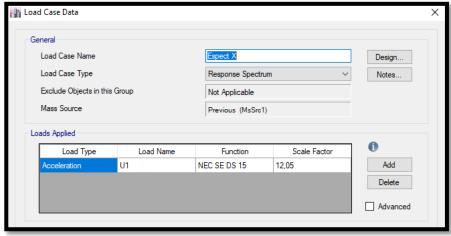
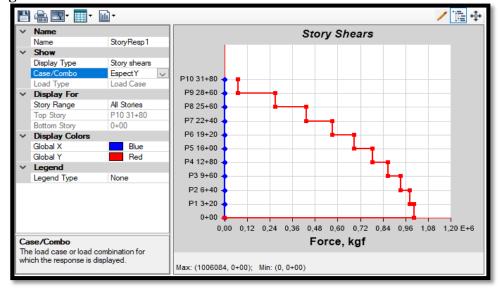

Fuente: Autor

Figura 121: Cortante estático en X de la estructura no definitiva N.1 en SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 12,05 m/s² para validar el análisis dinámico, figura 112.

Figura 122: Calibración del valor de la gravedad del espectro en dirección X de la estructura no definitiva N.1 SCBF.

Fuente: Autor


$$\frac{887292}{881085} \ge 80\%$$

 $100\% \ge 80\%$

Cortante Vy

$$\frac{V_{Y\;DIN\acute{A}MICO}}{V_{Y\;EST\acute{A}TICO}} \geq 80\%$$

Figura 123: Cortante dinámico en Y de la estructura no definitiva N.1 en SCBF.

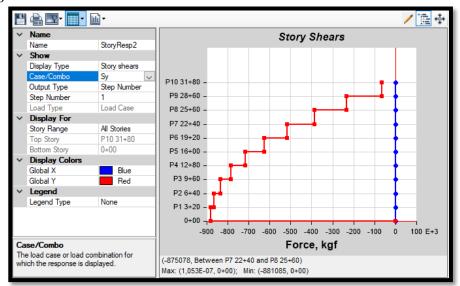
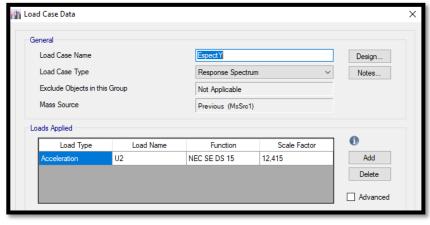



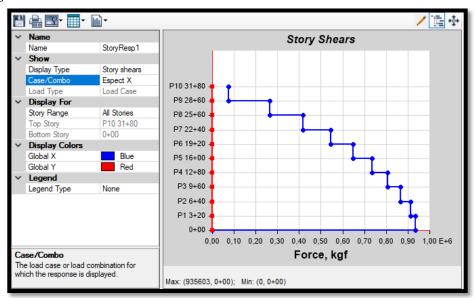
Figura 124: Cortante estático en Y de la estructura no definitiva N.1 en SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 14,86 m/s² para validar el análisis dinámico, figura 125.

Figura 125: Calibración del valor de la gravedad del espectro en dirección Y de la estructura no definitiva N.1 SCBF.

Fuente: Autor

$$\frac{1006084}{881085} \ge 80\%$$


 $100\% \ge 80\%$

Estructura no definitiva 2

Cortante Vx

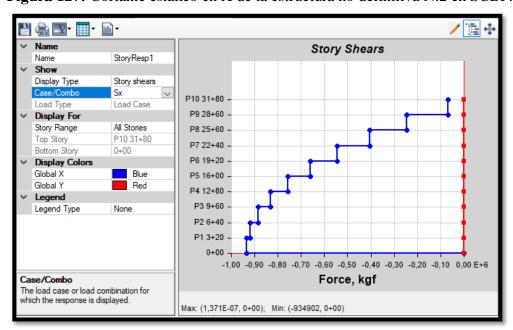

$$\frac{V_{X\,DIN\acute{A}MICO}}{V_{X\,EST\acute{A}TICO}} \ge 80\%$$

Figura 126: Cortante dinámico en X de la estructura no definitiva N.2 en SCBF.

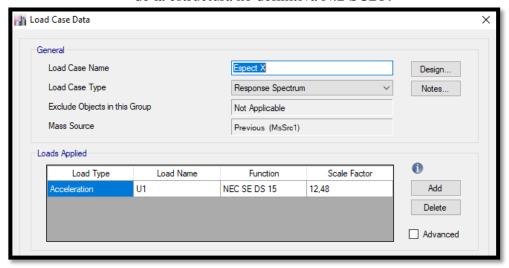
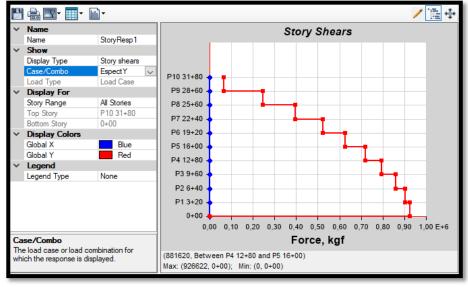

Fuente: Autor

Figura 127: Cortante estático en X de la estructura no definitiva N.2 en SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 12,48 m/s² para validar el análisis dinámico, figura 128.

Figura 128: Calibración del valor de la gravedad del espectro en dirección X de la estructura no definitiva N.2 SCBF.

Fuente: Autor


$$\frac{965603}{934902} \ge 80\%$$

 $100\% \ge 80\%$

Cortante Vy

$$\frac{V_{Y\;DIN\acute{A}MICO}}{V_{Y\;EST\acute{A}TICO}} \geq 80\%$$

Figura 129: Cortante dinámico en Y de la estructura no definitiva N.2 en SCBF.

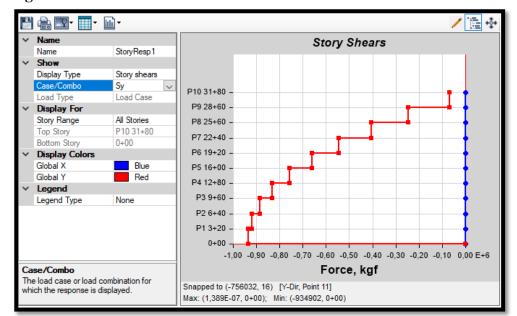
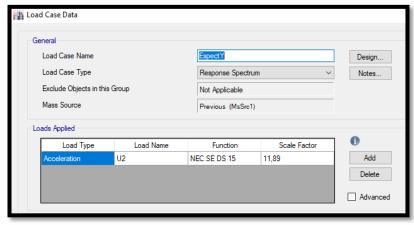



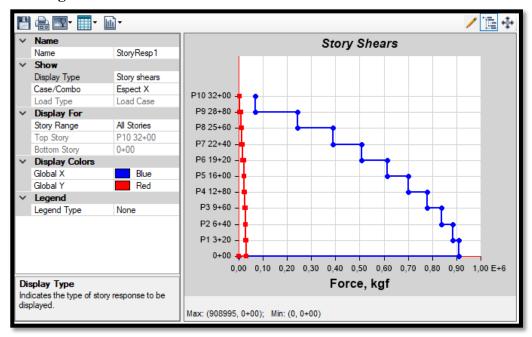
Figura 130: Cortante estático en Y de la estructura no definitiva N.2 en SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 14,86 m/s² para validar el análisis dinámico, figura 131.

Figura 131: Calibración del valor de la gravedad del espectro en dirección Y de la estructura no definitiva N.2 SCBF.

Fuente: Autor

$$\frac{926622}{934902} \ge 80\%$$


 $99,11 \ge 80\%$

Estructura definitiva

Cortante Vx

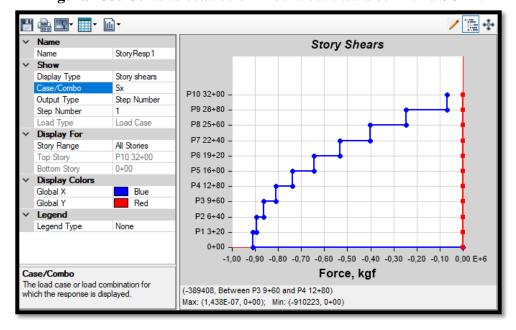

$$\frac{V_{X\,DIN\acute{A}MICO}}{V_{X\,EST\acute{A}TICO}} \geq 80\%$$

Figura 132: Cortante dinámico en X de la estructura definitiva SCBF.

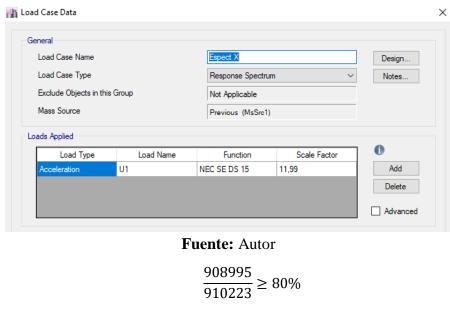
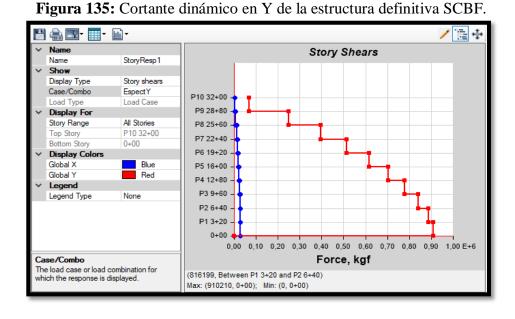

Fuente: Autor

Figura 133: Cortante estático en X de la estructura definitiva SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 12,48 m/s² para validar el análisis dinámico, figura 134.

Figura 134: Calibración del valor de la gravedad del espectro en dirección X de la estructura definitiva SCBF.



99,86% ≥ 80%

Cortante Vy

$$\frac{V_{Y\;DIN\acute{A}MICO}}{V_{Y\;EST\acute{A}TICO}} \geq 80\%$$

Y ESTATICO

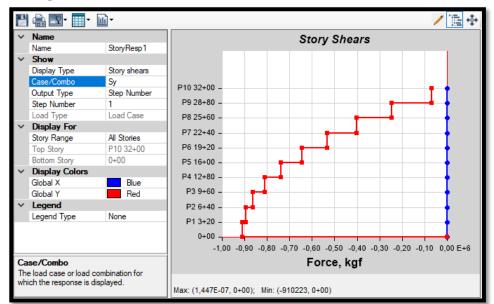
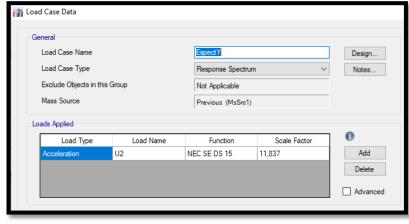



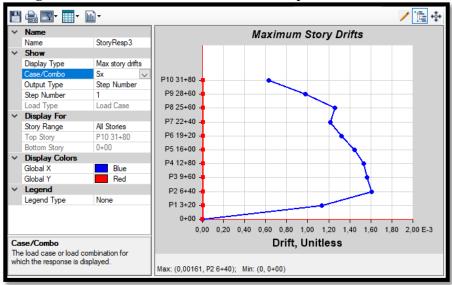
Figura 136: Cortante estático en Y de la estructura definitiva SCBF.

La gravedad fue calibrada para el espectro en dirección hasta 14,86 m/s² para validar el análisis dinámico, figura 137.

Figura 137: Calibración del valor de la gravedad del espectro en dirección Y de la estructura definitiva SCBF.

Fuente: Autor

$$\frac{910210}{910223} \ge 80\%$$

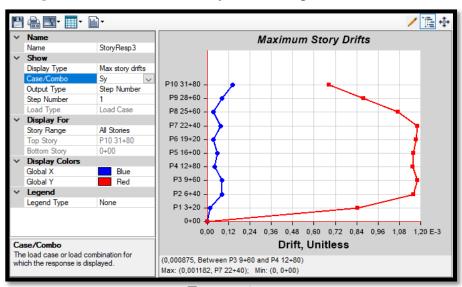

 $99,99 \ge 80\%$

3.5.5. Derivas Estáticas

Modelo preliminar N.1

Deriva estática Sx

Figura 138: Deriva estática Sx de modelo preliminar N.1 SCBF.

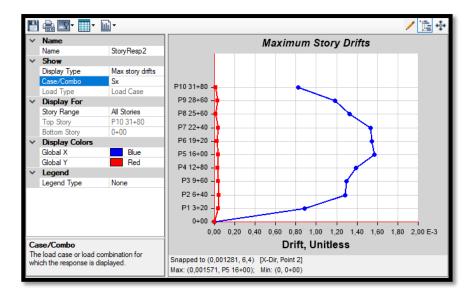

Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.00161 = 0.9 \%$$

Deriva estática Sy

Figura 139: Deriva estática Sy de modelo preliminar N.1 SCBF.


$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001182 = 0.7 \%$$

Modelo preliminar N.2

Deriva estática Sx

Figura 140: Deriva estática Sx de modelo preliminar N.2 SCBF.

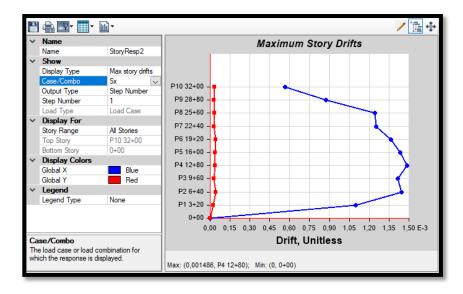

Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001571 = 0.942 \%$$

Deriva estática Sy

Figura 141: Deriva estática Sy de modelo preliminar N.2 SCBF.

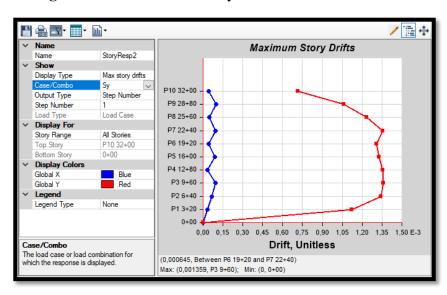

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001571 = 0.942 \%$$

Modelo Definitivo

Deriva estática Sx

Figura 142: Deriva estática Sx de modelo definitivo SCBF.


Fuente: Autor

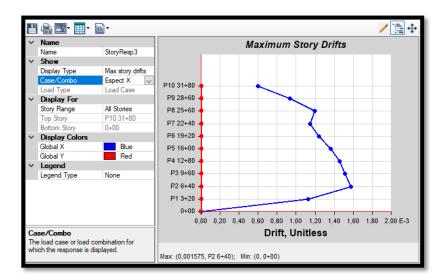
$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001486 = 0.89 \%$$

Deriva estática Sy

Figura 143: Deriva estática Sy de modelo definitivo SCBF.

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

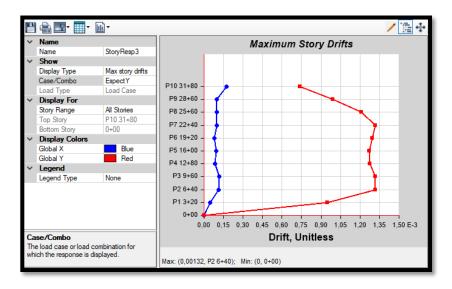

$$\Delta_m = 6 * 0.001486 = 0.89 \%$$

3.5.6. Derivas Dinámicas

Modelo preliminar N.1

Espectral en X

Figura 144: Deriva espectral X de modelo preliminar N.1 SCBF.

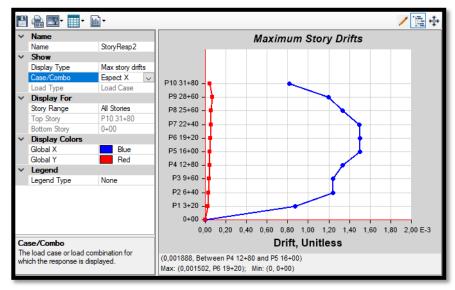

Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001575 = 0.9\%$$

Espectral en Y

Figura 145: Deriva espectral Y de modelo preliminar N.1 SCBF.

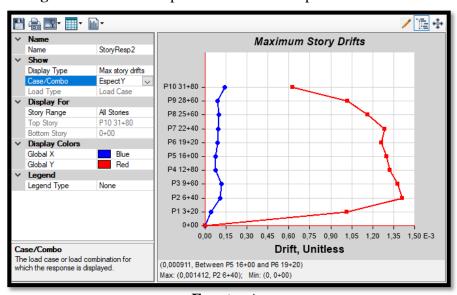

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.00132 = 0.79\%$$

Modelo preliminar N.2

Espectral en X

Figura 146: Deriva espectral X de modelo preliminar N.2 SCBF.

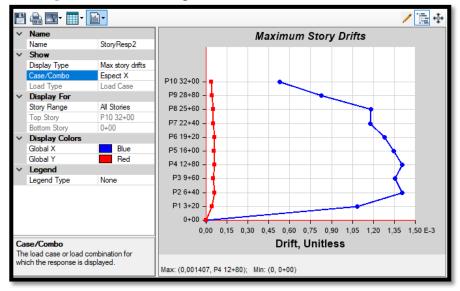


Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001502 = 0.9\%$$

Figura 147: Deriva espectral Y de modelo preliminar N.2 SCBF.

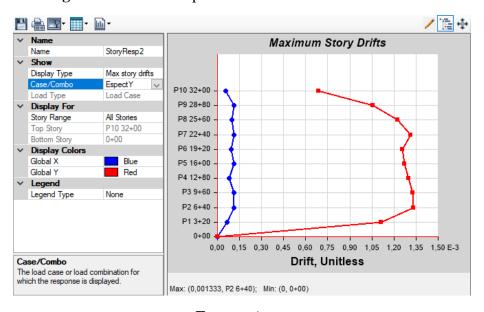

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001412 = 0.84\%$$

Modelo definitivo

Espectral en X

Figura 148: Deriva espectral X de modelo definitivo SCBF.



Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001407 = 0.84\%$$

Figura 149: Deriva espectral Y de modelo definitivo SCBF.

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001333 = 0.799\%$$

3.5.7. Buckling Factors o efectos de pandeo global

-1 > Scale Factor > 1

Tabla 53: Factores de pandeo global modelo preliminar N. 1 SCBF.

