

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA INGENIERÍA CIVIL

PROYECTO TÉCNICO, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

TEMA:

"MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISHURCO, CON LA FINALIDAD DE MEJORAR LA VIALIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Autor: Luis Javier Orozco Analuiza

Tutor: Ing. MSc. Favio Paúl Portilla Yandún

AMBATO – ECUADOR Septiembre - 2021

CERTIFICACIÓN

En mi calidad de Tutor del Proyecto Técnico, previo a la obtención del Título de Ingeniero Civil, con el tema: "MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISHURCO, CON LA FINALIDAD DE MEJORAR LA VIALIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA", elaborado por el Sr. Luis Javier Orozco Analuiza, portador de la cédula de ciudadanía: C.I. 1804731279, estudiante de la Carrera de Ingeniería Civil , de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente proyecto técnico es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Esta concluido en su totalidad

Ambato, Septiembre 2021

Ing. MSc. Favio Paúl Portilla Yandún
TUTOR

AUTORÍA DE LA INVESTIGACIÓN

Yo, Luis Javier Orozco Analuiza con C.I. 1804731279 declaro que todas las actividades y contenidos expuestos en el presente proyecto técnico con el tema "MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISHURCO, CON LA FINALIDAD DE MEJORAR LA VIALIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA", así como también los análisis estadísticos, gráficos, conclusiones y recomendaciones son de mi exclusiva responsabilidad como autor del proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, Septiembre 2021

Luis Javier Orozco Analuiza

C.I: 1804731279

AUTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico

o parte de él, un documento disponible para su lectura, consulta y procesos de

investigación, según las normas de la Institución.

Cedo los Derechos en línea patrimoniales de mi Proyecto Técnico, con fines de

difusión pública, además apruebo la reproducción de este documento dentro de las

regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una

ganancia económica y se realice respetando mis derechos de autor.

Ambato, Septiembre 2021

Luis Javier Orozco Analuiza

C.I: 1804731279

AUTOR

iv

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Proyecto Técnico, realizado por el estudiante Luis Javier Orozco Analuiza. de la Carrera de Ingeniería Civil bajo el tema: "MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISHURCO, CON LA FINALIDAD DE MEJORAR LA VIALIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Ambato, Septiembre 2021

Para constancia firman

Ing. Mg. Byron Genaro Cañizares Proaño
Miembro Calificador

Ing. Mg. Alex Gustavo López Arboleda
Miembro Calificador

DEDICATORIA

A Dios todo poderoso que con su santísimo manto me brindo salud, trabajo y sabiduría para llegar a esta etapa final de mi carrera.

A mi padre Luis Orozco que con su sacrificio, trabajo y dedicación nunca me falto su apoyo durante el transcurso de mi carrera.

A mi madre Blanca Analuiza que las buenas y las malas con su amor infinito supo guiarme por el buen camino para ser un hombre de bien.

A mis Hermanos William, Carlos, Diego y Jessenia que supieron apoyarme durante mis vida universitaria.

A mis primos, amigos y familiares que me dieron un aliento de superación para cumplir mi objetivo

AGRADECIMIENTO

Con un emotivo y un gran agradecimiento quiero primeramente agradecer a mi Dios

poder haber brindado la sabiduría e inteligencia para cumplir esta meta en mi vida.

Gracias Padres por su apoyo, compresión y sacrificio; por brindarme la oportunidad

de ser alguien en la vida. El esfuerzo y sacrificio que usted lo pusieron para que nunca

me falte nada, se ve reflejado hoy en la obtención de una meta más en vida.

Gracias hermanos y hermana por estar en las buenas y en las malas y ser partícipe de

este gran sueño.

Gracias a la Universidad Técnica de Ambato en especial a la facultad de Ingeniería

Civil y Mecánica por brindarme sus instalaciones para dar inicio a mi carrera.

Gracias a los docentes de la carrera de Ingeniería Civil por bridarme sus

conocimientos, experiencias y palabras de aliento durante mi vida universitaria, en

especial al Ing. Favio Portilla por haber brindado su apoyo técnico en la realización de

este proyecto.

Gracias a mis amigos y compañeros que compartimos el salón de clases y brindarme

una amistad desinteresada y sincera. Y a todas aquellas personas que estuvieron a lo

largo de este caminar y formaron de mí una persona de bien.

A todos un Dios le pague.....

vii

INDICE DE CONTENIDOS

CERTIFICACIÓN	ii
AUTORÍA DE LA INVESTIGACIÓN	iii
DERECHOS DE AUTOR	iv
APROBACIÓN DEL TRIBUNAL DE GRADO	v
DEDICATORIA	vi
AGRADECIMIENTO	vii
ÍNDICE DE TABLAS	xii
ÍNDICE DE GRÁFICOS	xv
RESUMEN	xvii
ABSTRACT	xviii
CAPÍTULO I	1
MARCO TEÓRICO	1
1. Tema	1
1.1. Antecedentes Investigativos	1
1.1.2. JUSTIFICACIÓN	2
1.1.3. Fundamentación Teórica	3
1.1.3.1. Carretera	3
1.1.3.3. El terreno	6
1.1.3.4. Tránsito	6
1.1.3.4.1. Volumen del tránsito	7
1.1.3.4.2. Tránsito Promedio Diario (TPDA)	7
1.1.3.4.3. Tránsito Actual (TA)	9
1.1.3.4.4. Tránsito generado (TG)	9
1.1.3.4.5. Tránsito Futuro (TF)	9
1.1.3.4.6. Tipos de conteos	10

1.1.3.5.	Velocidad1	0
1.1.3.5.1.	Velocidad de Diseño	0
1.1.3.5.2.	Velocidad de Circulación	. 1
1.1.3.6.	Diseño geométrico	2
1.1.3.7.	Diseño Geométrico Horizontal	2
1.1.3.7.1.	Curvas circulares simples	3
1.1.3.7.2.	Curvas de Transición	7
1.1.3.7.3.	Curva de inflexión o curva de reversa	9
1.1.3.7.4.	Peraltes	9
1.1.3.7.5.	Sobre ancho en curvas	2
1.1.3.7.6.	Distancia de visibilidad	:3
1.1.3.8.	Diseño Geométrico Vertical	:7
1.1.3.8.1.	Tangentes verticales	:7
1.1.3.8.2.	Gradientes	28
1.1.3.8.3.	Curvas verticales	.9
1.1.3.8.4.	Diseño Geométrico de la Sección Transversal	1
1.1.3.9.	Suelos3	3
1.1.3.9.1.	Tipos de suelos	4
1.1.3.9.2.	Obtención de muestras de suelos	4
1.1.3.9.3.	Propiedades de los suelos	5
1.1.3.10.	Pavimentos	7
1.1.3.10.1.	Tipos de pavimentos	9
1.1.3.11.	Obras de drenaje	0
1.1.3.12.	Señalización vial	٠1
1.2. OB	JETIVOS4	-3
1.2.1. C	Objetivo general4	₊3
1.2.2. Obie	etivos específicos	3

CAPÍTULO II	44
METODOLOGÍA	44
2.1 Materiales y equipos	44
2.1.1. Materiales	44
2.1.2. Equipos	45
2.2. Métodos	50
2.2.1. Plan de recolección de datos	50
2.2.2. Procesamiento y análisis de información	52
2.2.2.1. Plan de procesamiento	52
2.2.2.2. Análisis de información	52
CAPÍTULO III	53
RESULTADOS Y DISCUSIÓN	53
3.1. Análisis y discusión de resultados	53
3.1.1. Datos del Proyecto	53
3.1.2. Estudio Topográfico	56
3.1.3. Estudio de tráfico	57
3.1.3.1. Conteo del tráfico	57
3.1.3.2. Determinación del tráfico Promedio Diario Anual TPDA	58
3.1.3.3. Clasificación de la vía	63
3.1.4. Diseño geométrico vial	64
3.1.4.1.1 Velocidad de diseño	64
3.1.4.1.2 Velocidad de circulación	64
3.1.4.1.3 Distancia de visibilidad de parada	65
3.1.4.1.4 Distancia de visibilidad de rebasamiento	66
3.1.5.1. Diseño geométrico horizontal	67
3.1.5.2. Diseño Vertical	68
3 1 5 3 Diseño de la Sección transversal	68

3.1.6.	Estudio de Suelos	69
3.1.7.	Diseño de pavimento	70
3.1.7.	1.1 Calculo del W18	72
3.1.7.	1.2. CBR de diseño	73
3.1.7.	1.3. Confiabilidad de diseño (R%)	74
3.1.7.	1.4. Desviación estándar (ZR)	75
3.1.7.	1.5. Desviación estándar global	75
3.1.7.	1.6. Módulo de resiliencia Mr (característica de la subrasante)	75
3.1.7.	1.7. Índice de serviciabilidad PSI	76
3.1.7.	1.8. Coeficiente estructural de la carpeta asfáltica (a1)	76
3.1.7.	1.9. Coeficiente estructural de la capa base (a2)	77
3.1.7.	1.10. Coeficiente estructural de la capa subbase (a3)	79
3.1.7.	1.11. Coeficiente de drenaje (m ₂ , m ₃)	80
3.1.7.	1.12. Diseño de la estructura de Pavimento	81
3.1.7.	1.12.1 Determinación del número estructural para pavimento flexible (SN).	81
3.1.7.	1.12.2. Espesor de las capas del pavimento	82
3.1.8.	Estudio Hidráulico	88
3.1.8.	Diseño de las estructuras de drenaje	89
3.1.9.	Señalización	102
3.1.10). Volúmenes de obra	103
3.1.11	. Presupuesto referencial	111
3.1.12	2. Cronograma de trabajo	112
3.1.13	3. Especificaciones técnicas	113
CAPÍ	TULO IV	120
CON	CLUSIONES Y RECOMENDACIONES	120
4.1.	Conclusiones	120
12	Pacomandacionas	121

BIBLIOGRAFÍAS
ANEXOS
Levantamiento topográfico
Estudio de tráfico
Volumen de corte y relleno
Estudio de suelos
Análisis de precios unitarios
Archivo fotográfico
Planos
ÍNDICE DE TABLAS
INDICE DE TABLAS
Tabla 1: Clasificación funcional de las vías en base al TPDA
Tabla 2: Clasificación por la jerarquía en la red vial
Tabla 3: Denominación de carreteras por condiciones Orográficas
Tabla 4: Tasa de crecimiento anual del tránsito (%)
Tabla 5: Velocidad de diseño según clasificación de carreteras
Tabla 6: Relación de la velocidad de operación con la velocidad de diseño para
carreteras de 2 carriles
Tabla 7: Radios mínimos en función del peralte y coeficiente de fricción
Tabla 8: Valores mínimos para longitud de transición
Tabla 9: Valores de peralte en función del tipo del área
Tabla 10: Sobre ancho mínimo para varias velocidades
Tabla 11: Distancia de visibilidad mínima de parada
Tabla 12: Distancia de visibilidad mínima para parada24
Tabla 13: Distancia mínima de visibilidad para el rebasamiento de un vehículo 27
Tabla 14: Valores de diseño de las gradientes longitudinales máximas
Tabla 15: Coeficiente "K" para curvas verticales mínimas
Tabla 16: Ancho de calzada
Tabla 17: Valores de diseño para el ancho de espaldones (m)

Tabla 18: Valores de diseño recomendables de los taludes en terrenos planos	. 33
Tabla 19: Clasificación del suelo según el Índice de Plasticidad (Atterberg)	. 35
Tabla 20: Clasificación del suelo según el C.B.R.	. 36
Tabla 21: Límites Granulométricos de la Base	. 38
Tabla 22: Limites Granulométricos de la Sub base	. 39
Tabla 23: Coordenadas del Proyecto	. 53
Tabla 24: Resumen de conteo vehicular semanal.	. 58
Tabla 25: Resumen conteo vehicular según tipo de Vehículo	. 58
Tabla 26: Factor diario Fd	. 59
Tabla 27: Factores mensuales del consumo de combustible Tungurahua 2016	. 59
Tabla 28: Tráfico Promedio Diario Semanal TPDS	. 60
Tabla 29: Tráfico generado	. 60
Tabla 30: Trafico Atraído	. 61
Tabla 31: Tráfico desarrollado	. 61
Tabla 32: Tráfico actual	. 62
Tabla 33: Proyección del tránsito para el periodo de diseño	. 63
Tabla 34: Clasificación de carreteras en función al TPDA	. 63
Tabla 35: Velocidad de diseño para un relieve montañoso	. 64
Tabla 36: Velocidad de Circulación	. 65
Tabla 37: Distancias de Visibilidad mínimas para un vehículo	. 66
Tabla 38: Distancia mínima de rebasamiento	. 66
Tabla 39: Resumen de ensayo Proctor subrasante	. 69
Tabla 40: Tabla resumen clasificación de suelo de la subrasante	. 69
Tabla 41: Tabla resumen ensayo CBR puntual	. 69
Tabla 42: Periodo de análisis según tipo de carretera	. 70
Tabla 43: Factor de daño	.71
Tabla 44: Clasificación del tipo de eje	.71
Tabla 45: Factores de distribución por carril	. 72
Tabla 46: Factores de distribución por dirección	. 72
Tabla 47: Ejes Equivalentes	. 73
Tabla 48: Percentil de confiabilidad para CBR de diseño	. 73
Tabla 49: Datos de CBR obtenidos en campo	. 73
Tabla 50: Datos para CBR de diseño	74

Tabla 51: Clasificación de la Sub rasante de acuerdo al CBR	74
Tabla 52: Niveles recomendados de confiabilidad	75
Tabla 53: Factor de Desviación Normal	75
Tabla 54: Control de calidad de mezclas asfálticas	76
Tabla 55: Coeficientes de la capa base (a2)	78
Tabla 56: Coeficiente de la Subbase (a3)	80
Tabla 57: Calidad de Drenaje	80
Tabla 58: Valores recomendados para m2 y m3	81
Tabla 59: Granulometría para Subbase	86
Tabla 60: Granulometría para Base clase 4	87
Tabla 61: Especificaciones de calidad de agregados para cemento asfaltico	87
Tabla 62: Granulometrías de los agregados para la mezcla asfáltica	88
Tabla 63: Criterios de diseño para mezclas Marshall	88
Tabla 64: Coeficientes de rugosidad para recubrimientos de cuentas	90
Tabla 65: Caudales y velocidades para las distintas pendientes del proyecto	92
Tabla 66: Coeficiente de escurrimiento	94
Tabla 67: Ecuaciones para el cálculo de intensidades máximas de precipitación	96
Tabla 68: Intensidad máxima de precipitación	96
Tabla 69: Coeficiente de escorrentía para la fórmula de Talbot	98
Tabla 70: Ubicación y detalle de alcantarillas	99
Tabla 71: Detalles del Cabezal de alcantarillas	99
Tabla 72: Destalles de cajón de descarga de agua pluvial	99
Tabla 73: Señalética vertical y horizontal propuesta en el proyecto	102
Tabla 74: Tabla de Presupuesto Referencial del Provecto	111

ÍNDICE DE GRÁFICOS

Gráfico 1: Curva del Volumen horario VHD
Gráfico 2: Componentes del diseño geométrico
Gráfico 3: Elementos de la curva circular simple
Gráfico 4: Curva de transición
Gráfico 5: Curva de inflexión o curva de reversa
Gráfico 6: Coeficientes de fricción lateral para diferentes velocidades del proyecto 20
Gráfico 7: Transición del peralte
Gráfico 8: Diagrama de transición espiral del peralte
Gráfico 9: Sobre ancho en curvas
Gráfico 10: Distancia de parada
Gráfico 11: Etapas de distancia de visibilidad de adelantamiento en dos carriles 25
Gráfico 12: Tangente Vertical
Gráfico 13: Elementos de curva vertical simétrica
Gráfico 14: Curva convexa
Gráfico 15: Curva cóncava
Gráfico 16: Sección transversal típica
Gráfico 17: Curva humedad densidad seca
Gráfico 18: Estructura de pavimento flexible
Gráfico 19: Estructura de pavimento rígido
Gráfico 20: Señalética horizontal 41
Gráfico 21: Señalética vertical
Gráfico 22: Estado actual de la vía al cerro Pilisurco
Gráfico 23: Superficie de la capa de rodadura del proyecto
Gráfico 24: Ubicación Maso - Meso - Micro del Proyecto
Gráfico 25: Ubicación de estación de conteo
Gráfico 26: CBR de diseño
Gráfico 27: Nomograma para estimar el coeficiente estructural a1
Gráfico 28: Nomograma para estimar el coeficiente estructural a2
Gráfico 29: Nomograma para estimar el coeficiente estructural de la subbase (a3) 79
Gráfico 30: Cálculo del Numero estructural "SN" para la sub rasante
Gráfico 31: Diseño de la estructura de pavimento

Gráfico 32: Estructura de pavimento teórico	83
Gráfico 33: Diseño de estructura de pavimento	84
Gráfico 34: Diseño final de la estructura de pavimento	85
Gráfico 35: Sección propuesta de cuneta	91
Gráfico 36: Cajón de entrada propuesta para el proyecto	100
Gráfico 37: Cabezote de salida propuesta para el provecto	101

RESUMEN

El presente proyecto tiene como objetivo realizar un mejoramiento de la vía que une

la comunidad de Ambatillo alto con el Cerro Pilishurco a fin de brindar una mejor

vialidad a turistas y población local que visitan el mirado natural del cantón Ambato;

mediante la aplicación de la normativa MTOP - 2003 se realizó el diseño geométrico

horizontal, vertical y transversal de la vía para lo cual se realizaron trabajos como

estudios de suelos, levantamientos topográficos, estudios de tráfico, diseño de

pavimentos, y elaboración de un presupuesto referencial para la ejecución de este

proyecto.

Se realizó el estudio de tráfico en campo, mediante conteos manuales y se determinó

un TPDA 243 veh/día para un periodo de diseño de 20 años, clasificando a la vía en

un camino vecinal tipo IV.

Con los datos obtenidos en los estudios de suelos se propone una estructura de

pavimento flexible compuesto por capas de sub-base, base y carpeta asfáltica todo esto

bajo la aplicación de la metodología AASHTO -93; se presentan diseños hidráulicos

de cunetas y alcantarillas además un estudio de tránsito donde se plasma la correcta

ubicación de la señalética tanto vertical como horizontal.

Finalmente se calcula un presupuesto referencial con sus especificaciones técnicas y

volúmenes de obra de acuerdo a las actividades a ejecutarse en el proceso de

construcción de este proyecto.

Palabras clave: Diseño geométrico, Carretera, Diseño de Pavimento Flexible, TPDA,

Cerro Pilishurco

xvii

ABSTRACT

The objective of this project is to improve the road that connects the community of

Ambatillo Alto with Cerro Pilishurco in order to provide better roads for tourists and

the local population that visit the natural viewpoint of the canton of Ambato; through

the application of the MTOP - 2003 regulations, the horizontal, vertical and transversal

geometric design of the road was carried out, including soil studies, topographic

surveys, traffic studies, pavement design, and the preparation of a reference budget for

the execution of this project.

The traffic study was carried out in the field by means of manual counts and a TPDA

of 243 vehicles/day was determined for a design period of 20 years, classifying the

road as a type IV country road.

With the data obtained in the soil studies, a flexible pavement structure composed of

sub-base, base and asphalt layers is proposed under the application of the AASHTO-

93 methodology; hydraulic designs of ditches and culverts are presented, as well as a

traffic study where the correct location of both vertical and horizontal signage is

shown.

Finally, a referential budget is calculated with its technical specifications and volumes

of work according to the activities to be executed in the construction process of this

project.

Keywords: Geometric design, Road, Flexible Pavement Design, TPDA, Cerro

Pilishurco

xviii

CAPÍTULO I.

MARCO TEÓRICO

1. Tema.

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISHURCO, CON LA FINALIDAD DE MEJORAR LA VIALIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA.

1.1. Antecedentes Investigativos

1.1.1. Antecedentes

El presente proyecto se encuentra localizado en la parroquia Ambatillo, perteneciente al cantón Ambato, se halla en la cordillera occidental de los Andes, ubicada en la Provincia de Tungurahua, Ecuador, posee una superficie de 12.89 km2, una topografía variable que va desde los 2.808 a 4100 m.s.n.m. La fabricación de calzado es su principal actividad económica y la producción agrícola es otra fuente de ingresos de sus habitantes [1].

El cerro del Pilisurco, punto donde están las antenas repetidoras de radio, televisión y otras instituciones de comunicación del país, es uno de los lugares turísticos que tiene la parroquia Ambatillo, misma localidad que se lo divisa desde la ciudad. Senderistas, ciclistas y deportistas que aman la naturaleza y sus paisajes acceden a este cerro ubicado a más de 4.000 metros sobre el nivel del mar, posee parajes impresionantes y desde ahí se divisan otros cerros hermosos y la ciudad de Ambato. [2]

Lamentablemente la vía que une la comunidad de Ambatillo Alto con el cerro Pilisurco presenta una faja de rodadura lastrada en mal estado y condiciones desfavorables en cuanto al sistema de infraestructura vial, debido a que el diseño de la vía ha sido realizado de manera empírica sin emplear ninguna normativa técnica vigente, por lo que se propone mejorar el trazado de la vía en cuanto al diseño geométrico vertical y horizontal de vía además implementar una estructura de pavimento que garantice una vía cómoda, rápida y segura.

Teniendo en cuenta las referencias antes mencionadas el Gobierno Autónomo Descentralizado Parroquial de Ambatillo, con el propósito de explotar y atraer turistas nacionales y extranjeros al cerro Pilisurco, presenta la necesidad de mejorar el diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco, con la finalidad de mejorar la viabilidad en la parroquia Ambatillo, cantón Ambato, provincia de Tungurahua.

1.1.2. JUSTIFICACIÓN

En la Provincia de Tungurahua, las carreteras que unen las parroquias del cantón Ambato, en su mayoría tienen un trazado geométrico eficiente, son pavimentadas y poseen una capa de rodadura adecuada. Pero existen problemas como es el caso de la vía de ingreso a la parroquia Ambatillo a través de la carretera Ambato-Ambatillo, la misma que en la planicie del sitio conocido como El Empalme del barrio Palama se divide con dirección hacia Quisapincha. En el trayecto Ambato-Ambatillo la carretera es asfaltada, pero con frecuencia se ve afectada por los continuos deslaves y depósitos de materiales como piedras sobre todo en las épocas de invierno. [3]

El desarrollo urbano, el crecimiento poblacional y el aumento del parque automotor en la parroquia Ambatillo traen como consecuencia un incremento en la necesidad de construcción de vías nuevas y el mejoramiento de las vías actuales. Es por ello que conjuntamente con el GAD. Parroquial de Ambatillo con el fin de promover los atractivos turísticos del sector y reactivar la matriz productiva de la parroquia promueve el estudio de una vía que permita unir la comunidad de Ambatillo Alto con el cerro Pilisurco.

Por tal motivo el presente proyecto consiste en proporcionar una vía corta y de buenas condiciones desde el punto de vista geométrico y de la estructura del pavimento, que pueda unir la parroquia de Ambatillo con el cerro Pilisurco, logrando así una forma más cómoda de transportarse entre ambos lugares, reduciendo el tiempo de viaje y proporcionando seguridad vial al usuario; para ello es necesario realizar los estudios pertinentes y el trazado geométrico eficiente de la carretera.

Proyectar el diseño de una vía cómoda, segura y en buenas condiciones proporciona a los usuarios una comunicación rápida y eficiente, permitiendo promover el turismo comunitario del sector y además contribuir en el desarrollo socioeconómico. En conclusión, la realización del proyecto permitirá activar la actividad productiva y turística de la parroquia de Ambatillo y ser un referente turístico importante para el cantón y el país.

1.1.3. Fundamentación Teórica

1.1.3.1. Carretera

Infraestructura de transporte adaptada a una faja de terreno denominada derecho de vía, con la finalidad de permitir el paso de vehículos de manera fluida en el espacio y tiempo con los niveles adecuados de seguridad y comodidad. [4]

Toda carretera debe garantizar que la vía sea totalmente funcional, segura, cómoda, estética, económica y compatible con el medio ambiente. [4]

Una carretera puede ser definida mediante la proyección en planta, perfil de su eje, y una serie de secciones transversales.

1.1.3.2. Clasificación Nacional de la red vial

Las carreteras en el país se las clasifican principalmente por:

a. Clasificación por Capacidad (Función del TPDA)

Se ha clasificado a este tipo de estructura vial en el país, de acuerdo con el volumen tráfico. De acuerdo con esta clasificación, las vías debieran ser diseñadas con las características funcionales y geométricas correspondientes a su clase, teniendo en cuenta que esta clasificación puede, construirse por etapas, en función del incremento del tráfico y del presupuesto. [5]

Tabla 1: Clasificación funcional de las vías en base al TPDA

Clasificación de carreteras en función del tráfico proyectado	
CLASE DE CARRETERA	Tráfico Proyectado TPDA
RI O RII	> 8000
I	3000 a 8000
II	1000 a 3000
III	300 a 1000
IV	100 a 300
V	< 100

Fuente: Normas de Diseño Geométrico de Carreteras - MOP 2003.

Se recomienda para el diseño de carreteras un período de 15 a 20 años según la clasificación y tráfico proyectado.

b. Clasificación por Jerarquía en la Red Vial

• Corredores Arteriales

Caminos de alta jerarquía funcional que conectan las capitales de provincia, puertos marítimos y cruces de frontera. Sirven para viajes de larga distancia, tiene alta movilidad, accesibilidad reducida, giros y maniobras controlados; los estándares geométricos deben proporcionar una operación de tráfico eficiente y seguro. [5]

• Vías Colectoras

Caminos de mediana jerarquía cuya función es recolectar el tráfico de la zona rural o una región. [5]

• Caminos Vecinales

Carreteras convencionales básicas destinados a recibir el tráfico de poblaciones rurales, zonas producción agrícolas y accesos a sitios turísticos. [5]

Tabla 2: Clasificación por la jerarquía en la red vial

Clasificación de carreteras por la jerarquía en la red vial		
FUNCIÓN	CLASE DE CARRETERA	Tráfico Proyectado TPDA
CORREDOR	RI O RII	> 8000
ARTERIAL	I	3000 a 8000
COLECTORA	II	1000 a 3000
COLECTORA	III	300 a 1000
VECINAL	IV	100 a 300
	V	< 100

Fuente: Norma de Diseño de Carreteras MOP-2003

c. Clasificación por Condiciones Orográficas

Se clasifican según el relieve del terreno natural atravesado. En función de la máxima pendiente, la línea de máxima pendiente sobre el terreno natural es la inclinación máxima del terreno en cualquier dirección. [5]

Tabla 3: Denominación de carreteras por condiciones Orográficas

TIPO DE RELIEVE	MÁXIMA INCLINACIÓN MEDIA
Llano	$i \le 5$
Ondulado	5< i ≤ 15
Accidentado	$15 < i \le 25$
Muy Accidentado	25 < i

Fuente: Normas para Estudios y Diseño Vial- MTOP-2013

d. Clasificación por Número de Calzadas

 Carreteras de calzadas separadas: Son las que tienen calzadas diferenciadas para cada sentido de circulación, con una separación física entre ambas.
 Excepcionalmente pueden tener más de una calzada para cada sentido de circulación. [5]

No se considera como separación física la constituida exclusivamente por marcas viales sobre el pavimento o bordillos montables (altura inferior a 15cm). [5]

 Carreteras de calzada única: Son las que tienen una sola calzada para ambos sentidos de circulación, sin separación física, independientemente del número de carriles. [5]

e. Clasificación en función de la Superficie de Rodamiento

- Pavimento rígido: Son aquellos donde la capa de rodadura está formada por una losa de concreto hidráulico (agua, cemento, arena y grava), con o sin refuerzo estructural, apoyada sobre la subrasante de material granular. [5]
- Pavimentos flexibles: Son aquellos que tienen una capa de rodadura formada por una mezcla bituminosa de asfalto altamente resistente a los ácidos, álcalis y sales. [5]
- Afirmados: Son aquellas en las que la superficie de rodadura se compone de una capa de material granular con tamaño máximo dos y media pulgadas (2 ½ ") y con proporción de finos, debidamente compactado. [5]
- **Superficie Natural:** Su capa de rodadura se compone del terreno natural del lugar, debidamente conformado. [5]

1.1.3.3. El terreno

La topografía

Es un factor principal de la localización física de la vía, pues afecta su alineamiento horizontal, sus pendientes, sus distancias de visibilidad y sus secciones transversales. [5]

Desde el punto de vista topográfico, los terrenos se puede clasifican en cuatro categorías, que son:

Terreno Plano. Tiene pendientes transversales a la vía menores del 5%. Requiere el mínimo movimiento de tierras para la construcción de carreteras y no presenta dificultad en el trazado ni en su explanación, por lo que las pendientes longitudinales de las vías son normalmente menores del 3%. [5]

Terreno Ondulado. Tiene pendientes transversales a la vía del 6% al 12%. Requiere moderado movimiento de tierras, lo que permite alineamientos más o menos rectos, sin mayores dificultades en el trazado y en la explanación, así como pendientes longitudinales típicamente del 3% al 6%. [5]

Terreno Montañoso. Las pendientes transversales a la vía suelen ser del 13% al 40%. Demanda grandes movimientos de tierras para la construcción de carreteras en este tipo de terreno. A la vez requiere la construcción de puentes y estructuras para salvar lo montañoso del terreno por lo que presenta dificultades en el trazado y en la explanación. Pendientes longitudinales de las vías del 6% al 8% son comunes. [5]

Terreno Escarpado. Las pendientes del terreno transversales a la vía son mayores del 40%. Se necesita máximo movimiento de tierras para construir carreteras, existe numerosas dificultades para el trazado y la explanación, pues los alineamientos están prácticamente definidos por divisorias de aguas, en el recorrido de la vía, por tanto, abundan las pendientes longitudinales mayores del 8% que, para evitarlos, el diseñador deberá considerar la construcción de puentes, túneles y/o estructuras para salvar lo escarpado del terreno. [5]

1.1.3.4.Tránsito

El tránsito indica para que servicio se va a construir la vía y afecta directamente las características geométricas del diseño. La información sobre el tránsito permite establecer las cargas para el diseño geométrico, lo mismo que para el diseño de su

estructura o afirmado. Los datos del tránsito deben incluir las cantidades de vehículos

o volúmenes por días del año y por horas del día, como también la distribución de los

vehículos por tipos y por pesos, es decir su composición. [5]

1.1.3.4.1. Volumen del tránsito

Se define como el número de automóviles que pasan por un punto de un carril o de

una calzada durante un tiempo específico. Para el estudio del mismo se deben tener en

cuenta las siguientes definiciones.