TABLE: Buckling Factors	;	
Case	Mode	Scale Factor
Pandeo Gravitacional	1	3,255
Pandeo Gravitacional	2	4,297
Pandeo Gravitacional	3	4,492
Pandeo Gravitacional	4	4,792
Pandeo Gravitacional	5	5,427
Pandeo Gravitacional	6	5,432
Pandeo Sx	1	1,778
Pandeo Sx	2	2,447
Pandeo Sx	3	3,071
Pandeo Sx	4	3,171
Pandeo Sx	5	3,462
Pandeo Sx	6	4,44
Pandeo Sy	1	1,705
Pandeo Sy	2	1,727
Pandeo Sy	3	1,756
Pandeo Sy	4	2,157
Pandeo Sy	5	2,183
Pandeo Sy	6	-2,192

Tabla 54: Factores de pandeo global modelo preliminar N. 2 SCBF.

TABLE: Buckling Factors	S	
Case	Mode	Scale Factor
Pandeo Gravitacional	1	3,827
Pandeo Gravitacional	2	4,198
Pandeo Gravitacional	3	5,446
Pandeo Gravitacional	4	5,446
Pandeo Gravitacional	5	5,457
Pandeo Gravitacional	6	5,459
Pandeo Sx	1	3,641
Pandeo Sx	2	5,148
Pandeo Sx	3	5,503

Pandeo Sx	4	6,075
Pandeo Sx	5	6,079
Pandeo Sx	6	6,086
Pandeo Sy	1	1,983
Pandeo Sy	2	2,288
Pandeo Sy	3	2,486
Pandeo Sy	4	2,838
Pandeo Sy	5	2,94
Pandeo Sy	6	3,237

Tabla 55: Factores de pandeo global modelo definitivo SCBF.

TABLE: Buckling Factors	;	
Case	Mode	Scale Factor
Pandeo Gravitacional	1	4,313
Pandeo Gravitacional	2	4,437
Pandeo Gravitacional	3	5,142
Pandeo Gravitacional	4	5,3
Pandeo Gravitacional	5	5,64
Pandeo Gravitacional	6	5,699
Pandeo Sx	1	2,514
Pandeo Sx	2	3,542
Pandeo Sx	3	3,611
Pandeo Sx	4	4,244
Pandeo Sx	5	4,98
Pandeo Sx	6	5,627
Pandeo Sy	1	1,443
Pandeo Sy	2	2,434
Pandeo Sy	3	2,711
Pandeo Sy	4	-3,405
Pandeo Sy	5	-3,53
Pandeo Sy	6	3,809

Fuente: Autor

3.5.8. Diseño de elementos demanda capacidad según AISC 360-16

Las consideraciones de colores de demanda capacidad es igual que lo planteado en el diseño de SMF.

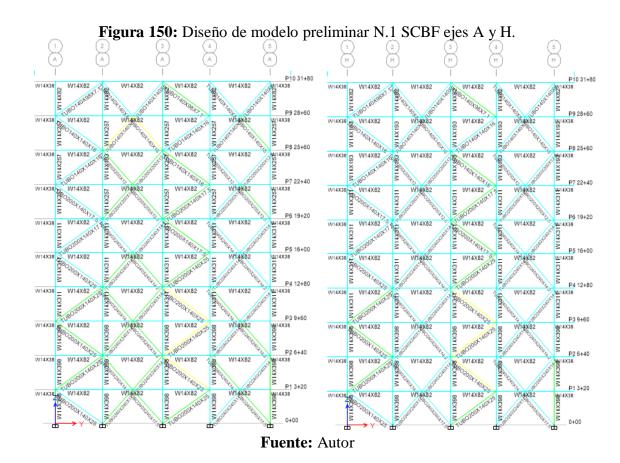


Figura 151: Diseño de modelo preliminar N.1 SCBF eje 1.

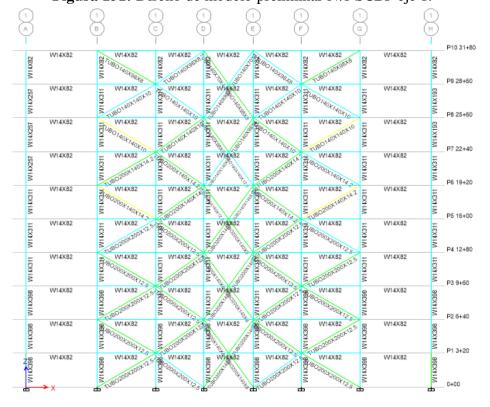


Figura 152: Diseño de modelo preliminar N.1 SCBF eje 5.

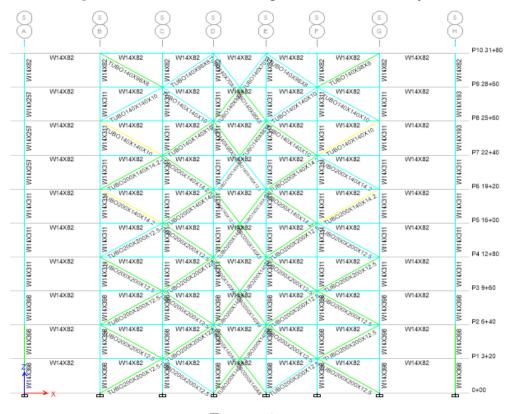
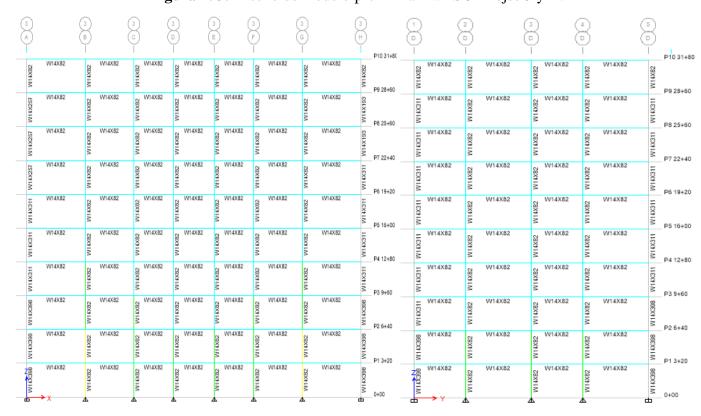



Figura 153: Diseño de modelo preliminar N.1 SCBF ejes 3 y D.

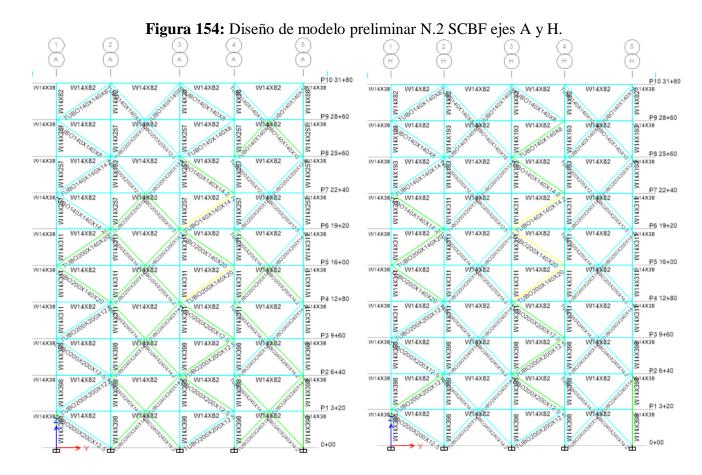


Figura 155: Diseño de modelo preliminar N.2 SCBF eje 1.

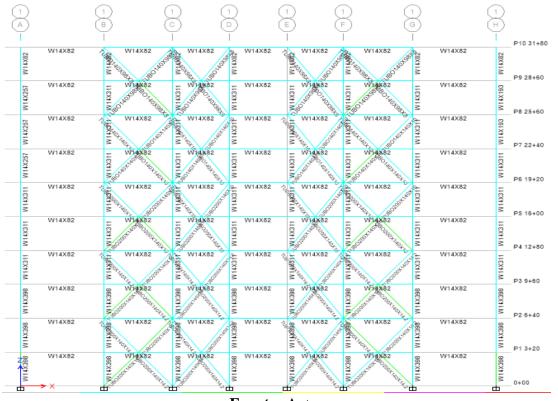


Figura 156: Diseño de modelo preliminar N.2 SCBF eje 5.

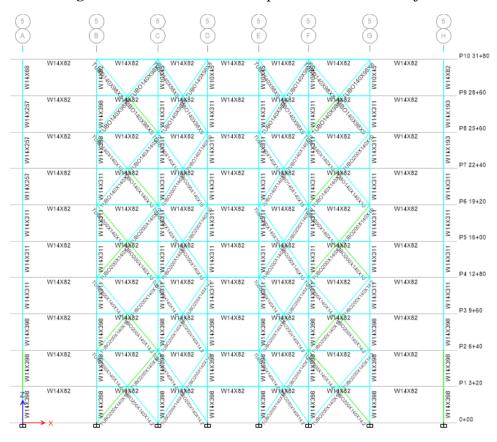
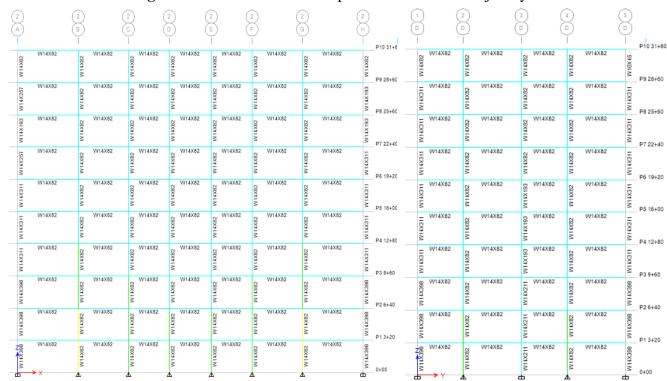
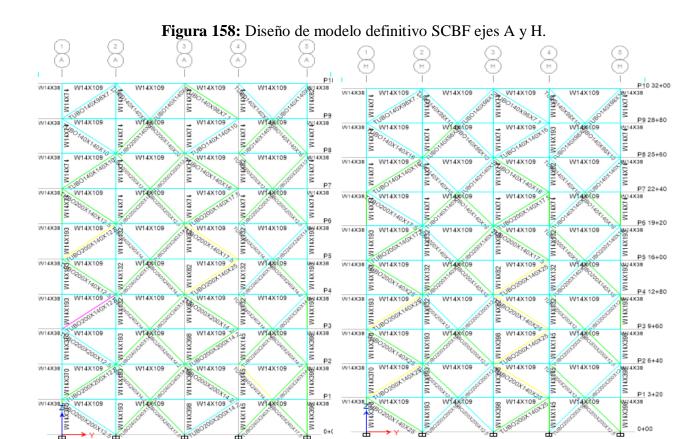
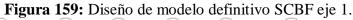





Figura 157: Diseño de modelo preliminar N.2 SCBF ejes 2 y D.

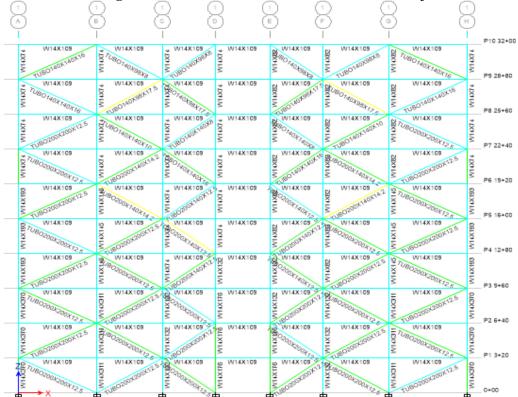


Figura 160: Diseño de modelo definitivo SCBF eje 5.

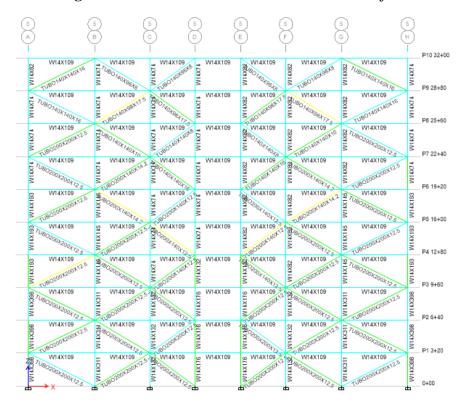


Figura 161: Diseño de modelo definitivo SCBF eje B y C.

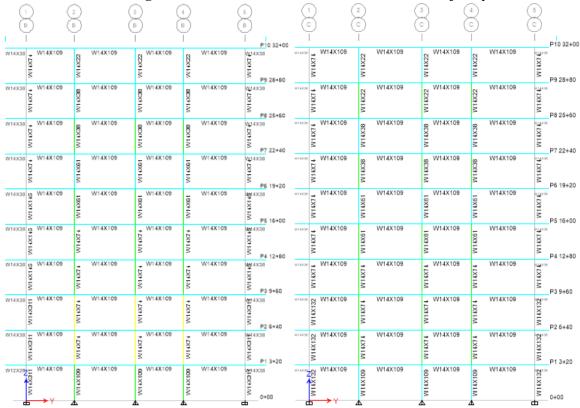


Figura 162: Diseño de modelo definitivo SCBF eje 2.

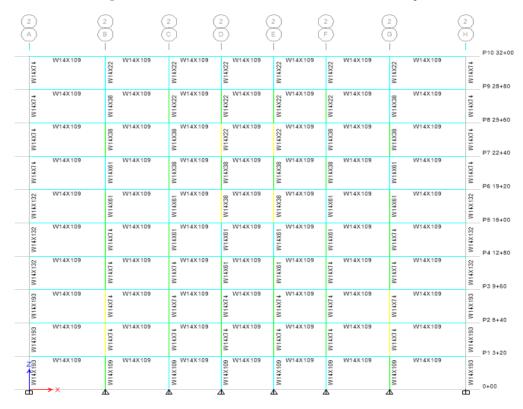


Figura 163: Diseño de modelo definitivo SCBF eje D y 3.

1	2 D	3 D	4 D	5 D	3 A	3 B	3 C	3 E	3 F G	3 H
		144 174 184		P10 32+0	W44V400	W14X109	W14X109 W1	4X109 W14X109	W14X109	P10 32+00 W14X109
1X11M	09 W14X109	ZZX11M	W14X109	1X1X P9 28+80	W14X109 XX1M	W14X22	W14X22 W14X22	W14X22	W14X22	**************************************
W14X1	W14X109 W14X35	W14X109 ZZX11M	W14X109 W14X109	1 LX11M P8 25+60	W14X109 XX M	W14X109 8EX 11 M	W14X109 W1	4X109 W14X109	W14X109 W14X38	W14X109 + LX + L
1 W14X1	09 W14X109	70 W14X109 70 X14X109	W14X109 XX XX XX	Z	W14X109	W14X109 8E X4 M	W14X109 W14X25 W	4X109 W14X109	W14X109 8EXTI M	W14X109
W14X1	09 W14X109	85 X11 W14X109	W14X109 8XX M	P6 19+20	W14X109 LX LX LX	W14X109 19X 19X 19X	W14X109 W	4X109 W14X109	W14X109 W14X09 W14X09	W14X109
1X11M	09 W14X109	85 M14X109 XX XX	85 W14X109 X4 X4	75 16+00	W14X109	W14X109 19X41M	W14X109 W14X109 W14X109	4X109 W14X109	W14X109 19X71M	W14X109 C8X
W14X1	09 W14X109	W14X109 X1 X1 X	W14X109 X1 X1	D4 12+80	W14X109	W14X109 LX 1M	W14X109 W14X10	4X109 W14X109	W14X109 + LX11M	W14X109 C8X + + + + + + + + + + + + + + + + + + +
25 M14X1	09 W14X109	W14X109 X1 X	W14X109 X1 X	ZEI X+I M P3 9+60	W14X109	W14X109 LX W	W14X109 W1	4X109 W14X109	W14X109 1XX 1XX 1XX 1XX 1XX 1XX 1XX 1X	W14X109
W14X1	09 W14X109	W14X109 XXII	W14X109	9LIX*IIM P2 6+40	86CX+1	W14X109 1X 1X 1X	W14X109 W1	4X109 W14X109	W14X109 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X	W14X109 86CX1
W14X1	09 W14X109	W14X109 XX XX XX	W14X109	91 3+20	86EX+1	W14X109 LX M	W14X109 W1	4X109 W14X109	W14X109 LX LX M	W14X109 86CX1
29 W14X1	09 W14X109	60 W14X109 X1X1	W14X109	0+00 0+00	W14X109	601X+109	W14X109 W1	4X109 W14X109	601X+1N	W14X109 88 EXX ++
— — → Y	Δ.	Δ.	Δ	ф отоз	<u></u>	<u>_</u>	<u> </u>	<u> </u>	<u> </u>	D+00

Las estructuras no definitivas como se observan cumplen con todos los requerimientos y chequeos establecidos sin embargo no cumplen con el desempeño requerido para el sismo de 475 años. Se visualizará la curva de linealización equivalente de los modelos preliminares de SCBF.

En la figura 164, se visualizará la asignación de rótulas plásticas, las mismas serán asignadas solamente en los pórticos SCBF o PEAC, en el resto al ser pórticos gravitacionales no se requiere la asignación de rótulas pláticas, la distribución de rótulas se la realiza de la siguiente manera:

- Vigas dos rótulas plásticas por vano, entre el 5% y 95% de la longitud de las mismas.
- Columnas dos rótulas plásticas por entre piso entre el 10% y 90% de la longitud de las mismas.
- Riostras una rótula plástica por sección en la mitad del elemento.

B45H19(Auto M3)
B46H19(Auto M3)
B46H110(Auto M

Figura 164: Distribución de las rótulas plásticas asignadas para SCFB o PEAC.

Fuente: Autor

B46H17(Aulo M3)

M5F0P7/Auto M3

B48H16/Auto M3

847919/Auto M31

3.5.9. Resultados de elementos no estructurales secundarios de SCBF

Ya con el modelo definitivo se considerará el diseño pernos, tuercas, placas de corte y conectores Gusset.

Tabla 56: Diseño de placas de corte, pernos y tuercas de SCBF.