1.1.3.4.2. Tránsito Promedio Diario (TPDA)

Representa el tránsito total que circula por la vía durante un año dividido entre 365, es

decir es el volumen de transito promedio por día. [5]

 $Ta = TPDA_{ACTIIAL} + TG + Tat + TD$

Donde:

TPDA (actual): Tráfico actual

TG: Tráfico Generado

Tat: Tráfico Atraído

TF: Tráfico Desarrollado

Para determinar el TPDA se debe tomar en cuenta las siguientes consideraciones:

Vías en un solo sentido de circulación, será contado el tráfico en ese sentido.

Vías de dos sentidos de circulación, el volumen de tráfico será contado en las dos

direcciones. Por el cual, en este tipo de vías, el número de vehículos al final del día

será semejante en los dos sentidos de circulación.

Para un estudio definitivo, se debe tener por lo menos un conteo manual de 7 días

seguidos en una semana que no se vea afectada por eventos especiales. [6]

Volumen Horario de Máxima Demanda (VHMD)

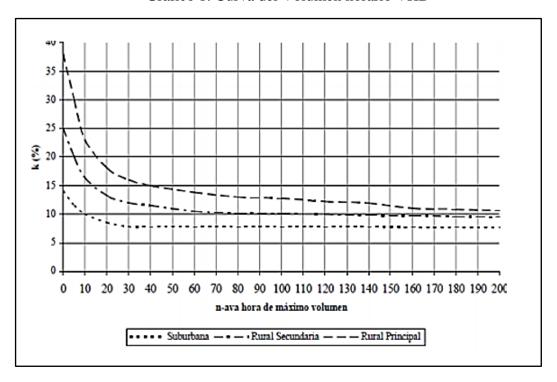
Es el máximo número de vehículos que pasan por un punto durante 60 minutos

consecutivos, representa la máxima demanda que se registra durante un día.

Factor de Hora Pico (FHP)

7

Relaciona el volumen horario de máxima demanda con el flujo máximo.


$$FHP = \frac{VHMD}{4 X Q_{15 m\acute{a}x}}$$

• Volumen Horario de Diseño (VHD)

Es el volumen horario que se utiliza para diseñar, es comparar con la capacidad de la carretera en estudio. Se considera como de diseño el volumen horario trigésimo anual. En el gráfico se representa el factor k que representa la relación entre el volumen de la 30va. Hora y el TPDA. Se recomienda un valor de k igual a 0.10 para zonas urbanas y 0.15 zonas rurales.

$$k = \frac{VHD}{TPDA_{actual}}$$

Gráfico 1: Curva del Volumen horario VHD

Fuente: Ingeniería de Transito, R. Cal et. al 1994

• Proyección de Tránsito

Las carreteras nuevas o los mejoramientos se deben diseñar con base en el tránsito que se espera ser usado. Entonces es recomendable, que el diseño se haga para acomodar el volumen de tránsito que se espera y se presente en el último año de vida útil de la vía, con mantenimiento razonable, suponiendo que el volumen esperado para cada año

es mayor que el del año anterior. Los volúmenes de tránsito futuro para diseño se derivan de la corriente de tránsito actual y del crecimiento esperado de esa corriente durante el período seleccionado para el diseño del proyecto [5]. Los componentes del tránsito futuro son:

1.1.3.4.3. Tránsito Actual (TA)

Es el número de automóviles que transitan sobre una carretera antes de ser mejorada.

Tránsito Atraído (Tat)

Es el tránsito atraído de otras carreteras, una vez que entre servicio la vía mejorada. Se estima que el tránsito atraído es un 10% del TPD Actual.

$$Tat = 10\% TPDA (Actual)$$

1.1.3.4.4. Tránsito generado (TG)

Está constituido por la cantidad de viajes que se efectuarían, en el caso de que las mejoras propuestas se lo realicen. Ocurre dentro de los 2 años de haber realizado la mejora o construcción de la vía. Para el primer año de operación de la carretera se estima un 20% del tráfico actual. [6]

$$TG = 20\% TPDA (1 a\tilde{n}o)$$

1.1.3.4.5. Tránsito Futuro (TF)

El diseño se basa en una predicción del tráfico a 15 o 20 años y el crecimiento normal del tráfico, el tráfico generado y el crecimiento del tráfico por desarrollo. En caso de no contar con la información estadística, las proyecciones se harán en base a la tasa de crecimiento poblacional o al consumo de combustible. [6]

Tabla 4: Tasa de crecimiento anual del tránsito (%)

Periodo	Liviano	Bus	Camión
2005-2010	4.49	2.12	3.41
2011-2015	3.99	1.89	3.03
2016-2020	3.60	1.70	2.72
2001-2040	3.27	1.54	2.48

Fuente: Coordinación de Factibilidad -MTOP

$$TF = TA * (1+i)^n$$

Donde:

TF = Trafico futuro

TA= Transito actual

i = Tasa de crecimiento del transito

n = Número de años proyectado

1.1.3.4.6. Tipos de conteos

- Manuales. Irremplazables por proporcionarnos información sobre la composición del tráfico y los giros en intersecciones de las que mucho depende el diseño geométrico de la vía. [5]
- Automáticos. Permiten conocer el volumen total del tráfico. Siempre deben ir acompañados de conteos manuales para establecer la composición del tráfico.
 [5]

1.1.3.5. Velocidad

1.1.3.5.1. Velocidad de Diseño

La velocidad de diseño es la velocidad guía o de referencia que permite definir las características geométricas mínimas de todos los elementos del trazado, en condiciones de comodidad y seguridad. [7]

La selección de la velocidad de diseño depende de la importancia o categoría de la futura carretera, de la configuración topográfica del terreno, de los usos de la tierra, del servicio que se quiere ofrecer, de las consideraciones ambientales, de la homogeneidad a lo largo de la carretera, de las facilidades de acceso (control de accesos), de la disponibilidad de recursos económicos y de las facilidades de financiamiento. [7]

Tabla 5: Velocidad de diseño según clasificación de carreteras

VELOCIDAD DE DISEÑO EN Km/h												
CLASE	TPDA	RECOMENDABLE ABSOLUTA										
		LL	О	M	LL	О	M					
RI O RII	> 8000 TPDA	120	110	90	110	90	80					
I	3000 a 8000 TPDA	110	100	80	100	80	60					
II	1000 a 3000 TPDA	100	90	70	90	80	50					
III	300 a 1000 TPDA	90	80	60	80	60	40					
IV	100 a 300 TPDA	80	60	50	60	35	25					
V	< 100 TPDA	60	50	40	50	35	25					

- Los valores recomendados se emplearán cuando el TPDA es cercano al límite superior de la respectiva categoría de la vía
- Los valores absolutos se emplean cuando el TPDA es cercano al límite inferior de la respectiva categoría de vía o cuando la topografía sea escarpada.
- Para la categoría IV y V en caso de relieve escarpado se podrá reducir la Vd mínimo a 20 km/h.

Fuente: Normas para Estudios y Diseño Vial- MTO-2003

1.1.3.5.2. Velocidad de Circulación

Es la velocidad real de un vehículo a lo largo de una sección específica de carretera y es igual a la distancia dividida para el tiempo de circulación del vehículo o a la suma de las distancias recorridas por todos los vehículos dividida para la suma de los tiempos de recorrido correspondientes. [5]

Tabla 6: Relación de la velocidad de operación con la velocidad de diseño para carreteras de 2 carriles.

VELOCIDAD DE DISEÑO	VELOCIDAD DE OPERACIÓN PROMEDIO Km/h Volumen de tránsito							
Km/h	Bajo	Medio	Alto					
40	38	35	33					
50	47	42	40					
60	56	52	45					
70	63	60	55					
80	72	65	60					
100	88	75	-					
120	105	85	-					

Fuente: NEVI-12 Norma para estudios viales, Vol. 2A

1.1.3.6. Diseño geométrico

Se encarga de determinar las características geométricas de una vía a partir de factores como el tránsito, topografía, velocidades, de modo que se pueda circular de una manera cómoda y segura. El diseño geométrico de una carretera está compuesto por tres elementos bidimensionales que se ejecutan de manera individual, pero dependiendo unos de otros, y que al unirlos finalmente se obtiene un elemento tridimensional que corresponde a la vía propiamente. [8]

- a. **Alineamiento Horizontal:** Compuesto por ángulos y distancias, dando lugar a un plano horizontal con coordenadas norte y este.
- b. **Alineamiento Vertical:** Compuesto por pendientes y distancias horizontales, formando un plano horizontal vertical con abscisas y cotas.
- c. **Diseño Transversal:** Integrado por distancias horizontales y verticales dando paso a un plano transversal con distancias y cotas.

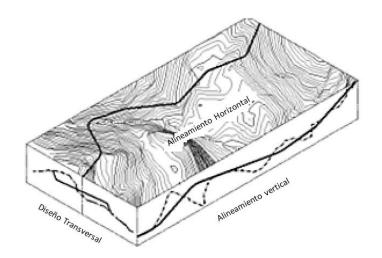


Gráfico 2: Componentes del diseño geométrico

Fuente: Diseño geométrico de vías – Ing. John Agudelo

1.1.3.7. Diseño Geométrico Horizontal

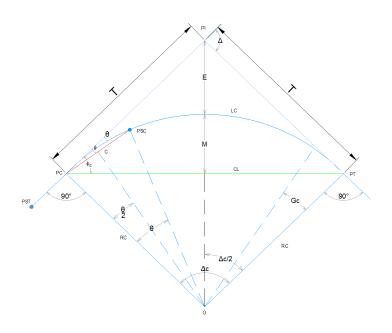
El diseño geométrico en planta de una carretera, o alineamiento horizontal, es la proyección sobre un plano horizontal de su eje real o espacial. Dicho eje horizontal está constituido por una serie de tramos rectos denominados tangentes, enlazados entre sí por curvas. [9]

Abscisa

Es la distancia medida a lo largo del eje, desde el punto inicial del proyecto hasta la abscisa del punto requerido. [8]

Estación

Son estacas colocadas en algunos puntos, las cuales pueden ser de dos tipos, redondas y no redondas. Las primeras se colocan con el siguiente criterio:


- En terrenos montañosos y escarpados se colocan cada 10 metros en tangente, mientras que para terrenos planos y ondulados van cada 20 metros.
- En lo que respecta a las curvas las distancias anteriores se reducen a la mitad, aunque lo usual es que su distancia dependa del radio de la curva. Para radios menores de 70 metros se emplea 5 metros, mientras que, para radios iguales o mayores, el valor es de 10 metros. [8]

1.1.3.7.1. Curvas circulares simples

Las curvas horizontales circulares simples son arcos de circunferencia de un solo radio que unen dos tangentes consecutivas, conformando la proyección horizontal de las curvas reales o espaciales. [9]

Elementos de una curva circular

Gráfico 3: Elementos de la curva circular simple

Fuente: Luis Javier Orozco Analuiza

Donde:

PI: Punto de intersección de la prolongación de las tangentes.

PC: Punto de donde empieza la curva simple.

PT: Punto de dónde termina la curva simple.

φ: Ángulo de deflexión de las tangentes.

Δ: Ángulo central de la curva circular.

Ángulo formado por la curva, en curvas circulares simples es igual a la deflexión de las tangentes.

 θ : Angulo de deflexión a un punto sobre la curva.

Es el ángulo entre la prolongación de la tangente en el PC y la tangente en el punto considerado.

$$\theta = \frac{Gc \ x \ 1}{20}$$

Gc: Grado de curvatura de la curva circular.

Ángulo formado por un arco de 20 metros. El valor máximo del grado de curvatura permite circular con seguridad la curva adoptando el peralte máximo a la velocidad de diseño. Se lo determina mediante la siguiente fórmula:

$$\frac{Gc}{20} = \frac{360^{\circ}}{2\pi R}$$

Donde:

Gc: Grado de curvatura.

R: Radio de curvatura.

T: Tangente de la curva circular o sub tangente.

Es la distancia entre el PI y el PC o entre el PI y el PT de la curva, medida sobre la prolongación de las tangentes.

$$T = R * tan \frac{\alpha}{2}$$

14

E: External.

La distancia mínima que existente entre el PI y la curva circular. Se lo determina con la siguiente fórmula:

$$E = T * tan\left(\frac{\alpha}{4}\right)$$

M: Ordenada media.

Longitud de la flecha en el punto medio de la curva. Se determina mediante la siguiente fórmula:

$$M = R - R \, \cos\left(\frac{\alpha}{2}\right)$$

C: Cuerda.

Es la recta comprendida entre dos puntos de la curva.

$$C = 2 * R * \sin \frac{\theta}{2}$$

CL: Cuerda Larga.

Es la recta comprendida entre los puntos PC y PT de la curva.

$$CL = 2 * R * sin \frac{\Delta}{2}$$

Lc: Longitud de la curva circular.

Longitud del arco entre el PC y PT. Se lo determina mediante la siguiente fórmula.

$$Lc = \frac{\pi R\alpha}{180}$$

R: Radio de Curvatura.

Es el radio de la curva circular y se denota con la letra "R" y su fórmula está en función del grado de curvatura.

$$R = \frac{1145.92}{Gc}$$

R: Radio mínimo de curvatura Horizontal.

Es el valor más bajo que posibilita la seguridad en el tránsito a una velocidad de diseño dada en función del máximo peralte adoptado y el coeficiente de fricción lateral correspondiente.

$$R = \frac{V^2}{127(e+f)}$$

Donde:

R: Radio mínimo de curvatura.

V: Velocidad de diseño.

e: Peralte de la curva

f: Coeficiente de fricción lateral.

Tabla 7: Radios mínimos en función del peralte y coeficiente de fricción

Velocidad de	''f''	Ra	dio míni	mo calcul	ado	Radio mínimo recomendado				
diseño (km/h)	Máximo	10%	8%	6%	4%	10%	8%	6%	4%	
20	0.350		7.32	7.58	5.08		18	20	20	
25	0.315		12.48	13.12	13.66		20	25	25	
30	0.264		19.47	20.5	21.67		25	30	30	
35	0.255		25.79	30.62	32.7		30	36	35	
40	0.221		41.88	44.65	48.27		42	45	50	
45	0.200		55.75	59.94	64.82		68	60	65	
50	0.190		72.91	78.74	86.69		75	80	90	
60	0.165	106.97	115.7	125.98	138.28	110	120	130	140	
70	0.160	154.55	157.75	185.73	203.67	180	170	185	205	
80	0.140	209.97	229.98	251.97	279.97	210	230	255	280	
90	0.134	272.58	298.04	328.7	300.55	275	300	330	370	
100	0.130	342.35	374.95	414.42	463.16	350	375	415	465	
110	0.124	425.34	467.04	517.8	550.95	430	470	520	585	
120	0.120	615.39	568.93	529.92	708.86	520	570	630	710	

Fuente: Ministerio de Transporte y Obras Públicas (MTOP 2003)

Se podrá utilizar un radio mínimo de 15 m cuando se trate de: Aprovechar la infraestructura existente, Relieve difícil (Escarpado) y Caminos de bajo costo.

1.1.3.7.2. Curvas de Transición

Son espirales que tienen por objetivo evitar las discontinuidades en la curvatura del trazo, por lo que, en su diseño deberán ofrecer las mismas condiciones de seguridad, comodidad y estética que el resto de los elementos del trazo. [10]

Clotoide o Espiral de Euler

Es la forma más apropiada para efectuar transiciones. La curva con radio infinito inicia desde punto de la tangente hasta el radio de la curva circular y permite el incremento o decrecimiento progresivo de la fuerza centrífuga sobre el vehículo. [6]

TE PI Constant of the second o

Gráfico 4: Curva de transición

Fuente: Luis Javier Orozco Analuiza

Donde:

R = Radio de curva de transición

Rc = Radio de la curva circular

TE = Punto de cambio de tangente a transición

EC = Punto de cambio de transición a curva circular

CE = Punto de cambio de la curva circular a la siguiente transición

ET = Punto de cambio de la transición a la siguiente tangente

Longitud de la espiral.

Arco de transición que va desde el final de la tangente hasta el inicio de la curva circular (TE - EC) o desde el final de la curva circular hasta el inicio de la siguiente tangente (CE – ET). [6]

$$Le = 0.0072 \frac{V^3}{R * C}$$

Donde:

Le = Longitud mínima de la espiral

V = Velocidad de diseño

R = Radio de la curva circular

C = Coeficiente de comodidad y seguridad

En condiciones para un nivel medio de seguridad y confort se recomienda C= 2, esto varía de 1 a 3 dependiendo la seguridad y el confort que se desea ofrecer.

Tabla 8: Valores mínimos para longitud de transición

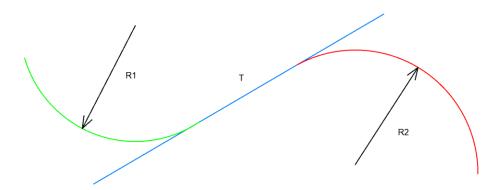
V (km/h)	20	25	30	35	40	45	50	60	70	80	90	100	110	120
R min	18	20	25	30	42	56	75	110	160	210	275	350	430	520
Le min	30	30	40	52	55	59	60	70	80	90	95	100	110	120

Fuente: "Normas de Diseño Geométrico de Carreteras" MTOP-001-F-2003

Longitud mínima absoluta de transición. Para determinar se emplea la siguiente expresión

$$Le = 0.56 * V$$

Donde:


Le = Longitud mínima de la espiral

V = Velocidad de diseño

1.1.3.7.3. Curva de inflexión o curva de reversa.

Son aquellas compuestas de dos curvas circulares, de sentido contario, contiguas y con tangente común en el punto de unión. En la práctica no pueden estar contiguas, desde luego que la distancia mínima del punto de la primera al punto de la segunda será cuando menos igual a la suma de las transiciones de ambas curvas. Este sería el mínimo que se dejara entre curvas inversas, aunque es preferible que haya además un tamo de tangente intermedia. [11]

Gráfico 5: Curva de inflexión o curva de reversa

Fuente: Luis Javier Orozco Analuiza

1.1.3.7.4. Peraltes

Es la pendiente que se da a la corona hacia el centro de la curva para contrarrestar parcialmente el efecto de la fuerza centrífuga que actúa sobre el vehículo al recorrer una curva horizontal. [12]

$$e = \frac{V^2}{127R} - f$$

Donde:

e = Peralte de la curva

V = Velocidad de diseño

R = Radio de la curva

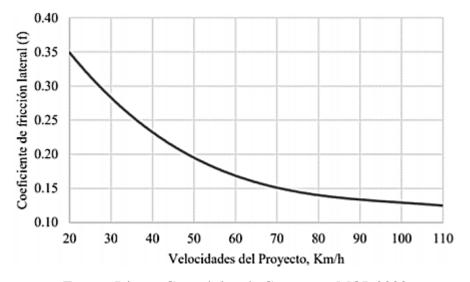
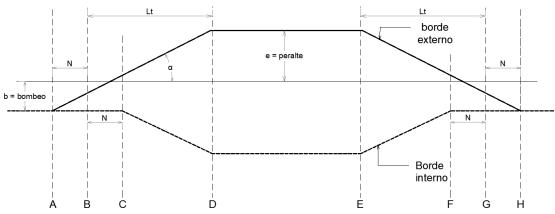

f = Máximo coeficiente de fricción lateral

Tabla 9: Valores de peralte en función del tipo del área

Tasa de sobreelevación "e" en %	Tipo de Área
10	Rural Montañosa
8	Rural plana
6	Suburbana
4	Urbana

Fuente: A Policy on Geometric Design of Highways and Streets

Gráfico 6: Coeficientes de fricción lateral para diferentes velocidades del proyecto



Fuente: Diseño Geométrico de Carreteras, MOP 2003

Transición de peralte

Tiene por objetivo contrarrestar la fuerza centrífuga de un vehículo, la transición del peralte viene a ser trazada del borde de la calzada, en la que se desarrolla el cambio gradual de la pendiente de dicho borde, entre la que corresponde a la zona en tangente, y la que corresponde a la zona peraltada de la curva.

Gráfico 7: Transición del peralte

Fuente: Luis Javier Orozco Analuiza

Magnitud de peralte

El uso del peralte provee comodidad y seguridad al vehículo que transita sobre el camino en curvas horizontales, sin embargo, el valor del peralte no debe sobrepasar ciertos valores máximos ya que un peralte exagerado puede provocar el deslizamiento del vehículo hacia el interior de la curva cuando el mismo circula a baja velocidad. [6]

Se recomienda para vías de dos carriles con capas de rodadura asfáltica, de concreto o empedrada un peralte máximo del 10% con velocidades de diseño mayores a 50 Km/h; un del 8% para caminos con capa granular de rodadura (caminos vecinales tipo 4, 5 y 6) y velocidades hasta 50 Km/h. [6]

Punto de Intersección

Total de Intersección

Arco Circular

Registro de Intersección

Arco Circular

Registro de Intersección

Gráfico 8: Diagrama de transición espiral del peralte

Fuente: Luis Javier Orozco Analuiza

Longitud de transición

Distancia que sirve para efectuar la transición de las pendientes transversales entre una sección normal y otra peraltada alrededor del eje de la vía o de uno de sus bordes. [6]

Lmin = 0.56 * Vd

Donde:

L min = Longitud de transición mínima

Vd = Velocidad de diseño

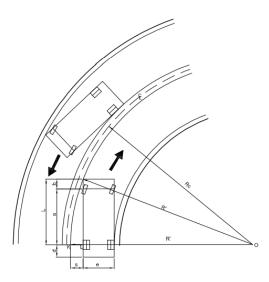
1.1.3.7.5. Sobre ancho en curvas

Ancho adicional que se diseñan en curvas horizontales de radios pequeños, con el objetivo de facilitar las maniobras de los automóviles de forma eficiente, segura, cómoda y económica. [5]

El sobre ancho varía en función del tipo del vehículo, el radio de la curva y la velocidad de diseño para el cual se utilizará la siguiente fórmula para su cálculo.

$$Sa = n\left(R - \sqrt{R^2 - L^2}\right) + \frac{V}{10\sqrt{R}}$$

Donde:


Sa = Sobre ancho

n = Número de carriles

R = Radio de curvatura circular

L = Longitud entre la parte frontal y el eje posterior del vehículo de diseño (m)

Gráfico 9: Sobre ancho en curvas

Fuente: Normas de diseño geométrico de carreteras MTOP-2003

Tabla 10: Sobre ancho mínimo para varias velocidades

Velocidad de diseño	Sobre ancho
≤ 50 Km/h	30 cm
> 50 km /h	40cm

Fuente: Normas de diseño geométrico de carreteras MTOP-2003

1.1.3.7.6. Distancia de visibilidad

Distancia que permite al conductor ver hacia delante de tal forma que permita efectuar una circulación segura y eficientemente. [13]

Distancia de visibilidad de parada (Dp)

Distancia requerida por un conductor para detener su automóvil en marcha, cuando surge una situación de peligro o percibe un objeto inesperado delante de su recorrido.

[5]

Está compuesto por dos componentes, el primer componente es la distancia de percepción más la reacción del conductor identificada como d1, el segundo componente hace referencia a la distancia de frenado representado con d2. [5]

Posición Iniciat:
Perche la Situación
Para o continúa

Vo

de

de

de

de

Posición Final:
Para o continúa
Par

Gráfico 10: Distancia de parada

Fuente: Norma Ecuatoriana Vial NEVI -12-MTOP, VOL 2^a, Pág.125

Para la distancia mínima de visibilidad de parada de un automóvil se determina sumando las distancias de d1 más d2. Para cálculo de "d1" usaremos de la siguiente expresión.

$$d1 = 0.7 * Vc$$

Y para "d2" haremos uso de la siguiente formula:

$$d2 = \frac{Vc^2}{254 * f}$$

Donde:

d1 = distancia recorrida durante el tiempo de reacción (m)

d2 = distancia de frenado sobre la calzada (m)

Vc = Velocidad de circulación (km/h)

f = coeficiente de fricción longitudinal

Experiencias e investigaciones realizadas indican que el coeficiente de fricción longitudinal (f) varía en función diferentes factores tales como la velocidad, el tipo de ruedas, la presión del aire en las ruedas, presencia de humedad y el tipo de pavimento. [5] Teniendo en cuenta los factores antes mencionados el coeficiente de fricción longitudinal en curvas con pavimentos mojados se determina con la siguiente fórmula.

$$f = \frac{1.15}{Vc^{0.3}}$$

Donde:

Vc = Velocidad de circulación (km/h)

f = coeficiente de fricción longitudinal

Tabla 11: Distancia de visibilidad mínima de parada Criterio de diseño: Pavimentos mojados y Gradiente Horizontal (0%)

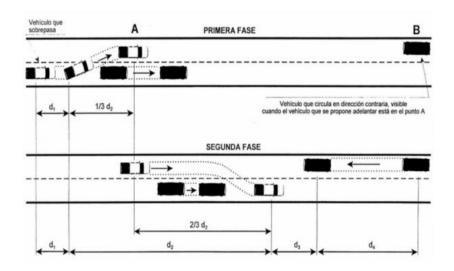
Velocidad	Velocidad de circulación		ón + Reacción frenado	Coeficiente de	Distancia de frenado "d2"]	de visibilidad para a (d=d1+d2
de diseño - Vd (km/h)	asumida - Vc (km/h)	Tiempo (seg)	Distancia recorrida "d" (m)	fricción longitudinal "i"	Gradiente cero (m)	Calculada (m)	Recomendada (m)
20	20	2.5	13.89	0.47	3.36	17.25	20
25	24	2.5	16.67	0.44	5.12	21.78	25
30	28	2.5	19.44	0.42	7.29	26.74	30
35	33	2.5	22.92	0.4	10.64	33.56	35
40	37	2.5	25.69	0.39	13.65	39.54	40
45	42	2.5	29.17	0.37	18.53	47.7	50
50	46	2.5	31.94	0.36	22.85	54.79	55
60	55	2.5	38.19	0.35	34.46	72.65	70
70	63	2.5	43.75	0.33	47.09	90.84	90
80	71	2.5	49.31	0.32	62.00	111.3	110
90	79	2.5	54.86	0.31	79.25	134.11	135
100	86	2.5	59.72	0.3	96.34	156.06	160
110	92	2.5	63.89	0.3	112.51	176.4	180
120	100	2.5	7.53	0.29	145.88	217.41	220

Fuente: Normas de Diseño Geométrico de carreteras MOP-2003

Tabla 12: Distancia de visibilidad mínima para parada

Criterio de diseño: Pavimentos mojados cuesta abajo (-) y cuesta arriba (+)

$$Dp = \left(\frac{Vc * t}{3} * R\right) + \left(\frac{Vc - 2}{254 * (1 + / -G9)}\right)$$


Velocidad	Velocidad de circulación	Coeficiente de				Gradiente	"G" %			
de diseño - Vd (km/h)	asumida - Vc (km/h)	fricción longitudinal "i"	-12	-9	-6	-3	3	6	9	12
20	20	0.468	13.75	13.7	13.6	13.27	14.34	14.13	14.06	14.02
25	24	0.443	16.47	16.4	16.26	15.78	17.33	17.02	16.91	16.85
30	28	0.423	19.18	19.08	18.89	18.25	20.35	19.93	19.77	19.69
35	33	0.403	22.55	22.42	22.15	21.27	24.18	23.59	23.37	23.26
40	37	0.389	25.23	25.07	24.73	23.63	27.28	26.54	26.27	26.13
45	42	0.375		28.36	27.98	26.52	31.22	30.26	29.91	
50	46	0.365		30.98	30.47	28.78	34.42	33.25	32.83	
60	55	0.345		36.82	35.09	33.71	41.75	40.07	39.47	
70	63	0.332			40	37.89	48.44	46.22		
80	71	0.32			40.99	41.9	55.28	52.45		
90	79	0.31			45.81	45.73	62.28	58.76		
100	86	0.302			50.54	48.93	68.54			
110	92	0.296				51.57	74			
120	100	0.286				56.14	84.24			

Fuente: Normas de Diseño Geométrico de Carreteras MOP-2003

Distancia de visibilidad de adelantamiento (Da)

Distancia suficiente para que un conductor de un automóvil puede adelantar a otro que circula por el mismo carril en condiciones de seguridad, sin interferir al otro automóvil que venga en sentido contrario. [13]

Gráfico 11: Etapas de distancia de visibilidad de adelantamiento en dos carriles

Fuente: Norma Ecuatoriana Vial NEVI -12-MTOP, VOL 2ª, Pág.130

$$Da = d1 + d2 + d3 + d4$$

Donde:

d1 = distancia recorrida por el vehículo rebasante en el tiempo de
 percepción/reacción y durante la aceleración inicial hasta alcanzar el carril izquierdo
 de la carretera. [6]

d2 = distancia recorrida por el vehículo rebasante durante el tiempo que ocupa el carril izquierdo. [6]

d3 = distancia entre el vehículo rebasante y el vehículo que viene en sentido opuesto, al final de la maniobra. Asumir de 30 m a 90 m. [6]

d4 = distancia recorrida por el vehículo que viene en sentido opuesto durante dos tercios del tiempo empleado por el vehículo rebasante, mientras usa el carril izquierdo; es decir, 2/3 de d2. Se asume que la velocidad del vehículo que viene en sentido opuesto es igual a la del vehículo rebasante. [6]

Para el cálculo de las distancias parciales mencionadas anteriormente se aplicarán las siguientes fórmulas.

$$d1 = 0.14 * t1 * (2V - 2m + a * t1)$$

$$d2 = 0.28 V * t2$$

$$d3 = 30m a 90 m$$

$$d4 = 0.18 * V * t2$$

Donde:

d1, d2, d3, d4 = Distancias parciales (m)

t1 = Tiempo de la maniobra inicial (s)

t2 = Tiempo en el cual el automóvil rebasante ocupa el carril izquierdo (m)

V = velocidad promedio rebasante (km/h)

m = diferencia de velocidades entre el automóvil rebasado y el automóvil rebasante se considera 16 km/h

a = Aceleración promedio del automóvil rebasante (km/h) y (s)

Según la AASHTO, en pruebas y observaciones realizadas, la distancia de rebasamiento varía en función de la variación de la velocidad para la cual haremos uso de la siguiente fórmula para su determinación. [6]

$$dr = 9.54 V - 218 \text{ Para} (3 < V > 100)$$

Donde:

V= Velocidad promedio del automóvil rebasante (km/h)

dr = distancia de rebasamiento (m)

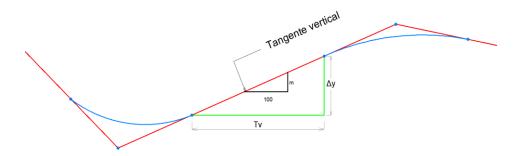
Tabla 13: Distancia mínima de visibilidad para el rebasamiento de un vehículo

Velocidad	Velocida	ad de los			
de diseño	vehículos km/h		Distancia mínima de rebasamiento r		
- Vd (km/h)	Rebasado	Rebasante	Calculada	Recome	ndada
25	24	40			(90)
30	28	40 44			(80)
35	33	49			` /
-			260	270	(130)
40	35	51	268	270	(150)
45	39	55	307	310	(180)
50	43	59	345	345	(210)
60	50	66	412	415	(290)
70	58	74	488	490	(380)
80	66	82	563	565	(480)
90	73	89	631	640	
100	79	95	688	690	
110	87	103	764	830	*
120	94	110	831	830	
Nota:	Nota:				
* Valor ut	* Valor utilizado con margen de seguridad por sobrepasar la velocidad de				

^{*} Valor utilizado con margen de seguridad por sobrepasar la velocidad de rebasamiento los 100 kph

Fuente: Normas de Diseño Geométrico de Carreteras- MOP 2003

1.1.3.8.Diseño Geométrico Vertical


Es la proyección del eje real de la vía sobre una superficie vertical paralela al mismo. Al eje se lo conoce como rasante o subrasante. [14]

1.1.3.8.1. Tangentes verticales

Se caracterizan por su pendiente y por su longitud, están limitadas por dos curvas sucesivas. [14]

⁽⁾ Valor utilizado para caminos vecinales

Gráfico 12: Tangente Vertical

Fuente: Luis Javier Orozco Analuiza

Donde:

Tv = Distancia medida horizontalmente entre el fin de la curva anterior y el principio de la siguiente.

m = Relación entre el desnivel y la distancia horizontal entre dos puntos de la misma por lo tanto se determinará de la siguiente forma.

$$m = \left(\frac{\Delta y}{Tv}\right) * 100$$

1.1.3.8.2. **Gradientes**

Las gradientes dependen directamente de la topografía del terreno por lo que los valores tienen que ser bajos con el fin de permitir velocidades de circulación razonables y facilitar la operación de los vehículos. [6]

Tabla 14: Valores de diseño de las gradientes longitudinales máximas

CLASE DE CARRETERA	TPDA -Año final de Diseño	RECOMENDABLE		ABS	SOL	UTA	
		LL	О	M	LL	0	M
RI O RII	> 8000	2	3	4	3	4	6
I	3000 a 8000	3	4	6	3	5	7
II	1000 a 3000	3	4	7	4	5	6
III	300 a 1000	4	6	7	6	7	9
IV	100 a 300	5	6	8	6	8	12
V	< 100	5	6	8	6	8	14

Fuente: Normas de Diseño Geométrico de Carreteras- MOP 2003

Para gradientes del:

8 - 10%, longitud máxima 1000 m

10 - 12%, longitud máxima 500 m

12-14 %, longitud máxima 250 m

Gradientes mínimas

Se adopta un gradiente del 0.5 % con el objetivo de drenar lateralmente las aguas de lluvias. [6]

1.1.3.8.3. Curvas verticales

Elemento del diseño en perfil que permite el enlace de dos tangentes verticales consecutivas, tal modo que a lo largo de su longitud se efectúa el cambio gradual de la pendiente de la tangente de entrada a la pendiente de la tangente de salida. [14] Están definidas por su parámetro de curvatura K, que equivale a la longitud de la curvatura en el plano horizontal, para cada 1% de variaciones en la pendiente. [5]

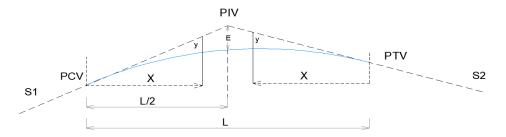
$$K = \frac{L}{A}$$

Donde:

K = Parámetro de curvatura

L = Longitud de la curva vertical

A = Valor absoluto de la diferencia algebraica de las pendientes}


Tabla 15: Coeficiente "K" para curvas verticales mínimas

CLASE DE CARRETERA	TPDA -Año final de Diseño	RECOMENDABLE ABSOLU		JTA			
		LL	O	M	LL	O	M
RI O RII	> 8000	115	80	43	80	43	28
I	3000 a 8000	80	60	28	60	28	12
II	1000 a 3000	60	43	19	43	28	7
III	300 a 1000	43	28	12	28	12	4
IV	100 a 300	28	12	7	12	3	2
V	< 100	12	7	4	7	3	2

Fuente: Norma de Diseño Geométrico de Carreteras MOP 2003

La curva vertical recomendada es la parábola cuadrática, cuyos elementos principales son las siguientes.

Gráfico 13: Elementos de curva vertical simétrica

Fuente: Luis Javier Orozco Analuiza

Donde:

PCV = Inicio de la curva vertical

PIV = Punto de intersección de las tangentes verticales

PTV = Final de la curva vertical

Lcv = Longitud de curva vertical medida en proyección horizontal (m)

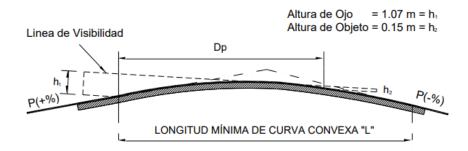
S1 = Pendiente de la tangente de entrada (%)

S2 = Pendiente de la tangente de salida (%)

A = Diferencia algebraica de pendientes (%) = A = S1 - S2

E = Externa. Ordenada vertical desde el PIV a la curva (m)

$$E = \frac{AL}{800}$$


X = Distancia horizontal a cualquier punto desde el PCV o desde el PTV.

Y = Ordenada vertical en cualquier punto.

Tipos de curvas verticales

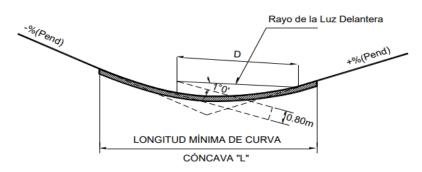

Existen dos tipos de curvas verticales en cresta o convexas y en columpio o cóncava. Las curvas convexas se diseñan de acuerdo con la más amplia distancia de visibilidad para la velocidad de diseño, mientras las curvas cóncavas conforme a la distancia que alcanza a iluminar los faros del vehículo de diseño. [11]

Gráfico 14: Curva convexa

Fuente: Manual de Carreteras: Diseño Geométrico 2018, pág. 178

Gráfico 15: Curva cóncava

Fuente: Manual de Carreteras: Diseño Geométrico 2018, pág.181

1.1.3.8.4. Diseño Geométrico de la Sección Transversal

Consiste en la definición de la ubicación y dimensiones de los elementos que forman la carretera, y su relación con el terreno natural, en cada punto de ella sobre una sección normal al alineamiento horizontal. [15]

Elementos geométricos de la sección transversal

La sección transversal está comprendida por el número de carriles, sobre anchos, espaldones, calzada, bermas, cunetas, taludes, superficie de rodadura y elementos complementarios como las barreras de seguridad.

Calzada o superficie de rodadura

Parte de la sección transversal destinada a la circulación de los automóviles, constituida por uno o más carriles con el suficiente ancho que permita la circulación automotores de una manera cómoda y segura. [15]

Ancho de calzada. El ancho y el número de carriles de la calzada se determinan en base al análisis de capacidad y el nivel de servicio deseado al final del periodo de diseño. [15]

Tabla 16: Ancho de calzada

		Ancho de la ca	alzada (m)
CLASE DE CARRETERA	Tráfico Proyectado TPDA	Recomendado	Absoluto
RI O RII	> 8000	7.30	7.30
I	3000 a 8000	7.30	7.30
II	1000 a 3000	7.30	6.50
III	300 a 1000	6.70	6.00
IV	100 a 300	6.00	6.00
V	< 100	4.00	4.00

Fuente: Norma de Diseño Geométrico de Carretas MOP 2003

Bermas espaldón

Franja longitudinal, paralela y adyacente a la calzada o superficie de rodadura de la carretera, cuyas funciones principales son provisionar un estacionamiento temporal para los automóviles, soportar lateralmente al pavimento y provisionar espacio para colocación de señales de tránsito. [6]

Tabla 17: Valores de diseño para el ancho de espaldones (m)

CLASE DE CARRETERA	TPDA -Año final de Diseño	RECOMENDABLE			ABSOLUTA		
		LL	О	M	LL	0	M
RI O RII	> 8000	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)	(1.2)
I	3000 a 8000	3.0*	3.0*	2.5*	3	3.0*	2.0*
II	1000 a 3000	2.5*	2.5*	2.0*	2.5**	2.0**	1.5**
III	300 a 1000	2.5*	2.5*	1.5*	2.5	2.0	1.5
IV	100 a 300	2.0**	1.5*	1.0*	1.5	1.0	0.5
V	< 100	0.6	0.6	0.6	0.6	0.6	0.6

LL= Terreno Llano O= Terreno Ondulado M = Terreno Montañoso

Los dos espaldones deben pavimentarse con concreto asfáltico.

Fuente: Normas de Diseño Geométrico de Carreteras MOP 2003

Cunetas

Son zanjas construidas paralelamente a las bermas, destinadas a facilitar el drenaje superficial longitudinal de la carretera. Generalmente son de sección triangular, sus dimensiones van en función del análisis hidráulico del sector. [15]

^{*} La cifra en paréntesis es la medida del espaldón interior de cada calzada y la otra es para el espaldón exterior.

^{**} Se recomienda que el espaldón debe pavimentarse con el mismo material de la capa de rodadura del camino correspondiente.

Taludes

Son superficies laterales inclinadas que limitan la explanación. Si la sección es en corte el talud empieza enseguida de la cuneta. Si la sección es en terraplén el talud empieza en el borde de la berma. Las inclinaciones para los taludes se determinan en base a estudios geológicos y geotécnicos del lugar. [15]

Tabla 18: Valores de diseño recomendables de los taludes en terrenos planos

CLASE DE CARRETERA	TPDA	Talud	
		Corte	Relleno
RI O RII	> 8000	3:1 * **	4:1
I	3000 a 8000	3:1	4:1
II	1000 a 3000	2:1	3:1
III	300 a 1000	2:1	2:1
IV	100 a 300	1:8-1:1	1.5-2:1
V	< 100	1:8-1:1	1.5-2:1

Fuente: Normas de Diseño Geométrico de Carreteras MOP -2003

Derecho de Vía Explanación Cuneta Corona Chaflán Calzada Corte Carril Carril Rasante Bombeo Talud corte Corte Cero Carpeta Eje Sub rasante Terraplén Inclinación Sub base Talud Terreno Terraplén Chaflán Terraplén

Gráfico 16: Sección transversal típica

Fuente: Diseño Geométrico de Carreteras Cárdenas, James

1.1.3.9. Suelos

Dentro de la ingeniería civil podemos definir que es el conjunto de partículas minerales, producto de la desintegración mecánica o de la descomposición química de rocas preexistentes. Soporte último de todas las infraestructuras, por lo que es

necesario estudiar su comportamiento ante la perturbación que supone cualquier asentamiento en el caso de una carretera. [16]

1.1.3.9.1. Tipos de suelos

Se clasifican en función de la naturaleza de la roca madre y del tamaño de partículas que lo componen.

Suelos granulares: Compuesto por partículas agregadas y sin cohesión, poseen una buena capacidad portante y una elevada permeabilidad. [16]

Dentro de este tipo de suelo se divide en dos grupos.

- Grava. Acumulaciones sueltas de fragmentos de rocas que tienen más de 2 mm de diámetro. [17]
- Arenas. Material de granos finos procedentes del desgate de las rocas o de la trituración artificial cuyas partículas van desde 2 mm has los 0.05 mm de diámetro. [17]

Suelos cohesivos: Se caracteriza por un tamaño fino de partículas inferior a 0.08 mm, desde el punto de vista mecánico la cohesión es su propiedad principal. [16]

Se divide en dos grandes grupos.

• **Limos.** - Formado por partículas de grano muy fino entre 0.05 y 0.005 mm. Se clasifican en:

Limo inorgánico. Producto de la trituración de la grava de las canteras. Limo orgánico. Son de carácter plástico se suele hallar en los ríos.

• Arcillas. - Son partículas sólidas cuyos diámetros son menores al 0.005 mm.

Suelos orgánicos: Suelos formados por la descomposición de residuos de materia orgánica de origen animal o vegetal, tienen baja capacidad portante y alta permeabilidad por lo que sus propiedades resistentes son bajas. [16]

1.1.3.9.2. Obtención de muestras de suelos

Para la obtención de las muestras de suelos se inicia de una investigación de campo, en el que posteriormente se ejecutara la excavación de calicatas o pozos exploratorios a 500 m o 1000m dentro de la faja de la vía y a 1.5m de profundidad respecto del nivel de la sub rasante. [18]

Obtenidas las muestras del suelo se realizará los ensayos de laboratorio con el fin de poder clasificar, graficar y poder interpretar los resultados para el diseño de la estructura del pavimento. [18]

1.1.3.9.3. Propiedades de los suelos

Los ensayos que nos permite conocer las propiedades de los suelos en carreteras son: análisis granulométrico, límites de Atterberg, Proctor modificado, y la determinación de la capacidad portante del suelo mediante el índice del CBR. [16]

Análisis granulométrico.

Consiste en separar una muestra de suelo seleccionada, en grupos de partículas que tienen el mismo rango de tamaños, se lo realiza mediante la utilización de tamices.

Límites de Atterberg

Se define como el grado de plasticidad de un suelo con su contenido en agua o humedad, expresado en función del peso seco de la muestra, se clasifican en cuatro estados de consistencia.

- Limite líquido (LL): Contenido de humedad del suelo en el límite entre el estado semilíquido y plástico.
- Limite plástico (LP): Contenido de humedad del suelo en el límite entre los estados semi sólido y plástico.
- Índice de plasticidad (IP): Diferencia entre los límites líquidos y plástico, rango de humedad dentro del cual el suelo se mantiene plástico.

$$IP = LL - LP$$

Tabla 19: Clasificación del suelo según el Índice de Plasticidad (Atterberg)

Índice plástico	Plasticidad	Características
IP = 0	No plástico (NP)	Suelos extensos de arcillas
IP < 7	Baja Plasticidad	Suelos poco arcillosos
7 < IP < 17	Medianamente Plástico	Suelos arcillosos
IP > 17	Altamente Plástico	Suelos muy arcillosos

Fuente: Mecánica de suelos y cimentaciones, Carlos Crespo, 5ta. Edición 2004

Proctor modificado

Determina el peso por unidad de volumen de un suelo que ha sido compactado con diferentes contenidos de humedad con el objetivo de determinar el peso volumétrico seco máximo $Y_{d max}$ que puede alcanzar un material, así como la humedad óptima W_{OPT} a la que se puede hacer la compactación. [18]

DENSIDAD MÁXIMA

Línea de saturación (aire cero)

Rama seca
Rama húmeda húmeda húmeda (%)

Gráfico 17: Curva humedad densidad seca

Fuente: Manual de carreteras. Vol. II Construcción mantenimiento

Índice de CBR

Define como la relación entre la presión necesaria para que le pistón penetre en el suelo una determinada profundidad para conseguir esa penetración en una muestra de grava machacada, expresada en tanto por ciento. [18]

$$C.B.R = \frac{Presi\'{o}n\ unitraria\ de\ ensayo}{Presi\'{o}n\ unitaria\ patr\'{o}n}*100$$

Tabla 20: Clasificación del suelo según el C.B.R.

C.B.R	Clasificación
0 - 5	Sub rasante muy mala
5-10	Sub rasante mala
10-20	Sub rasante regular a mala
20-30	Sub rasante muy buena
30-50	Sub -base buena
50-60	Base buena
80-100	Base muy buena

Fuente: Mecánica de suelos y cimentaciones, Carlos Crespo, 5ta. Edición 2004

Módulo de resiliencia (Mr)

Analiza las propiedades que tienen los materiales de comportarse bajo cargas dinámicas como las ruedas de tránsito, fuerzas dinámicas que son transmitidas a toda la estructura del pavimento, como reacción el pavimento se deforma en función del peso y la velocidad del automóvil. [18]

Para obtener el módulo de resiliencia a partir del CBR, se usarán las siguientes expresiones.

• CBR < 10 % recomendada por la AASHTO.

$$Mr(Psi) = 1500 * CBR$$

• CBR de 7.2% al 20% ecuación desarrollada en Sudáfrica

$$Mr(Psi) = 3000 * CBR^{0.65}$$

• Utilizada en suelos granulares por la guía AASHTO

$$Mr(Psi) = 4326 * ln(CBR) + 241$$

1.1.3.10. Pavimentos

El pavimento es una estructura de varias capas construida sobre la sub rasante del camino para resistir y distribuir esfuerzos originados por los vehículos y mejorar las condiciones de seguridad y comodidad para el tránsito. Por lo general, está conformada por capa de rodadura, base y sub base. [19]

Capa de rodadura: Es la parte superior de un pavimento, que puede ser de tipo bituminoso (flexible) o de concreto de cemento portland (rígido) o de adoquines, cuya función es sostener directamente el tránsito. [19]

Terreno de fundación (Sub rasante)

Base donde se asienta la estructura del pavimento después de haber realizado el movimiento de tierras y su respectiva compactación.

Base: Es la capa inferior a la capa de rodadura, que sostiene, distribuye y trasmite las cargas ocasionadas por el tránsito. Esta capa será de material granular drenante (CBR > 80%) o será tratada con asfalto, cal o cemento. [19]

Clases de bases.

- Base clase 1: bases constituidas por agregados gruesos y finos, triturados en un 100%, graduado uniformemente dentro de los límites granulométricos. [20]
- Base clase 2: bases constituidas por fragmentos de roca o grava triturada, cuya fracción del agregado grueso será triturado al menos 50% en peso. [20]

- Base clase 3: bases constituidas por fragmentos de roca o grava triturada, cuya fracción de agregado grueso será triturada al menos el 25% en peso. [20]
- Base clase 4: bases constituidas por agregados obtenidos por trituración o cribado de piedras fragmentadas, graduadas uniformemente dentro de los limites granulométrico. [20]

Tabla 21: Límites Granulométricos de la Base

TAMIZ		BASE CLASE I TIPO A		BASE CLASE I TIPO B		BASE CLASE 2		BASE CLASE 3		BASE CLASE 4	
		Min.	Máx.	Min	Máx.	Min.	Máx.	Min	Máx.	Min.	Máx.
2"	50.4 mm		100		100		100		100		100
11/2"	38.1 mm	70	100	70	100	70	100	70	100		
1"	25 mm	55	85	60	90	55	85	60	90	60	90
3/4"	19 mm	50	80	45	75	47	75	40	75		
3/8"	9.5 mm	35	60	30	60	35	65	30	60		
# 4	4.75 mm	25	50	20	50	25	55	15	45	20	50
# 10	2 mm	20	40	10	25	15	45	10	30		
# 40	0.25 mm	10	25	2	12	5	25	0	15		
# 200	0.075 mm	2	12			0	10			0	15

Fuente: Especificaciones Generales para Construcción de Caminos y Puentes. MOP 2002.

Sub base: Es una capa de material especificado y con un espesor de diseño, el cual soporta a la base y a la carpeta. Además, se utiliza como capa de drenaje y controlador de la capilaridad del agua. Dependiendo del tipo, diseño y dimensionamiento del pavimento, esta capa puede obviarse. Esta capa puede ser de material granular (CBR > 40%) o tratada con asfalto, cal o cemento. [19]

Clases de subbases

• Sub base clase 1.

Constituidas por agregados obtenidos por trituración de piedras o gravas, graduadas uniformemente de grueso a fino. Al menos el 30% del agregado se obtendrá del proceso de trituración. [20]

• Sub base clase 2.

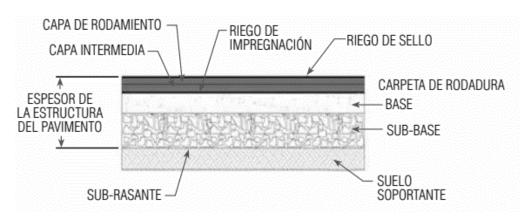
Constituidas por agregados obtenidos por cribado de piedras fragmentadas naturalmente o de gravas, graduados uniformemente de grueso a fino. [20]

Sub base clase 3.

Agregados obtenidos de excavaciones de plataforma o minas. [20]

Tabla 22: Limites Granulométricos de la Sub base

TAMIZ			BASE ASE 1		BASE ASE 2	SUBBASE CLASE 3		
		Min.	Máx.	Min.	Máx.	Min.	Máx.	
3"	76.2 mm						100	
2"	50.4 mm				100			
	38.1 mm		100	70	100			
# 4	4.75 mm	30	70	30	70	30	70	
# 40	0.25 mm	10	35	15	40			
# 200	0.075 mm	0	15	0	20	0	20	

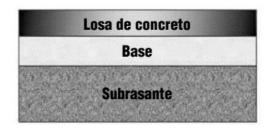

Fuente: Especificaciones Generales para Construcción de Caminos y Puentes. MOP - 2002

1.1.3.10.1. Tipos de pavimentos

• Pavimento flexible

Estructura compuesta por capas granulares (sub base, base) y como capa de rodadura una carpeta constituida con materiales bituminosos como aglomerantes, agregados y, de ser el caso, aditivos. [19]

Gráfico 18: Estructura de pavimento flexible



Fuente: Pautas para alternativas de pavimentos, 2015

Pavimento rígido

Estructura compuesta específicamente por una capa de subbase granular, no obstante, esta capa puede ser de base granular, o puede ser estabilizada con cemento, asfalto o cal, y una capa de rodadura de losa de concreto de cemento hidráulico. [19]

Gráfico 19: Estructura de pavimento rígido

Fuente: Pautas para alternativas de pavimentos, 2015

1.1.3.11. Obras de drenaje

Son obras diseñadas para la recepción, canalización y evacuación de las aguas que pueden afectar directamente a las características funcionales de la carretera. [6]

Las funciones principales de las obras de drenaje son las siguientes:

- Desalojar rápidamente el agua de lluvia que cae sobre la calzada.
- Controlar el nivel freático
- Interceptar al agua que superficial o subterráneamente escurre hacia la carretera
- Conducir de forma controlada el agua que cruza la vía. [6]

Drenaje superficial.

Comprende el conjunto obras de captación para el drenaje de las aguas pluviales. Se divide en dos grupos.

Drenaje longitudinal: Drena el agua que está en la superficie del pavimento de forma paralela a la carretera, para la cual se utilizan elementos como sumideros, cunetas, colectores.

Drenaje transversal: Son drenajes que requiere una vía para que cumpla la función de recepción, canalización y salida de todas aquellas aguas que puedan afectar las obras completarías de una carretera. Las alcantarillas son una obra típica de este tipo de drenaje.

1.1.3.12. Señalización vial

Permite informar al conductor acerca de las características de la vía por donde circula

y del entorno por el que ésta transitando, cuyo objetivo de la señalización vial se define

en tres puntos: [21]

Advertir de la existencia de peligros potenciales.

Informar de la vigencia de ciertas normas y reglamentaciones en un tramo

determinado de vía.