	DISEÑO DE PLA	DISEÑO DE PER	NOS			
SCBF-F	PEAC	SCBF-F	PEAC	Fnv kg/m2)	47800000	
SCE	BF	OM	IF.	ΦD	0,022225	
ACERO DE PLACA	A36	ACERO DE PLACA	A36	LR	0,0381	
Datos de	la viga	Datos de	la viga	Ag	0,00084677	
Vu grav(kgf)	16087,84	Vu (kgf)	15442,13	Ry	40475,7255	
Lh	6,5	Lh	6,5	Cantidad de tornillos	3	
DATOS CAL	CULADOS			Ancho de la placa	0,044725	
Vvsr	104570,96	Vvsr	100373,845	Largo de la placa	0,111675	
Vu	120658,8	Vu	115815,975	CORRECTO		
Datos de	placa	Datos de	placa	DISEÑO DE PERNOS		
ф٧	0,75	ф٧	0,8	Fnv kg/m2)	47800000	
dcp	0,05	dcp	0,05	ФD	0,022225	
tcp	0,005	tcp	0,005	LR	0,0381	
Fy	25310506,54	Fy	25310506,54	Ag	0,00084677	
φv VV	76348383,66	φv VV	78169626,47	Ry	40475,7255	
CORRE	СТО	CORRE	сто	Cantidad de tornillos	3	
				Ancho de la placa	0,044725	
				Largo de la placa	0,111675	
				CORRECTO		

Fuente: Autor

En el caso de las placas dobles se tomará el mínimo, ya que es necesario según la ecuación 18, se colocarán las mismas a los dos lados y se respetará los 150 mm mínimos desde las placas de continuidad

Para el diseño de los pernos y placas de corte se debe considerar que la capacidad de los mismos supere la demanda. Por otra parte en la tabla N. 57 se visualizará las distancias mínimas que deben tener desde el centro de la placa a los extremos de las mismas. En el caso de placas de continuidad, se mantiene el espesor de la viga de ingreso como mínimo espesor, este puede ser mayor si la viga la viga perpendicular así lo demanda, así como el mínimo de longitud de ancho, con este se cumple lo establecido en las ecuaciones 25-28.

Tabla 57: Distancias mínimas de los extremos de placas de corte al centro de los pernos.

TABLA J3.4 Distancia Mínima al Borde ^[a] , in, desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte Conectada						
Diámetro Perno (in) Distancia Mínima al Borde						
1/2	3/4					
5/a	7/a					
3/4	1					
7/a	1 1/a					
1	11/4					
11/s	11/2					
11/4	15/a					
Söbre 11/4	1 ¹ /4d					
	Le menores provisto que se satisfacen las disposiciones de rde menores que un diámetro del perno no son permitidas 3.5.					

TABLA J3.4M Distancia Mínima al Borde ^[a] , desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte Conectada, mm							
Diámetro Perno (mm) Distancia Mínima al Borde							
16	22						
20	26						
22	28						
24	30						
27	34						
30	38						
36	46						
Over 36	1.25d						

Para el diseño de placas Gusset se basará en lo establecido en el artículo: "Diseño de contraviento y placas gusset de conexión para soportar disipadores de energía" [29]. Las mismas consideraciones se emplearán tanto para conexiones riostras concéntricas y excéntricas. En el caso de las conexiones concéntricas se empleará placas dobles y placas simples tal cual como expresa el citado artículo y se visualizará los mismos en los dibujos de las conexiones realizadas.

Se diseñó cinco placas gusset simples y 4 dobles cuyas dimensiones, serán descritas a continuación: espesor base y altura.

Placas Gusset simples para SCBF

Tabla 58: Diseño de placas gusset simples 1 y 2 de SCBF.

RIOSTRA TUBO200X	200X12,5, TUBO140X140X16, RIOSTRA TUBO200X200X		0X140X14,2	RIOSTRA TI	JBO140X140X10, RIOSTRA TU	JBO140X98X1	7,5
DATOS DE LA PLACA		DATOS DE LA RIOSTRA		DATOS I	DATOS DE LA RIOSTRA		
		Ag	0,0094			Ag	0,0052
Lb riostra	0,2	E	20389019158		0,14	E	20389019158
Fy	35153481,31	L	7,245	Fy	35153481,31	L	6,28
Fu	45699525,7	tw	0,0125	Fu	45699525,7	tw	0,01
Km	1,2	r	0,07672	Km	1,2	r	0,05322
E	20389019158	Fy	35153481,31	E	20389019158	Fy	35153481,31
DATOS	ASUMIDOS	Fe	22565059,76	DATOS	ASUMIDOS	Fe	14451952,73
LV1	0,55	PANDEO II	NELÁSTICO	LV	0,5	PANDEC) ELÁSTICO
LH	0,65	PANDEO IN	ELÁSTICO 2	LH	0,5	PANDEO	ELÁSTICO2
Cantidad de Recorte LV	0,1	DEMANDA DE	COMPRESIÓN	Cantidad de Recorte LV	0,05	DEMANDA D	E COMPRESIÓN
Cantidad de Recorte LH	0,1	P. INELÁSTICO		Cantidad de Recorte LH	0,05	P. INE	LÁSTICO
L1	0,2	Fcr	18314180,79	L1	0,2	Fcr	12700302,56
tp	0,025	φPn	154937,9695	tp	0,024	φPn	59437,41599
CÁLCULOS	S Y CHEQUEOS	P. ELÀSTICO		CÁLCULOS	S Y CHEQUEOS	P. EL	ÀSTICO
RESISTENCIA	A A LA TENSIÓN	Fcr	19789557,41	RESISTENCIA	A A LA TENSIÓN	Fcr	12674362,54
Lw	0,430940108	φPn	167419,6557	Lw	0,370940108	φPn	59316,01669
Aw	0,010773503	DEMANDA I	DE TENSIÓN	Aw	0,008902563	DEMANDA	DE TENSIÓN
φRn	340853,513	φRn	297398,4519	φRn	281660,4607	φRn	164518,2925
RESISTENCIA AL (CORTANTE VERTICAL	CORR	ECTO	RESISTENCIA AL (CORTANTE VERTICAL	COR	RECTO
Dvh	0,851469318	DEMANDA	POR CORTE	Dvh	0,707106781	DEMAND	A POR CORTE
Dvh'	0,0099	Agv	0,005	Dvh'	0,00249375	Agv	0,0034
L2	0,1901		105460,4439	L2	0,13750625	_	71713,10187
Ag	0,3525	CORR	ECTO	Ag	0,24875	COR	RECTO
Agv	0,0097525			Agv	0,00810015		
φRn	205700,5959			φRn	170849,083		
RESISTENCIA AL B	LOQUE DE CORTANTE			RESISTENCIA AL B	LOQUE DE CORTANTE		
Ant	0,005			Ant	0,00336		
Agt	0,005			Agt	0,00336		
φRn1	325648,6683			φRn1	243299,617		
φRn2	234649,4877			φRn2	157684,4558		
Bloque de cortante	234649,4877			Bloque de cortante	157684,4558		
RESISTENCIA A	LA COMPRESIÓN				A LA COMPRESIÓN		
L"	0,435085296			L"	0,435085296		
L'	0,9			Ľ	0.9		
Lg	0,508395099			Lg	0,490863849		
lg	5,6112E-07			lg	4,27323E-07		
r	0,007216878			r	0,006928203		
К	1,024848961			К	1,014842079		
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO		
Fe	38607564,92			Fe	38924073,81		
Fcr	24013580,89			Fcr	24088112,64		
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR		
φPn	232839,3406			φPn	193001,3373		
т	202000,0100			[T	255551,5575		

Tabla 59: Diseño de placas gusset simples 3 y 4 de SCBF.

RIOS	STRA TUBO140X98X8, RIOSTI	0X98X7.1	RIOSTRA TUBO200X140X25 - TUBO 240X240X14,2				
D/	ATOS DE LA PLACA	DATOS	DE LA RIOSTRA	DATOS D	DATOS DE LA RIOSTRA		
		Ag	0,0036			Ag	0,0145
Lb riostra	0,098	Е	20389019158	Lb riostra	0,14	E	20389019158
Fy	35153481,31	L	6,28	Fy	35153481,31	L	5,52
Fu	45699525,7	tw	0,008	Fu	45699525,7	tw	0,025
Km	1,2	r	0,05139	Km	1,2	r	0,07609
E	20389019158	Fy	35153481,31	E	20389019158	Fy	35153481,31
D	ATOS ASUMIDOS	Fe	13475163	DATOS	ASUMIDOS	Fe	38236056,27
LV	0,45	PANE	DEO ELÁSTICO	LV5	0,65	PANDEC	INELÁSTICO
LH	0,45		EO ELÁSTICO2	LH	0,55	PANDEO	INELÁSTICO 2
Cantidad de	0,05	DEMANDA	A DE COMPRESIÓN	Cantidad de Recorte LV	0,15	DEMANDA I	DE COMPRESIÓN
Cantidad de	0,05	P. I	NELÁSTICO	Cantidad de Recorte LH	0,15	P. IN	ELÁSTICO
L1	0,2	Fcr	11796770,19	L1	0,25	Fcr	23924825,94
tp	0,015	фРп	38221,53542	tp	0,036		312218,9786
•	CULOS Y CHEQUEOS		ELÀSTICO	_	Y CHEQUEOS	•	LÀSTICO
RESIS	TENCIA A LA TENSIÓN	Fcr	11817717,95	RESISTENCI <i>A</i>	A A LA TENSIÓN	Fcr	33533021,35
Lw	0,328940108	фРп	38289,40616	Lw	0,428675135	φPn	437605,9286
Aw	0,004934102	DEMAN	DA DE TENSIÓN	Aw	0,015432305	DEMAND	A DE TENSIÓN
ΦRn	156105,764		113897.2794		488249.316		458752.9311
RESISTENC	IA AL CORTANTE VERTICAL	•	ORRECTO	RESISTENCIA AL C	RESISTENCIA AL CORTANTE VERTICAL		RRECTO
Dvh	0,636396103	DEMAN	IDA POR CORTE	Dvh 0,851469318		DEMAND	A POR CORTE
Dvh'	0,00249375		0.002384		0,02199375		0.00975
L2	0,09550625		50283,53967	L2	0,11800625	ŭ	205647,8657
Ag	0,20125	_	ORRECTO	Ag	0,34625	•	RRECTO
Agv	0,004432594			Agv	0,013248225		
фRn	93492.66093			ΦRn	279432.738		
RESISTENCIA	A AL BLOQUE DE CORTANTE			RESISTENCIA AL BI	OQUE DE CORTANTE		
Ant	0,00147			Ant	0,00504		
Agt	0.00147			Agt	0.00504		
ΦRn1	120503,2228			φRn1	382318,7606		
φRn2	68986,94939			φRn2	236526,6836		
Bloque de co	68986,94939			Bloque de cortante	236526,6836		
_	NCIA A LA COMPRESIÓN			<u>'</u>	LA COMPRESIÓN		
L"	0,435085296			L"	0,435085296		
L'	0,9			L'	0,9		
Lg	0,476863849			Lg	0,484363849		
lg	9,25144E-08			lg	1,66669E-06		
r	0,004330127			r	0,010392305		
K	1,006932852			К	1,028611991		
SIGA HACIA	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO		
Fe	16364680,53			Fe	87553442.5		
Fcr	14305192,48			Fcr	29715594,92		
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR		
φPn	63524,94601			φPn	412722,1075		
T	0332-1,34001	l		[+ · · ·	712,22,1073		

Tabla 60: Diseño de placa gusset simples 5 de SCBF.

RIOSTRA TUBO 200X 140	X17,5-TUBO200X140X14,2- F		D200X140X16-	
DATOS D	r'	LA RIOSTRA		
2711002	Ag	0,0107		
Lb riostra	0,14		20389019158	
Fy	35153481,31		5,52	
Fu	45699525,7	tw	0,0175	
Km	1,2		0,07113	
E	20389019158		35153481,31	
DATOS /	ASUMIDOS	Fe	33413620,93	
LV4	0,55	PANDEO	INELÁSTICO	
LH	0,55		NELÁSTICO 2	
Cantidad de Recorte LV	0,1		E COMPRESIÓN	
Cantidad de Recorte LH	0,1		LÁSTICO	
L1	0,25		22632325,72	
tp	0,025		217949,2967	
	Y CHEQUEOS	•	ÀSTICO	
	A LA TENSIÓN	Fcr	29303745,55	
Lw	0,428675135		282195,0697	
Aw	0,010716878		A DE TENSIÓN	
φRn	339062,025			
•	CORTANTE VERTICAL		RRECTO	
Dvh	0,777817459	DEMANDA POR CORTE		
Dvh'	0,0099	1		
L2	0,1301		0,006825 143953,506	
	0,1301	-	RRECTO	
Ag Agv	0,0095025	COF	KKLCIO	
ΦRn	200427,5737			
•	OQUE DE CORTANTE			
	0,0035			
Ant	0,0035			
Agt	,			
φRn1	270281,9352			
φRn2	164254,6414			
Bloque de cortante	164254,6414			
	LA COMPRESIÓN			
L"	0,435085296			
L	0,9			
Lg	0,488395099			
lg	5,58171E-07			
r	0,007216878			
K	1,027889421			
SIGA HACIA ABAJO	SIGA HACIA ABAJO			
Fe	41587179,21			
Fcr	24678308,74			
Fcr	TOME EL VALOR SUPERIOR			
φPn	238026,9897			

Placas Gusset dobles para SCBF

Tabla 61: Diseño de placas gusset dobles 1 y 2 de SCBF.

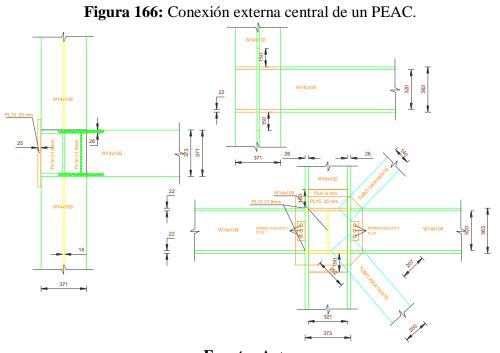

RIOSTRA TUBO240X240X17,5				RIOSTRA TUBO240X240X14,2			
DATOS DE L	DATOS DE LA RIOSTRA		DATOS DE LA PLACA		DATOS DE LA RIOSTRA		
		Ag	0,0156			Ag	0,0128
Lb riostra	0,24	U	20389019158	I b riostra	0,24	Ü	20389019158
Fy	35153481,31		4,3		35153481,31		4,3
Fu	45699525,7		0,0175		45699525,7		0,0142
Km	1.2	r	0.0911		1.2		0.09234
F	20389019158	Fv	35153481,31	F	20389019158		35153481,31
		Fe	90322494,25	DATOS ASI		Fe	92798062,45
LV1 0,65				LV2 0,65) INELÁSTICO
LH	0,75			LH	0,75		
D. LIBRE BLOQUE WITHMORE	0,73			D. LIBRE BLOQUE WITHMORE	,		
LH por riostra	0,223	P. INELÁSTICO			0,225	DEMANDA DE COMPRESIÓN P. INELÁSTICO	
1	-,			LH por riostra	-,		
Cantidad de Recorte LV	0,1			Cantidad de Recorte LV	· · · · · · · · · · · · · · · · · · ·	Fcr	29999168,91
Cantidad de Recorte LH		φPn	,	Cantidad de Recorte LH		φPn	345590,4258
L1	0,25		ELÀSTICO	L1	0,35		LÀSTICO
tp sécures y	0,03		79212827,46		0,027		81383900,77
CÁLCULOS Y		φPn	1112148,098	CÁLCULOS Y (φPn	937542,5369
RESISTENCIA A			DA DE TENSIÓN	RESISTENCIA A			A DE TENSIÓN
Lw	0,528675135	-	493554,8776		0,644145188		404968,1047
Aw	0,015860254		ORRECTO	Aw	0,01739192	CORRECTO	
φRn	501788,8295		IDA POR CORTE	φRn	550247,884		DA POR CORTE
RESISTENCIA AL CORTANTE VERTICAL		Agv	0,008575	RESISTENCIA AL COF		Agv	0,008378
Dvh	0,835538748	•	180864,6613		0,835538748		176709,5198
Dvh'	0,0099	C	ORRECTO	Dvh'	0,0099	CC	RRECTO
L2	0,2301			L2	0,2301		
Ag	0,33625			Ag	0,33625		
Agv	0,014403			Agv	0,0156627		
φRn	303789,3548			φRn	330359,059		
RESISTENCIA AL BLOQUE DE CORTANTE				RESISTENCIA AL BLOQUE DE CORTANTE			
Ant	0,0072			Ant	0,00648		
Agt	0,0072			Agt	0,00648		
φRn1	474619,4549			φRn1	469868,9892		
φRn2	337895,2623			φRn2	304105,7361		
Bloque de cortante	337895,2623			Bloque de cortante	304105,7361		
RESISTENCIA A LA COMPRESIÓN				resistencia a la compresión			
L"	0,50055535			L"	0,50055535		
Ľ'	1,05			L'	1,05		
Lg	0,593551783			Lg	0,593551783		
lg	1,18952E-06			lg	1,05656E-06		
r	0,008660254			r	0,007794229		
K	1,02916868			К	1,046286643		
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO		
Fe	40445200,44			Fe	31697409,54		
Fcr	24433009,84			Fcr	22099111,41		
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR		
φPn	348762,3686			φPn	345911,3817		
Ψ' ''	340702,3000			[*' ''] 343311,3017		

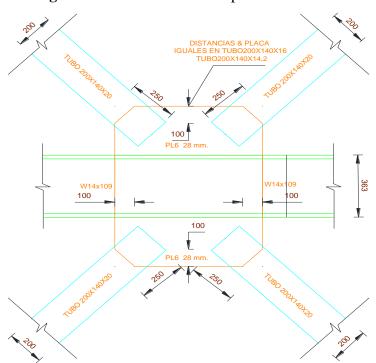
Tabla 62: Diseño de placas gusset dobles 3 y 4 de SCBF.