Orientar al usuario mediante las oportunas indicaciones para que éste sepa en

todo momento dónde está, hacia dónde va y qué dirección tomar para cambiar

de destino. [21]

Señales horizontales

Son señales o marcas efectuadas sobre la superficie de la vía, tales como líneas,

símbolos, leyendas, palabras, números u otras indicaciones conocidas como

señalización horizontal. Pueden ser de color blanco o amarillo. Tiene el objetivo de

prevenir, guiar y orientar a los usuarios de las vías; delimitar carriles y zonas

prohibidas de circulación; complementar y reforzar el significado de las señales

verticales. [22]

Gráfico 20: Señalética horizontal

Fuente: Manual Básico de señalización Vial – Ecuador

Según su forma se clasifican en:

Líneas longitudinales: Se pintan de forma longitudinal en la calzada, con el fin de

definir carriles, calzadas, zonas con o sin prohibición de adelantar, y para carriles de

uso exclusivo según el tipo de automóvil determinado. [22]

41

Líneas transversal: Se emplean para señalar los pasos cebras de peatones o de bicicletas y fundamentalmente se emplea en cruces para indicar el lugar antes del cual los automotores deben detenerse. [22]

Marcas especiales: Se utilizan para guiar y advertir al usuario como para regular la circulación, se incluye en este tipo de señalización chevrones en el pavimento, cuadriculas en las intersecciones, flechas, triángulos, ceda el paso, y leyendas tales como pare, carril exclusivo, bus, taxi, parada de bus entre otros. [22]

Señales verticales

Las señales verticales tienen como objetivo reglamentar las limitaciones, prohibiciones o restricciones, advertir de peligros, informar acerca de rutas, direcciones, destinos y sitios de interés. Son esenciales en lugares donde existen regulaciones especiales, permanentes o temporales, y en aquellos donde los peligros no son de por sí evidentes. [23]

Gráfico 21: Señalética vertical

Fuente: Manual de señalización vial Colombia 2015 [23]

De acuerdo a la función que desempeñan se clasifican en 4 grupos.

Señales Reglamentarias: tienen por finalidad notificar a los usuarios de las vías las prioridades en el uso de las mismas, así como las prohibiciones, restricciones, obligaciones y autorizaciones existentes. Su transgresión constituye infracción a las normas del tránsito. [23]

Señales Preventivas: su propósito es advertir a los usuarios sobre la existencia y naturaleza de riesgos y/o situaciones imprevistas presentes en la vía o en sus zonas adyacentes, ya sea en forma permanente o temporal. Estas señales suelen denominarse también Advertencia de Peligro. [23]

Señales Informativas: tienen como propósito guiar a los usuarios y entregarles la información necesaria para que puedan llegar a sus destinos de la forma más segura, simple y directa posible. También informan acerca de distancias a ciudades y localidades, kilometrajes de rutas, nombres de calles, lugares de interés turístico, servicios al usuario, entre otros. [23]

Señales Transitorias: modifican transitoriamente el régimen normal de utilización de la vía. Pueden ser estáticas o dinámicas, indicando mensajes reglamentarios, preventivos o informativos. Ambas se caracterizan por entregar mensajes que tienen aplicación acotada en el tiempo, siendo las segundas también denominadas señales de mensaje variable capaces de entregarlo en tiempo real. [23]

1.2. OBJETIVOS

1.2.1. Objetivo general

Realizar el mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco, con la finalidad de mejorar la viabilidad en la parroquia Ambatillo, cantón Ambato, provincia de Tungurahua.

1.2.2. Objetivos específicos

- Disponer de un levantamiento topográfico referenciado de la vía.
- Determinar el TPDA en el área del proyecto.
- Mejorar el trazado geométrico horizontal y vertical de la vía.
- Proponer el mejoramiento de la capa de rodadura.
- Presentar un proyecto factible con costos y especificaciones técnicas.

CAPÍTULO II

METODOLOGÍA

2.1 Materiales y equipos

Para la ejecución del presente proyecto se realizó una visita de campo con el fin de conocer la topografía del terreno donde para hacer el levantamiento topográfico se empleó los siguientes materiales y equipos que lo detallaremos a continuación.

2.1.1. Materiales

BM de referencia

Para realizar el levantamiento topográfico se georreferenció a un mojón IGM ubicado en el cerro Pilisurco en las coordenadas X = 759466 E y Y= 9872216 N datos que fueron proporcionados del plan de desarrollo y ordenamiento territorial del año 2015 del Gobierno Parroquial Rural de Ambatillo.

Estacas de madera

Objeto largo con punta afilada, que va anclada al suelo natural, sirve como punto de referencia para la colocar la estación total.

Cemento, Ripio, Arena, Agua.

Se utilizó cemento, ripio, arena y agua con el objetivo de realizar una mezcla de hormigón, para colocar mojones de referencia y poder realizar el replanteo de la vía cuando está se empiece a construirse.

Combo

Herramienta de mano que sirve para golpear o fijar los puntos de referencia.

Machete

Herramienta de corte manual, utilizada en campo para cortar arbustos, maleza y ramas dentro del levantamiento topográfico y tener una buena visibilidad.

Pintura en aerosol

Se utiliza en la topografía para poner puntos de referencia en abscisas de la vía.

Libreta de apuntes

Es un cuaderno donde generalmente se anota, dibuja o se toma apuntes de coordenadas de los puntos de referencia y los detalles que se presenta dentro del levantamiento topográfico.

Clavos de hierros

Objeto delgado y alargado con punta filosa, utilizado en topografía para fijar un punto de referencia, está en el centro de una estaca de madera.

2.1.2. Equipos

Estación total TOPCON

Instrumento electroóptico usado en topografía, cuyo funcionamiento se basa en la tecnología electrónica, tiene la función de medir ángulos, distancias, y obtener coordenadas de puntos.

Trípode

Instrumento de topografía utilizado para dar soporte fijo a la estación total en cualquier tipo de terreno donde se implante o se coloque el punto de referencia.

Primas

Objeto topográfico de forma circular formado por cristales que tiene el objetivo reflectar la señal electromagnética emitida por la estación total.

Bastón para prisma

Bastón largo metálico de sección cilíndrica, con punta de acero conformado con un nivel circular y un adaptador en la parte superior tipo rosca para en el encaje del prisma.

Radios de comunicación

Medio de comunicación utilizado para el dialogo a larga distancia entre el topógrafo y los cadeneros.

GPS (Global Positioning System)

Facilita las tareas en el ámbito topográfico, gracias a su gran precisión, rapidez y productividad para la obtención de coordenadas de una posición mediante la recepción de las señales de satélites.

Flexómetro

Instrumento de medición utilizado para medir la altura comprendida entre el punto de referencia de la estaca de madera y la altura de la estación total.

Computador

Ordenador empleado para el procesamiento de la información obtenida en el levantamiento topográfico y en la investigación teórica técnica.

Equipo de protección personal

Botas de caucho, botas de seguridad, chaleco reflectivo, es el equipo de protección personal que se utilizó en el levantamiento topográfico.

Dentro del estudio de tráfico los materiales que se utilizaron son los siguientes.

Hojas de conteo

Documentos en formato de tabla, que sirve para la contabilización y clasificación del tipo de vehículo que transita por la vía durante el día, en periodos específicos de 15, 10 o 5 minutos dependiendo la importancia del proyecto.

Esferos

Instrumento de escritura utilizado para el registro de los automóviles que circulan por la vía.

Reloj

Aparato electrónico que sirve para tomar el tiempo exacto en el cual los automóviles circulan por la vía de estudio.

Para la obtención y el análisis de las muestras de suelo se emplearon los siguientes materiales y equipos.

Equipos utilizados en campo.

Pico

Herramienta de mano utilizada en terrenos duros para remover piedras, cavar zanjas y obras de construcción.

Pala

Herramienta de mano utilizada para excavar y recoger materiales de partículas pequeñas. Consta de una lámina plana curveada aligerada plana con un mango de madera que sirve para su manejabilidad.

Azadón

Herramienta utilizada básicamente para excavar y mover tierras blandas.

Bolsas plásticas

Objeto utilizado para almacenar o guardar de las muestras de suelo con el fin de mantener la humedad natural del suelo.

Saquillos de yute

Envase cómodo y flexible utilizado para el transporte de las muestras de suelo obtenido en campo.

Materiales y equipos usados en laboratorio.

Muestras de suelo

Porciones de tierra o suelo obtenido en campo para realizar ensayo en laboratorio.

Agua.

Sustancia liquida sin olor, color ni sabor utilizado en laboratorio para los respectivos en ensayos según la cantidad calculada.

Bandeja

Recipiente plano rectangular utilizado para el transporte o almacenaje de las muestras de suelo.

Balanza

Instrumento de laboratorio utilizado para medir los pesos de los objetos y de las muestras de suelo.

Horno

Instrumento utilizado en laboratorio para el secado de las muestras de suelos, agregados, asfalto, etc.

Análisis granulométrico

Tamices

Utensilio utilizado en el análisis granulométrico para separar los suelos finos de los gruesos. Para el ensayo se utilizó los siguientes tamices. # 4, # 8, # 10, # 30, # 40, # 50, # 60, # 100, y # 200.

Tamizadora

Maquina vibratoria utilizado en el análisis granulométrico para separar los suelos finos de los gruesos.

Límites de Atterberg.

Copa de Casagrande

Instrumento de medición utilizado para calcular el límite liquido de una muestra de suelo.

Ranurador

Utensilio utilizado en el ensayo de límite líquido para dividir la muestra del suelo en dos partes iguales.

Espátula

Herramienta de mano con una lámina metálica y mango de madera. Sirve para la mezcla de suelo + agua en el mortero y para colocar esta mezcla en la copa de casa grande.

Mortero de porcelana con pistilo.

Utensilio utilizado en el ensayo de límite líquido para machacar o moler la muestra de suelo seco.

Proctor Modificado y CBR

Moldes

Recipiente cilíndrico de acero niquelado compuesto por un collar, cuerpo del molde y base (base); para realizar el ensayo del Proctor modificado método D, se usó un molde

48

de 6", peso del molde 5440 gr, volumen del molde 2114 cm³, para la compactación se trabajó en un número de capas 5, número de golpes 56.

Martillo

Herramienta de acero niquelado de forma tubular utilizada para compactar la muestra de suelo, las características del martillo utilizado en el ensayo son: peso del martillo 18 lb, y una altura de caída para la compactación de 18".

Recipiente metálico

Utensilio utilizado para recoger la muestra de suelo y ponerlo en el molde para posteriormente realizar en el ensayo del Proctor modificado.

Enrasador

Regla metálica delgada de 3 x 300 x 30 mm utilizado para nivelar la muestra del suelo después de realizar la compactación del suelo.

Calibrador

Instrumento de medición utilizado en laboratorio para obtener las dimensiones de los moldes a utilizar en los ensayos de Proctor o CBR.

Retorta

Patrones de masa circulares de acero inoxidable, va en el interior del molde de compactación.

Papel filtro

Papel cortado en forma circular con el mismo diámetro interior del molde de compactación, utilizado para que la muestra suelo no tenga a pegarse a la base de la retorta.

Prensa CBR

Máquina que mide la resistencia al esfuerzo cortante de un suelo con el fin de poder evaluar la calidad del terreno para subrasante, subbase y base para la estructura del pavimento.

Dial

Equipo utilizado para medir la expansión del suelo consta de una barra ajustable, manómetro dial y un trípode que sirve para colocar por encima de la muestra del suelo y tomar la medida de la expansión del suelo

2.2. Métodos

La metodología empleada para el desarrollo del presente proyecto son los que se detallan a continuación

Investigación bibliográfica

Información obtenida a partir de tesis, artículos científicos, libros entre otros, documentación proporcionada a través del repositorio de la Universidad Técnica de Ambato, bibliotecas virtuales y de experiencias de profesiones de la ingeniería civil en el campo del diseño geométrico de vías.

Investigación de campo

La aplicación de este tipo de investigación se realizó mediante visitas de campo con el fin de conocer el estado actual de la vía del proyecto, analizar la población beneficiaria, investigar las actividades propias del lugar, observar lugares posibles donde se pueda ubicar una estación de conteo que nos permita determinar el transito actual de vía y observar la topografía del lugar para la realización del diseño geométrico vial.

Investigación de Laboratorio

Realizamos ensayos de laboratorio como: límites de Atterberg, granulometría, proctor modificado y CBR, con el fin de conocer las características y propiedades del suelo donde se va a implantar el proyecto.

2.2.1. Plan de recolección de datos

Para la ejecución del proyecto se realizó un plan de trabajo con el fin de garantizar una labor profesional y responsable, para dar cumplimento a las normativas nacionales en cuestión del diseño geométrico de vías.

Levantamiento Topográfico

1. Socializar y obtener los permisos respectivos por parte del cabildo de la comunidad para ingresar a los páramos de Ambatillo Alto.

- 2. Realizar vistas técnicas con el fin de obtener las caracterizas topográficas del terreno donde se realizó el levantamiento topográfico.
- 3. Analizar lugares donde se pueda ubicar la estación total y evitar el cambio continuo de la estación total.
- 4. Realizar el levantamiento topográfico georreferenciado en coordenadas UTM WGS 84, para una de franja topográfica de 60 metros, es decir 30 m a cada lado desde el eje de la vía. En tramo rectos de la vía cada 20m y tramos curvos cada 5m.
- 5. Colocar mojones de referencia con el fin de utilizarlo cuando se realice el replanteo de la vía.

Determinar el TPDA

- 1. Establecer una estación de conteo donde se pueda obtener los datos del tráfico vehicular que se produce en sector.
- Realizar el conteo vehicular por un lapso de 7 días, con periodos de 12 horas diarias en intervalos de 15 minutos con el fin de clasificar a la vía en función del TPDA (Trafico promedio diario anual).

Obtención de muestras de campo.

- 1. Excavación de calicatas cada 1000 m a lo largo del eje de la vía.
- Colocar señalética de prevención en las excavaciones realizadas a de fin de prevenir accidentes.
- 3. Guardar las muestras de suelo y llevar al laboratorio para realizar los siguientes ensayos de acuerdo a la normativa correspondiente.

a. Análisis granulométrico

NORMA INEN 872

AASHTO 7-87-70, 7-88-70, American Association of State Highway and Transportations Officials.

ASTM D-422-63, ASTM D421-58, American Society of Testing Materials.

b. Límites de Atterberg

ASTM D4318, American Society of Testing Materials.

c. Proctor Modificado

ASTM D -698–91, D-1557 – 91, American Society of Testing Materials AASHTO T-180 – 93, T-99-94, American Association of State Highway and

Transportations Officials.

d. CBR

ASTM D 1883, California Bearing Ratio

2.2.2. Procesamiento y análisis de información

2.2.2.1. Plan de procesamiento

Obtenido la información del estado actual de la vía y los trabajos realizados en campo se procede al trabajo de oficina.

- 1. Tabular los datos del conteo vehicular para calcular el TPDA.
- 2. Procesar los puntos topográficos obtenidos con estación total en el software Microsoft Excel.
- Procesamiento del levantamiento topográfico en el software de Autodesk Civil 3D.
- 4. Realizar el diseño geométrico horizontal, vertical y transversal en el software Civil 3D aplicando la siguiente normativa:
 - MTOP. Norma Ecuatoriana Vial NEVI-12
 - Normas de diseño geométrico de carreteras, 2003.
- 5. Procesar los datos obtenidos en el laboratorio de suelos.
- 6. Cuantificar volúmenes de tierras
- 7. Elaborar presupuesto referencial con especificaciones técnicas del proyecto.

2.2.2.2. Análisis de información

Procesada la información procedemos a interpretar los resultados obtenidos.

- 1. Definir el tipo de vía en función al TPDA calculado del estudio de tráfico.
- 2. Determinar las propiedades del suelo.
- Analizar los datos obtenidos en el estudio de suelos para obtener el CBR de diseño.
- 4. Proponer el mejoramiento de la capa de rodadura mediante el diseño estructural del pavimento aplicando la normativa siguiente:
 - AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportations Officials 1993
- 5. Elaborar un presupuesto con los rubros a ejecutarse en obra.

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1. Análisis y discusión de resultados

En el presente capítulo se presenta los resultados obtenidos en las investigaciones desarrolladas para la ejecución del proyecto.

3.1.1. Datos del Proyecto

El proyecto está localizado en la Parroquia Ambatillo, demarcación territorial integrada al Cantón Ambato, se halla en la cordillera occidental de los Andes, localidad parroquial ubicada en la Provincia de Tungurahua, Ecuador.

El inicio del proyecto se localiza en la comunidad de Ambatillo Alto, a la altura de los tanques de reservorio de la junta administradora de agua potable, en las coordenadas UTM-WGS 84, punto inicial 759355.8376 E, 9867868.0381 N, a 3499.189 m.s.n.m, lugar donde empieza en el km 0+000 del proyecto y termina en el punto 759724.4113 E, 9871861.3931 N, a 4013.578 m.s.n.m, en el km 5+410 destino final del proyecto, el cerro Pilisurco lugar donde se localiza las antenas de transmisión de radio y televisión del cantón Ambato.

Tabla 23: Coordenadas del Proyecto

 COORDENADAS DEL PROYECTO EN UTM - WGS 84 - ZONA 17 S

 Punto inicio: Km 0+000
 Punto Final: Km 5+410

 Este: 759355.8376
 Este: 759724.4113

 Norte: 9867868.0381
 Norte: 9871861.3931

 Altura: 3499.189 m.s.n.m
 Altura: 4013.578 m.s.n.m

Fuente: Luis Javier Orozco Analuiza

El proyecto se encuentra en un relieve montañoso, presenta pendiente transversales del 10 al 14% por lo que el mejoramiento diseño del geométrico de la vía exige grandes movimientos de tierra, Actualmente la vía presenta una superficie de rodadura de suelo natural, un ancho vía de 4.00 m. Por la vía circulan motos, bicicletas, camionetas de carga que realizan turismo de montaña hacia al cerro Pilisurco, por las condiciones que presenta vía los automóviles transitan hasta el km 1+000 desde ahí en adelante requiere

mejoramiento de la capa de rodadura con el fin de brindar un servicio de confort y seguridad a los turistas y habitantes locales que visitan el lugar turístico.

Gráfico 22: Estado actual de la vía al cerro Pilisurco

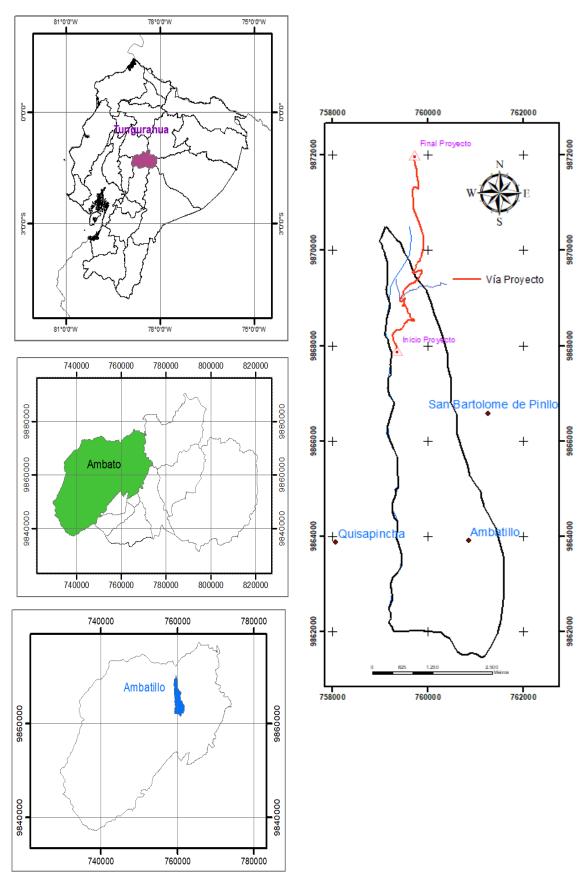


Gráfico 23: Superficie de la capa de rodadura del proyecto

Fuente: Luis Javier Orozco Analuiza

Gráfico 24: Ubicación Maso - Meso - Micro del Proyecto

Fuente: Luis Javier Orozco Analuiza

3.1.2. Estudio Topográfico

Para la ejecución del levantamiento topográfico inicialmente se realizó un reconocimiento de campo con el fin de conocer estado actual de la vía, establecer los posibles puntos de estación, pasos de agua y el relieve del área del proyecto.

Posteriormente se estableció el punto inicial donde se empezaría el levantamiento topográfico, para el cual se colocó un BM inicial de hormigón, y con la ayuda de una estación total marca TOPCOM y GPS se realizó la toma de puntos topográficos en las coordenadas UTM WGS-84. El personal y el equipo que se utilizó para el trabajo fue un topógrafo, 3 cadeneros y una camioneta utilizada para el transporte del equipo topográfico.

La ejecución del levantamiento topográfico se realizó durante 6 días, tomando como punto de partida el cerro Pilisurco, y con forme se avanzaba en el trabajo se descendía hasta llegar a la comunidad de Ambatillo Alto, se realizó el levantamiento de la franja topográfica de 60 m de ancho, es decir 30 m a cada lado del eje de la vía. Donde a lo largo del trayecto de la vía se colocó mojones de hormigón para posteriormente hacer uso de estos mojones cuando se realice el replanteo de la vía. Para toma de los puntos topográficos se consideró trabajar cada 20 m en tramos rectos y cada 5m en tramos curvos con el fin de poder obtener la mayor cantidad de puntos que nos permita realizar una buena triangulación y obtener la información real del área del proyecto.

Terminado el trabajo del levantamiento topográfico en campo, se procedió al trabajo de oficina. Mediante los datos obtenidos por la estación total, se exportó a Microsoft Excel donde se verificó los datos obtenidos, para después importar los puntos topográficos en el formato PNEZD (comma delimited) al software de Autodesk – AutoCAD Civil 3D, en donde se realizó las curvas de nivel, triangulaciones, diseño geométrico horizontal, vertical y transversal de la vía.

3.1.3. Estudio de tráfico

3.1.3.1. Conteo del tráfico

Para realizar el estudio de tráfico con el fin de determinar el TPDA del proyecto, se estableció una estación de conteo en la abscisa 0+000 del proyecto, ubicado en el barrio Kishuar perteneciente a la comunidad de Ambatillo Alto en donde se realizó el conteo vehicular manual durante 7 días, comprendidos entre el 8 al 14 de Febrero del 2021, con una duración de 12 horas diarias 7:00 a 19:00, en periodos de 15 minutos por hora, desarrollándose el conteo vehicular en dos sentidos de circulación, datos que pueden visualizar en el Anexo del Estudio del tráfico.

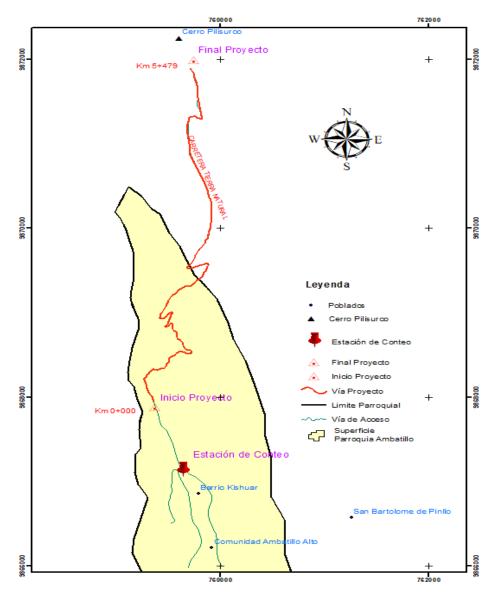


Gráfico 25: Ubicación de estación de conteo

Fuente: Elaboración propia en ArcMap

Terminado la recolección de datos en campo, se procedió al trabajo de oficina el cual consistió en digitalizar los datos obtenidos en una hoja electrónica de Microsoft Excel. A continuación se presenta un resumen del conteo de vehículos clasificados en livianos, buses y camiones de los diferentes días de la semana.

Tabla 24: Resumen de conteo vehicular semanal.

Hora	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
7:00 - 8:00	14	12	9	8	12	8	13
8:00 - 9:00	9	8	11	10	11	10	11
9:00 - 10:00	6	5	4	11	9	11	10
10:00 - 11:00	12	9	13	7	10	7	7
11:00 - 12:00	12	9	9	5	12	5	5
12:00 - 13:00	11	13	11	6	8	6	6
13:00 - 14:00	11	12	8	6	10	6	4
14:00 - 15:00	8	9	10	8	8	8	8
15:00 - 16:00	8	10	9	9	8	9	7
16:00 - 17:00	12	11	8	8	10	8	6
17:00 - 18:00	8	11	12	11	9	10	9
18:00 - 19:00	7	6	6	5	6	5	5
TOTAL:	118	115	110	94	113	93	91

Fuente: Luis Javier Orozco Analuiza

Tabla 25: Resumen conteo vehicular según tipo de Vehículo

	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
LIVIANO	115	101	86	85	102	86	91
BUS	0	0	0	0	0	0	0
CAMIONES	3	14	24	9	11	7	0
TOTAL	118	115	110	94	113	93	91

Fuente: Luis Javier Orozco Analuiza

3.1.3.2. Determinación del tráfico Promedio Diario Anual TPDA.

En base a los datos obtenidos en el estudio del tráfico se procedió a determinar el TPDA, en función a los datos de la semana contados manualmente en el cual se aplicaron en los criterios expuesto por el MTOP.

Cálculo de TPDA

TPDA = TPDS * Fd * Fm

Factor diario Fd

Para el Factor diario se aplicamos la siguiente formula:

$$Fd = \frac{TPDS}{TD}$$

Tabla 26: Factor diario Fd

Fecha	Día	Livianos	Buses	Pesados	Total	Fd: Factor diario
8/2/2021	lunes	115	0	3	118	0.889
9/2/2021	martes	101	0	14	115	0.912
10/2/2021	miércoles	86	0	24	110	0.953
11/2/2021	jueves	85	0	9	94	1.116
12/2/2021	viernes	102	0	11	113	0.928
13/2/2021	sábado	86	0	7	93	1.127
14/2/2021	domingo	91	0	0	91	1.152
_				TOTAL	734	1.011
				TPDS	105	

Fuente: Luis Javier Orozco Analuiza

Factor mensual Fm

El Factor mensual de ajuste se consideró en función al consumo de combustibles de cada mes en la provincia de Tungurahua. Al haberse realizado el conteo vehicular en el mes de febrero el factor mensual para vehículos pesados diésel es 1.006 y para vehículos livianos a gasolina se tomó el promedio de 0.915.