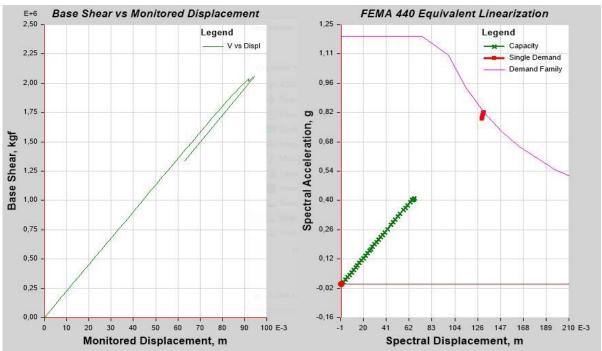
				RIOSTRA TUBO200X140X20); TUBO200X140X16; TUBO14	0X140X16	i; 140X140X10;	
RIOSTRA TUBO 200X 200X 12,5; TUBO 200X 140X 20);TUBO200X140X16		TUBO140X140X8; TUBO140X98X10 TUBO140X98X7,1				
DATOS DE LA PLACA		DATOS DE LA RIOSTRA		DATOS DE LA PLACA		DATOS DE LA RIOSTRA		
		Ag	0,0094			Ag	0,012	
Lb riostra	0,2	E	20389019158	Lb riostra	0,14	E	20389019158	
Fy	35153481,31	L	4,3	Fy	35153481,31	L	4,3	
Fu	45699525,7	tw	0,0125	Fu	45699525,7	tw	0,02	
Km	1,2	r	0,07672	Km	1,2	r	0,07024	
E	20389019158	Fy	35153481,31	E	20389019158	Fy	35153481,31	
DATOS ASUMIDOS		Fe	64058439,75	DATOS ASI	JMIDOS	Fe	53694298,64	
LV3	0,65	PANDE	PANDEO INELÁSTICO LV3		0,65	0,65 PANDEO INELÁSTICO		
LH	0,75	_		LH	0,75	PANDEO INELÁSTICO 2		
D. LIBRE BLOQUE WITHMORE	0,225	DEMANDA	DE COMPRESIÓN	D. LIBRE BLOQUE WITHMORE	0,225	DEMANDA DE COMPRESIÓN		
LH por riostra	0,525	P. IN	IELÁSTICO	LH por riostra	0,525	P.	INELÁSTICO	
Cantidad de Recorte LV	0,1	Fcr	27939317,4	Cantidad de Recorte LV	0,1	Fcr	26727690,2	
Cantidad de Recorte LH	0,1	φPn	236366,6252	Cantidad de Recorte LH	0,1	φPn	288659,0542	
L1	0,15	P. I	ELÀSTICO	L1	0,25	F	P. ELÀSTICO	
tp	0,028	Fcr	56179251,66	tp	0,028	Fcr	47089899,91	
CÁLCULOS Y CHEQUEOS		φPn	475276,4691	CÁLCULOS Y (CHEQUEOS	φPn	508570,919	
RESISTENCIA A	LA TENSIÓN	DEMAND	DA DE TENSIÓN	RESISTENCIA A	LA TENSIÓN	DEMAI	NDA DE TENSIÓN	
Lw	0,373205081	φRn	297398,4519	Lw	0,428675135	φRn	379657,5981	
Aw	0,010449742	CC	RRECTO	Aw	0,012002904		CORRECTO	
φRn	330610,3373	DEMAN	DA POR CORTE	φRn	379749,468	DEMA	NDA POR CORTE	
RESISTENCIA AL CORTANTE VERTICAL		Agv	0,004375	RESISTENCIA AL COF	RTANTE VERTICAL	Agv	0,0078	
Dvh	0,835538748	φRn	92277,88844	Dvh	0,835538748	φRn	164518,2925	
Dvh'	0,0099	CC	RRECTO	Dvh'	0,0099		CORRECTO	
L2	0,1901			L2	0,1301			
Ag	0,33625			Ag	0,33625			
Agv	0,0095228			Agv	0,0106428			
φRn	200855,7431			φRn	224478,8825			
RESISTENCIA AL BLOQUE DE CORTANTE				RESISTENCIA AL BLOQUE DE CORTANTE				
Ant	0,0056			Ant	0,00392			
Agt	0,0056			Agt	0,00392			
φRn1	342579,8153			φRn1	302715,7675			
φRn2	262807,4263			φRn2	183965,1984			
Bloque de cortante	262807,4263			Bloque de cortante	183965,1984			
RESISTENCIA A LA COMPRESIÓN				RESISTENCIA A LA COMPRESIÓN				
<u>L</u> "	0,50055535			L"	0,50055535			
L'	1,05			Ľ'	1,05			
Lg	0,58021845			Lg	0,56021845			
Ig	6,82716E-07			Ig	7,8419E-07			
r	0,008082904			r	0,008082904			
K	1,000916837			К	1,015929401			
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO			
Fe	38980897,77			Fe	40587193,55			
Fcr	24101389,64			Fcr	24464125,61			
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR			
φPn	226667,9788			φPn	264276,491			

Fuente: Autor

W14:109 W14:10

Figura 167: Conexión interna central de un PEAC.




Figura 168: Conexión de una placa doble PEAC.

El anexo 2 constará con las principales conexiones PEAC o SCBF y su respectiva escala y despiece. Los dibujos anteriores son referenciales de conexiones de un pórtico especial arriostrado concéntricamente.

3.6. Resultados estáticos no lineales de modelos que no cumplen con el desempeño

Las consideraciones a tomar para la realización de un análisis no lineal estático son las mismas que las descritas en SMF. A continuación se visualiza el resultado de los dos modelos preliminaress de SCBF, con lo que queda descartado su uso en la presente investigación, pero se consideró importante indicar que pese a cumplir los chequeos de diseño a la hora del desempeño no cumplen la mínima demanda para el espectro de diseño de 475 años de la NEC.

Figura 169: Curva Cortante Basal vs Desplazamiento Izq. y Curva de capacidad de linealización equivalente (U1) X, para modelo preliminar N.1 de SCBF.

Fuente: Autor

El desplazamiento de la estructura es relativamente bajo considerando que solo se desplaza 8 centímetros y posteriormente los elementos estructurales se encuentra ya en el rango inelástico, con relación a la linealización equivalente no llega por una gran longitud a la demanda requerida por el sismo por lo que es un diseño que resulta totalmente inseguro para sus habitantes. Se harán las respectivas recomendaciones y conclusiones de los presentes resultados referente al modelo preliminar N. 1.

linealización equivalente (U1) X, para modelo preliminar N.2 de SCBF. Base Shear vs Monitored Displacement E+6 FEMA 440 Equivalent Linearization 4.00 1.26 Legend Legend Capacity 3,60 1,13 Single Demand Demand Family 3,20 1,00 2,80 0,86 0 Spectral Acceleration, Base Shear, kgf 2.40 0.73 2,00 0,60 1,60 0.47 0,33 1,20 0.80 0,20 0,07 0.40 0.00 -0.0760 100 120 180 E 117 137 157 177 E-3 -20 80 140 160 97 -22 58 Monitored Displacement, m Spectral Displacement, m

Figura 170: Curva Cortante Basal vs Desplazamiento Izq. y Curva de capacidad de

Fuente: Autor

En relación al desplazamiento del modelo preliminar N.1 como indica la figura 155, el desplazamiento es mayor es capaz desplazarse 12 centímetros para posterior a este desplazamiento incurrir en el rango inelástico, con relación a la linealización equivalente aumenta con relación a la anterior sin embargo no alcanza la demanda de desempeño requerida por el sismo, de igual manera es un diseño inseguro para sus habitantes. Se harán las respectivas recomendaciones y conclusiones de los presentes resultados referente al modelo preliminar N. 2.

3.7. Resultados estáticos no lineales de PEAC o SCBF.

3.7.1. Curva de desempeño y punto de desempeño de PEM en dirección X

Se toma las mismas consideraciones que en PEM (Pórticos Especiales a Momento) para la no linealidad de los materiales, de igual forma los pasos para la realización incluyendo la asignación rótulas plásticas en las riostras tal cual se mencionó anteriormente.

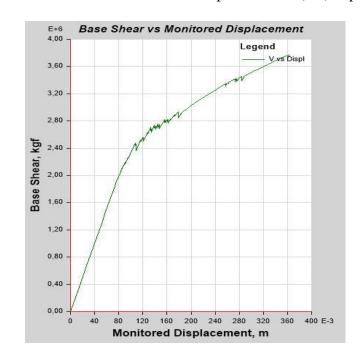
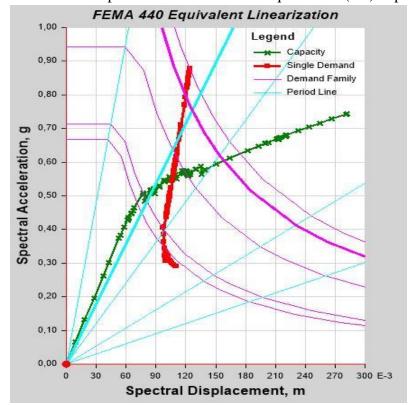
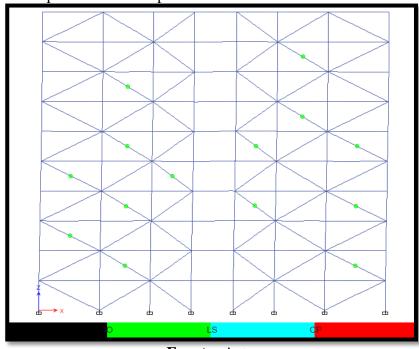


Figura 171: Curva Cortante Basal vs. Desplazamiento (U1) X para PEAC.

Fuente: Autor

El total de pasos guardados es de 103, se observa que la estructura estará en el rango elástico hasta los 10 cm de desplazamiento. Y posterior a esto empieza a incursionar en el rango inelástico, pero netamente las riostras, las mismas muestran un zigzagueo en la curva donde ya empiezan a incursionar en el rango inelástico sin embargo la estructura global continua estable en el rango elástico para colapsar a los 36 cm de desplazamiento a continuación se verá según la metodología del FEMA 440, expuestos en las ecuaciones 87-101 y tabla 13 y 14 el punto de desempeño y nivel de daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.




Figura 172: Curva de capacidad de linealización equivalente (U1) X para SCBF.

La figura 161, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango inelástico, en dirección X, el paso 42 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 11,37 cm y una aceleración de 0,565109 de gravedad. El Período secante (T sec.) es igual a 0,863 s. y período efectivo (T effec.) en dicho punto es de 0,804 s. Su determinación se realiza empleando la tabla 13 y14 de la presente investigación para un amortiguamiento efectivo Beff de 0,0647 y un radio de ductilidad de 1,59.

Según los criterios de aceptación de desempeño la estructura se mantiene en ocupación inmediata es decir tras un sismo de 475 no sufre sismo considerable, y no compromete en nada la estructura, figura 163, sin embargo al visualizar los puntos de desempeño, estos ya han fallado y pese a no presentar daños visible estos deben ser cambiados debido a que en un proceso de histéresis en un nuevo sismo estos podrían no resistir. Mencionado análisis tras visualizar el paso 42. Para una respuesta más

exacta se podría considerar un análisis por fibras estático no lineal o un tiempo historia. La estructura permanece en condiciones óptimas para su uso posterior al sismo.

Figura 173: Paso, 42 del análisis estático no lineal X (U1) de SCBF según criterios de aceptación de desempeño en la vista en elevación más crítica.

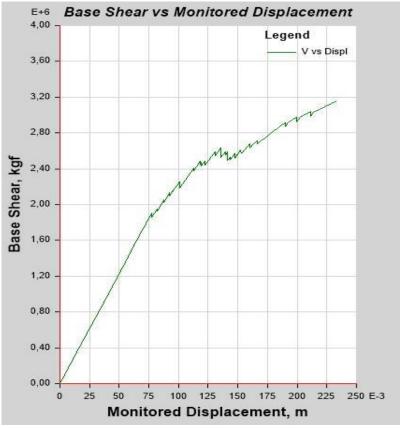

Fuente: Autor

Figura 174: Paso, 42 del análisis estático no lineal X (U1) de SCBF según puntos de desempeño en la vista en elevación más crítica.

3.7.2. Curva de desempeño y punto de desempeño de PEM en dirección Y

Figura 175: Curva Cortante Basal vs. Desplazamiento (U2) Y para PEAC.

Fuente: Autor

El total de pasos guardados es de 58, se observa que la estructura estará en el rango inelástico hasta los 8 cm de desplazamiento. Y posterior a esto empieza a incursionar en el rango inelástico, pero netamente las riostras, las mismas muestran un zigzagueo en la curva donde ya empiezan a incursionar en el rango inelástico sin embargo la estructura global continua estable en el rango elástico para colapsar a los 23 cm de desplazamiento a continuación se verá según la metodología del FEMA 440, expuestos en las ecuaciones 87-101 y tabla 13 y 14 el punto de desempeño y nivel de daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.

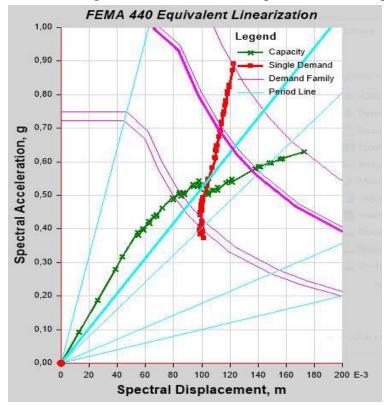


Figura 176: Curva de capacidad de linealización equivalente (U2) Y para SCBF.

La figura 176, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango inelástico, en dirección Y, el paso 33 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 10,58 cm y una aceleración de 0,507374 de gravedad. El Período secante (T sec.) es igual a 0,887 s. y período efectivo (T effec.) en dicho punto es de 0,805 s. Su determinación se realiza empleando la tabla 13 y14 de la presente investigación para un amortiguamiento efectivo Beff de 1,681y un radio de ductilidad de 0,069.

Según los criterios de aceptación de desempeño la estructura se mantiene en ocupación inmediata es decir tras un sismo de 475 no sufre sismo considerable, y no compromete en nada la estructura, figura 177, sin embargo al visualizar los puntos de desempeño, estos ya han fallado y pese a no presentar daños visible estos deben ser cambiados debido a que en un proceso de histéresis en un nuevo sismo estos podrían no resistir. Mencionado análisis tras visualizar el paso 33. Para una respuesta más exacta se podría considerar un análisis por fibras estático no lineal o un tiempo historia. La estructura permanece en condiciones óptimas para su uso posterior al sismo.

Figura 177: Paso, 33 del análisis estático no lineal Y (U2) de SCBF según criterios de aceptación de desempeño en la vista en elevación más crítica.

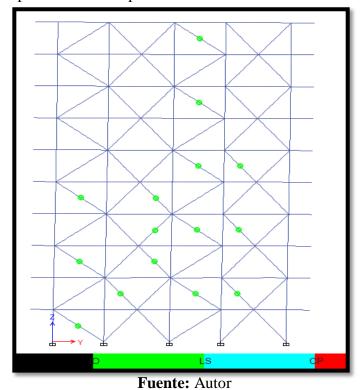
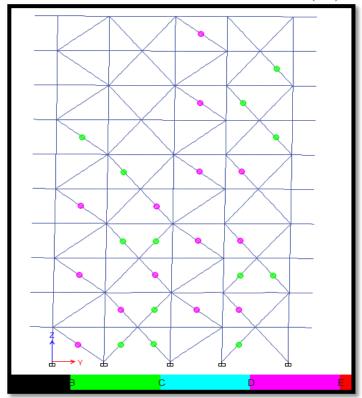



Figura 178: Paso 30 del análisis estático no lineal Y (U2) de SMF.

3.8. Análisis de precios unitarios SCBF

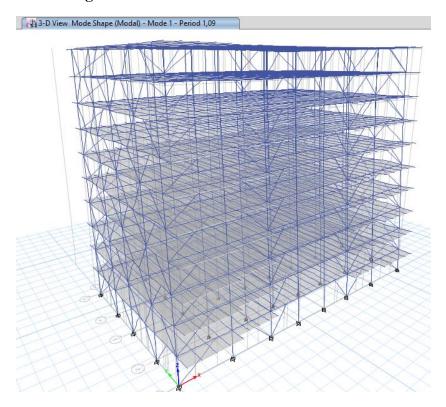
Tabla 63: Análisis de precios unitarios de SCBF [28].

	COLUMNAS											
ITEM	DESCRIPCIÓN	LONGITUD (m)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones				
1	W14X398	38,4	kg.	12	22751,05	5,27	119898,034					
2	W14X370	19,2	kg.	6	10597,71	5,27	55849,9317					
3	W14X311	38,4	kg.	12	17773,04	5,27	93663,9208					
4	W14X193	60,8	kg.	19	17487,85	5,27	92160,9695					
5	W14X176	35,2	kg.	11	9233,3	5,27	48659,491					
6	W14X145	57,6	kg.	18	12454,74	5,27	65636,4798					
7	W14X132	92,8	kg.	29	18233,25	5,27	96089,2275					
8	W14X109	57,6	kg.	18	9333,76	5,27	49188,9152					
9	W14X82	137,6	kg.	43	16723	5,27	88130,21					
10	W14X74	396,8	kg.	124	43803,88	5,27	230846,448					
11	W14X61	115,2	kg.	36	10442,15	5,27	55030,1305					
12	W14X38	115,2	kg.	36	6533,64	5,27	34432,2828					
13	W14X22	115,2	kg.	36	3786,01	5,27	19952,2727					
				VIGAS								
14	W14X109	3450	kg.	660	524632,63	5,27	2764813,96					
15	W14X74	45	kg.	10	4575,68	5,27	24113,8336					
16	W14X61	57,5	kg.	10	5212,01	5,27	27467,2927					
17	W10X33	1063,75	kg.	185	52305	5,27	275647,35					
18	W14X38	208	kg.	118	10703,88	5,27	56409,4476					
19	W12X26	4	kg.	2	139,01	5,27	732,5827					
20	W10X17	3579,75	kg.	885	90456,05	5,27	476703,384					
				RIOSTRAS								
21	TUBO140X98X7.1	22,0871	kg.	4	550,95		2903,5065					
22	TUBO140X98X8	46,8701	kg.	8	1306,73	5,27	6886,4671					
23	TUBO140X98X10	34,4145	kg.	8	1177,73	5,27	6206,6371					
24	TUBO140X98X17.5	46,8701	kg.	8	2613,83	5,27	13774,8841					

					,					
25	TUBO140X140X8	3	38,9696		kg.	8	1292,01	5,27	6808,8927	
26	TUBO140X140X10	4	11,6731		kg.	7	1700,89	5,27	8963,6903	
27	TUBO140X140X16	1	50,3494		kg.	27	9365,27	5,27	49354,9729	
28	TUBO200X140X12.5	8	37,3742		kg.	16	5400,71	5,27	28461,7417	
29	TUBO200X140X14.2		50,2155		kg.	8	3487,78	5,27	18380,6006	
30	TUBO200X140X16	3	34,4145		kg.	8	2662,32	5,27	14030,4264	
31	TUBO200X140X17.5	3	33,1307		kg.	6	2777,27	5,27	14636,2129	
32	TUBO200X140X20		8,6036		kg.	2	810,36	5,27	4270,5972	
33	TUBO200X140X25	6	50,7395		kg.	11	6912,84	5,27	36430,6668	
34	TUBO200X200X12.5	5	42,4748		kg.	91	39917,91	5,27	210367,386	
35	TUBO200X200X14.2	2	22,0871		kg.	4	1828,98	5,27	9638,7246	
36	TUBO240X240X14.2	8	36,0363		kg.	20	8664,14	5,27	45660,0178	
37	TUBO240X240X17.5	1	17,2073		kg.	4	2104,24	5,27	11089,3448	
						PLACAS				
ITEM	DESCRIPCIÓN	Espesor (m)	Base (m)	Altura(m)	Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones
38	PL1	0,0218	0,277	0,21	60	0,07608636	597,277926	5,27	3147,65467	
39	PL2	0,006	0,227	0,663	34	0,030702204	241,0123014	5,27	1270,13483	
40	PL3	0,03	0,55	0,65	58	0,62205	4883,0925	5,27	25733,8975	
41	PL4	0,03	0,75	0,65	6	0,08775	688,8375	5,27	3630,17363	
42	PL5	0,027	0,75	0,65	22	0,289575	2273,16375	5,27	11979,573	
43	PL6	0,028	0,75	0,65	86	1,1739	9215,115	5,27	48563,6561	
44	PL7	0,021	0,5	0,6	30	0,189	1483,65	5,27	7818,8355	
45	PL8	0,0218	0,188	0,321	94	0,123665122	970,7712046	5,27	5115,96425	
46	PL9	0,006	0,321	0,663	686	0,875979468	6876,438824	5,27	36238,8326	
47	PL10	0,0218	0,18	0,32	646	0,81116928	6367,678848	5,27	33557,6675	
48	PL15	0,025	0,55	0,55	15	0,1134375	890,484375	5,27	4692,85266	
49	PL16	0,025	0,55	0,55	13	0,0983125	771,753125	5,27	4067,13897	
50	PL19	0,021	0,5	0,6	6	0,0378	296,73	5,27	1563,7671	
51	PL21	0,006	0,321	0,513	80	0,07904304	620,487864	5,27	3269,97104	
52	PL22	0,021	0,5	0,6	12	0,0756	593,46	5,27	3127,5342	
										Se a reducido el volumen
										del diámetro de ingreso 3
53	PL23	0,005	0,064	0,152	750	0,036026372	282,8070192	5,27		tornillos (Item 57)

	VIGAS SECUNDARIAS											
ITEM	DESCRIPCIÓN	LON	IGITUD (m)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones			
54	W10X17		3631,5	kg.	894	91763,72	5,27	483594,804				
55	W10X33		1069,5		186	52587,73	5,27	277137,337				
	PERNOS Y TUERCAS											
ITEM	DESCRIPCIÓN	Volum	en por unidad	Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones			
56	Tornillo 1/2' o 12,7mm	3,2	3,28266E-06		0,007385982	57,9799562	5,27	305,554369				
57	Tuerca 1/2' o 12,7mm	1,7	76976E-06	2250	0,003981956	31,25835597	5,27	164,731536				
		F	PRECIO DE ESTRUCTU	JRA METÁL	.ICA			6119761,41				
	PESO	TOTAL DE LA	ESTRUCTURA (Ton)				11	161,245049				
	LOSA											
ITEM	DESCRIPCIÓN	UNIDAD	Número de pisos	Ca	antidad	Precio por	unidad	Precio Total	Observaciones			
58	Hórmigòn f'c = 240	m3	10	58	584,23785		27	146217,207				
			10					50774 050				
59	Malla electrosoldada	m2	10	8	8406,3	6,04	1	50774,052				
									El precio unitario es por			
									50 unidades, ya consta en			
60	Conectores Stud	u	10		5892	2,85	5	335,844	precio total			
61	Placa colaborante 65mm	81709,236										
		279036,339										
			PRECIO TOTAL DE LA	ESTRUCTU	JRA			6398797,74				

Tabla 64: Cantidades de obra y precios de la estructura SCBF.


			• •		
#	DESCRIPCIÓN	U	CANT.	P. UNIT	PRECIO TOTAL
1	Acero estructural A5	kg.	1161245,05	5,27	6119761,406
2	Hormigón f'c 240	m^3	584,23785	250,27	146217,2067
	Malla electro				
3	soldada 6mm x 10	m^2	8406,3	6,04	50774,052
4	Placa colaborante 65	m^2	8406,3	9,72	81709,236
	Conectores de				
5	Corte Stud 1"	u	5892	2,85	335,844
	SU	IBTOTAI	:		6398797,745

3.9. Pórticos Arriostrados excéntricamente PAE o EFB.

Chequeos de diseño

3.9.1. Período de vibración de la estructura

Figura 179: Período de vibración de la estructura EFB

Fuente: Autor

 $T \le 1,09 \le 1,3T$ $0.98 \le 1,09 \le 1,277 \text{ OK}$

3.9.2. Verificación que los modos de desplazamiento de la estructura sean traslacionales

Tabla 65: Modos de vibración de la estructura diseñada con EFB.

TABLE: N	ABLE: Modal Participating Mass Ratios													
Case	Mode	Period	UX	UY	UZ	Sum UX	Sum UY	Sum UZ	RX	RY	RZ	Sum RX	Sum RY	Sum RZ
		sec												
Modal	1	1,09	0,000001602	0,7846	0	0,000001602	0,7846	0	0,2213	7,889E-07	0,000002565	0,2213	7,889E-07	0,000002565
Modal	2	0,929	0,7522	0,000001876	0	0,7522	0,7846	0	5,122E-07	0,2543	0,00002514	0,2213	0,2543	0,0000277
Modal	3	0,627	0,00001008	0,000002248	0	0,7522	0,7846	0	0	0,00001401	0,7902	0,2213	0,2543	0,7902
Modal	4	0,404	0	0,1189	0	0,7522	0,9035	0	0,4908	0	0	0,7122	0,2543	0,7902
Modal	5	0,33	0,1339	0	0	0,8861	0,9035	0	0	0,4379	0,000001823	0,7122	0,6922	0,7902
Modal	6	0,25	0	0,0409	0	0,8861	0,9444	0	0,1031	0	0	0,8153	0,6922	0,7902
Modal	7	0,229	8,578E-07	0	0	0,8861	0,9444	0	0,000001927	0,000006469	0,1141	0,8153	0,6922	0,9044
Modal	8	0,197	0,0477	0	0	0,9337	0,9444	0	0	0,0965	0,000006219	0,8153	0,7887	0,9044
Modal	9	0,191	0	0,0187	0	0,9337	0,9631	0	0,0712	0	8,541E-07	0,8864	0,7887	0,9044
Modal	10	0,163	0	0,0099	0	0,9337	0,973	0	0,0243	0	0	0,9107	0,7887	0,9044
Modal	11	0,145	0,0227	0	0	0,9564	0,973	0	0	0,0802	0,00003707	0,9107	0,8689	0,9044
Modal	12	0,14	0,0000394	0,00000252	0	0,9565	0,973	0	0,000009848	0,0001	0,0417	0,9107	0,869	0,9461
Modal	13	0,139	0	0,0052	0	0,9565	0,9781	0	0,0212	0,000001154	0,00001928	0,9319	0,869	0,9461
Modal	14	0,127	0	0,0029	0	0,9565	0,9811	0	0,0059	0	0,000001519	0,9379	0,869	0,9461
Modal	15	0,12	0	0,0045	0	0,9565	0,9856	0	0,0156	0	0	0,9535	0,869	0,9461
Modal	16	0,116	0,0133	0	0	0,9698	0,9856	0	0	0,0333	6,299E-07	0,9535	0,9023	0,9461
Modal	17	0,106	0	0,005	0	0,9698	0,9906	0	0,0163	0	0	0,9697	0,9023	0,9461
Modal	18	0,104	0,000001573	0	0	0,9698	0,9906	0	5,419E-07	0,000001885	0,0191	0,9697	0,9023	0,9652
Modal	19	0,1	0,0082	0	0	0,978	0,9906	0	0	0,0306	0,000002055	0,9697	0,9329	0,9652
Modal	20	0,091	0,0048	0	0	0,9828	0,9906	0	0	0,0124	0,00001073	0,9697	0,9453	0,9652
Modal	21	0,088	0	0,0048	0	0,9828	0,9954	0	0,0152	0	0,00001785	0,9849	0,9453	0,9652
Modal	22	0,088	0,00001716	0,00001261	0	0,9828	0,9954	0	0,00004008	0,00004672	0,0088	0,985	0,9453	0,974
Modal	23	0,084	0,0056	0	0	0,9884	0,9954	0	0	0,0189	0,000001045	0,985	0,9642	0,974
Modal	24	0,076	0	0,0002	0	0,9884	0,9956	0	0,0003	0	0	0,9852	0,9642	0,974
Modal	25	0,076	0,005	0	0	0,9934	0,9956	0	0	0,0156	0,000003379	0,9852	0,9798	0,974
Modal	26	0,075	0,000003126	0	0	0,9934	0,9956	0	0	0,000006792	0,0047	0,9852	0,9798	0,9787
Modal	27	0,071	0	0,0004	0	0,9934	0,996	0	0,0016	0	0	0,9868	0,9798	0,9787
Modal	28	0,07	0	0	0	0,9934	0,996	0	6,385E-07	0	0,0043	0,9868	0,9798	0,983
Modal	29	0,068	0	0	0	0,9934	0,996	0	0	5,968E-07	0,0011	0,9868	0,9798	0,9841
Modal	30	0,067	0,004	0	0	0,9975	0,996	0	0	0,0124	0	0,9868	0,9923	0,9841

Fuente: Autor

Modo 1

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

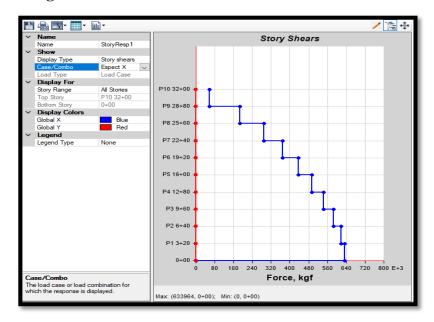
$$\frac{0,000006525}{0,7846} = 8,3x10^{-4}\%$$

Modo 2

$$\frac{Rz}{Umax(x,y)} \le 30\%$$

$$\frac{0,00002514}{0,7522} = 3,34x10^{-5}\%$$

3.9.3. Verificación que los modos de vibración deben cumplir el 90% de la masa.


En la tabla 65 se observa que cumple esta condición en el décimo sexto modo de vibración de la estructura.

3.9.4. Validación del análisis dinámico

Cortante Vx

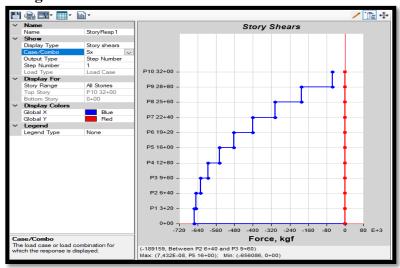

$$\frac{V_{X \, DIN \acute{A}MICO}}{V_{X \, EST \acute{A}TICO}} \geq 80\%$$

Figura 180: Cortante dinámico en X de la estructura EFB.

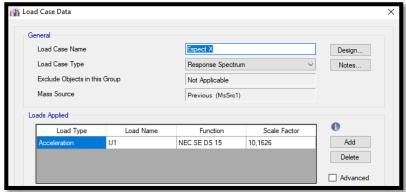
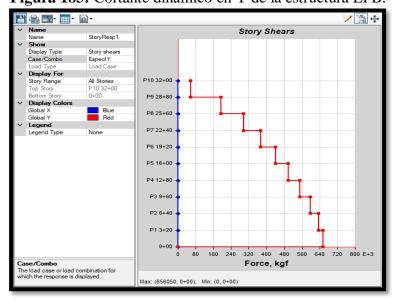

Fuente: Autor

Figura 181: Cortante estático en X de la estructura EFB.

La gravedad fue calibrada para el espectro en dirección hasta 10,1626 m/s² para validar el análisis dinámico, figura 182.

Figura 182: Calibración del valor de la gravedad del espectro en dirección X de la estructura EFB.

Fuente: Autor


$$\frac{633964}{656086} \ge 80\%$$

 $96,62\% \ge 80\%$

Cortante Vy

$$\frac{V_{Y\;DIN\acute{A}MICO}}{V_{Y\;EST\acute{A}TICO}} \geq 80\%$$

Figura 183: Cortante dinámico en Y de la estructura EFB.

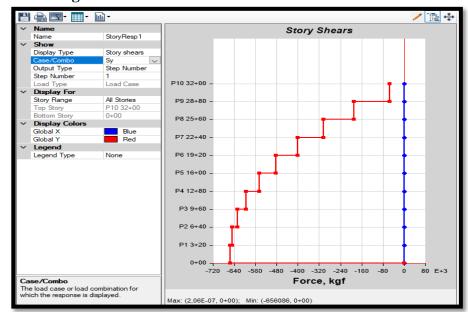
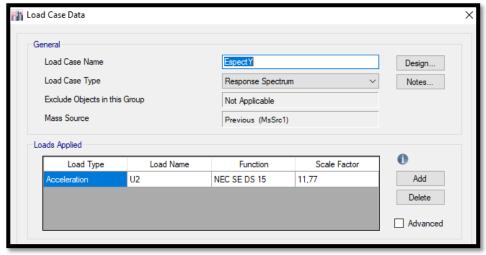
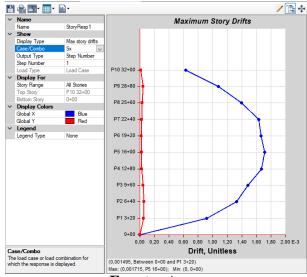



Figura 184: Cortante estático en Y de la estructura EFB.

La gravedad fue calibrada para el espectro en dirección hasta $11,77~\text{m/s}^2$ para validar el análisis dinámico, figura 185.

Figura 185: Calibración del valor de la gravedad del espectro en dirección Y de la estructura EBF.

Fuente: Autor

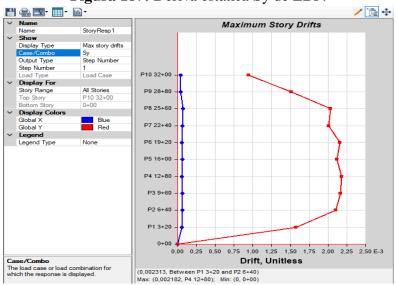

$$\frac{656050}{656086} \ge 80\%$$

 $99,99 \ge 80\%$

3.9.5. Derivas Estáticas

Deriva estática Sx

Figura 186: Deriva estática Sx de EBF.

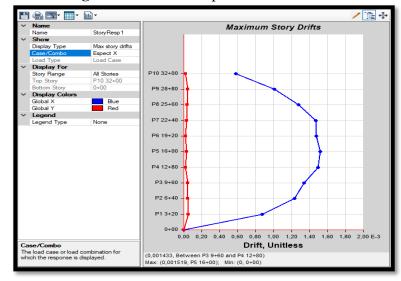

Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001715 = 1.02\%$$

Deriva estática Sy

Figura 187: Deriva estática Sy de EBF.



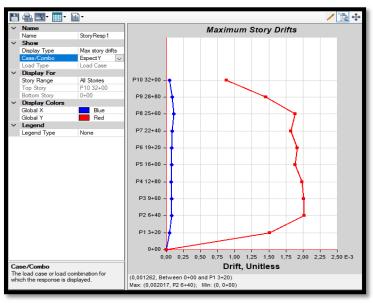
$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

 $\Delta_m = 6 * 0.002182 = 1.309\%$

3.9.6. Derivas Dinámicas

Espectral en X

Figura 188: Deriva espectral en X de EBF.


Fuente: Autor

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.001519 = 0.9\%$$

Espectral en Y

Figura 189: Deriva espectral en Y de EFB.

$$\Delta_m = 0.75 * R * \Delta_{ELAST} \le 2\%$$

$$\Delta_m = 6 * 0.002017 = 1.21\%$$

3.9.7. Buckling Factors o efectos de pandeo global

-1 > Scale Factor > 1

Tabla 66: Factores de pandeo global EBF.

TABLE: Buckling Factors									
Case	Mode	Scale Factor							
Pandeo Gravitacional	1	5,621							
Pandeo Gravitacional	2	5,699							
Pandeo Gravitacional	3	5,763							
Pandeo Gravitacional	4	5,781							
Pandeo Gravitacional	5	5,841							
Pandeo Gravitacional	6	5,919							
Pandeo Sx	1	6,204							
Pandeo Sx	2	6,259							
Pandeo Sx	3	6,344							
Pandeo Sx	4	6,425							
Pandeo Sx	5	6,443							
Pandeo Sx	6	6,509							
Pandeo Sy	1	6,181							
Pandeo Sy	2	6,329							
Pandeo Sy	3	6,349							
Pandeo Sy	4	6,49							
Pandeo Sy	5	6,517							
Pandeo Sy	6	6,656							

Fuente: Autor

3.9.8. Diseño de elementos demanda capacidad según AISC 360-16

Se tomas las mismas consideraciones de SMF y SCBF para los colores, evitando lo máximo posible el color rojo. Ya que el mismo nos indica que no suple dicho elemento la capacidad de carga para determinada combinación

Figura 190: Diseño de EBF ejes A y H.



Figura 191: Diseño de EBF eje 1.