Tabla 27: Factores mensuales del consumo de combustible Tungurahua 2016

	Consumo de Combustible 2016 Tungurahua					FACTORES !	MENSUALES	5	
Meses	Diessel	Extra	Super	Total	DÍAS DEL	DIESSEL	EXTRA	SUPER	PROMEDIO
	Gln.	Gln.	Gln.	Gln.	MES	DIESSEL	EAIKA	SUPER	GASOLINA
enero	2611500.00	3472500.0	559000.00	6643000.00	31	1.066	1.070	0.972	1.021
febrero	2499500.00	3492500.0	564500.00	6556500.00	28	1.006	0.961	0.869	0.915
marzo	2755500.00	3663000.0	562000.00	6980500.00	31	1.010	1.014	0.966	0.990
abril	2665000.00	3564000.0	521000.00	6750000.00	30	1.011	1.009	1.009	1.009
mayo	2748500.00	3681500.0	530000.00	6960000.00	31	1.013	1.009	1.025	1.017
junio	2696500.00	3580000.0	513000.00	6789500.00	30	0.999	1.004	1.025	1.014
julio	2765000.00	3644500.0	519000.00	6928500.00	31	1.007	1.019	1.047	1.033
agosto	2841000.00	3744500.0	562500.00	7148000.00	31	0.980	0.992	0.966	0.979
septiembre	2768500.00	3595500.0	497500.00	6861500.00	30	0.973	1.000	1.057	1.028
octubre	2810500.00	3685000.0	505000.00	7000500.00	31	0.991	1.008	1.076	1.042
noviembre	2722000.00	3645500.0	510000.00	6877500.00	30	0.990	0.986	1.031	1.008
diciembre	2898500.00	3965500.0	551500.00	7415500.00	31	0.961	0.937	0.985	0.961
Consumo Anual	32782000.00	43734000.0	6395000.00	82911000.00					
Consumo Promedio Mensual	2731833.33	3644500.00	532916.67	6909250.00					
Concumo Promodio Diorio	90912.70	110910 19	17520.55	227152 42					

Fuente: Dirección de Hidrocarburos de Tungurahua

Tráfico promedio diario semanal TPDS

$$TPDS_{Livianos} = \frac{\# Total \ de \ Vehiculos}{\# De \ dias \ de \ conteo} = \frac{666}{7} = 95 \ Veh$$

$$TPDS_{Pesados} = \frac{\# Total \ de \ Vehiculos}{\# De \ dias \ de \ conteo} = \frac{68}{7} = 10 \ Veh$$

Tabla 28: Tráfico Promedio Diario Semanal TPDS

Fecha	Día	Livianos	Buses	Pesados
8/2/2021	lunes	115	0	3
9/2/2021	martes	101	0	14
10/2/2021	miércoles	86	0	24
11/2/2021	jueves	85	0	9
12/2/2021	viernes	102	0	11
13/2/2021	sábado	86	0	7
14/2/2021	domingo	91	0	0
	Total	666	0	68
	TPDS	95	0	10

TPDA Actual

$$TPDA_{Actual} = TPDS * Fd * Fm$$

Categoría	TPDS	Fd	Fm	TPA Actual
Livianos	95	1.011	0.915	88
Buses	0	1.011	1.006	0
Pesados	10	1.011	1.006	10
total	105			98

$$TPDA_{Actual} = 98 \text{ vehículos/día}$$

Tráfico generado:

Según el MTOP establece un 20% del tráfico actual para el primer año de operación del proyecto.

$$TG = 20\% \ TPDA \ (actual)$$

 $TG = 20\% * 88 = 17 \ Veh. \ Livianos$
 $TG = 20\% * 10 = 2 \ Veh. \ Pesados$

Tabla 29: Tráfico generado

TRÁFICO GENERADO: TG = 20% * TPDA actual					
TIPO DE VEHÍCULOS	TPDA actual	Índice de crecimiento	Tráfico generado		
Livianos	88	20%	17		
Buses	0	20%	0		
Pesados	10	20%	2		
Σ Tráfico Generado (vehículos) 19					

Fuente: Luis Javier Orozco Analuiza

Tráfico atraído:

Para el tráfico atraído se considerará un 10% del TPDA actual.

$$Tat = 10\% TPDA (actual)$$

$$Tat = 10\% * 88 = 8.8 \approx 9 \text{ vehiculos livianos}$$

$$Tat = 10\% * 10 = 1$$
 vehiculos pesados

Tabla 30: Trafico Atraído

TRÁFICO ATRAÍDO: Tat = 10% * TPDA actual						
TIPO DE VEHÍCULOS	TPDA actual	Índice de crecimiento	Tat			
Livianos	88	10%	9			
Buses	0	10%	0			
Pesados	10	10%	1			
Σ Tráfico atraído (vehículos) 10						

Fuente: Luis Javier Orozco Analuiza

Tráfico desarrollado:

Se considera un 5% del TPDA (actual) de la vía.

$$TD = 5\% TPDA (actual)$$

$$TD = 5\% * 88 = 4$$
 vehiculos livianos

$$TD = 5\% * 10 = 0.5 \approx 1 \text{ vehiculo pesado}$$

Tabla 31: Tráfico desarrollado

TRÁFICO DESARROLLADO: TD = 5% * TPDA actual						
TIPO DE VEHÍCULOS	TPDA actual	Índice de crecimiento	TD			
Livianos	88	5%	4			
Buses	0	5%	0			
Pesados	10	5%	1			
	Σ Tráfico desarrollado (vehículos) 5					

Fuente: Luis Javier Orozco Analuiza

Tráfico actual

El tráfico actual es la sumatoria del TPDA (actual), el tráfico generado, tráfico atraído, y el tráfico desarrollado que lo determinados mediante la fórmula.

$$Ta = TPDA (actual) + TG + Tat + TD$$

$$Ta(livianos) = 88 + 17 + 9 + 4 = 118 Veh. Livianos$$

$$Ta(pesados) = 10 + 2 + 1 + 1 = 14 Veh. Pesados$$

Tabla 32: Tráfico actual

Tráfico Actual: TPDA(actual) + TG + Tat + TD						
TIPO DE VEHÍCULOS	TPDA Actual	Tráfico Generado	Tráfico Atraído	Tráfico Desarrollado	Tráfico Actual	
Livianos	88	17	9	4	118	
Buses	0	0	0	0	0	
Pesados	10	2	1	1	14	
Σ Tráfico actual (vehículos/día)						

Fuente: Luis Javier Orozco Analuiza

Se determinó un tráfico actual de 132 vehículos/día en el sector del proyecto.

Tráfico futuro

El tráfico futuro lo determinamos en función del tráfico actual, el número de años para el cual se proyecta el diseño de la vía y el índice de la tasa de crecimiento vehicular. El estudio de la vía se proyectará para 20 años y se deducirá mediante la siguiente fórmula matemática:

$$TF = Ta (1+i)^n$$

Para el año 2031 el tráfico futuro será igual.

$$TF = Ta (1+i)^n$$

$$TF = 118 * (1 + 3.25\%)^{10} = 162 \ Veh. \ Livianos/dia$$

$$TF = 14 * (1 + 1.58\%)^{10} = 16 \ Veh. \ Pesados/dia$$

Para el año 2041 el tráfico futuro será igual.

$$TF = Ta (1+i)^n$$

$$TF = 118 * (1 + 3.25\%)^{20} = 224 \ Veh. \ Livianos/dia$$

$$TF = 14 * (1 + 1.58\%)^{20} = 19 \ Veh. \ Pesados/dia$$

Determinado el tráfico proyectado que tendrá para los 20años de diseño, detallamos el tráfico futuro que tendrá la vía.

Tabla 33: Proyección del tránsito para el periodo de diseño

	% Crecimiento			Tr	ánsito A	nual	
AÑO	Livianos	Buses	Camiones	Livianos	Buses	Camiones	Total TPDA
2021	3.97%	1.78%	1.94%	118	0	14	132
2022	3.57%	1.78%	1.94%	122	0	14	136
2023	3.57%	1.78%	1.94%	127	0	15	141
2024	3.57%	1.78%	1.94%	131	0	15	146
2025	3.25%	1.62%	1.58%	134	0	15	149
2026	3.25%	1.62%	1.58%	138	0	15	154
2027	3.25%	1.62%	1.58%	143	0	15	158
2028	3.25%	1.62%	1.58%	148	0	16	163
2029	3.25%	1.62%	1.58%	152	0	16	168
2030	3.25%	1.62%	1.58%	157	0	16	173
2031	3.25%	1.62%	1.58%	162	0	16	178
2032	3.25%	1.62%	1.58%	168	0	17	184
2033	3.25%	1.62%	1.58%	173	0	17	190
2034	3.25%	1.62%	1.58%	179	0	17	196
2035	3.25%	1.62%	1.58%	185	0	17	202
2036	3.25%	1.62%	1.58%	185	0	18	202
2037	3.25%	1.62%	1.58%	191	0	18	209
2038	3.25%	1.62%	1.58%	197	0	18	215
2039	3.25%	1.62%	1.58%	210	0	19	228
2040	3.25%	1.62%	1.58%	217	0	19	236
2041	3.25%	1.62%	1.58%	224	0	19	243

Fuente: Luis Javier Orozco Analuiza

3.1.3.3. Clasificación de la vía

Realizado la proyección del tráfico para un periodo de diseño de 20 años, se determina un TPDA de 243 vehículos/día, por lo cual clasificamos a la de vía de acuerdo al MTOP-2003, en un camino vecinal CLASE IV.

Tabla 34: Clasificación de carreteras en función al TPDA

Clase de Carretera	Tráfico Proyectado TPDA
R-I o R-II	Más de 8.000
I	De 3.000 a 8.000
II	De 1.000 a 3.000
III	De 300 a 1.000
IV	De 100 a 300
V	Menos de 100

Fuente: Normas de diseño geométrico de carreteras MTOP-2003

3.1.4. Diseño geométrico vial

El diseño geométrico de la vía se toma como base valores recomendados por el MTOP 2003, con la finalidad de realizar un diseño que brinde las condiciones de seguridad, estética y confort, se aplican los siguientes criterios:

- Utilizar curvas amplias con tangentes largas en cuanto lo permita el terreno.
- Trazar curvas de grandes radios, evitando usar los mínimos especificados para las velocidades de diseño.
- Realizar un alineamiento direccional como sea posible sin dejar de ser consistente con la topografía.

3.1.4.1. Diseño Horizontal

3.1.4.1.1 Velocidad de diseño

En base a la topografía y al TPDA del proyecto se llegó a establecer una carretera clase IV con características de un terreno montañoso escarpado, para el cual según MTOP 2003 propone dos velocidades de diseño una recomendada y una absoluta. Para el caso del proyecto se opta por una velocidad diseño de 40 km/h.

Tabla 35: Velocidad de diseño para un relieve montañoso

			Velocidad	de Diseño				
		Relieve Montañoso						
CLASE DE CARRETERA	Tráfico proyectado TPDA	Para cálculo elementos del ti perfil longit	razado del	Utilizar para el cálculo de los elementos de la sección trasversal y otros dependientes dela velocidad				
		Recomendada	Absoluta	Recomendada	Absoluta			
RI O RII	> 8000 TPDA	90	80	90	80			
I	3000 a 8000 TPDA	80	60	80	60			
II	1000 a 3000 TPDA	70	50	70	50			
III	300 a 1000 TPDA	60	40	60	40			
IV	100 a 300 TPDA	50	25	50	25			
V	< 100 TPDA	40	25	40	25			

Fuente: Normas de diseño geométrico de carreteras MOP 2003

3.1.4.1.2 Velocidad de circulación

Se determinó mediante la siguiente ecuación:

$$Vc = 0.80 * Vd + 6.5$$

$$Vc = 0.80 * (40km/h) + 6.5$$

$$Vc = 38.5 \, km/h \approx 40 \, km/h$$

Tabla 36: Velocidad de Circulación

Walasidad da	Velocidad de operación promedio km/h					
Velocidad de diseño km/h	Volumen de tránsito					
uisciio kiii/ii	Bajo	Medio	Alto			
40	38	35	33			
50	47	42	40			
60	56	52	45			
70	63	60	55			
80	72	65	60			
100	88	75	-			
120	105	85	-			

Fuente: Normas de diseño geométrico de carreteras MOP 2003

Al relacionar la velocidad de diseño con la velocidad de circulación se observa que la velocidad de circulación de 40 km/h tiende a ser un volumen de tránsito bajo.

3.1.4.1.3 Distancia de visibilidad de parada.

$$Dvp = d1 + d2$$

$$Dvp = 0.75Vc + \frac{Vc^2}{254 * f}$$

Calculo distancia recorrida

$$d1 = 0.70 * Vc = 0.70 * 40 = 28 m$$

Cálculo de coeficiente de fricción longitudinal

$$f = \frac{1.15}{Vc^{0.3}} = \frac{1.15}{40^{0.3}} = 0.38$$

$$d2 = \frac{Vc^2}{254 * f} = \frac{40^2}{254 * 0.38} = 16.5 \, m \approx 17 \, m$$

$$Dp = 28m + 17m = 45m$$

Según la normativa del MTOP 2003, establece una distancia de visibilidad de parada para un camino vecinal Clase IV de 55 m.

Tabla 37: Distancias de Visibilidad mínimas para un vehículo

CLASE DE CARRETERA	Tráfico proyectado	Valores de diseño de las distancias de Visibilidad mínimas para parada de un Vehículo (m)					
CARRETERA	TPDA	Valor	Recomer	ndado	Valor Absoluto		
		L	О	M	L	О	M
RI O RII	> 8000	220	180	135	180	135	110
I	3000 a 8000	180	160	110	160	110	70
II	1000 a 3000	160	135	90	135	110	55
III	300 a 1000	135	110	70	110	70	40
IV	100 a 300	110	70	55	70	35	25
V	< 100 TPDA	70	55	40	55	35	25

Fuente: Normas de diseño geométrico de carreteras MOP 2003

3.1.4.1.4 Distancia de visibilidad de rebasamiento

Para determinar la distancia de rebasamiento haremos uso de la siguiente fórmula

$$dr = 9.54 V - 218 \text{ Para} (3 < V > 100)$$

 $dr = 9.54 * 40 - 218 = 164 m$

La distancia de visibilidad de rebasamiento calculada es de 164 m, pero se opta por el valor recomendado por la MTOP de 150 m para caminos vecinales.

Tabla 38: Distancia mínima de rebasamiento

Velocidad de diseño en Km/h	Velocidades de los vehículos		Distancia mínima de rebasamiento				
	Rebasado	Rebasante	Rebasado	Rebasante			
25	24	40		80			
30	28	44		110			
35	33	49		130			
40	35	51	268	270 (150)			
45	39	55	307	310 (180)			
50	43	59	345	345 (210)			
60	50	66	412	415 (290)			
70	58	74	488	490 (380)			
80	66	82	563	565 (480)			
90	73	89	631	640			
100	79	95	688	690			
110	87	103	764	830			
120	94	110	831	830			
()	() Valores utilizados para caminos vecinales						

Fuente: Normas de diseño geométrico de carreteras MOP 2003

3.1.5.1. Diseño geométrico horizontal

Radio mínimo de curvatura

Se determinó mediante a siguiente ecuación.

$$R_{min} = \frac{V^2}{127 * (e+f)}$$

Donde:

V = Velocidad de diseño en (Km/h)

e = Peralte máximo

f = Coeficiente de fricción máxima

Se seleccionó "f" para una velocidad de 40km/h y un peralte del e=8%

MTOP recomienda usar un peralte de 8% para velocidades menores al 50km/h. Para el caso del proyecto se escoge un peralte máximo del e = 8% debido a que la velocidad de diseño es de 40km/h.

$$R_{min} = \frac{V^2}{127 * (e+f)}$$

$$R_{min} = \frac{40^2}{127 * (0.08 + 0.221)} = 42 m$$

Peralte

Para el caso del proyecto, tomando en cuenta las recomendaciones del MTOP usar un peralte de 8% para velocidades menores al 50km/h. Para el proyecto al ser una vía del tipo IV camino vecinal se escoge un peralte máximo del e = 8% debido a que la velocidad de diseño es de 40km/h.

Sobre ancho

El MTOP recomienda usar para velocidades ≤ 50 Km/h un sobre ancho de 30cm y para velocidades de > 50 km /h un sobre ancho de 40cm. Para el caso del proyecto se trabajó con un sobre ancho mínimo de 30cm.

Longitud de transición

$$L_{min} = 0.56 * Vd$$

$$L_{min} = 0.56 * \frac{40Km}{h} = 22.4 m$$

3.1.5.2. Diseño Vertical.

Gradiente longitudinal

El proyecto al presentar una topografía montañosa escarpada, MTOP recomienda usar pendientes del 8 al 12%. Para caminos vecinales se puede aumentar la gradiente en 3%, en terrenos montañosos con longitudes menores a 750 m. [6] En tramos desfavorables cuando la topografía del proyecto no permitía llevar el trazado geométrico por un lugar de menor pendiente, se utilizó una pendiente máxima del 16%.

Curvas verticales

Coeficiente k mínimas para curvas verticales

Convexas = 7

Cóncavas = 10

$$L_{min} = 0.60 * Vd$$

$$L_{min} = 0.60 * \frac{40Km}{h} = 24 m$$

3.1.5.3. Diseño de la Sección transversal

La sección típica propuesta en el proyecto esta función al TPDA proyectado, constituido por el ancho del pavimento, espaldón y las cunetas.

Ancho de carril.

La sección típica a emplearse en el proyecto al ser un camino vecinal Clase IV, MTOP 2003 establece un ancho de calzada de 6m el cual está dispuesto por dos carriles de 3 m de ancho por sentido.

Espaldón

MTOP - 2003 para terreno montañoso establece un ancho de espaldón de 0.6 m para un camino vecinal clase IV.

Gradiente transversal

El proyecto al ser una vía de IV orden la gradiente transversal que recomienda el MTOP es de 2.5 al 4.0%. Para el caso del proyecto se trabajó con 2.5%.

3.1.6. Estudio de Suelos

Previo a realizarse el estudio de suelo, se hizo un reconocimiento del camino vecinal con el fin de establecer los lugares para realizar la excavación y poder obtener las muestras para los ensayos.

Para la recolección de la muestras suelos se realizaron calicatas de pozos a cielo abierto a una profundidad de 1m, en la cual se tomaron muestras en las Abscisas 1+000, 2+000, 3+000, 4+000, y 5+000 para posteriormente ser llevado al laboratorio de suelos y realizar ensayos de granulometría, limite líquido, limite plástico, contenido humedad, Proctor y CBR. Los resultados de los estudios de se presentan en el Anexo Estudio de suelos.

Tabla 39: Resumen de ensayo Proctor subrasante

Calianta	Abasias	Proctor modifica	modificado	
Calicata	Abscisa	Cont. Humedad w%	Densidad	
1	1+000	53.40	1.028	
2	2+000	30.00	1.198	
3	3+000	60.00	0.968	
4	4+000	52.40	0.976	
5	5+000	46.00	1.008	

Fuente: Luis Javier Orozco Analuiza

Tabla 40: Tabla resumen clasificación de suelo de la subrasante

Calicata	Abscisa		icación tipode suelo Nomenclatura		Lím	ites de Atte	rberg		Franulometria que pasa el tar	
		Aashtoo	SUCS		LL	LP	IP	#10	#40	#200
1	1+000	A-4	ML	Limo arcilloso con ligera plasticidad	49	35	14.49	99.27	82.03	53.82
2	2+000	A-4	ML	Limo arcilloso con ligera plasticidad	44	30.67	13.33	98.40	82.16	54.79
3	3+000	A-4	ML	Limo arcilloso con ligera plasticidad	46.8	32.67	14.13	99.75	89.42	57.83
4	4+000	A-4	ML	Limo arcilloso con ligera plasticidad	44	29.81	14.19	99.58	88.52	63.87
5	5+000	A-4	ML	Limo arcilloso con ligera plasticidad	49.4	35.45	13.95	99.91	90.23	59.19

Fuente: Luis Javier Orozco Analuiza

Tabla 41: Tabla resumen ensayo CBR puntual

Calicata	1	2	3	4	5
Abscisa	1+000	2+000	3+000	4+000	5+000
CBR%	7.4	10	11.7	8	12.2

Fuente: Luis Javier Orozco Analuiza

3.1.7. Diseño de pavimento

El diseño de pavimento está basado en el método AASHTO 93, el cual que basa en encontrar un numero estructural "SN" que soporte un nivel de carga requerido, para el cual el método proporciona una ecuación general que involucra los siguientes parámetros.

$$log_{10}(W_{18}) = Z_R * S_0 + log_{10}(SN+1) - 0.20 + \frac{log_{10} * \left[\frac{\Delta PSI}{4.2-1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 * log_{10}(M_R) - 8.07$$

Donde:

 W_{18} = Número de ejes equivalentes.

 Z_R = Desviación estándar normal.

 S_0 = Desviación estándar global.

SN = Numero estructural.

 ΔPSI = Diferencia entre los índices de serviciabilidad inicial y final.

M_R = Módulo de resiliencia.

Periodo de diseño

Especifica el tiempo de vida útil que tendrá de la estructura del pavimento. Para el cual la AASHTO recomienda periodos de diseño en función al tipo de carretera.

Tabla 42: Periodo de análisis según tipo de carretera

Tipo de Carretera	Período de análisis (Años)
Urbana de alto volumen	30 a 50
Rural de alto Volumen	20 a 50
Pavimentada de bajo volumen	15 a 25
Tratada superficialmente de bajo volumen	10 a 20

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Se opta por un período de análisis de 15 a 25 años en función al tipo de carretera considerado.

Factor de daño

Se emplea el factor de daño con el fin de determinar el deterioro que causara el tipo de vehículo dependiendo el peso que posea.

Tabla 43: Factor de daño

EA	TODES	DE DAÑO S	ECLÍN'	TIDO DE VEI	TÍCH O				
FAC		Simple		Simple doble		Tádem		Tridem	Facto de
TIPO	Ton	(P/6.6)^4	Ton	(P/8.2)^4	Ton	(P/15)^4	Ton	(P/23)^4	Daño
	1.7	0.004	Ton	(170.2)	1011	(1715) 1	1011	(1723) 1	0.025
Livianos	2.5	0.021							
Bus	4	0.13	8	0.91					1.04
OD C :: 1 2 : ~	3	0.04							0.17
2D: Camión de 2 ejes pequeño	4	0.013							
2DA: Camión de 2 ejes mediano	3	0.04	7	0.53					0.57
2DB: Camión de 2 ejes grandes	7	1.27	11	3.24					4.51
3A: Camiones 3 ejes	7	1.27			20	3.16			4.43
4C: Camión de 4 ejes	7	1.27					24	1.19	2.46
3S2: Tracto camión de 3 ejes y remolque de 2 ejes	7	1.27			20	3.16			7.59
3S3: Tracto camión de 3 ejes y remolque de 3 ejes	7	1.27			20	3.16	24	1.19	5.62

Fuente: Guía para diseño de estructuras de pavimento AASHTO-93

Factor equivalente de carga

$$Fe = \left(\frac{P}{Pi}\right)^n$$

Donde:

P= Carga de eje en (Ton)

Pi= Patrón de carga

n= Exponente igual a 4

Dependiendo del tipo de eje se determina el factor de carga con las siguientes fórmulas:

Tabla 44: Clasificación del tipo de eje

Simple rued	a simple:	Simple rueda doble:		
Eje con una rueda	en sus extremos.	Eje con dos ruedas sencillas en sus extremos.		
$Fe = \left(\frac{P}{6.6}\right)^4$	I	$Fe = \left(\frac{P}{8.2}\right)^4$	00-0 0	
	Eje Simple		Eje Simple Doble	
Tánd	em	Tridem:		
Tienen dos ejes sencillo	s con ruedas dobles	Tienen tres ejes sencillos con ruedas dobles en		
en sus extremos		sus extremos		
$Fe = \left(\frac{P}{15}\right)^4$	00-00 00-00	$Fe = \left(\frac{P}{23}\right)^4$		
	Eje tándem		Eje tridem	

Fuente: Luis Javier Orozco Analuiza

Factor de distribución por carril (Fc)

Se opta por un 100 % de la carga de los vehículos debido a que la vía de estudio presenta un carril por cada sentido de circulación.

Tabla 45: Factores de distribución por carril

Número de carriles en una dirección	Porcentajes del W18 en el carril de diseño , DL
1	100
2	80 a 100
3	60 a 80
4	50 a 75

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Factor de distribución por dirección (Fd)

Es el valor total del flujo vehicular, para una distribución de dos sentidos se consideró un 50%.

Tabla 46: Factores de distribución por dirección

Número de carriles en ambas direcciones	Fd
2	50%
4	45%
6 o más	40%

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

3.1.7.1.1 Calculo del W18

$$W_{18} = 365 * TPDA_{final} * FD$$

$$W_{18}$$
 carril de diseño = 365 * TPDA_{final} * F_d * F_c

$$W_{18} = 365 * TPDA_{final} * FD$$

$$W_{18 \text{ parcial}} = (365 * TPDA_{Buses} * FD) + (365 * TPDA_{Pesados} * FD)$$

$$W_{18 \text{ parcial}} = (365 * 19 * 4.51) = 31277$$

$$W_{18 \text{ Acumulado}} = 31277 + 537638 = 568915$$

$$W_{18 \text{ Por dirección}} = W_{18 \text{ Acumulado}} * 0.5$$

$$W_{18 \text{ Por dirección}} = 568915 * 0.5$$

$$W_{18 \text{ Por dirección}} = 284458$$

Tabla 47: Ejes Equivalentes

CÁLCULO DEL NÚMERO DE EJES EQUIVALENTES A 8.2 TONS													
	INDICE	DE CRECI	MIENTO	TRÁFIC	TRÁFICO PROMEDIO ANUAL (TPDA)						W18	W18	W18 Por
AÑO	LIVIANOS	BUSES	PESADOS	LIVIANOS	LIVIANOS BUSES		AMIONES TOTAL TPDA		Acumulado				
2021	3.97%	1.78%	1.94%	118	0	14	132	23046	23046	11523			
2022	3.57%	1.78%	1.94%	122	0	14	136	23493	46539	23270			
2023	3.57%	1.78%	1.94%	127	0	15	141	23949	70488	35244			
2024	3.57%	1.78%	1.74%	131	0	15	146	24414	94902	47451			
2025	3.57%	1.78%	1.74%	134	0	15	149	24537	119439	59720			
2026	3.57%	1.78%	1.74%	138	0	15	154	24925	144365	72182			
2027	3.57%	1.78%	1.74%	143	0	15	158	25319	169684	84842			
2028	3.57%	1.78%	1.74%	148	0	16	163	25719	195403	97701			
2029	3.25%	1.62%	1.58%	152	0	16	168	26125	221528	110764			
2030	3.25%	1.62%	1.58%	157	0	16	173	26538	248066	124033			
2031	3.25%	1.62%	1.58%	162	0	16	178	26957	275024	137512			
2032	3.25%	1.62%	1.58%	168	0	17	184	27383	302407	151204			
2033	3.25%	1.62%	1.58%	173	0	17	190	27816	330223	165112			
2034	3.25%	1.62%	1.58%	179	0	17	196	28256	358479	179239			
2035	3.25%	1.62%	1.58%	185	0	17	202	28702	387181	193590			
2036	3.25%	1.62%	1.58%	185	0	18	202	29156	416336	208168			
2037	3.25%	1.62%	1.58%	191	0	18	209	29616	445952	222976			
2038	3.25%	1.62%	1.58%	197	0	18	215	30084	476037	238018			
2039	3.25%	1.62%	1.58%	210	0	19	228	30559	506596	253298			
2040	3.25%	1.62%	1.58%	217	0	19	236	31042	537638	268819			
2041	3.25%	1.62%	1.58%	224	0	19	243	31277	568915	284458			

Fuente: Luis Javier Orozco Analuiza

3.1.7.1.2. CBR de diseño

Para calcular el CBR de diseño, determinaremos en función al cálculo de los ejes equivalentes, para el cual aplicaremos criterios recomendados por la AASHTO, en usar valores comprendidos entre 60%, 75% y 87.5%.

Tabla 48: Percentil de confiabilidad para CBR de diseño

Numero de ejes de 8.2 Ton. En carril de diseño	Percentil a seleccionar para hallar la resistencia
< 10000	60
10000-1000000	75
>1000000	87.5

Fuente: Instituto de Asfalto.

De acuerdo al número del ejes equivalentes calculado; para el caso del proyecto se tiene $W_{18}=284458$ por lo cual ocupamos percentil del 75%

Tabla 49: Datos de CBR obtenidos en campo

Calicata	1	2	3	4	5
Abscisa	1+000	2+000	3+000	4+000	5+000
CBR%	7.4	10	11.7	8	12.2

Fuente: Luis Javier Orozco Analuiza

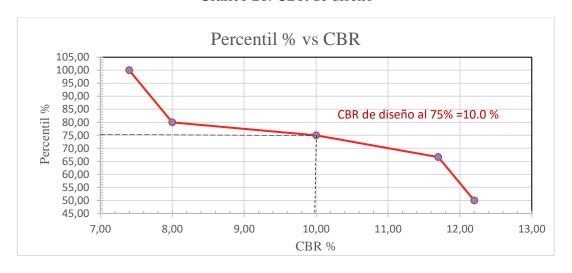

Con los datos de CBR obtenidos en campo procesamos y obtenemos el CBR de diseño.

Tabla 50: Datos para CBR de diseño

CBR %	Fi	≥ CBR	%
7.40	1	5	100.00
8.00	1	4	80.00
10.00	1	3	75.00
11.70	1	2	66.67
12.20	1	1	50.00

Fuente: Luis Javier Orozco Analuiza

Gráfico 26: CBR de diseño

Fuente: Elaboración Propia

En base al percentil optado del 75% determinamos un CBR de diseño del 10%, por lo cual tenemos como resultado una subrasante regular a buena en el área del proyecto.

Tabla 51: Clasificación de la Sub rasante de acuerdo al CBR

Clasificación	CBR diseño (%)
Sub rasante muy malo	0-5
Sub rasante malo	5-10
Sub rasante regular a buena	10-20
Sub rasante muy buena	20-30
Sub Base buena	30-50
Base Buena	50-80
Base Muy Buena	80-100

Fuente: ASTM D05 American Society of Testing Materials, 1883

3.1.7.1.3. Confiabilidad de diseño (R%)

Se define como la probabilidad en la que la estructura de pavimento tenga un comportamiento real igual o mejor al previsto durante la vida de diseño adoptada.