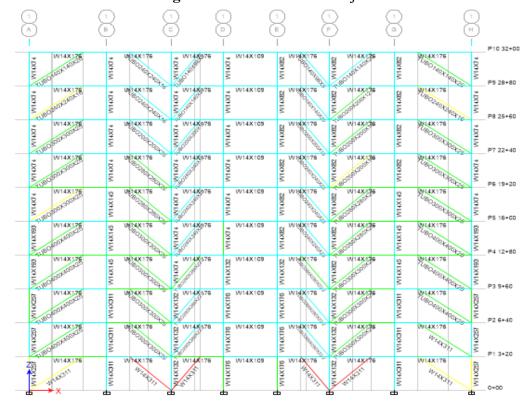


Figura 192: Diseño de EBF eje 5. P10.32+00 W14X17 914X176 W14X109 W14X175 W14X74 ₩<u>14</u>X176 P8 25+60 W14X109 W14XB2 W14X82 W14X74 P7 22+40 W14X 25 W14X976 W14X109 ₩14X176 W14X145 W14X109 W14X145 W14X145 P4 12+80 W14X275 W14X109 W14X132 W14X145 W14X145 W14X132 WIGGH P2 6+40 W14X109 W44X176 W14X176 WIOSH W14X132 W14X176 P1 3+20 W14X176 W14X/76 W14X176 W14X109 W14X176 W44X176 WIX311

Figura 193: Diseño de EBF ejes B y C.

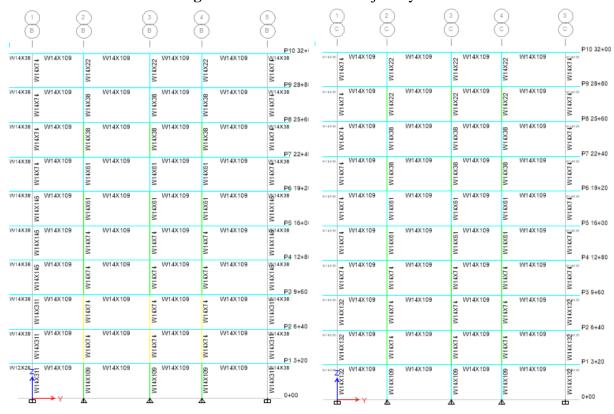


Figura 194: Diseño de EBF eje 3. P10 32+00 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X74 P9 28+80 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X74 P8 25+60 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X74 P7 22+40 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X74 P6 19+20 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X82 W14X109 W14X132 W14X74 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X132 W14X74 P1 3+20 W14X109 W14X109 W14X109 W14X132 W14X109 60 W14X109 W14X109 0+00

Figura 195: Diseño de EBF ejes D y 2. P10 32+00 P10 32+00 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 P9 28+80 W14X109 P8 25+60 P8 25+60 W14X109 P7 22+40 P7 22+40 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 P6 19+20 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 W14X109 P5 16+00 P5 16+00 W14X109 P4 12+80 P4 12+80 W14X109 W14X109 W14X109 W14X109 W14X132 W14X132 W14X109 W14X109 W14X109 W14X109 P3 9+60 W14X109 P3 9+60 W14X109 W14X109 W14X109 W14X109 W14X176

Fuente: Autor

Fuente: Autor

V14X109

W14X109

W14X109

901

W14X109

P2 6+40

P1 3+20

0+00

W14X109

W14X109

W14X109

W14X109

W14X109

P2 6+40

P1 3+20

0+00

W14X176

W14X109

W14X109

W14X176

W14X109

W14X109

W14X109

W14X109

W14X109

W14X109

3.9.9. Resultados de elementos estructurales secundarios para EBF

Se tomará las mismas consideraciones para el diseño de placas dobles que en SCFB las cuales serán dobles y tendrán un espesor de 6 mm y deberán estar 150 mm encima de la placa de continuidad de igual forma las placas de continuidad serán diseñadas con el espesor mayor o igual al de alas que ingresan a la columna y con la longitud de ingreso de las mismas.

El diseño de los conectores de corte, pernos tuercas y tornillos se detalla en la tabla 67 las mismas deberán ser diseñadas de tal manera que su capacidad supere a su demanda de corte y con las consideraciones de la tabla 58. Para el diseño de placas Gusset se detallará en las tablas 68, 69 y 70, en las cuales se establecen las propiedades geométricas de los conectores Gusset.

Tabla 67: Diseño de placas de corte, pernos y tuercas de EBF.

EBF-F	PAE	EBF-F	PAE	DISEÑO DE PER	NOS
EB	F	OM	lF	Fnv kg/m2)	47800000
ACERO DE PLACA	A36	ACERO DE PLACA	A36	ΦD	0,0254
Datos de la viga		Datos de la viga		LR	0,0381
Vu grav(kgf)	10824,24	Vu (kgf)	5325,81	Ag	0,00096774
Lh	6,5	Lh	6,5	Ry	46257,972
ATOS CALCULADO	S	Datos Calculados		Cantidad de tornillos	3
Vvsr	70357,56	Vvsr	34617,765	Ancho de la placa	0,0479
Vu	81181,8	Vu	39943,575	Largo de la placa	0,1212
Datos de placa		Datos de placa		CORRECTO	
ф٧	0,75	ф٧	0,8	DISEÑO DE PER	NOS
dcp	0,05	dcp	0,05	Fnv kg/m2)	47800000
tcp	0,005	tcp	0,005	ΦD	0,022225
Fy	25310506,54	Fy	25310506,54	LR	0,0381
φv VV	51368812	φv VV	26959789,77	Ag	0,00084677
CORRECTO		CORRECTO		Ry	40475,7255
				Cantidad de tornillos	1
				Ancho de la placa	0,044725
				Largo de la placa	0,044725
				CORRECTO	

Tabla 68: Diseño de placas gusset 1 y 2 de EBF.

RI	OSTRA W14X233; TUBO400X	400X25		RIOSTRA TUBO300X300X25; 280X280X25; 240X240X16; 40X240X20; TUBO340X340X25				
DATOS I	DE LA PLACA	DATOS D	E LA RIOSTRA	DATOS [DE LA PLACA	DATO:	S DE LA RIOSTRA	
		Ag	0,0442			Ag	0,0275	
Lb riostra	0,40386		20389019158	Lb riostra	0,3		20389019158	
Fy	35153481,31		5,56		35153481,31		5,56	
Fu	45699525,7		0,02718		45699525,7		0,025	
Km	1,2		0,007145		1,2		0,11273	
E	20389019158		35153481,31		20389019158		35153481,31	
DATOS ASUMIDOS		Fe	332315,7786	DATOS ASUMIDOS		Fe	82722854,13	
LV1	0,8	PANDE	O ELÁSTICO	LV2	0,65	PANE	DEO INELÁSTICO	
LH	0,65	PANDEC	ELÁSTICO2	LH	0,65	PAND	EO INELÁSTICO 2	
Cantidad de Recorte LV	0,1	DEMANDA [DE COMPRESIÓN	Cantidad de Recorte LV	0,1	A DE COM	/PRESIÓN	
Cantidad de Recorte LH	0,1	P. INI	ELÁSTICO	Cantidad de Recorte LH	0,1	P.	INELÁSTICO	
L1	0,6	Fcr	2,07631E-12	L1	0,35	Fcr	29425411,52	
tp	0,045	φPn	8,25955E-14	tp	0,04	φPn	728278,935	
CÁLCULOS	S Y CHEQUEOS	P. El	LÀSTICO	CÁLCULOS	Y CHEQUEOS	P	P. ELÀSTICO	
RESISTENCI	A A LA TENSIÓN	Fcr	291440,9379	RESISTENCI <i>I</i>	A A LA TENSIÓN	Fcr	72547943,07	
Lw	1,096680323	φPn	11593,52051	Lw	0,704145188	φPn	1795561,591	
Aw	0,049350615	DEMANDA	A DE TENSIÓN	Aw	0,028165808	DEMAI	NDA DE TENSIÓN	
φRn	1561361,315	φRn	1398405,487	φRn	891113,57	φRn	870048,6624	
RESISTENCIA AL	CORTANTE VERTICAL	COF	RRECTO	RESISTENCIA AL (CORTANTE VERTICAL		CORRECTO	
Dvh	1,030776406	DEMAND	A POR CORTE	Dvh	0,919238816	DEMA	NDA POR CORTE	
Dvh'	0,0099	Agv	0,027284915	Dvh'	0,0099	Agv	0,01625	
L2	0,39396	φRn	575495,8455	L2	0,2901	φRn	342746,4428	
Ag	0,515	COF	RRECTO	Ag	0,4175		CORRECTO	
Agv	0,0447282			Agv	0,025604			
φRn	943411,1656			φRn	540041,8413			
RESISTENCIA AL B	LOQUE DE CORTANTE			RESISTENCIA AL B	LOQUE DE CORTANTE			
Ant	0,0181737			Ant	0,012			
Agt	0,0181737			Agt	0,012			
φRn1	1330455,477			φRn1	816327,1123			
φRn2	852889,8791			φRn2	563158,7706			
Bloque de cortante	852889,8791			Bloque de cortante	563158,7706			
RESISTENCIA A	A LA COMPRESIÓN			RESISTENCIA A	LA COMPRESIÓN			
L"	0,435085296			L"	0,435085296			
L'	0,9			[Ľ	0,9			
Lg	0,576348432			Lg	0,541728432			
Ig	8,32792E-06			lg	3,75544E-06			
r	0,012990381			r	0,011547005			
K	1,091771172			K	1,06157004			
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO			
Fe	85764267,63			Fe	81128650,17			
Fcr	29611599,89			Fcr	29322746,14			
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR			
φPn	1315215,587			фРп	743308,9419			

Tabla 69: Diseño de placas gusset 3 y 4 de EBF.

	RIOSTRA TUBO140X140X	20		RIOSTRA TUBO200X200X16; 200X200X12,5					
DATOS D	DE LA PLACA	DATOS DE	LA RIOSTRA	DATOS [DE LA PLACA	DATOS DE LA	A RIOSTRA		
		Ag	0,0064			Ag	0,0118		
Lb riostra	0,14	E	20389019158	Lb riostra	0,2	E	20389019158		
Fy	35153481,31	L	5,56	Fy	35153481,31	L	4,7		
Fu	45699525,7	tw	0,025	Fu	45699525,7	tw	0,016		
Km	1,2	r	0,0523	Km	1,2	r	0,07539		
E	20389019158	Fy	35153481,31	E	20389019158	Fy	35153481,31		
DATOS ASUMIDOS		Fe	17805323,71	DATOS ASUMIDOS		Fe	51775923,04		
LV3	0,45	PANDEO	INELÁSTICO	LV4	0,55	PANDEO IN	ELÁSTICO		
LH	0,45	PANDEO I	NELÁSTICO 2	LH	0,55	PANDEO INE	LÁSTICO 2		
Cantidad de Recorte LV	0,05	DEMANDA D	E COMPRESIÓN	Cantidad de Recorte LV	0,1	DEMANDA DE (COMPRESIÓN		
Cantidad de Recorte LH	0,05	P. INE	LÁSTICO	Cantidad de Recorte LH	0,1	P. INELÁ	STICO		
L1	0,15	Fcr	15384639,54	L1	0,25	Fcr	26457697,35		
tp	0,027	φPn	88615,52374	tp	0,027	φPn	280980,7459		
CÁLCULOS	Y CHEQUEOS	P. EL	ÀSTICO	CÁLCULOS	Y CHEQUEOS	P. ELÀS	TICO		
RESISTENCIA	A A LA TENSIÓN	Fcr	15615268,9	RESISTENCIA	A A LA TENSIÓN	Fcr	45407484,51		
Lw	0,313205081	φPn	89943,94885	w	0,488675135	φPn	482227,4855		
Aw	0,008456537	DEMANDA	A DE TENSIÓN	Aw	0,013194229	DEMANDA D	E TENSIÓN		
φRn	267549,0495	φRn	202484,0523	φRn	417440,7627	φRn	373329,9715		
RESISTENCIA AL C	CORTANTE VERTICAL	COR	RRECTO	RESISTENCIA AL (CORTANTE VERTICAL	CORRECTO			
Dvh	0,636396103	DEMAND	A POR CORTE	Dvh	0,777817459	DEMANDA P	OR CORTE		
Dvh'	0,00249375	Agv	0,00725	Dvh'	0,0099	Agv	0,0072		
L2	0,13750625	φRn	152917,6437	2	0,1901	φRn	151863,0393		
Ag	0,20125	COR	RECTO	Ag	0,2975	CORRE	СТО		
Agv	0,007762669			Agv	0,0118827				
φRn	163730,8985			φRn	250630,9634				
RESISTENCIA AL BI	LOQUE DE CORTANTE			RESISTENCIA AL BI	LOQUE DE CORTANTE				
Ant	0,00378			Ant	0,0054				
Agt	0,00378			Agt	0,0054				
φRn1	252356,3292			φRn1	373056,3016				
φRn2	177395,0127			φRn2	253421,4468				
Bloque de cortante	177395,0127			Bloque de cortante	253421,4468				
RESISTENCIA A	LA COMPRESIÓN			RESISTENCIA A	LA COMPRESIÓN				
L"	0,435085296			L"	0,435085296				
L'	0,9			<u>L</u> '	0,9				
Lg	0,490863849			Lg	0,508395099				
Ig	5,13735E-07			lg	8,01549E-07				
r	0,007794229			r	0,007794229				
K	1,000229032			K	1,035799186				
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO				
Fe	50713239,41			Fe	44084764,1				
Fcr	26300613,9			Fcr	25177956,02				
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR				
фРп	200170,9074			φPn	298983,3374				

Tabla 70: Diseño de placas gusset 5 y 6 de EBF.

	RIOSTRA W14X311; W14X3	370		RIOSTRA 140	X98X10; 140X98X9,8; 140X14	10X10; 140	0X140X8
DATOS D	DE LA PLACA	DATOS DE	LA RIOSTRA	DATOS D	E LA PLACA	DATO	S DE LA RIOSTRA
		Ag	0,059			Ag	0,0044
Lb riostra	0,41148	E	20389019158	Lb riostra	0,098	E	20389019158
Fy	35153481,31	L	4,03	Fy	35153481,31	L	4,03
Fu	45699525,7	tw	0,03581	Fu	45699525,7	tw	0,01
Km	1,2	r	0,17483	Km	1,2	r	0,05064
E	20389019158	Fy	35153481,31	E	20389019158	Fy	35153481,31
DATOS	ASUMIDOS	Fe	378719704,9	DATOS	ASUMIDOS	Fe	31774109
LV5	0,85	PANDEO	INELÁSTICO	LV6	0,45	PANI	DEO INELÁSTICO
LH	0,9	PANDEO II	NELÁSTICO 2	LH	0,45	PAND	EO INELÁSTICO 2
Cantidad de Recorte LV	0,1	DEMANDA D	E COMPRESIÓN	Cantidad de Recorte LV	0,05	DEMAND	DA DE COMPRESIÓN
Cantidad de Recorte LH	0,1	P. INE	LÁSTICO	Cantidad de Recorte LH	0,05	P.	INELÁSTICO
L1	0,47	Fcr	33813935,75		0,2	Fcr	22123887,31
tp	0,065	φPn	1795519,988	tp	0,02	φPn	87610,59373
CÁLCULOS	Y CHEQUEOS	P. EL	ÀSTICO	CÁLCULOS	Y CHEQUEOS	ı	P. ELÀSTICO
RESISTENCIA	A A LA TENSIÓN	Fcr	332137181,2	RESISTENCIA	A A LA TENSIÓN	Fcr	27865893,59
Lw	0,954189253	φPn	17636484,32	Lw	0,328940108	φPn	110348,9386
Aw	0,062022301	DEMANDA	DE TENSIÓN	Aw	0,006578802	DEMA	NDA DE TENSIÓN
φRn	1962269,833	φRn	1866649,858	φRn	208141,0187	φRn	139207,786
RESISTENCIA AL O	CORTANTE VERTICAL	COR	RECTO	RESISTENCIA AL (CORTANTE VERTICAL		CORRECTO
Dvh	1,23794184	DEMANDA	A POR CORTE	Dvh	0,636396103	DEMA	NDA POR CORTE
Dvh'	0,0099	Agv	0,031565799	Dvh'	0,00249375	Agv	0,00298
L2	0,40158	φRn	665788,6309	L2	0,09550625	φRn	62854,42458
Ag	0,76	COR	RECTO	Ag	0,20125		CORRECTO
Agv	0,0566527			Agv	0,005910125		
φRn	1194923,778			φRn	124656,8812		
RESISTENCIA AL BI	LOQUE DE CORTANTE			RESISTENCIA AL B	LOQUE DE CORTANTE		
Ant	0,0267462			Ant	0,00196		
Agt	0,0267462			Agt	0,00196		
φRn1	1812909,324			φRn1	160670,9637		
φRn2	1255196,426			φRn2	91982,59919		
Bloque de cortante	1255196,426			Bloque de cortante	91982,59919		
RESISTENCIA A	LA COMPRESIÓN			RESISTENCIA A	LA COMPRESIÓN		
L"	0,435085296			L"	0,435085296		
L'	0,9			<u>L'</u>	0,9		
Lg	0,578888432			Lg	0,476863849		
lg	2,1837E-05			Ig	2,19293E-07		
r	0,018763884			r	0,005773503		
K	1,080800074			К	1,006932852		
SIGA HACIA ABAJO	SIGA HACIA ABAJO			SIGA HACIA ABAJO	SIGA HACIA ABAJO		
Fe	180992706			Fe	29092765,39		
Fcr	32408810,46			Fcr	21199536,14		
Fcr	TOME EL VALOR SUPERIOR			Fcr	TOME EL VALOR SUPERIOR		
φPn	1809062,111			φPn	125520,7986		

Las excentricidades deben ser rigidizadas colocando atiezadores en según su longitud estas pueden colocarse a un lado o a los dos lados según lo que se detalla en la Figura 27 y los parámetros para el diseño según el tipo de sección en este caso vigas tipo I. La tabla 71, detallará las secciones de los atiezadores y separación

Tabla 71: Diseño de atiezadores en excentricidades.

SEPARACIÒN RIGIDIZADORES EN VINCULOS								
w14x176	j	PLACA						
tw (m)	0,02108	TIPO	DOBLE					
bf(m)	0,39878	tw	0,1					
d (m)	0,38608	ANCHO MAX	0,17831					
s (m) >=0,08 rad	55,5184							
s (m)>= 0,02 rad	101,8944							
d gusset (m)	0,065							
w14x193	}	PLACA	١					
tw (m)	0,02261	TIPO	DOBLE					
bf(m)	0,39878	tw	0,1					
d (m)	0,3937	ANCHO MAX	0,17678					
s (m) >=0,08 rad	59,956							
s (m)>= 0,02 rad	109,698							
d gusset (m)	0,065							

Fuente: Autor

La distribución de las placas será tres indistintamente de la longitud, esto por criterio del autor, ya que se tiene longitudes de separación de 1,00 m y al ser las excentricidades de una longitud de entre 1,21 - 1,97 m, se necesitarán dos atiezadores como mínimo, los mismos serán colocados a los dos lados tal como indica la tabla 71.

A continuación se dibujarán las conexiones principales empleadas en pórticos arriostrados excéntricamente PAE.

WIGHTS AS ME AS ME

Figura 196: Conexión esquinera EBF.

W14-100 W14-100 SSTANCIAS & PLACA PL9

SOUCHES EN MOCETAR TUBOS SOUCHOUSE
2000/20022 ADDICATOR A

Figura 197: Conexión externa central EBF.

W14x109

W14x109

PL3 6 mm.

PERNO A325 022.23

PL2 0

PERNO A325 022.23

W14x109

PERNO A325 022.23

W14x109

PERNO A325 022.23

W14x109

Figura 198: Conexión interna central EBF.

363

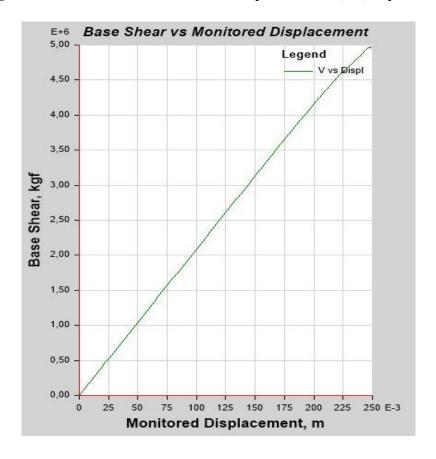
Figura 199: Conexión a una placa excéntrica EBF.

Transporte de la contraction de la

3.10. Resultados no lineales estáticos de PAE o EBF

El anexo 3 constará con las principales conexiones PAE o EBF y su respectiva escala y despiece. Los dibujos anteriores son referenciales de conexiones de un pórtico arriostrado excéntricamente.

Rótulas plásticas en PAE O EBF


La asignación de rótulas plásticas para pórticos arriostrados excéntricamente, mantiene el criterio de que deben ser colocadas las rótulas en los pórticos resistentes a sismo EFB, en vigas columnas y riostras pero también se colocará en las excentricidades por lo que una misma viga contará con 4 rótulas plásticas como se indica en la figura 200. La consignación de rótulas estará dada de la siguiente manera:

- Columnas y vigas en cada sección de entrepiso y vano respectivamente al 10% y 90%.
- Riostras en la mitad de cada elemento arriostrado
- Excentricidades al 5% y 95% de la longitud de la riostra

El paso de asignación de cargas no lineales para un análisis de segundo orden y propiedades no lineales de los materiales de los materiales es igual al de los anteriores sistemas.

3.10.1. Curva de y punto de desempeño de PAE o EBF en dirección X

Figura 201: Curva Cortante Basal vs. Desplazamiento (U1) X para PAE.

Fuente: Autor

El total de pasos guardados es de 76, se observa que la estructura estará en el rango elástico hasta los 23 cm de desplazamiento. Y posterior a esto decae y colapsa la estructura, a continuación se verá según la metodología del FEMA 440, expuestos en las ecuaciones 873401 y tabla 13 y 14 el punto de desempeño y nivel de daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.

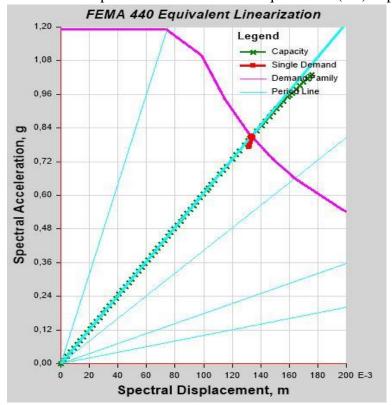
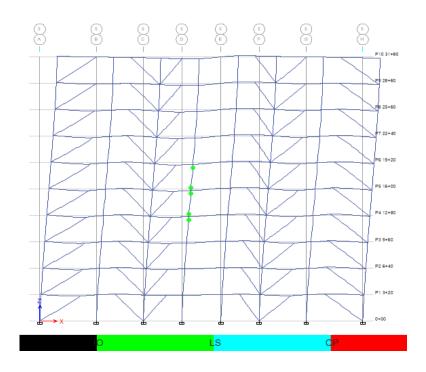
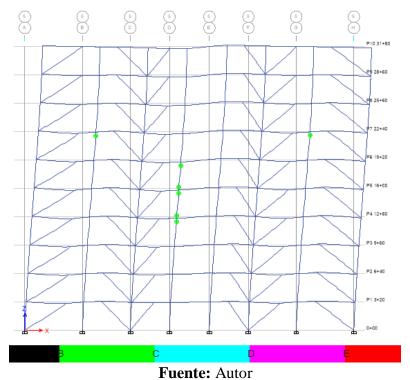



Figura 202: Curva de capacidad de linealización equivalente (U1) X para EBF.


La figura 202, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango inelástico, en dirección X, el paso 58 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 13,42 cm y una aceleración de 0,812378 de gravedad. El Período secante (T sec.) es igual a 0,816 s. y período efectivo (T effec.) en dicho punto es de 0,819 s. Su determinación se realiza empleando la tabla 13 y 14 de la presente investigación para un amortiguamiento efectivo Beff de 0,0514 y un radio de ductilidad de 1,17.

Según los criterios de aceptación de desempeño la estructura se mantiene en ocupación inmediata es decir tras un sismo de 475 no sufre sismo considerable, y no compromete en nada la estructura, figura 203, según los criterios de aceptación y de igual manera según los puntos de desempeño figura 204, por lo que la estructura se mantiene prácticamente sin ningún daño y los elementos pueden volver a ser cargados (histéresis sin ser modificados)

Figura 203: Paso, 58 del análisis estático no lineal X (U1) de EBF según criterios de aceptación de desempeño en la vista en elevación más crítica.

Figura 204: Paso, 58 del análisis estático no lineal X (U1) de EBF según puntos de desempeño en la vista en elevación más crítica.

3.10.2. Curva de y punto de desempeño de PAE o EBF en dirección Y

Figura 205: Curva Cortante Basal vs. Desplazamiento (U2) Y para PAE.

Fuente: Autor

150

Monitored Displacement, m

180

210

300 E-3

120

0,00

El total de pasos guardados es de 98, se observa que la estructura estará en el rango inelástico hasta los 18 cm de desplazamiento. Y posterior a esto empieza a incursionar en el rango inelástico, especialmente las riostras, las mismas muestran un zigzagueo en la curva, donde ya empiezan a incursionar en el rango inelástico sin embargo la estructura global continua estable en el rango elástico para colapsar a los 25 cm de desplazamiento a continuación se verá según la metodología del FEMA 440, expuestos en las ecuaciones 87-101 y tabla 13 y 14 el punto de desempeño y nivel de daño, en el paso más cercano al punto de desempeño así como la determinación de los datos del punto de desempeño.

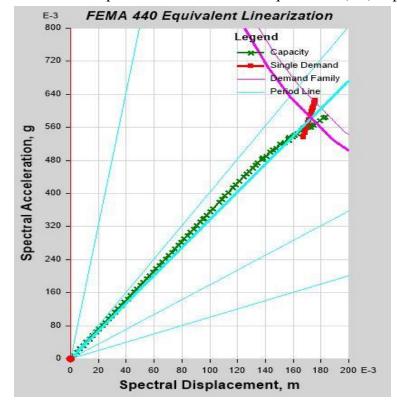
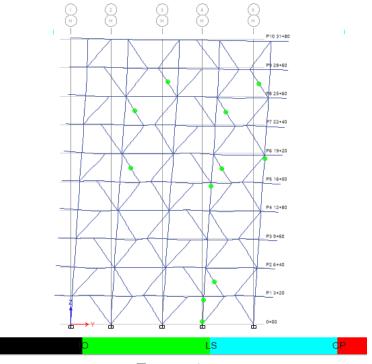
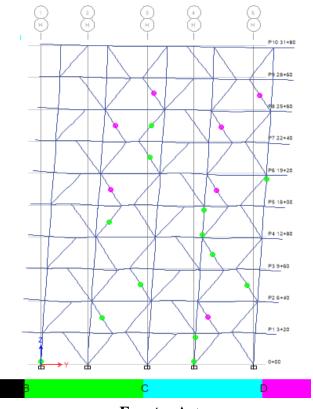



Figura 206: Curva de capacidad de linealización equivalente (U2) Y para EBF.


La figura 206, indica que el desempeño para el sismo de la NEC de 475 años incurre en el rango inelástico, en dirección Y, el paso 83 es el posterior al punto de desempeño, donde se verificará el nivel de desempeño de la estructura se encuentra a los 17,16 cm y una aceleración de 0,563437 de gravedad. El Período secante (T sec.) es igual a 1,098 s. y período efectivo (T effec.) en dicho punto es de 1,072s. Su determinación se realiza empleando la tabla 13 y 14 de la presente investigación para un amortiguamiento efectivo Beff de 0,05178 un radio de ductilidad de 1,189.

Según los criterios de aceptación de desempeño la estructura se mantiene en ocupación inmediata es decir tras un sismo de 475 no sufre sismo considerable, y no compromete en nada la estructura, figura 207, sin embargo al visualizar los puntos de desempeño, estos ya han fallado y pese a no presentar daños visible estos deben ser cambiados debido a que en un proceso de histéresis en un nuevo sismo estos podrían no resistir. Mencionado análisis tras visualizar el paso 83. Para una respuesta más exacta se podría considerar un análisis por fibras estático no lineal o un tiempo historia. La estructura permanece en condiciones óptimas para su uso posterior al sismo.

Figura 207: Paso, 83 del análisis estático no lineal Y (U2) de EBF según criterios de aceptación de desempeño en la vista en elevación más crítica.

Figura 208: Paso, 83 del análisis estático no lineal Y (U2) de EBF según puntos de desempeño en la vista en elevación más crítica.

3.11. Análisis de precios unitarios EBF

Tabla 72: Análisis de precios unitarios para EBF [28].

	COLUMNAS											
ITEM	DESCRIPCIÓN	LONGITUD (m)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones				
1	W14X311	38,4	kg.	12	17773,04	5,27	93663,9208					
2	W14X257	38,4	kg.	12	14700,68	5,27	77472,5836					
3	W14X193	32	kg.	10	9204,13	5,27	48505,7651					
4	W14X176	38,4	kg.	12	10072,69	5,27	53083,0763					
5	W14X145	38,4	kg.	12	8303,16	5,27	43757,6532					
6	W14X132	108,8	kg.	34	21376,91	5,27	112656,316					
7	W14X109	57,6	kg.	18	9333,76	5,27	49188,9152					
8	W14X82	156,8	kg.	49	19056,44	5,27	100427,439					
9	W14X74	425,6	kg.	133	46983,19	5,27	247601,411					
10	W14X61	115,2	kg.	36	10442,15	5,27	55030,1305					
11	W14X38	115,2	kg.	36	6533,64	5,27	34432,2828					
12	W14X22	115,2	kg.	36	3786,01	5,27	19952,2727					
13	W14X311	38,4	kg.	12	17773,04	5,27	93663,9208					
14	W14X257	38,4	kg.	12	14700,68	5,27	77472,5836					
15	W14X193	32	kg.	10	9204,13	5,27	48505,7651					
16	W14X176	38,4	kg.	12	10072,69	5,27	53083,0763					
17	W14X145	38,4	kg.	12	8303,16	5,27	43757,6532					
18	W14X132	108,8	kg.	34	21376,91	5,27	112656,316					
19	W14X109	57,6	kg.	18	9333,76	5,27	49188,9152					
20	W14X82	156,8	kg.	49	19056,44	5,27	100427,439					
21	W14X74	425,6	kg.	133	46983,19	5,27	247601,411					
22	W14X61	115,2	kg.	36	10442,15	5,27	55030,1305					
23	W14X38	115,2	kg.	36	6533,64	5,27	34432,2828					
24	W14X22	115,2	kg.	36	3786,01	5,27	19952,2727					
				VIGAS								
25	W14X193	410	kg.	80	109705,98	5,27	578150,515					
26	W14X176	652	kg.	120	159168,97	5,27	838820,472					
27	W14X109	2388	kg.	460	364882,34	5,27	1922929,93					

	1	1						ı		1
	W14X74		45		kg.	10	4575,68		24113,8336	
29	W14X61	57,5		kg.	10	5212,01	5,27	27467,2927		
30	W14X38	208		kg.	118	10724,77	5,27	56519,5379		
31	W12X26		4		kg.	2	139,01	5,27	732,5827	
	RIOSTRAS									
32	W14X370		8,2462		kg.	2	4551,61	5,27	23986,9847	
33	W14X311		57,1935		kg.	12	26471,43	5,27	139504,436	
34	W14X233		11,1252		kg.	2	3859,07	5,27	20337,2989	
35	TUBO140X98X8		16,1208		kg.	4	449,44	5,27	2368,5488	
36	TUBO140X98X10		62,8204		kg.	16	2149,83	5,27	11329,6041	
37	TUBO140X140X8		31,4102		kg.	8	1041,39	5,27	5488,1253	
38	TUBO140X140X10		16,4924		kg.	4	673,14	5,27	3547,4478	
39	TUBO140X140X20		64,2748		kg.	14	4843,16	5,27	25523,4532	
40	TUBO200X140X12.5		62,8204		kg.	16	3883,01	5,27	20463,4627	
41	TUBO200X200X12.5	1	66,4621		kg.	42	12249,08	5,27	64552,6516	
42	TUBO200X200X16		34,9431		kg.	8	3230,9	5,27	17026,843	
43	TUBO200X200X25		9,4112		kg.	2	1292,7	5,27	6812,529	
44	TUBO240X240X16		49,1331		kg.	10	5530,19	5,27	29144,1013	
45	TUBO240X240X20	16,4924		kg.	4	2278,32	5,27	12006,7464		
46	TUBO240X240X25	40,302		kg.	10	6801,14	5,27	35842,0078		
47	TUBO280X280X22.2		48,3624		kg.	12	8689,01	5,27	45791,0827	
48	TUBO280X280X25		37,6447		kg.	8	7534,6	5,27	39707,342	
49	TUBO300X300X20		16,4924		kg.	4	2899,68	5,27	15281,3136	
50	TUBO300X300X25	1	32,6293		kg.	26	28627,88	5,27	150868,928	
51	TUBO340X340X25		65,9697		kg.	16	16310,68	5,27	85957,2836	
52	TUBO400X400X25		102,615		kg.	20	30203,63	5,27	159173,13	
	PLACAS									
ITEM	DESCRIPCIÓN	Espesor (m)	Base (m)	Altura(m)	Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones
53	PL1	0,0218	0,179	0,32	360	0,44953344	3528,837504	5,27	18596,9736	
										Se a reducido el volumen
										del diámetro de ingreso 1
54	PL2	0,005	0,075	0,075	100	0,002622434	20,58610411	5,27	108,488769	tornillo(Item 75)

	PL3	0,006	0,32	0,663		0,41243904	3237,646464	-	-	
	PL4	0,033	0,186	0,317	40	0,07782984	610,964244	5,27	· ·	
57	PL5	0,045	0,65	0,8	42	0,9828	7714,98	5,27	40657,9446	
										Se a reducido el volumen
										del diámetro de ingreso 3
58	PL6	0,005	0,054	0,152	400	0,014135204	110,9613493	5,27	584,766311	tornillos(Item 75)
59	PL7	0,037	0,191	0,321	120	0,27222084	2136,933594	5,27	11261,64	
60	PL8	0,006	0,321	0,694	108	0,144357552	1133,206783	5,27	5971,99975	
61	PL9	0,035	0,65	0,65	158	2,336425	18340,93625	5,27	96656,734	
62	PL10	0,025	0,55	0,55	66	0,499125	3918,13125	5,27	20648,5517	
63	PL11	0,033	0,191	0,321	240	0,48558312	3811,827492	5,27	20088,3309	
64	PL12	0,0552	0,194	0,321	40	0,137500992	1079,382787	5,27	5688,34729	
65	PL13	0,006	0,321	0,686	216	0,285386976	2240,287762	5,27	11806,3165	
66	PL14	0,027	0,45	0,45	24	0,13122	1030,077	5,27	5428,50579	
67	PL15	0,02	0,45	0,45	32	0,1296	1017,36	5,27	5361,4872	
68	PL16	0,065	0,85	0,9	26	1,29285	10148,8725	5,27	53484,5581	
69	PL17	0,006	0,317	0,686	72	0,093943584	737,4571344	5,27	3886,3991	
70	PL20	0,006	0,32	0,513	80	0,0787968	618,55488	5,27	3259,78422	
71	Atiezador 1	0,02	0,175	0,3195	720	0,80514	6320,349	5,27	33308,2392	
72	Atiezador 2	0,02	0,175	0,3295	360	0,41517	3259,0845	5,27	17175,3753	
					VIG	AS SECUNDARIA	AS			
ITEM	DESCRIPCIÓN	LON	GITUD (m	1)	UNIDAD	CANTIDAD	PESO TOTAL	Precio por Kg.	Precio Total	Observaciones
73	W10X17		3631,5		kg.	894	91763,72	5,27	483594,804	
74	W10X33	1069,5			kg.	186	52587,73	5,27	277137,337	
PERNOS Y TUERCAS										
ITEM	DESCRIPCIÓN	Volumen por unidad		Cantidad	Volumen Total	PESO TOTAL (kg)	Precio por Kg.	Precio Total	Observaciones	
75	Tornillo 3/4' o 22mm	0,000035861		1560	0,05594316	439,153806	5,27	2314,34056		
76	Tuerca 3/4' o 22mm	9,17976E-06		1560	0,014320423	112,4153189				
PRECIO DE ESTRUCTURA METÁLICA									7372886,55	
	PESO TOTAL DE LA ESTRUCTURA (Ton)							13	99,029706	
	• • •									

LOSA									
ITEM	DESCRIPCIÓN	UNIDAD	Número de pisos	Cantidad	Precio por unidad	Precio Total	Observaciones		
77	Hórmigòn f'c = 240	m3	10	584,23785	250,27	146217,207			
78	Malla electrosoldada	m2	10	8406,3	6,04	50774,052			
			El precio unitario es por						
			50 unidades, ya consta en						
79	Conectores Stud	u	10	5892	2,85	335,844	precio total		
80	Placa colaborante	kg	10	8406,3	9,72	81709,236			
	-	279036,339							
	PRECIO TOTAL DE LA ESTRUCTURA 7651922,89								

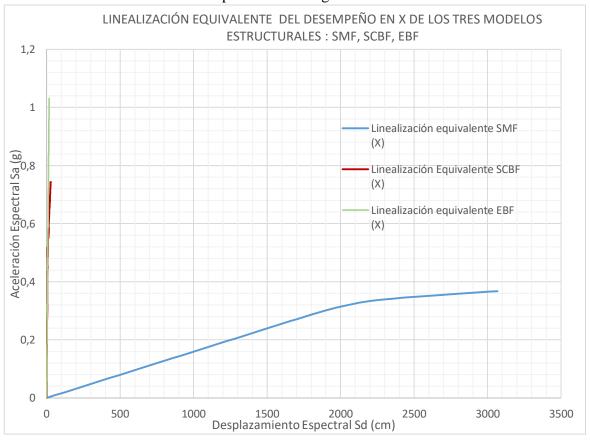
Fuente: Autor

Tabla 73: Cantidades y precios de obra de la estructura EBF.