Tabla 52: Niveles recomendados de confiabilidad

	Nivel de confiabilidad, R, recomendado				
Clasificación funcional	Urbano	Rural			
Interestatales y vías rápidas	85 - 99.9	80 - 99.9			
Arterias principales	80 - 99	75 - 95			
Colectoras	80 - 95	75 - 95			
Locales	50 - 80	50 - 80			

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

La vía del proyecto al ser un camino local ubicado en un área rural recomienda un nivel de confiabilidad R% entre 50 - 80%. Para el caso del proyecto se opta por un 70%.

3.1.7.1.4. Desviación estándar (ZR)

Seleccionado el nivel de confiablidad "R" obtenemos el valor de Z_{R} , está asociado con el nivel de confiabilidad seleccionado anteriormente.

Tabla 53: Factor de Desviación Normal

Confiabilidad, R, en porcentaje	Desviación estándar normal, ZR
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Se escogió un nivel de confiabilidad del R = 70% por ende tenemos una desviación estándar normal de Z_R = -0.524

3.1.7.1.5. Desviación estándar global

Parámetro que determina posibles variaciones en el comportamiento del pavimento y en la predicción del tránsito.

Para pavimentos flexibles $0.40 < S_0 < 0.50$, Recomiendan usar 0.45

3.1.7.1.6. Módulo de resiliencia Mr (característica de la subrasante)

Se obtiene a partir del CBR de diseño para el cual la guía AASHTO ha plantea fórmulas para correlacionar el CBR y poder encontrar el módulo de resiliencia Mr.

$$Mr (psi) = 1500 x CBR$$
 $CBR < 10\%$

$$Mr (psi) = 3000 \times CBR^{0.65}$$
 CBR 7.2% al 10%

$$Mr(psi) = 4326 x ln CBR + 241$$
 Para suelos granulares AASHTO

De acuerdo CBR de diseño obtenido en la sub rasante se determinó el módulo de resiliencia Mr con la siguiente ecuación.

$$Mr = 3000 \times CBR^{0.65}$$

secundarios.

$$Mr = 3000 \times 10^{0.65} = 13400.50 \text{ psi}$$

3.1.7.1.7. Índice de serviciabilidad PSI

Condición de un pavimento para proporcionar un manejo seguro y confortable a los usuarios.

$$\Delta PSI = PSI_{Inicial} - PSI_{final}$$

 ΔPSI = diferencia entre los índices de servicio inicial y final.

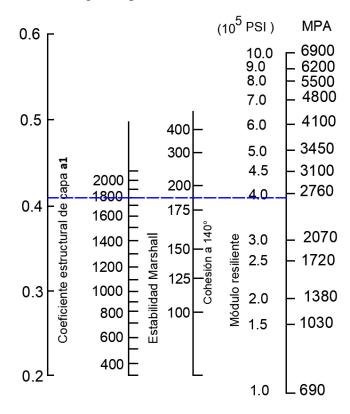
 $PSI_{Inicial}$ = Índice de servicio inicial, 4.5 pavimento rígido y 4.2 pavimentos flexibles PSI_{final} = Índice de servicio final, 2.5 o 3 Caminos principales y 2.0 caminos

$$\Delta PSI = PSI_{Inicial} - PSI_{final}$$

 $\Delta PSI = 4.2 - 2 = 2.2$

3.1.7.1.8. Coeficiente estructural de la carpeta asfáltica (a1)

Con el valor del módulo de elasticidad de la mezcla asfáltica asumido se utiliza el siguiente nomograma para estimar el coeficiente estructural, a partir de la estabilidad Marshall mínima de 1800 lb, para un tipo de tráfico pesado establecido por el MOP 2002 en el control de calidad de mezclas asfálticas. Con el cual se obtendrá los valores del coeficiente estructural y el módulo de resiliencia.


Tabla 54: Control de calidad de mezclas asfálticas

TIPO DE TRAFICO	Muy l	Pesado	Pes	ado	Me	edio	Liv	iano
CRITERIOS MARSHALL	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
N° de golpes	7	⁷ 5	7	'5	5	60	5	0
Estabilidad (lb)	2200		1800		1200		1000	

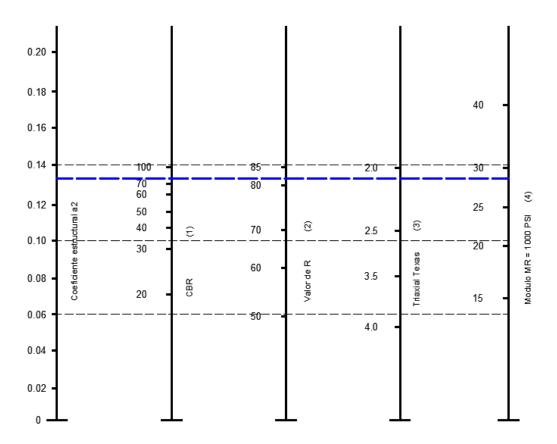
Flujo (in/100)	8	14	8	14	8	16	8	16
Capa de rodadura	3	5	3	5	3	5	3	5
Capa intermedia	3	8	3	8	3	8	3	8
Capa de base	3	9	3	9	3	9	3	9

Fuente: MTOP- 2002 control de mezclas asfálticas

Gráfico 27: Nomograma para estimar el coeficiente estructural a1

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Mediante el uso del nomograma se obtiene los siguientes datos:


Coeficiente estructural de la capa a1= 0.418

Módulo resiliente (MR) = 397100 PSI.

3.1.7.1.9. Coeficiente estructural de la capa base (a2)

En base a las especificaciones generales para la construcción de caminos y puentes del MOP 2002 Capitulo 400 Estructura del pavimento sección 404 Bases establece que la capa base tendrá un valor de soporte de CBR igual o mayor al 80%. Para lo cual se opta por un valor mínimo del 80%, obteniéndose así el coeficiente estructural a2 mediante el uso del siguiente nomograma.

Gráfico 28: Nomograma para estimar el coeficiente estructural a2

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Mediante el uso del nomograma se obtiene un coeficiente estructural para la capa base a2 = 0.135 y un módulo resiliente (MR) de 28700 PSI.

Con el fin de evitar errores de apreciación hacemos uso de la siguiente tabla propuesta por la AASHTO 93 para determinar los coeficientes estructurales de la capa base.

Tabla 55: Coeficientes de la capa base (a2)

	BASE AGREGADOS					
CBR %	a2	CBR %	a2			
20	0.070	50	0.115			
25	0.085	55	0.120			
30	0.095	60	0.125			
35	0.100	70	0.130			
40	0.105	80	0.133			
45	0.112	90	0.137			
		100	0.140			

Fuente: AASHTO 93

Para un CBR del 80% se obtiene los siguientes datos del coeficiente estructural a2:

Coeficiente estructural de la capa a2= 0.133

Módulo resiliente (MR) = 28700 Psi, 28.7 Ksi

3.1.7.1.10. Coeficiente estructural de la capa subbase (a3)

Tomando como referencia las especificaciones generales para la construcción de caminos y puentes del MOP 2002 Capitulo 400 Estructura del pavimento sección 403 Sub- Bases establece que la capacidad de soporte de CBR deberá ser igual o mayor al 30%. Se opta por un 30% con lo cual se obtiene el coeficiente estructural a3 mediante el siguiente nomograma.

0.20 0.18 40 0.16 0.14 00 90 20-80 50 40 0.12 70 3 Modulo MR = 1000 PSI 0.10 0 20 13 12 Ξ 50 11 4 10 0.08 40 0.06 30 5 5 25

Gráfico 29: Nomograma para estimar el coeficiente estructural de la subbase (a3)

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Por medio de la apreciación en el nomograma se obtiene un coeficiente estructural para la capa subbase a3= 0.108 y un módulo resiliente (MR) de 14900 PSI.

Con el fin de evitar errores de apreciación usamos tablas propuesta por la AASHTO 93 para determinar los coeficientes estructurales de la capa subbase.

Tabla 56: Coeficiente de la Subbase (a3)

SUB - BASE GRANULAR				
CBR %	a3			
10	0.080			
15	0.090			
20	0.093			
25	0.102			
30	0.108			
35	0.115			
40	0.120			
50	0.125			
60	0.128			
70	0.130			
80	0.135			
90	0.138			
100	0.140			

Fuente: AASHTO 93

Para un CBR del 30%, se obtiene los siguientes datos del coeficiente estructural a3:

Coeficiente estructural de la capa a3= 0.108

Módulo resiliente (MR) = 14900 Psi, 14.9 Ksi

3.1.7.1.11. Coeficiente de drenaje (m₂, m₃)

Es el tiempo en que el agua tarda en ser eliminado de las capas granulares de la estructura de pavimento con son base y subbase.

Tabla 57: Calidad de Drenaje

Calidad de drenaje	Tiempo de evacuación
Excelente	2 horas
Bueno	1 día
Regular	1 semana
Pobre	1 mes
Muy Malo	El agua no evacua

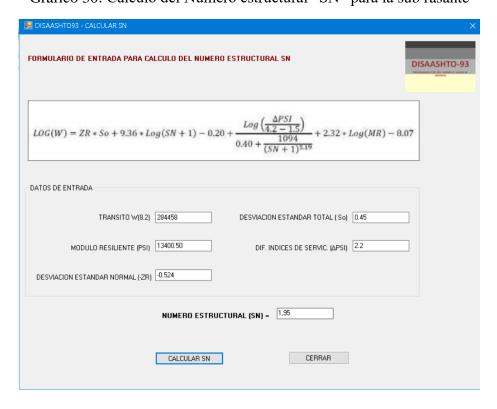
Fuente: Guía para diseño de estructuras de pavimento AASHTO 93

Se selecciona una calidad de drenaje Regular, posteriormente escogeremos los coeficientes de m₂, m₃.

Tabla 58: Valores recomendados para m2 y m3

Calidad de drenaje	Porcentajes del tiempo en que la estructura de pavimento está expuesta a niveles de humedad cercanos a la saturación					
	Menos de 1% 1 - 5% 5 - 25% Más d					
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20		
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00		
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80		
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60		
Muy Malo	1.05 - 0.95	0.95 - 0.75	0.75 -0.40	0.40		

Fuente: Guía para diseño de estructuras de pavimento AASHTO 93


El pavimento al estar expuesto a una humedad del 5% - 25%, los coeficientes de drenaje m₂ y m₃ se optan por 0.80.

3.1.7.1.12. Diseño de la estructura de Pavimento

3.1.7.1.12.1 Determinación del número estructural para pavimento flexible (SN)

Obtenidas los parámetros requeridos para el diseño de pavimentos flexibles, procedemos a calcular el número estructural utilizando el programa de DISAASHTO-93 elaborado por Ing. Andrés García.

Gráfico 30: Cálculo del Numero estructural "SN" para la sub rasante

Fuente: DISAASHTO-93 elaborado por Ing. Andrés García.

Para el caso del proyecto se determina un numero estructural SN= 1.95

3.1.7.1.12.2. Espesor de las capas del pavimento

Calculamos los espesores de la estructura del pavimento flexible utilizando el programa DISAASHTO-93 elaborado por Ing. Andrés García.

Gráfico 31: Diseño de la estructura de pavimento

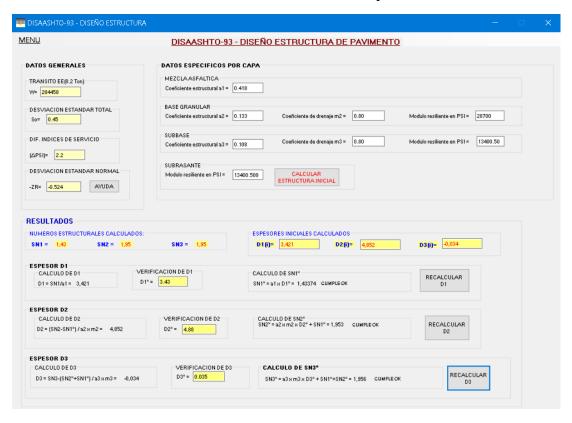
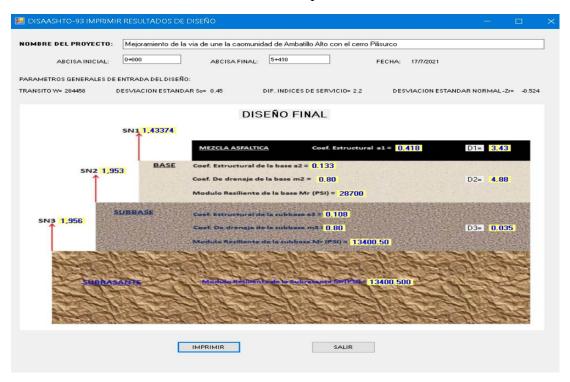



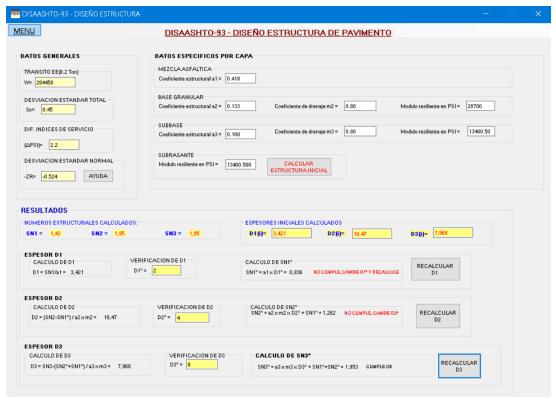
Gráfico 32: Estructura de pavimento teórico

Teóricamente el programa propone los siguientes espesores de capas

D1: Capa Asfáltica: 3.43" = 8.7 cm

D2: Capa Base: 4.88" = 12.40 cm

D3: Capa Sub base: 0.035" = 0.09 cm


Por fines económicos y constructivos el cálculo teórico se distribuye de una mejor forma para el cual se propone los siguientes espesores de las capas de pavimento.

D1: Espesor de Capa Asfáltica: 2" = 5.08 cm

D2: Espesor de Capa Base: 4" = 10.16 cm

D3: Espesor de Capa Subbase: 8" = 20.32 cm

Gráfico 33: Diseño de estructura de pavimento

Fuente: DISAASHTO-93 elaborado por Ing. Andrés García.

NOMBRE DEL PROYECTO: Mejoramiento de la via de une la caomunidad de Ambatillo Alto con el cerro Pilisurco 0+000 ABCISA FINAL: 5+410 ABCISA INICIAL: FECHA: 17/7/2021 PARAMETROS GENERALES DE ENTRADA DEL DISEÑO: TRANSITO W= 284458 DESVIACION ESTANDAR So= 0.45 DIF. INDICES DE SERVICIO= 2.2 DESVIACION ESTANDAR NORMAL-Zr= -0.524 DISEÑO FINAL SN1 0,836 Coef. Estructural a1 = 0.418 MEZCLA ASFALTICA D1= 2 BASE Coef. Estructural de la base a2 = 0.133 SN2 1,262 D2= 4 Coef. De drenaje de la base m2 = 0.80 Modulo Resiliente de la base Mr (PSI) = 28700 Coef. Estructural de la subbase a3 = 0.108 SN3 1,953 Coef. De drenaje de la subbase m3 = 0,80 D3= 8 Modulo Resiliente de la subbase Mr (PSI) = 13400.50 IMPRIMIR SALIR

Gráfico 34: Diseño final de la estructura de pavimento

Fuente: DISAASHTO-93 elaborado por Ing. Andrés García.

Para comprobar que el diseño final propuesto cumple el SN requerido procedemos a calcular los números estructurales SN de cada capa.

$$SN_1' = a_1 * D_1$$

 $SN_1' = 0.418 * 2 = 0.836$
 $SN_2' = a_2 * m_2 * D_2$
 $SN_2' = 0.133 * 0.80 * 4 = 0.4256$
 $SN_3' = a_3 * m_3 * D_3$
 $SN_3' = 0.108 * 0.80 * 8 = 0.691$
 $SN_{calculado} = SN_1' + SN_2' + SN_3'$
 $SN_{calculado} = 0.836'' + 0.4256'' + 0.691''$
 $SN_{calculado} = 1.953''$

Comprobación

$$SN_{calculado} \geq SN_{requerido}$$

Características de los materiales

Sub base

La sub – base propuesta para el proyecto será una clase 3, formada por agregados gruesos, obtenidos mediante cribado de gravas o roca mezcladas con arena natural o material finamente triturado, cumpliendo los requisitos especificados por el MOP 2002. [24]

- Porcentaje de desgaste por ensayo abrasión ≤ 50%
- Limite líquido ≤ 25
- Índice plástico < 6
- Capacidad de soporte corresponderá a un CBR ≥ 30 %
- Granulometría

Tabla 59: Granulometría para Subbase

Т	^AMIZ	Porcentaje en peso que pasa a través de los tamices de malla cuadrada				
		CLASE 1	CLASE 2	CLASE 3		
3"	(76.2 mm)			100		
2"	(50.4 mm)	-	100			
11/2	(38.1 mm)	100	70 - 100			
N° 4	(4.75 mm)	30 - 75	30 - 70	30 - 70		
N° 40	(0.425 mm)	10 - 35	15 - 40			
N° 200	(0.075 mm)	0 - 15	0 - 20	0 - 20		

Fuente: MOP – 2002

Base

El material de base propuesta para el proyecto será una clase 4, constituidas por agregados obtenidos por trituración o cribado de piedras fragmentadas naturalmente o de gravas, los agregados deberán graduarse uniformemente de grueso a fino cumpliendo los requisitos especificados por el MOP 2002. [24]

• Porcentaje de desgaste por ensayo abrasión < 40%

- Limite líquido < 25
- Índice plástico < 6
- Capacidad de soporte corresponderá a un CBR ≥ 80 %
- Granulometría

Tabla 60: Granulometría para Base clase 4

Т	'AMIZ	Porcentaje en peso que pasa a través de los tamices de malla cuadrada
		CLASE 4
2"	(50.4 mm)	100
1"	(25.4 mm)	60-90
N° 4	(4.75 mm)	20-50
N° 200	(0.075 mm)	0-15

Fuente: MOP - 2002

Carpeta asfáltica

Para la capa de rodadura se empleará hormigón asfaltico, el cual está constituido por una mezcla de cemento asfaltico y agregados. Para el cual se aplicará el método Marshall con el fin de obtener las cantidades óptimas de los contenidos que conforman la mezcla asfáltica. La misma que debe cumplir los siguientes requerimientos.

Tabla 61: Especificaciones de calidad de agregados para cemento asfaltico

Ensayo	Especificaciones
Resistencia al desgaste	≤ 40%
por abrasión	INEN 860
Resistencia a la acción	< 12%
de los sulfatos	INEN 863
Dagularianian ta sa	Adherencia 95%
Recubrimiento y peladura	Peladura 5%
peradura	AASHTO T 182
Índice plástico	< 4
(Pase # 40)	
Hinchamiento	1.50%

Fuente: MOP- 2002

Para la mezcla asfáltica deberá emplearse una de las granulometrías indicadas

Tabla 62: Granulometrías de los agregados para la mezcla asfáltica

Т	AMIZ	Porcentaje en peso que pasa a través de los tamices de mal cuadrada				
		3/4''	1/2''	3/8''	No. 4	
1"	(25.4 mm)	100				
3/4	(19.0 mm)	90 - 100	100			
1/2 "	(12.7 mm)		90-100	100		
3/8 "	(9.50 mm)	56 - 80		90 - 100	100	
N° 4	(4.75 mm)	35 - 65	44 - 74	55 - 85	80 - 100	
N° 8	(2.36 mm)	23 - 49	28 - 78	32 - 67	65 - 100	
N° 16	(1.18 mm)				40 - 80	
N° 30	(0.60 mm)				25 - 65	
N° 50	(0.30 mm)	5 - 19	5 - 21	7 - 23	7 - 40	
N° 100	(0.15 mm)				3 - 20	
N° 200	(0.075 mm)	2 - 8	2 - 10	2 – 10	2 - 10	

Fuente: MOP-2002

En nuestro país el cemento asfáltico empleado para la construcción de pavimento asfáltico es el AP-3 que es un cemento asfáltico medio, cuyo grado de penetración es de 80 a 120 (80-120) décimas de milímetros. El uso de uno u otro tipo de cementos asfálticos varía en función del tráfico previsto para la vía en el cual deberá cumplir las siguientes especificaciones.

Tabla 63: Criterios de diseño para mezclas Marshall

Tipo de trafico	Tráfico ligero		Tráfico medio		Tráfico pesado		Muy pesado	
Criterios de mezcla	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Estabilidad en libras	35	5	50)	75		75	
Flujo en libras	750		1200		1800		2200	
Flujo en centésimas de pulgada	8	18	8	16	8	16	8	14
Porcentaje de vacíos	3	5	3	5	3	5	3	5
Porcentaje de vacíos relleno de asfalto	70	80	65	78	65	75	65	75
Relación filler/ betún					0.8	1.2	0.8	1.2

Fuente: MOP-2002

3.1.8. Estudio Hidráulico

En diseño de las obras de drenaje se hizo un recorrido por el lugar del proyecto con el fin identificar la existencia de ríos, quebradas o arroyos que atraviesen la vía, y poder establecer puntos de descargar para evacuar de forma rápida el agua proveniente de las lluvias. El sistema de drenaje implementado en la vía está en base los registros de

estaciones pluviométricas cercanas al proyecto para lo cual se trabajó con la estación del gobierno provincial de Tungurahua MT-0011 Quisapincha (Ambato).

3.1.8.1. Diseño de las estructuras de drenaje

Consideraciones para el diseño de cunetas:

- Las Pendiente longitudinal de la cuneta tendrán un valor mínimo de 0.50% y un valor máximo limitado por la velocidad de flujo.
- El talud hacia la vía sea como mínimo 3:1, el talud a corte con la misma pendiente que propio talud.
- Tener un diseño para un espejo de agua máximo de 30 cm.
- Cumplir con velocidades máximas de 4.5 m/s a 7.5 m/s en hormigón y velocidades mínimas recomendadas de 0,25 m/s.
- En la práctica se usa una velocidad para cunetas de hormigón de 4m/s y una velocidad máxima de 6.5m/s.
- Se recomienda que la longitud máxima de la cuneta sea entre 150 y 200 m.
- Cuando exista concentraciones de flujo de agua en las áreas drenantes, se recomienda utilizar estructuras de drenaje transversal.

Diseño de cunetas

Para el diseño de cunetas se trabajó con las pendientes longitudinales del trazado geométrico vial, los caudales de diseño se obtuvieron a través un análisis de cuencas con el fin de determinar las áreas aportantes de drenaje hacia la cuneta de diseño. Por seguridad vial, facilidad de construcción y mantenimiento se propone una sección de forma triangular revestida de hormigón de f´c = 180 kg/cm2. El diseño está basado en el principio de canales abiertos para lo cual usaremos la fórmula de Manning y la ecuación de continuidad.

Fórmula de Manning

$$V = \frac{1}{n} * R^{\frac{2}{3}} * J^{\frac{1}{2}}$$
 , $R = \frac{A}{P}$

Donde:

V= Velocidad (m/s)

n= Coeficiente de rugosidad Manny

J = Pendiente hidráulica (%)

Q = Caudal de diseño (m3/s)

A = Área de la sección (m2)

P = Perímetro mojado (m)

R = radio hidráulico (m)

• Ecuación de la continuidad

$$Q = A * V$$

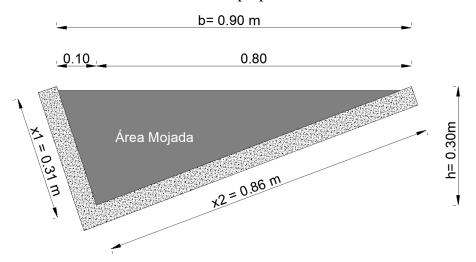
Donde:

V= Velocidad (m/s)

Q = Caudal de diseño (m3/s)

A =Área de la sección (m2)

El coeficiente de rugosidad de Manning utilizado para el diseño de la cuneta de hormigón se optó por n=0.016.


Tabla 64: Coeficientes de rugosidad para recubrimientos de cuentas

TIPO DE CUENTA	Coeficiente de Manning		
Cunetas y canales revestidos			
En tierra ordinaria, superficie uniforme y lisa	0.020 - 0.025		
En tierra ordinaria, superficie irregular	0.025 - 0.035		
En tierra con ligera vegetación	0.035 - 0.045		
En tierra con vegetación espesa	0.040 - 0.050		
En tierra excavada mecánicamente	0.028 - 0.033		
En roca, superficie uniforme y lisa	0.030 - 0.045		
En roca, superficie con aristas e irregularidades	0.035 - 0.045		
Cunetas y canales revestidos			
Hormigón	0.013 - 0.017		
Hormigón revestido en tierra	0.016 - 0.022		
Encachado	0.020 - 0.030		
Paredes de hormigón, fondo de grava	0.017 - 0.020		
Paredes encachadas, fondo de grava	0.023 - 0.033		
Revestimiento bituminoso	0.013 - 0.016		

Fuente: Lemos, Drenaje vial y subterráneo, 1999

Se asume la siguiente sección típica considerando que las cunetas trabajaran con sección llena. Para lo cual se determinará los elementos hidráulicos de la sección de la cuneta.

Gráfico 35: Sección propuesta de cuneta

Fuente: Luis Javier Orozco Analuiza

Área mojada:

$$A = \frac{b * h}{2}$$

$$A = \frac{0.90 * 0.30}{2}$$

$$A = 0.135 m^2$$

Perímetro mojado

$$Pm = x1 + x2$$

$$Pm = 0.31 + 0.86$$

$$Pm = 1.17 \ m$$

Radio hidráulico

$$R = \frac{A}{Pm}$$

$$R = \frac{0.135 \ m^2}{1.17 \ m}$$

$$R = 0.115 m$$

Velocidad media del agua

$$V = \frac{1}{n} * R^{\frac{2}{3}} * J^{\frac{1}{2}}$$

$$V = \frac{1}{0.016} * 0.115^{\frac{2}{3}} * J^{\frac{1}{2}}$$

$$V = 14.78 * J^{\frac{1}{2}}$$

Caudal admisible de diseño

$$Q = A * V$$

$$Q = 0.135 * 14.78 * J^{\frac{1}{2}}$$

$$Q = 1.9953 * J^{\frac{1}{2}}$$

En la siguiente tabla se presenta el cálculo de los caudales y velocidades para las distintas pendientes que comprende la vía del proyecto.

Tabla 65: Caudales y velocidades para las distintas pendientes del proyecto

Tramo	Abscisas		Pendiente J (%)	Longitud de tramo (m)	Caudal Q=1.9953*J^(1/2)	Velocidad V=14.78*J^(1/2)
1	0+000.00	0+060.56	8.82%	60.56	0.59	4.39
2	0+060.56	0+162.32	4.25%	101.76	0.41	3.05
3	0+162.32	0+233.74	7.60%	71.42	0.55	4.07
4	0+233.74	0+448.98	3.97%	215.24	0.40	2.94
5	0+448.98	0+795.59	6.80%	346.61	0.52	3.85
6	0+795.59	1+026.36	3.93%	230.77	0.40	2.93
7	1+026.36	1+257.47	14.25%	231.11	0.75	5.58
8	1+257.47	1+435.28	16.00%	177.81	0.80	5.91
9	1+435.28	1+607.39	7.37%	172.11	0.54	4.01
10	1+607.39	1+808.88	10.81%	201.49	0.66	4.86
11	1+808.88	2+024.80	14.75%	215.92	0.77	5.68
12	2+024.80	2+145.27	4.09%	120.47	0.40	2.99
13	2+145.27	2+219.55	8.57%	74.28	0.58	4.33
14	2+219.55	2+310.80	3.10%	91.25	0.35	2.60
15	2+310.80	2+427.21	5.91%	116.41	0.49	3.59
16	2+427.21	2+502.09	9.05%	74.88	0.60	4.45
17	2+502.09	2+660.11	14.60%	158.02	0.76	5.65
18	2+660.11	2+759.71	8.72%	99.60	0.59	4.36
19	2+759.71	2+846.45	12.05%	86.74	0.69	5.13
20	2+846.45	2+936.70	8.23%	90.25	0.57	4.24

21	2+936.70	3+116.46	10.31%	179.76	0.64	4.75
22	3+116.46	3+272.27	7.28%	155.81	0.54	3.99
23	3+272.27	3+426.02	10.96%	153.75	0.66	4.89
24	3+426.02	3+584.35	8.01%	158.33	0.56	4.18
25	3+584.35	3+843.10	11.57%	258.75	0.68	5.03
26	3+843.10	3+959.84	4.74%	116.74	0.43	3.22
27	3+959.84	4+214.29	7.99%	254.45	0.56	4.18
28	4+214.29	4+400.81	12.71%	186.52	0.71	5.27
29	4+400.81	4+607.00	11.51%	206.19	0.68	5.01
30	4+607.00	4+733.49	15.53%	126.49	0.79	5.82
31	4+733.49	4+848.23	11.55%	114.74	0.68	5.02
32	4+848.23	4+914.16	9.03%	65.93	0.60	4.44
33	4+914.16	4+992.37	12.83%	78.21	0.71	5.29
34	4+992.37	5+165.03	4.45%	172.66	0.42	3.12
35	5+165.03	5+359.84	11.55%	194.81	0.68	5.02
36	5+359.84	5+409.89	15.90%	50.05	0.80	5.89

Fuente: Luis Javier Orozco Analuiza

De la tabla presentada anteriormente para las distintas pendientes longitudinales que presenta de la vía del proyecto se optó por la pendiente de 6.80 % del tramo del tramo 5 debido a que presenta la mayor longitud comprendido entre las abscisas (0+448.98 – 0+795.59) por lo cual se determina el caudal que escurrirá por la cuneta.

$$Q_{adm} = 1.9953 * J^{\frac{1}{2}}$$

$$Q_{adm} = 1.9953 * 6.80^{\frac{1}{2}}$$

$$Q_{adm} = 0.52 m^{3}/s$$

Caudal máximo de agua lluvia a desalojar.