#	DESCRIPCIÓN	U	CANT.	P. UNIT	PRECIO TOTAL
1	Acero estructural	kg.	1399029,71	5,27	7372886,549
2	Hormigón f'c 240	m^3	584,23785	250,27	146217,2067
	Malla electro				
	soldada 6mm x				
3	10	m^2	8406,3	6,04	50774,052
4	Placa colaborante	m^2	8406,3	9,72	81709,236
	Conectores de				
5	Corte Stud 1"	u	5892	2,85	335,844
	7651922,888				

Fuente: Autor

3.11. Verificación de la hipótesis


Hipótesis: El tipo de sistema estructural influye en el desempeño estructural de un edificio de tipo multifamiliar

Resultado: La hipótesis de trabajo es verdadera, y verificable.

3.11.1. Comparación del desempeño de SMF, SCFB Y EFB

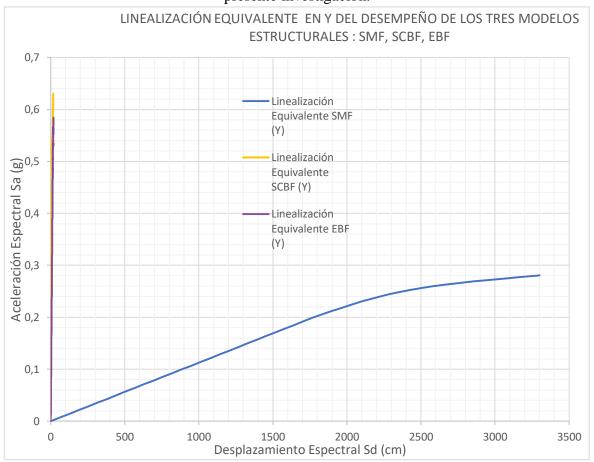
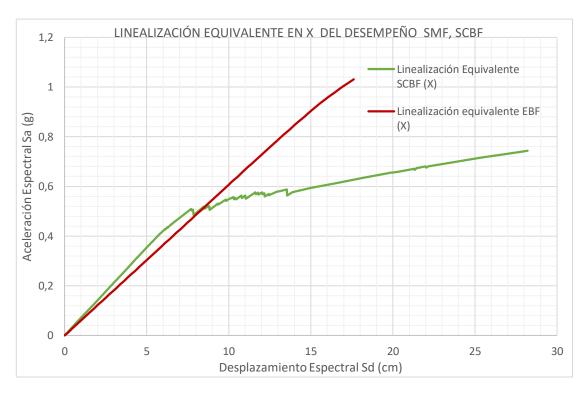

Se ha modelado tres edificaciones con las mismas cargas, número de pisos, distancia entre ejes, los cuales cumplen con ocho chequeos establecidos por la NEC SE DS 2015, AISC 341-16, AISC 358-16, AISC 360-16 y el ASCE 7-16. Dando curvas de desempeño diferentes para un análisis estático no lineal en X y en Y. A continuación se mostrarán las curvas de desempeño de cada sistema estructural en un mismo gráfico para visualizar como influye el desempeño en cada sistema estructural.

Figura 209: Espectro de capacidad de los tres sistemas estructurales analizados en la presente investigación.

Fuente: El Autor


Figura 210: Espectro de capacidad de los tres sistemas estructurales analizados en la presente investigación.

Fuente: El Autor

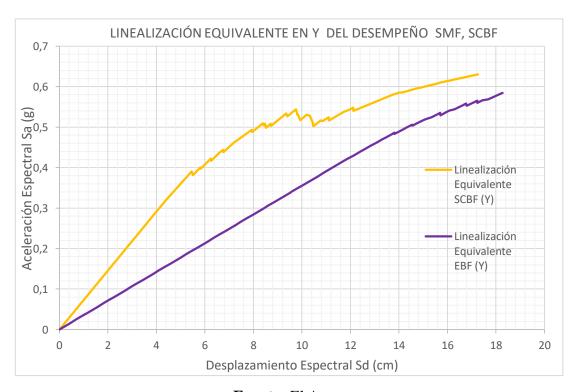

Para visualizar más de cerca los sistemas estructurales SCFB y EFB, y verificar que la curva de desempeño tiene un comportamiento diferente se realizará dos nuevos gráficos de la linealización equivalente en X y Y.

Figura 211: Espectro de capacidad de los sistemas estructurales: SCBF y EFB.

Fuente: El Autor

Figura 212: Espectro de capacidad de los sistemas estructurales: SCBF y EFB.

Fuente: El Autor

Tabla 74: Comparativa de nivel desempeño de sistemas estructurales y costo.

Sistema Estructural	SMF	SCBF	EBF
Nivel de Desempeño	Rango elástico	Ocupación Inmediata	Ocupación Inmediata
Costo USD (\$)	9'168.506,88770922	6'398.797,74457352	7'651.922,88787811
Relación costo beneficio	El más costoso pero más resistente	El más ecónomico y con mejor relación costo beneficio	Costo mayor que SMF y menor que SCBF pero desempeño igual a SCBF

Fuente: El Autor

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

En la presente investigación se determinó el desempeño sísmico de tres sistemas estructurales: PEM, PEAC y PAE, mediante un análisis no lineal estático NSP, para un espectro de diseño con un período de retorno de 475 años, los mismos se modelaron considerando la misma distancia entre ejes en ambas direcciones, el mismo diseño de losa e iguales cargas, también se realizó un análisis de precios unitarios de cada estructuras, lo que permite llegar a las siguientes conclusiones:

- Los pórticos especiales a momento PEM, presentan un nivel de daño nulo o inexistente, siendo un comportamiento sobresaliente mientras que ambos sistemas estructurales con riostras PEAC y PAE, se encuentran en un rango de ocupación inmediata posterior al sismo, esto quiere decir que la estructura queda totalmente funcional, y no requiere reparaciones inmediatas para ser ocupada, sin embargo en ambos casos las riostras deben ser sustituidas, por otra parte la formación de rótulas plásticas en pórticos arriostrados concéntricamente se da casi totalmente en riostras, siendo esto lo más deseado en un sistema estructural, mientras que en pórticos arriostrados concéntricos la aparición de rótulas varía entre columnas (en su mayoría), riostras, vigas y excentricidades.
- La estructura con un desempeño mejor para un espectro de diseño de 475 años es la de pórticos arriostrados concéntricamente PEM, incluso ninguno de sus elementos ha incursionado en el rango inelástico, convirtiéndolo en el sistema estructural más resistente pero por otra parte más costoso.
- La estructura más económica con un costo total de 6'400.000,00 USD, es la de pórticos especiales arriostrados concéntricamente PEAC visualizando de esta manera que es un sistema estructural funcional y económico
- La estructura que posee una relación mayor costo beneficio es la de pórticos especiales arriostrados concéntricamente PEAC, pues el nivel de daño de la misma es de ocupación inmediata, las rótulas plásticas se generan en las

- riostras lo que incluso actúa como fusibles estructurales, debido a que al deteriorarte por cargas sísmicas con un previo estudio estructural puede cambiarse con facilidad y sin comprometer el uso de la edificación.
- Al colocar todas las excentricidades en EFB o PAE, en el misma ubicación de un determinado vano las rótulas plásticas se formarán de manera más ordenada lo que permite una mejor interpretación del daño, para acciones de reparación posterior a un sismo, mientras que al colocar excentricidades variables con ubicaciones variables en un mismo vano la formación de rótulas es desordenada y abre paso a una mayor incertidumbre de daño estructural.
- En una análisis por desempeño si se fuerza a que las riostras trabajen netamente a tracción (para facilitar la convergencia de análisis no lineal estático NSP) asignando un valor igual a cero en "Releases" en X y Y, el desempeño de la estructura se reduce.
- El diseño de las riostras cuando se conecta concéntricamente ya sea en V, V
 invertida o diagonal no influye en el desempeño de la estructura estas ya que
 están cumpliendo la misma función rigidizar diagonalmente un pórtico, por lo
 que forman parte netamente del diseño arquitectónico, o gusto del diseñador,
 constructor o ingeniero.
- El desempeño de una estructura no mejora al sobredimensionar las riostras ya sea en PEAC o PAE, ya que no permiten que se desarrollen los elementos en el rango elástico y sobre rigidizan la estructura, se debe cumplir con los factores demanda capacidad del AISC 360 y la estructura tendrá un desempeño óptimo.
- Es complejo minimizar las derivas empleando solo PEM, en acero, es por ello que por facilidad de los diseñadores se suele colocar riostras, para reducir las derivas es común sobredimensionar vigas y columnas en pórticos especiales a momento, tal como se lo realizó en el presente estudio lo que deriva en un mayor costo en la estructura.

4.2. Recomendaciones

- Los arriostramientos al ser colocados juntos a las esquinas brindan un mejor desempeño estructural por lo que se recomienda colocar arriostramientos en los vanos junto a las esquinas, los mismos deben nacer y morir con la estructura es decir se recomienda incluirlos desde el nivel inferior hasta el nivel más alto ya que al retirar se generan derivas de piso excesivas.
- Para incrementar el valor del pandeo global (Buckling Factors) se recomienda incrementar las secciones de las vigas en toda la estructura.
- Para diseñar estructuras en acero se recomienda modelar considerando en efecto P Delta de las mismas, de igual manera en otras estructuras donde se evidencie esbeltez en los elementos estructurales verticales.
- Cuando se realice un análisis con el efecto P Delta se recomienda crear dos
 archivos una que incluya el cortante basal en X y otro el cortante basal en Y,
 no se puede ejecutar los dos cortantes al mismo tiempo ya que físicamente esto
 no es posible.
- En la aplicación de cargas controladas estáticas no lineales, en modelos no simétricos en PEAC y PAE se sugiere colocar desplazamientos en X y Y negativos, es decir se estará aplicando la carga con dirección opuesta.
- Para PEAC y PAE recomienda realizar un diseño por desempeño para garantizar la seguridad de la estructura al menos no lineal estático, ya que como se vio en los modelos preliminares 1 y 2 de PEAC, pese a cumplir todos los chequeos de diseño no fueron suficientes para cumplir el desempeño mínimo de demanda para un sismo de 475 años
- Para la realización de un modelo real que conjugue una alta estética arquitectónica se recomienda emplear una combinación de PEAC y PEM.

MATERIALES DE REFERENCIA

Referencias Bibliográficas

- [1] American Institute of Steel Construction, AISC 360-16 Specification for Structural Steel Building, Washintong: AISC, 2016.
- [2] M. Jimenez, Diferencia entre los códigos "ASD" Y "LRFD" adaptándose al IMCA, Aguascalientes: Universidad autónoma de aguas calientes, 2016.
- [3] Ministro de Desarrollo Urbano y Vivienda, Norma Ecuatoriana de la Construcción Cargas no Sísmicas, Quito: MIDUVI, 2016.
- [4] E. Bojórquez, «Diseño sìsmico de estructuras en acero basado en la confiabilidad estructural y conceptos de energia,» *Revista de Ingeniería Sísmica*, vol. I, nº 81, pp. 53-59, 2009.
- [5] C. Urzúa, Comparación del Desempeño de dos Estructuras Industriales segun la práctica y disposiciones AISC, Santiago: Universidad de Chile, 2015.
- [6] P. Rojas y M. Aguaguiña, «Análisis y Diseño Sísmico de Edificios Altos de Construcción Compuesta y Recomendaciones de Estudios Experimentales de Conexiones, Arriostramientos y Cruciformes Sujetos a Cargas Dinámicas, para la Ciudad de Guayaquil,» Escuela Politècnica de Litoral, Guayaquil, 2017.
- [7] P. Rojas y E. Andrés, «Análisis, Diseño y Evaluación Sísmica de Pórticos Especiales de Acero Resistentes a Momento (PEARM) a Base de Planchas Soldadas.,» Escuela Superior Politécnica de Literal, Research Gate, Guayaquil, 2016.
- [8] S. Diaz, Análisis estructural sísmico de edificios en acero: un enfoque probabilista, Barcelona: Universitat Politèctica de Catalunya, 2017.
- [9] A. Terán y C. Guillermo, «Dimensionamiento Preeliminar Basado en Rigidez de Edificios Altos con Estructuras de Acero Rigidizadas con Diagonales Concéntricas,» *Revista de Ingeniería Sísmica*, vol. I, nº 90, pp. 34-54, 2014.

- [10] L. Camacho, «Reflexión sobre la industria de acero en el mercado globalizado,» *Apuntes CEES*, vol. XXX, nº 51, pp. 165-182, 2011.
- [11] H. Gervasio, «La Sutentabilidad del Acero y las Estructuras Metálicas,» *Acero Latinoamericano*, vol. V, nº 11, pp. 18-25, 2010.
- [12] J. McCormak y S. Csernak, Diseño de Estructuras en Acero, México: Alphaomega, 2013.
- [13] El tiempo, «Las Estructuras de acero se imponen,» El tiempo, 1998.
- [14] S. Villamil, «Industrias, Puentes y Montajes en América Latina,» *LEGIS S.A*, vol. I, nº 5, p. 3, 2008.
- [15] Ministerio de Desarrollo Urbano y de Vivienda, NEC-SE-AC Estructuras de Acero, Quito: Dirección de Comunicación Social, MIDUVI, 2014.
- [16] F. Crisafulli, Diseño Sismoresistente de Construcciones de Acero, Mendoza: Alacero, 2013.
- [17] El Diario. EC, «Acero en vez de hormigón en las nuevas construcciones,» *El Diario. EC*, p. 14, Domingo Agosto 2017.
- [18] M. Cabas, «Los rascacielos y su evolución tipológica,» *Módulo*, vol. I, nº 10, pp. 205-2015, 2011.
- [19] American Institute of Steel Construction, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No. 1, Washington: ANSI/AISC, 2016.
- [20] A. Roberto, Análisis por desempeño sísmico, Quito: CIENCI ESPE, 2003.
- [21] E. Hernandez, «EVALUACIÓN DE LA RESPUESTA NO LINEAL DE PÓRTICOS,» de *II Congreso Internacional de estructuras de edificación*, Lima, 2018.

- [22] R. Aguiar, D. Mora y M. Rodriguez, «DIAGRAMA MOMENTO-CURVATURA Y MOMENTO ROTACIÓN ROTACIÓN PARA ELEMENTOS DE HORMIGÓN ARMADO Y ACERO CON ASCE/CEI 41 Y SISTEMA DE COMPUTACIÓN CIENCI LAB,» *CIENCIA*, vol. XVII, nº 2, pp. 201-239, 2015.
- [23] C. Poland, J. Hill, R. Sharpe, J. Soulages y S. E. A. o. California, Vision 2000: performance based seismic engineering of buildings, Sacramento, CA: Structural Engineers Association of California, 1995.
- [24] Department of Homeland Security Federal Emergency Management Agency, FEMA 440 IMPROVEMENT OF NONLINEAR STATIC SEISMIC ANALYSIS PROCEDURES, Washintong: Applied Technology Council (ATC-55 Project), 2005.
- [25] American Institute of Steel Construction, Steel Construction Manual Fourteenth Edition, Washington: AISC, 2011.
- [26] R. Buse, Manual Técnico para el uso de placas colaborantes para losas de entre piso, Lima: Aceros Prcesados S.A, 2013.
- [27] FASTENAL, «Heavy Hex Structural Bolt Assembly, A325, Type 1, Heavy Hex Nut, ASTM F436 Structural Washer, Plain,» Fastenal Product Standard, Oklahoma, 2016.
- [28] Modus Vivendi, «Lista de Rubros Referenciales y Materiales,» *Modus Vivendi Diciembre 2019*, vol. I, n° 57, pp. 32-58, 2019.
- [29] R. Aguiar, V. Ávila y C. Atalo, «DISEÑO DE CONTRAVIENTO Y PLACAS GUSSET DE CONEXIÓN PARA SOPORTAR DISIPADORES DE ENERGÍA,» *Revista Internacional de Ingeniería de Estructuras*, vol. XXII, n° 2, pp. 227-249, 2017.

- [30] Ministerio de Desarrollo Urbano y Vivienda, NEC-SE-DS Peligro Sísmico Diseño Sismoresistente, Quito: Dirección de Comunicación Social, Miduvi, 2014.
- [31] MIPSA, «Mipsa México,» Dotnetnuke, 11 Febrero 2019. [En línea]. Available: https://www.mipsa.com.mx/dotnetnuke/ProcesosRolado-perfiles. [Último acceso: 20 Junio 2019].
- [32] A. Galvéz, «Verificación del desempeño sísmico metodologías y ejemplos,» de *IX Convención INTERNACIONAL*, Lima, 2010.
- [33] American Institute of Steel Construction, AISC 341-16 Seismic Provisions for Structural Steel Buildings, Illinois: AISC, 2016.
- [34] Kubiec Conduit, Kubilosa, Quito: Kubiec, 2011.
- [35] Acero Deck, «acero-deck.com,» Aceros Procesados S.A., Enero 22 2015. [En línea]. [Último acceso: 14 Octubre 2019].
- [36] ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Reston: ASCE and American Society of Civil Engineers, 2017.

Anexos