Se aplicó la fórmula del método racional con el fin de determinar el caudal que circulará por la cuneta.

$$Q = \frac{C * i * A}{360}$$

Donde:

Q = Caudal máximo esperado en m3/s

C = Coeficiente de escurrimiento

I = Intensidad de precipitación pluvial en mm/h

A = Número de hectáreas tributarias

Tabla 66: Coeficiente de escurrimiento

Por la topografía	C't
Plana con pendiente de 0.2-0.6 m/km	0.3
Moderada con pendientes de 3 – 5 m/Km	0.2
Colinas con pendientes de 30 – 50 m/Km	0.1
Por el tipo de suelo	C´s
Arcilla compacta impermeable	0.1
Combinación de limo y arcilla	0.2
Suelo limo – arcilloso no muy compacto	
Por la capa vegetal	C'v
Terrenos cultivados	0.1
Bosques	0.2

Fuente: Lemos, Drenaje vial y subterráneo, 1999

Cálculo de coeficiente de drenaje

$$C = 1 - (C't + C's + C'v)$$

$$C = 1 - (0.1 + 0.2 + 0.2)$$

$$C = 0.5$$

Tiempo de concentración

Haremos uso de la ecuación de Rowe que es la más utilizada para determinar el tiempo de concentración. [6]

$$t_c = 0.0195 * \left(\frac{L^3}{H}\right)^{0.385}$$

Donde:

 t_c = El tiempo de concentración, en min.

L = La longitud del cauce principal, en m.

H = El desnivel entre el extremo de la cuenca y el punto de descarga, en m.

S = Pendiente %

Para el caso del proyecto de la vía se trabajó con la pendiente del tramo # 5 de S= 6.99 % y considerando una longitud de drenaje de 346.61 m. Por lo cual procedemos a determinar el desnivel entre el extremo de la cuenca y el punto de descarga, en m.

$$H = L * S$$
 $H = 346.61 m * 6.99 \%$
 $H = 24.23 m$

Reemplazo el valor de H y procedo a calcular el tiempo de concentración.

$$t_c = 0.0195 * \left(\frac{L^3}{H}\right)^{0.385}$$

$$t_c = 0.0195 * \left(\frac{346.61^3}{24.23}\right)^{0.385}$$

$$t_c = 4.90 \ min$$

Intensidad de lluvia.

Se obtuvo los datos de las precipitaciones máximas de las estaciones cercanas al proyecto, la vía al estar ubicada en la parroquia Ambatillo colindante con la parroquia Quisapincha, se trabajó en base a los datos registrados en la estación pluviométrica del gobierno provincial de Tungurahua MT-0011 Quisapincha (Ambato) del cual se obtiene una máxima precipitación registrada el día 26 de enero del 2014 de Pmax = 39.30 mm. Para la determinación de la intensidad de lluvia usamos la siguiente ecuación realizado por los estudios del INAMHI.

$$i = \frac{4.14 * T^{0.18} * P_{m\acute{a}x}}{t^{0.58}}$$

$$i = \frac{4.14 * 50^{0.18} * 39.30}{4.90^{0.58}} = 130.89 \ mm/h$$

Donde:

I = Intensidad de lluvia (mm/h)

T = Periodo de retorno 50 años.

$P_{máx}$ = Precipitación máxima

t= Tiempo de precipitación de intensidad.

Con el fin de evitar errores en la determinación de la intensidad de lluvia se trabaja también con la estación con de los datos registrados por el INAMHI en la estación M0066 con el nombre AMBATO AEROPUERTO. Donde para determinar la intensidad de lluvia usamos las recomendaciones del MTOP, para caminos vecinales recomienda usar periodo de retorno de 50-100 años, asumiendo para el proyecto de estudio un periodo de retorno de 50 años. [25]

Tabla 67: Ecuaciones para el cálculo de intensidades máximas de precipitación

ESTACIÓN		INTERVALOS DE	ECHA CIONEC		D 2
CÓDIGO	NOMBRE	TIEMPO (minutos)	ECUACIONES	R	R ²
	AMBATO AEROPUERTO	5<30	$i = 95.7035 * T^{0.2644} * t^{-0.5192}$	0.9737	0.9480
M0066		30<120	$i = 226.883 * T^{0.2204} * t^{-0.7568}$	0.9897	0.9794
		120<1440	$i = 438.0411 * T^{0.1712} * t^{-0.8664}$	0.9983	0.9966

Fuente: INAMHI 2019, pág. 62.

Tabla 68: Intensidad máxima de precipitación

(min)	2	Períod 5	do de Retorr 10	no T (años) 25	50	100
5	49.8	63.5	76.3	97.2	116.7	140.2
10	34.8	44.3	53.2	67.8	81.5	97.8
15	28.2	35.9	43.1	54.9	66.0	79.3
20	24.3	30.9	37.1	47.3	56.8	68.3
30	20.1	24.7	28.7	35.2	41.0	47.7
60	11.9	14.6	17.0	20.8	24.2	28.2
120	7.8	9.1	10.3	12.0	13.5	15.2
360	3.0	3.5	4.0	4.6	5.2	5.9
1440	0.9	1.1	1.2	1.4	1.6	1.8

INTENSIDAD MAXIMA (mm/h)

Fuente: INAMHI 2019, pág. 62.

Cálculo de intensidad máxima

Se opta por un tiempo de concentración de t=5 min con lo cual procedemos a calcular la intensidad máxima para un periodo de retorno de T=50 a nos.

$$i = 95.7035 * T^{0.2644} * t^{-0.5192}$$

$$i = 95.7035 * 50^{0.2644} * 5^{-0.5192}$$

$$i = 116.74 \, mm/h$$

Comparando los dos valores obtenidos de la intensidad máxima de lluvia se trabaja con la intensidad máxima de lluvia de 130.89 mm/h de la estación MT-0011 Quisapincha (Ambato) debido a que la estación esta lo más cercano al proyecto de la vía.

Cálculo del área de drenaje de la cuneta.

Se ha considerado un ancho de sección transversal de 6m.

$$A = (ancho \ de \ carril + cuneta) * L$$
 $A = (3.00 + 1.00) * 341.61 = 1366.44 \ m2$ $A \approx 0.14 \ Ha$

Determinado los valores requeridos para la fórmula del método racional procedemos a calcular el caudal máximo que va a transportar la cuneta.

$$Q = \frac{C * i * A}{360}$$

$$Q = \frac{0.50 * 130.89 * 0.14}{360}$$

$$Q = 0.0255 \, m3/seg$$

A continuación, se comprueba que la sección asumida para la cuneta satisface las condiciones requeridas en cálculo del caudal hidráulico.

$$Q_{adm} = 0.52 \, m^3/s \, > Q_{m\acute{a}x} = 0.0255 \, m^3/seg$$
 "OK"

Comprobado que el caudal admisible es mayor que el caudal máximo concluimos que el diseño de la cuneta es satisfactorio.

Diseño de alcantarillas

Se aplicó la fórmula de Talbot

$$A = \frac{0.183 * C * H^{\frac{3}{4}} * I}{100}$$

Donde:

A= Área libre de alcantarilla (m²)

H= Área de la microcuenca a drenar (Ha)

C= Coeficiente de escorrentía

I= Intensidad de precipitación (mm/h) 130.89mm/h

Tabla 69: Coeficiente de escorrentía para la fórmula de Talbot

Características topográfica de la cuenca	Valor de C
Montaña y escarpada	1.000
Con mucho lomerío	0.802
Con lomerío	0.600
Muy Ondulada	0.500
Poco ondulada	0.400
Casi plana	0.300
Plana	0.200

Fuente: XII Congreso Panamericano de carreteras, 1979

La determinación del área de drenaje para las alcantarillas tipo son adoptadas para evacuar caudales de hasta 2.0 m³/seg, tomando un área para drenar de aproximadamente de 2.50 hectáreas, análisis realizado en base a reconocimientos de campo y a mapas cartográficos.

$$A = \frac{0.183 * 1 * 2.5^{\frac{3}{4}} * 130.89}{100} = 0.48 \, m^2$$

Para determinar el diámetro de la tubería a utilizarse para la alcantarilla utilizaremos la fórmula del área de un círculo donde despejaremos el diámetro y reemplazamos el valor del área calculada anteriormente.

$$A = \frac{\pi * D^2}{4}$$

$$D = \sqrt{4 * \frac{A}{\pi}} = \sqrt{4 * \frac{0.48}{3.14146}} = 0.78 \approx 0.80 \text{ m}$$

Se empleará una tubería de metálica de acero corrugada de diámetro d = 800 mm con una pendiente del 2 % con muros cabezales de hormigón ciclópeo 60% H.S. f´c = 180 kg/cm2 + 40 % piedra al final de la descarga y cajas receptora en el inicio de la descarga de flujo pluvial, colocados a una profundidad mínima de 1.50 m desde el nivel de la rasante.

Tabla 70: Ubicación y detalle de alcantarillas

Tramo	Abscisa	Material	Long. De tubería	Diámetro (mm)
1	0+130	Acero Corrugado	10	800
2	0+360	Acero Corrugado	10	800
3	0+505	Acero Corrugado	10	800
4	0+880	Acero Corrugado	10	800
5	1+030	Acero Corrugado	10	800
6	1+230	Acero Corrugado	10	800
7	1+420	Acero Corrugado	10	800
8	1+680	Acero Corrugado	10	800
9	1+880	Acero Corrugado	10	800
10	2+100	Acero Corrugado	10	800
11	2+300	Acero Corrugado	10	800
12	2+635	Acero Corrugado	10	800
13	2+850	Acero Corrugado	10	800
14	3+250	Acero Corrugado	10	800
15	3+660	Acero Corrugado	10	800
16	3+935	Acero Corrugado	10	800
17	4+400	Acero Corrugado	10	800
18	4+700	Acero Corrugado	10	800
19	5+040	Acero Corrugado	10	800
20	5+245	Acero Corrugado	10	800
Long	gitud total de t	tubería (m)	200	

Fuente: Elaboración propia

Tabla 71: Detalles del Cabezal de alcantarillas

Hormigó	Hormigón ciclópeo para muros cabezales: 60% H.S f'c=180 kg/cm2, 40% piedra						
DETALLE	Largo (m)	Ancho (m)	Altura (m)	Volumen (m)	Observaciones		
Ala 1	2.00	0.45	2.00	1.8	Ancho promedio		
Pantalla	2.00	0.45	2.50	2.25	Ancho promedio		
Ala 2	2.00	0.45	2.00	1.8	Ancho promedio		
Plataforma	4.00	1.30	0.40	2.08	Ancho promedio		
Descuento de sección de tubería de Alcantarilla			-0.5	Acero $D = 0.80$ m			
	То	tal:		7.4	m3		

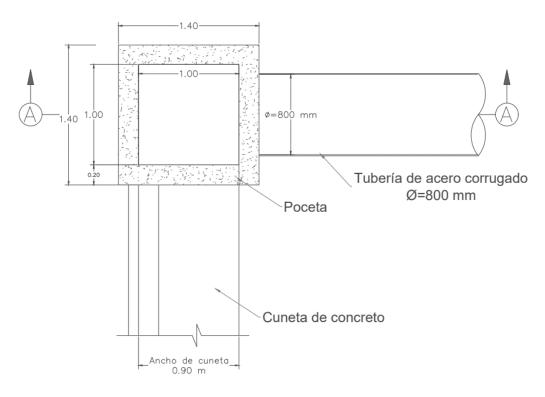
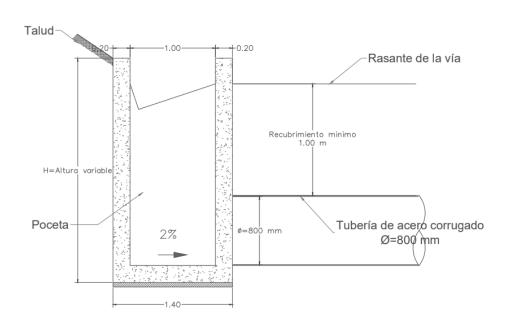
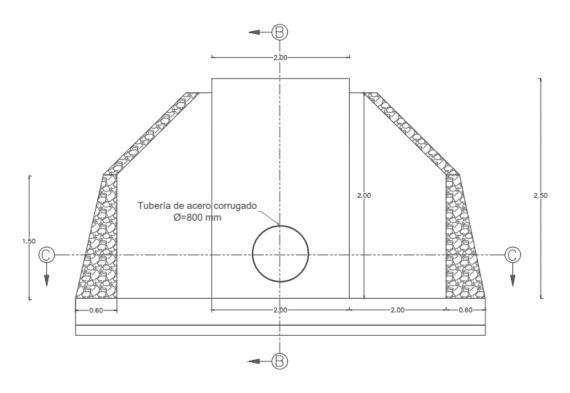

Fuente: Luis Javier Orozco Analuiza

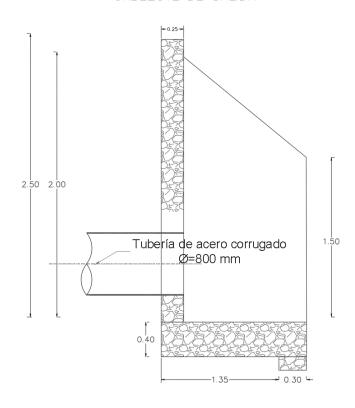
Tabla 72: Destalles de cajón de descarga de agua pluvial


Entrada tipo cajón Hormigón f´c = 210 kg/cm2						
Detalle	Cantidad	Unidades				
Área de la sección Tipo Cajón	0.96	m2				
Altura promedio	1.40	m				
Volumen de Hormigón	1.34	m3				

Fuente: Elaboración propia

Gráfico 36: Cajón de entrada propuesta para el proyecto


POCETA o CAJA DE ENTRADA


Corte A-A'

Fuente: Luis Javier Orozco Analuiza

Gráfico 37: Cabezote de salida propuesta para el proyecto

CABEZOTE DE SALIDA

CORTE B-B

Fuente: Luis Javier Orozco Analuiza

3.1.9. Señalización

Se utilizan para tener una movilización segura y ordenada de peatones y vehículos dentro de un proyecto vial. Las señales de tránsito empleada en el proyecto, está aplicado en base al Reglamento Técnico Ecuatoriano RTE INEN 004-2: 2011 para señalización vial horizontal y vertical. En la siguiente tabla se presenta la ubicación y señaléticas empleada en el proyecto.

Tabla 73: Señalética vertical y horizontal propuesta en el proyecto

SEÑALETICA VERTICAL							
SÍMBOLO	NOMBRE	UBICACIÓN					
	Límite máximo de velocidad	0+020					
30		1+000					
КРН		3+890					
VELOCIDAD		4+950					
MAXIMA		11930					
SÍMBOLO	NOMBRE	UBICACIÓN					
_	Curva abierta a la derecha o la izquierda	0+100					
	Curva aberta a la derecha o la Equierda	0+300					
		0+400					
		3+200					
		3+600					
		3+900					
		4+070					
		4+540					
		5+040					
		5+200					
SÍMBOLO	NOMBRE	UBICACIÓN					
\wedge	Curva cerrada a la derecha o a la	0+480					
	izquierda	0+960					
		4+640					
		4+760					
cú mor o	NOVERRE	4+800					
SÍMBOLO	NOMBRE	UBICACIÓN					
	Curva muy cerrada a la derecha o a la	1+400					
	izquierda	1+480					
		1+650					
		1+780					
		1+840					
		2+600 2+780					
		2+780 2+900					
SÍMBOLO	NOMBRE	UBICACIÓN					
SIMBOLO		0+600					
	Camino sinuoso	1+160					
<u> </u>		1+340					
		2+240					
		21210					
SÍMBOLO	NOMBRE	UBICACIÓN					
H. Gobierno Proncival de Tungurahua	Señal Informativa	0+010					
↑ Cerro Pilisurco	Senai informativa	5+360					
Cusubamba							
SALCEDO							
CIMPOLO	NOMBRE	LIDICACIÓN					
SIMBOLO	NOMBRE	UBICACIÓN 0+160					
	Ciclistas en la vía	0+160 2+060					
7.7		2+060 3+300					
		3+300 4+400					
		4+400					
	l						

SÍMBOLO	NOMBRE	UBICACIÓN
	Señal Informativa	0+120
	(Páramos de la Parroquia Ambatillo)	3+720
The state of the s	•	4+340
000		
SÍMBOLO	NOMBRE	UBICACIÓN
	Señal Informativa	5+310
	(Cerro Pilisurco)	
SIMBOLO	NOMBRE	UBICACIÓN
	Señal Informativa	3+520
	(Fauna y Flora Silvestre)	4+520
Y		
		,
SÍMBOLO	NOMBRE	UBICACIÓN
	Señal Informativa	5+400
((°•)))	(Antenas de radio y televisión)	
gár en or o	SEÑALETICA HORIZONTAL	I I DIG LOTÁN
SÍMBOLO	NOMBRE	UBICACIÓN
	Líneas continuas de color amarillo	
	(Eje de via)	D 1 1 1 0 000 1
	•	De la abscisa 0+000 a la
	Líneas continuas de color blanco	abscisa 5+410
	(Borde de carril)	

Fuente: Luis Javier Orozco Analuiza

3.1.10. Volúmenes de obra

1. Desbroce, desbosque y limpieza.

Consiste en limpiar el terreno necesario con el fin de llevar a cabo los trabajos en la obra vial, se realizará la eliminación de árboles y cualquier capa vegetal que esté presente en la vía dentro de los límites de la construcción hasta 10 m a partir del borde los taludes exteriores. En hectáreas (Ha) será la medida de este rubro.

Longitud de la vía = 5410 m

Ancho de faja considerado = 20 m

Área de desbroce = $20 \text{ m} * 5410 \text{ m} = 108200 \text{ m}^2$

Área de desbroce, desbosque y limpieza = 10.82 Ha.

2. Replanteo y nivelación

Distancia total del proyecto, unidad de medida, Kilometro

Replanteo y nivelación = 5.410 km

3. Excavación sin clasificar incluye desalojo

Comprende la excavación de todos los materiales que se encuentren durante el trabajo, en cualquier tipo de terreno y condición. Su ejecución incluye operaciones de excavación, entibación, nivelado y el desalojo del material sobrante. Unidad de medida

metro cúbico (m³). [6]

• Excavación de plataforma vial + cunetas

La Excavación de la plataforma vial incluido la excavación de cunetas se obtiene a partir del reporte del movimiento de tierras en el programa de Autodesk Civil 3D la siguiente cantidad:

Volumen acumulado de corte = 36378.67 m^3

4. Relleno compactado con material del sitio

Volumen de relleno obtenido a partir del reporte del movimiento de tierras en el programa de Autodesk Civil 3D. Unidad de medida metro cúbico (m³).

Volumen total relleno = 2895.71 m^3

5. Excavación para estructuras menores h= 0-2 m.

Excavación para obras menores

Zanja para alcantarillas

Se asume áreas de corte en la base de 1.5 m y una profundidad de 2 m para la instalación de las tuberías de las alcantarillas. Unidad de medida metro cúbico (m³).

Numero de alcantarillas = 20 U

Longitud de tubería transversal = 10 m

Longitud de tubería = 10 m de tubería * 20 alcantarillas

Longitud de tubería = 200 m

Volumen de corte para colocación de alcantarillas = 200 m * 2 m * 1.5m

Volumen de corte para colocación de alcantarillas = 600 m³

• Excavación para poceta o cajón de entrada de descarga

Se asume una sección transversal de 2 m x 2 m para la fundición de una caja de 1.40 m x 1.40 m y una altura aproximada de 1.50 m. Para el cual determinamos el volumen de excavación multiplicando el área de la base por la altura promedio. Y el volumen total de excavación multiplicamos por el número de pocetas.

Numero de pocetas = 20 U

Vol. Ex de Pocetas = $2 \text{ m} * 2 \text{m} * 1.50 \text{ m} = 6 \text{ m}^3$

Vol. Total Excavado = Vol. Ex de Pocetas * Numero de pocetas

Vol. Total Excavado = $6 \text{ m}^3 * 20 = 120 \text{ m}^3$

• Excavación para cabezales de alcantarillas

Para los cabezales y muros de ala se considera necesario excavar un promedio de 15 m³ por cada alcantarilla.

Volumen de cabezales = $15 \text{ m}^3 * 20 \text{ alcantarillas}$

Volumen de cabezales = 300 m^3

Volumen total de excavación: Zanjas para alcantarillas + Vol. Ex de Pocetas + Vol. de cabezales

Volumen total de excavación = $600 \text{ m}^3 + 120 \text{ m}^3 + 300 \text{ m}^3$

Volumen total de excavación = 1020 m³

6. Relleno compactado normal con material propio

Volumen de relleno para colocación de alcantarillas

Se considerará la longitud, ancho y profundidad de los rellenos para el caso de las alcantarillas se considera 2 m de profundidad, 1.5 m de ancho y 10 m de longitud por cada alcantarilla.

Vol. Re. de alcantarillas = Volumen de relleno * # de alcantarillas

Vol. Re. de alcantarillas = $(2m*1.5 m*10m) *20 = 600 m^3$

7. Tubería de acero corrugado diámetro D=800 mm, e = 2 mm

Consiste en el suministro y colocación de alcantarillas metálicas corrugadas de acuerdo con el diámetro y espesor especificado. Unidad de medición metro lineal (m).

Longitud = 20 alcantarillas * 10 m de longitud

Longitud = 200 m

8. Colchón de arena para instalación de tubería

Consiste en la colocación de una capa de 20 cm de arena natural con el objetivo de servir de soporte para la colocación de la tubería de la alcantarilla. Unidad de medición metro cúbicos (m³). Se asume áreas de corte en la base de 1.5 m por un espesor de 0.20 m y una longitud de 10 m de tubería

Vol. De arena = (base * ancho * espesor) * N de alcantarillas

Vol. De arena = (1.5 m * 0.20 m * 10 m) * 20

Vol. De arena = 60 m^3

9. Hormigón simple para cunetas f'c = 180kg/cm^2

Volumen de hormigón a utilizarse para la construcción de cunetas, siendo igual al área de la sección transversal por la longitud total de proyecto de ambos lados más un porcentaje para la descarga.

Área de sección transversal de la cuneta = 0.126 m^2

Longitud de la vía = 5410 m

Longitud de descarga = 200 m

Volumen = $0.126 \text{ m}^2*(5410 \text{ m} + 200 \text{ m}) * 2$

Volumen = 1413.72 m^3

10. Hormigón simple f´c= 210 kg/cm² para cajón de entrada

Volumen de hormigón a utilizarse para la construcción del cajón de entrada de descarga, siendo igual al área de la sección transversal por la altura de excavación. Unidad de medición m³.

Volumen de hormigón = área de la sección del cajón de entrada * altura de excavación * N de alcantarillas.

Volumen de hormigón = $0.96 \text{ m}^2 * 1.50 \text{ m} * 20$

Volumen de hormigón = 28.8 m^3

11. Hormigón ciclópeo para muros cabezales: 60% H.S f'c=180 kg/cm2, 40% piedra.

Volumen de hormigón ciclópeo a utilizarse para la construcción os muros cabezales al final de la descarga del flujo pluvial. Unidad de medición m³

Volumen de hormigón Ciclópeo = volumen del muro cabezal * N de cabezales (salida de descarga)

Vol. Hormigón Ciclópeo = 6.50m³* 20

Vol. Hormigón Ciclópeo = 130 m³

12. Re plantillo de H. simple para base de Poceta o Caja Recolectora e = 20cm

Volumen de hormigón a utilizarse para la construcción de la base de la poceta, siendo igual al área de la sección transversal por el espesor. Unidad de medición m³.

Volumen de hormigón = área de la base del cajón de entrada * espesor * N de pocetas.

Volumen de hormigón = $1.96 \text{ m}^2 *0.20 \text{ m} * 20$

Vol. de hormigón total =7.84 m³

13. Suministro y colocación de Sub base clase 3

Consiste en la colocación de una capa base granular clase 3. Obtenida a partir del cribado de gravas o rocas mezclada con arena natural o materiales finamente triturados. Unidad de medición metro cúbicos (m³).

Factor de sobre ancho = 1.10

Factor de esponjamiento = 1.20

Volumen = longitud de proyecto * ancho carril * espesor de capa

Volumen = $5410 \text{ m } *6\text{m} *0.20\text{m} = 6492 \text{ m}^3$

Volumen de Sub base clase 3= 8569.44 m³

14. Suministro y colocación de Base clase 4

Colocación de una capa base granular clase 4. Obtenida a partir del cribado de gravas o rocas mezclada con arena natural o materiales finamente triturados. Unidad de medición metro cúbicos (m³).

Factor de sobre ancho = 1.10

Factor de esponjamiento = 1.20

Volumen = longitud de proyecto * ancho carril * espesor de capa

Volumen = $5410 \text{ m } *6\text{m}*0.10\text{m} = 3246 \text{ m}^3$

Volumen de base clase 4= 4284.72 m³

15. Capa de rodadura asfáltica mezclado en planta e = 5 cm incluye imprimación

Colocación de capas de rodadura de hormigón asfaltico compuesto por agregados, relleno mineral en caso de ser necesario y material asfaltico. Unidad de medición metro cuadrado m².

Área del asfalto = longitud * ancho transversal de la vía

Área del asfalto = 5410 m * 6 m

Área del asfalto =32460 m²

16. Señalización horizontal

Consiste en la aplicación de marcas de pintura reflectiva, sobre el pavimento terminado. Unidad de medición metro lineal (m)

Marcas en pavimento = longitud total de la vía * # líneas

Marcas en pavimento = 5410 m * 3 = 16230 m

Marcas en pavimento = 16.23 km

17. Señalización vertical

Consiste en la colocación de placas con simbología o leyenda fijadas en postes a un

costado de la vía, tienen la función de prevenir a los usuarios de la existencia de

peligros y su naturaleza dentro de una vía. La contabilización de este rubro se lo realiza

por unidades (U).

Señales preventivas: 32 Unidades

Señales informativas: 1 Unidad

Señales informativas turísticas ambientales: 6 Unidades

Señales informativas de destino: 2 Unidades

Señales regulatorias: 4 Unidades

Total, de señales verticales: 45 Unidades

18. Guarda camino - Baranda de seguridad.

Consiste en la colocación de barandas de seguridad para garantizar la seguridad vial

en las carreteras tiene el objetivo de mantener a los vehículos dentro de la vía cuando

estos pierden el control. La unidad de medida es el metro lineal (m).

Baranda de seguridad: 400 metros lineales

19. Charlas de seguridad industrial

Compartir diálogos de seguridad industrial a cargo de un profesional, en donde se den

a conocer la utilización correcta de técnicas que garanticen la seguridad de los

trabajadores.

Se considera 3 capacitaciones de seguridad industrial durante toda la realización del

proyecto.

20. Batería sanitaria

Suministro de baterías sanitarias móviles su contabilización de este rubro se lo hará

por unidad.

La cantidad de baterías sanitarias requeridas para el proyecto es de 1 Unidad.

21. Señalética preventiva, Informativa, Restrictiva

Colocación de carteles de señalización de la zona de obras de acuerdo con la necesidad

y el tipo de obra. Tendrá las siguientes dimensiones 1.20 m de ancho, 0.50 altura

colocado en dos postes de acero galvanizado de 5cm. La contabilización de este rubro

se lo hará por unidades

La señalética propuesta para la ejecución de la obra es la siguiente.

Hombre trabajando = 1 U

• Maquinaria en la vía = 1 U

Peligro

= 1 U

Carretera en construcción = 1 U

Total de señales preventivas = 4 Unidades

22. Agua para control de polvo

Consiste en el suministro de agua mediante un camión cisterna o tanquero conforman

con el objetivo de controlar el polvo producido en obras de tratamientos de suelos,

camino o vías. La unidad de medición será m3.

Para la ejecución del proyecto se asume 200 m³ de agua.

23. Letrero informativo de obra

Este rubro consiste en el suministro e instalación de carteleras informativos con los

datos de la obra a ejecutarse.

Cantidad: 1 unidad

3.1.11. Presupuesto referencial

Tabla 74: Tabla de Presupuesto Referencial del Proyecto

	UNIVERSIDAD TÉCNICA DE AMBAT FACULTAD DE INGENIERÍA CIVIL Y MEC								
	FACULTAD DE INGENIERIA CIVIL Y MEC	ANICA							
Proyecto:	Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alt	to con el cerro	Pilisurco						
Ubicación:	Parroquia Ambatillo	Cantón:	Ambato						
Elaborado:	Luis Javier Orozco Analuiza	Provincia:	Tungurahua						
TABLA DE DESCIPCIÓN DE RUBROS, UNIDADES , CANTIDADES Y PRECIOS									
N∘	Rubro / Descripción	Unidad	Cantidad	P.Unitario	P. Total				
	Movimiento de Tierras		1 1						
1	Desbroce, desbosque y limpieza.	Ha	10,82	601,09	6.503,80				
2	Replanteo y nivelación	Km	5,41	568,78	3.077,08				
3	Excavación sin clasificar incluye desalojo (Conformación de la subrasante)	m3	36378,67	1,84	67.005,14				
4	Relleno compactado con material del sitio	m3	2895,71	4,65	13.465,05				
	Instalaciones de Drenaje								
5	Excavación para estructuras menores h= 0-2 m	m3	1020,00	3,26	3.322,33				
6	Relleno compactado normal con material propio	m3	600,00	4,48	2.690,36				
7	Tubería de metálica corrugada diámetro D=800 mm, e = 2mm	m	200,00	232,09	46.417,29				
8	Colchón de arena para instalación de tubería e = 20 cm	m3	60,00	6,15	368,99				
9	Hormigón simple para cunetas f´c = 180 kg/cm ²	m3	1413,72	143,13	202.339,64				
10	Hormigón simple f´c= 210 kg/cm² para Poceta o Caja Recolectora	m3	28,80	151,13	4.352,49				
11	Hormigón ciclópeo para muros cabezales: 60% H.S fc=180 kg/cm2, 40% piedra	m3	130,00	104,39	13.570,19				
12	Replantillo de H.S f'c= 180 kg/cm2 para base de Poceta o Caja Recolectora e = 20cm	m3	7.84	116.83	915,98				
	Estructuras de Pavimento			-,	,				
13	Suministro y colocación de Sub - base clase 3	m3	8569,44	12,27	105.120,29				
14	Suministro y colocación de Base clase 4	m3	4284,72	13,53	57.958,89				
15	Capa de rodadura asfáltica mezclado en planta e = 5 cm incluye imprimación	m2	32460	12,61	409.167,39				
	Señalización Vial	_							
16	Señalización horizontal (marcas en pavimento) a = 12 cm	Km	16,23	451,92	7.334,69				
17	Señalización vertical	U	45	138,14	6.216,23				
18	Guarda camino - Baranda de seguridad	m	400,00	110,34	44.137,87				
	Prevensión y Mitigación de Impactos Ambie	ntales							
19	Charlas de seguridad industrial	U	3,00	52,50	157,50				
20	Batería sanitaria	U	1,00	900,00	900,00				
21	Señalética preventiva, Informativa, Restrictiva	U	4,00	86,68	346,70				
22	Agua para control de polvo	m3	200,0	1,50	300,15				
23	Letrero informativo de obra	U	1	87,13	87,13				
		Pres	upuesto Refere	ncial	995.755,20				
SON: Un millón ciento quince mil doscientos cuarenta y cinco dólares , 82/100 centavos			12 % IVA Total		119.490,62 1.115.245,82				
			1044		11131243,02				
ELABORADO I			LUGAR Y						
	Luis Javier Orozco Analuiza		Ambato, J	ul-2021					
	FIRMA RESPONSABLE								

Fuente: Luis Javier Orozco Analuiza

3.1.12. Cronograma de trabajo

					CROGR	AMA VALO	ORADO DE T	TRABAJO								
	Rubro / Descripción	Unidad	Cantidad	P.Unitario	P. Total	PERIODOS (MESES / SEMANAS)										
N∘						1.	MES	2 MES		3 MES	4 MES	5 MES	6 MES	7 MES	8	8 MES
Movimiento de Tierras				'		1	2 3 4	5 6 7	3 9	9 10 11 12	13 14 15 16	17 18 19 20	21 22 23 24	25 26 27 28	29	30 31 32
1	Desbroce, desbosque y limpieza.	Ha	10,82	601,09	6.503,80	3.251,90		3.251,90)							
2	Replanteo y nivelación	Km	5,41	568,78	3.077,08	512,85		512,8	5	512,85	512,85	512,85	512,85			
3	Excavación sin clasificar incluye desalojo (Conformación de la subrasante)	m3	36378,67	1,84	67.005,14	16.751,29		16.751,29)	16.751,29	16.751,29					
4	Relleno compactado con material del sitio	m3	2895,71	4,65	13.465,05			6.732,53		6.732,53						
Instalaciones de Drenaje																
5	Excavación para estructuras menores h= 0-2 m	m3	1020,00	3,26	3.322,33			1.661,10	1.661							
6	Relleno compactado normal con material propio	m3	600,00	4,48	2.690,36					1.345,18	1.345,18					
7	Tubería de metálica corrugada diámetro D=800 mm, e = 2mm	m	200,00	232,09	46.417,29			15.472,43		15.472,43	15.472,43					
8	Colchón de arena para instalación de tubería e = 20 cm	m3	60,00	6,15	368,99			122,99	3	122,998	122,998					
9	Hormigón simple para cunetas f´c = 180 kg/cm ²	m3	1413,72	143,13	202.339,64						67.446,55	67.446,55	67.446,55			
10	Hormigón simple f'c= 210 kg/cm² para Poceta o Caja Recolectora	m3	28,80	151,13	4.352,49			725,42	2	1.450,83	1.450,83	725,42				
11	Hormigón ciclópeo para muros cabezales: 60% H.S fc=180 kg/cm2, 40% piedra	m3	130,00	104,39	13.570,19						4.523,40	4.523,40	4.523,40			
12	Replantillo de H.S f´c= 180 kg/cm2 para base de Poceta o Caja Recolectora e = 20cm	m3	7,84	116,83	915,98			152,66		305,33	305,33	152,66				
Estructuras de Pavimento																
13	Suministro y colocación de Sub - base clase 3	m3	8569,44	12,27	105.120,29						52.560,15	52.560,15				
14	Suministro y colocación de Base clase 4	m3	4284,72	13,53	57.958,89							28.979,45	28.979,45			
15	Capa de rodadura asfáltica mezclado en planta e = 5 cm incluye imprimación	m2	32460,00	12,61	409.167,39								204.583,69	204.583,69		
Señalización Vial																
16	Señalización horizontal (marcas en pavimento) a = 12 cm	Km	16,23	451,92	7.334,69											.334,69
17	Señalización vertical	U	45	138,14	6.216,23											6.216,23
18	Guarda camino - Baranda de seguridad	m	400,00	110,34	44.137,87								22.068,94	22.068,94		
Prevensión y Mitigación de Impactos Ambientales								50.5 0		* 0						
19	Charlas de seguridad industrial	U	3,00	52,50	157,50	52,50		52,50	52,5						-	
20	Batería sanitaria	U	1,00	900,00	900,00		128,57	128,5	_	128,57	128,57	128,57	128,57	128,57		
21	Señalética preventiva, Informativa, Restrictiva	U	4,00	86,68	346,70		49,53	49,5	_	49,53	49,53	49,53	49,53	49,53		
22	Agua para control de polvo	m3	200,0	1,50	300,15	08.46	42,88	42,8	3	42,88	42,88	42,88	42,88	42,88		
23	Letrero informativo de obra	U	1,00	87,13	87,13 995.755,20	87,13			_							
INVERSIÓN MENSUAL							20.876.64	45,656,71	+	44.628.07	160.711.97	155.121.44	328,335,85	226.873.61		13.550,92
AVANCE PARCIAL EN %							2,10%	4,59		4,48%	16,14%	15,58%		22,78%		1,36%
INVERSIÓN ACUMULADA AVANCE ACUMULADO EN %							20.876,64	66.533,35		111.161,42	271.873,39	426.994,83	755.330,68	982.204,29		995.755,21
AVANCE ACUMULADO EN %							2,10%	6,68	5%	11,16%	27,30%	42,88%	75,86%	98,64%		100,00%

3.1.13. Especificaciones técnicas

1. Desbroce, desbosque y limpieza.

Este trabajo consiste en despejar el terreno necesario para llevar a cabo la obra

contratada.

Procedimientos de trabajo: El desbroce, desbosque y limpieza se realizará por

medios eficaces, manuales y mecánicos, incluyendo la zocola, tala, repique y cualquier

otro procedimiento. Por lo general, se efectuará dentro de los límites de construcción

y hasta 10 metros por fuera de los exteriores de taludes. [24]

Equipo mínimo: Retroexcavadora, herramienta menor, cargadora, volquete.

Medición y pago: La cantidad a pagarse por el desbroce, desbosque y limpieza será

el área en hectáreas, realizados en obra debidamente ejecutados, pagándose al precio

unitario contractual para el rubro.

2. Replanteo y nivelación

Proceso del trazado y marcado de las longitudes y los niveles de los planos del diseño

geométrico al terreno natural como paso previo antes de iniciar la construcción del

proyecto.

Materiales: Estacas de madera, clavos, piola

Equipo mínimo: Equipo de topografía, cinta métrica, jalones, piquetes, herramienta

menor.

Mano de obra: Topógrafo, cadenero,

Medición y pago: La cantidad a pagarse será por kilómetro ejecutado y verificado en

obra.

3. Excavación sin clasificar incluye desalojo

Comprende la excavación a máquina de todos los materiales que se encuentren durante

el trabajo. Su ejecución incluye operaciones de excavación, entibación, nivelado y el

desalojo del material sobrante. [26]

Equipo mínimo: Retroexcavadora, herramienta menor, cargadora, volquete.

Medición y cuantificación: La cantidad a pagarse por la excavación será el metro

cúbico realizado en obra.

4. Relleno compactado con material del sitio

Conjunto de actividades de rellenos para la conformación de la sub rasante con

material del sitio. Relleno se hará con material seleccionado donde estará libre de

troncos, ramas y en general de toda materia orgánica.

Materiales: Agua.

Equipo mínimo: Herramienta menor, rodillo vibratorio

Medición y cuantificación: Se considerará la longitud, ancho y profundidad de los

rellenos. La unidad de medida será el metro cúbico.

5. Excavación para estructuras menores h= 0-2 m.

Consiste el abastecimiento de materiales, herramientas, equipo y mano de obra

necesaria para conformar las zanjas para alcantarillas, cajones de entrada y cabezotes

en las que se en las que se realizarán trabajos como colación de alcantarillas,

fundiciones de cabezotes y cojones de entrada.

Equipo mínimo: Retroexcavadora, herramienta menor, cargadora, volquete.

Medición y cuantificación: La cantidad a pagarse por la excavación será el metro

cúbico realizado en obra.

6. Relleno compactado normal con material propio

Actividades para el relleno de zanjas donde se colocó las alcantarillas. Relleno que se

hará con material propio del lugar, seleccionado que esté libre de troncos, ramas y en

general de toda materia orgánica.

Materiales: Agua.

Equipo mínimo: Herramienta menor, Compactadora

Medición y cuantificación: Se considerará la longitud, ancho y profundidad de los

rellenos. La unidad de medida será el metro cúbico.

7. Tubería de acero corrugado diámetro D=800 mm, e = 2.0 mm

Este rubro consiste en el suministro y colocación de tubería metálica corrugada para

alcantarillas, antes a su colocación, el área donde se instalará la misma, deberá estar

nivelada con las pendientes mínimas requeridas.

Materiales: tubería metálica corrugada de 800 mm de diámetro.

Equipo mínimo: Herramienta menor

Medición y cuantificación: Se considerará la longitud ejecutada, la unidad de medida

será el metro.

8. Colchón de arena para instalación de tubería

Consiste en la colocación de una capa agregado fino de arena natural en la base donde

se asentará la tubería de la alcantarilla.

Materiales: Arena.

Equipo mínimo. Herramienta menor

Medición: La cantidad a pagarse serán los metros cúbicos colocados en obra.

9. Hormigón simple para cunetas f'c = 180kg/cm^2

Consiste en la protección de las cunetas mediante revestimientos con hormigón de

f'c=180 Kg/cm2. Las cunetas se construirán luego de la carpeta asfáltica.

Materiales: Agua, cemento, arena, ripio, encofrado.

Equipo mínimo: Herramienta menor, concretara, mini cargadora volqueta.

Medición y cuantificación: Las cantidades a pagarse por construcción de cunetas

revestidas serán los metros lineales debidamente ejecutados y aceptados, medidos en

obra. [26]

10. Hormigón simple f'c= 210 kg/cm².

Este hormigón se utilizará para la construcción de elementos estructurales como muros

armados, cimentaciones y cabezales en las dimensiones y especificaciones indicadas

en los planos.

Materiales: Cemento, arena, ripio, aditivos, encofrados, agua, tablas, pingos, clavos,

alambre de amarre.

Equipo mínimo: Concretara, vibrador, herramienta menor

Medición: Serán pagados en metros cúbicos debidamente ejecutados en obra.

11. Hormigón ciclópeo: 60% H.S f'c=180 kg/cm2, 40% piedra.

Hormigón utilizado en la construcción de muros cabezales, compuesto por un 60% de

hormigón simple con una resistencia f´c=180 Kg/cm², y 40% de piedra. La nivelación

y los encofrados requeridos son parte del rubro.

Materiales: Cemento, arena, ripio, aditivos, encofrados, agua, tablas, pingos, clavos,

alambre de amarre.

Equipo mínimo: Hormigonera, herramienta menor

Medición: La medición de este rubro considera la longitud, ancho y profundidad de

los elementos fundidos, la unidad de medida será el metro cúbico.

12. Replantillo de H.S f'c= 180 kg/cm2 para base de Poceta o Caja Recolectora

Hormigón a utilizarse en la construcción de la base de las cajas recolectoras, con forme

a las dimensiones y especificaciones indicadas en los planos.

Materiales: Cemento, arena, ripio, aditivos, agua.

Equipo mínimo: Concretara, vibrador, herramienta menor

Medición: Serán pagados en metros cúbicos debidamente ejecutados en obra.

13. Suministro y colocación de Sub base clase 3

Este rubro consiste en la colocación de una capa de sub base granular Clase 3, descrita

en la Sección 403. Sub Bases, de las Especificaciones Generales para Construcción de

Caminos y Puentes publicadas por el ministerio de Obras Públicas y Comunicaciones

vigente. [26]

Materiales: Base granular, agua, matamalezas.

Equipo mínimo. Cargadora, volquetas, motoniveladora, rodillo liso, tanquero,

retroexcavadora.

Medición: La cantidad a pagarse serán los metros cúbicos colocados en obra.

14. Suministro y colocación de Base clase 4

Este rubro consiste en la colocación de una capa de base granular Clase 4, descrita en

la Sección 404. Bases, de las Especificaciones Generales para Construcción de

Caminos y Puentes publicadas por el ministerio de Obras Públicas y Comunicaciones

vigente.

Materiales: Base granular, agua, matamalezas.

Equipo mínimo. Cargadora, volquetas, motoniveladora, rodillo liso, tanquero,

retroexcavadora.

Medición: La cantidad a pagarse serán los metros cúbicos colocados en obra.

15. Capa de rodadura asfáltica mezclado en planta e = 5 cm incluye imprimación

Consistirá en la colocación de mezcla asfáltica o base granular sobre la capa de base,

La mezcla asfáltica será depositada, tendida y compactada, hasta dejar la vía uniforme

y lista para proceder con el asfaltado de la misma.

Equipo Mínimo: Finisher, rodillo liso, rodillo neumático, escoba mecánica,

volquetas, cargadora, tanquero imprimador, cemento asfaltico con grado de

penetración de 60-70 para carpeta asfáltica, agregados tipo A (todas las partículas que

forman el agregado grueso se obtienen por trituración), agregado fino puede ser arena

natural o material triturado. [26]

Medición y pago: El costo a pagarse por la colocación de la carpeta de rodadura de

hormigón asfáltico mezclado en planta, serán los metros cuadrados de superficie con

un espesor compactado especificado de 5cm.

16. Señalización horizontal

Consistirá en la aplicación de marcas de pintura reflectiva sobre el pavimento

terminado. Se aceptará solamente pintura de color blanco o amarillo para este

propósito, las franjas tendrán un ancho mínimo de 12 cm. Las líneas entrecortadas

tendrán una longitud de 3m con una separación de 9 m. la cual debe cumplir lo

establecido en la norma INEN 1.042. [26]

Materiales: Pintura color amarillo y blanco

Equipo mínimo: Franjeadora, escoba mecánica, herramienta menor.

Medición y forma de pago: Se cuantificará por kilómetro debidamente ejecutado en

obra.

17. Señalización vertical

Consistirá en el suministro e instalación de señales verticales (rótulos), adyacentes a

la vía. La ubicación de estas señales deberá estar de acuerdo con lo especificado por el

Instituto Ecuatoriano de Normalización en el Reglamento Técnico Ecuatoriano para

SEÑALIZACIÓN VIAL VERTICAL. [26]

Materiales: Arena, ripio, cemento, vinil reflectivo de alta intensidad prismático

ASTM D 4956 tipo IV, vinil electro corte, remaches, tol galvanizado e=2.00 mm, tubo

HG 50x50x2 mm. [26]

Equipo mínimo: concreta, herramienta menor.

Medición y forma de pago: El pago de este rubro se cuantificará por unidad

debidamente ejecutada.

18. Guarda caminos.

Consiste en la construcción de guarda caminos incluyendo el ensamblaje e instalación

de todas las partes que la componen y de todos los materiales de acuerdo con estas

especificaciones establecidas en los planos.

Materiales: Viga metálica, postes metálicos, hormigón, tablas, excavadora, pernos,

remaches.

Equipo mínimo: Herramienta menor.

Medición y forma de pago: La medición de la guarda caminos se hará por metro

lineal a lo largo de su superficie del proyecto vial.

19. Baterías sanitarias

Deberán disponer de baterías sanitarias durante todo tiempo que dure la ejecución de

la obra. Las mismas que deben estar limpias y en buen estado de funcionamiento.

Materiales: Baterías sanitarias móvil

Equipo mínimo: Herramienta menor.

Medición y forma de pago: La contabilización de este rubro será por unidades

contadas y verificadas en obra.

20. Señalética preventiva, Informativa, Restrictiva

Consiste en el suministro y colocación de señalización de la obra en lugares donde se

necesario durante la ejecución de la obra. La ubicación de estas señales deberá estar

en lugares visibles del proyecto.

Materiales: Remaches, tol galvanizado de 0.50 m *1.20 m e=2.00 mm, tubo HG

50x50x2 mm.

Equipo mínimo: herramienta menor.

Medición y forma de pago: El pago de este rubro se cuantificará por unidad.

21. Agua para el control del polvo

Consiste en regar el agua con el objetivo de controlar el polvo producido por las obras

realizadas en los caminos o vías. La unidad de medición será m3.

Materiales: Agua

Equipo mínimo: Camión cisterna o tanquero, Chofer, Peón

Medición y forma de pago: Se contabilizará los metros cúbicos que se rieguen.

22. Letrero informativo de obra

Este rubro consiste en el suministro e instalación de letreros informativos con los

datos de la obra a ejecutarse.

Materiales: Arena, ripio, cemento, tol galvanizado de 0.50 m *1.20 m e=2.00 mm,

tubo HG 50x50x2 mm, remaches, tol galvanizado e=2.00 mm, tubo HG 50x50x2 mm.

Equipo mínimo: concreta, herramienta menor.

Medición y forma de pago: El pago de este rubro se cuantificará por unidad

debidamente ejecutada.

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1. Conclusiones

- Se realizó un levantamiento topográfico referenciado a un mojón de IGM (Instituto Geográfico Militar) ubicado en el cerro Pilisurco en las coordenadas X
 = 759466 E y Y= 9872216 N.
- Estas coordenadas de referencia sirvieron para realizar el levantamiento topográfico referenciado con una estación total para luego procesar los datos en el diseño de geométrico de la vía mediante el uso del programa de Autodesk Civil 3D.
- En base al estudio de tráfico, se determinó un TPDA de 243 vehículos/ día para un periodo de diseño de 20 años, clasificándole a la vía del proyecto en un camino vecinal CLASE IV según el MTOP 2003.
- Se realizó el diseño geométrico para permitir la seguridad y confort a sus usuarios.
 El diseño geométrico horizontal presenta una longitud total de 5410 m, con tangentes y curvas amplias en cuanto el terreno lo permitía.
- Se trazaron curvas con radios de 20 m para velocidades de circulación de 30 a 40 km/h y en tramos donde existe presencia de infraestructuras y relieve difícil (escarpado) se utilizaron velocidades de diseño de 20 km/h y radios de 15 m según las recomendaciones sugeridas por el MTOP-2003.
- El diseño geométrico vertical al estar en una topografía montañosa escarpada presenta gradientes longitudinales de 8 al 12 %. En tramos desfavorables cuando la topografía del proyecto no permitía llevar el trazado por un lugar de menor pendiente, se utilizó una pendiente máxima del 16%.
- La vía al ser clasificada como un camino vecinal clase IV se propone una sección transversal de 6.00 m de ancho, conformada por dos carriles de 3.00 m, bombeo transversal del 2.5 %, cunetas de 0.90 m de ancho y un sobre ancho en curvas de 0.30 m.
- Realizados los estudios de suelos y mediante la aplicación del Método AASHTO–
 93 se propone una estructura de pavimento flexible con los siguientes espesores de capas: Sub base Clase III con espesor de 20 cm; Base Clase IV con espesor de 10 cm y Carpeta de asfáltica de 5 cm de espesor.

- Los espesores están determinados en función de los resultados obtenidos del ensayo del CBR, para el cual se obtuvo un CBR de diseño de 10 % de la sub rasante. Clasificando a la sub rasante de regular a buena.
- El diseño hidráulico implementado en la vía consta con cunetas de sección triangular de 0.90 m de ancho por 0.30 m de calado, para el drenaje transversal se emplea 20 alcantarillas con tubería metálica de acero corrugado de diámetro 800 mm con pocetas de entrada y cabezotes de salida.
- El proyecto al estar cerca de la estación del gobierno provincial de Tungurahua MT-0011 Quisapincha (Ambato), se utilizaron los registros de esta estación pluviométrica para el diseño hidráulico.
- La señales de tránsito empleada en el proyecto, consta de 32 señales preventivas, 1 señales informativa, 6 señales informativas turísticas ambientales, 2 señales informativas de destino, 4 señales regulatorias, franjas de 12cm de ancho color amarillo y blanco todo esto está aplicado en base al Reglamento Técnico Ecuatoriano RTE INEN 004-2: 2011 para señalización vial horizontal y vertical.
- Determinados los volúmenes de obra a ejecutarse en el proyecto, se determinó un presupuesto referencial de \$ 1'115,245.82 (Un millón ciento quince mil doscientos cuarenta y cinco mil, con 82/100 centavos con).

4.2 Recomendaciones

- Realizar un estudio costo beneficio a fin de determinar impacto que tendrá la ejecución de este proyecto en la comunidad de Ambatillo Alto.
- Realizar un estudio del Impacto Ambiental, con el objetivo de evitar el menor daño posible al medio ambiente dado que la vía atraviesa por una abundante flora y fauna.
- Debido a que el proyecto se encuentra en zonas de alta presencia de lluvias
 (Paramos de la comunidad de Ambatillo Alto), se recomienda realizar una planificación para la construcción de la obra en época de verano.
- Realizar un plan de mantenimiento que permita conservar la vida útil para el cual fue diseñado el proyecto vial. Dentro de estos mantenimientos podremos mencionar limpieza de cunetas, limpieza alcantarillas, reparación o sustitución de la señalización vertical y horizontal.

- Proveer de un lugar autorizado (escombrera) para la ubicación del material no utilizado en el proyecto, como movimiento de tierras o materiales procedente de la limpieza y desbroce.
- Estudiar el estado actual en que se encuentra la vía antes de realizar cualquier trabajo que contemple la ejecución del proyecto.
- Establecer medidas adecuadas a fin de prevenir, disminuir o suprimir los efectos ambientales negativos producto de la construcción del proyecto vial.
- Tener en cuenta la participación de la comunidad de Ambatillo Alto en la planificación, financiación y la realización del mejoramiento de la vía.
- Impulsar la construcción de este proyecto por parte del GAD. Parroquial Rural de Ambatillo con el objetivo de mejorar el potencial turístico de la parroquia.
- Trabajar con mano de obra local en la ejecución del proyecto con el fin de reactivar la matriz productiva de la población local.

BIBLIOGRAFÍAS

- [1] Gobierno Parroquial Ambatillo, *Plan de desarrollo y Ordenamiento territorial* 2015, Ambato, 2015.
- [2] «El Pilishurco Editorial,» El HERALDO, 24 Octubre 2019.
- [3] GADP Ambatillo, Desarrollo y Diseño ConnectaServices © 2020, 14 Enero 2021. [En línea]. Available: https://gadambatillo.gob.ec/.
- [4] J. Cárdenas, «Carreteras,» de *Diseño geométrico de carreteras*, Bogotá, ECOE EDICIONES, 2013, pp. 1-5.
- [5] MTOP-2013, Normas para Estudios y Diseño Vial, vol. II, Quito: Indepro & COA Consultores Asociados, 2013.
- [6] Ministerio de Obra Públicas, Normas de diseño geométrico de carretera, Ecuador, 2003.
- [7] J. Cárdenas, «Velocidad de Diseño,» de *Diseño geometrico de carreteras*, Bogotá, ECOE, 2013, pp. 174-176.
- [8] J. J. Agudelo, Diseño Geométrico de Vías Ajustado al manual Colombiano, Medellín: Universidad Nacional de Colombia, 2002.
- [9] J. Cardenas, «Diseño geométrico horizontal,» de *Diseño geometrcio de carreteras*, Bogotá, ECOE, 2013, p. 37.
- [10] Minsiterio de Transporte y Comunicaciones, Manual de Carreteras: Diseño Geométrcio, Lima: Dirección General de Caminos Y Ferrocarriles, 2018.
- [11] S. Navarro Hudiel, Diseño y Cálculo Geométrico de viales, Estelí Nicaragua : Universidad Nacional de Ingeniería, 2017.
- [12] Ing. Sergio Navarro Hundiel, Diseño y Cálculo Geométrico de Viales-Alineamiento Horizontal, Estelí - Nicaragua: Universidad Nacional de Ingeniería, 2011.

- [13] Instituto Nacional de Vias , Manual de Diseño Geometrico de Carreteras, Bogotá: Ministerio de Transporte, 2008.
- [14] J. Cardenas, «Diseño Geométrico Vertical: Rasante,» de *Diseño Geométrico de carreteras*, Bogotá, ECOE, 2013, pp. 307-313.
- [15] J. Cárdenas, «Diseño Geométrico Tranversal: Secciones, áreas y volumenes,» de *Diseño Geométrico de Carreteras*, Bogotá, ECOE, 2013, p. 405.
- [16] L. Bañon Blázquez y J. F. Bevía Carcía, Manual de Carreteras: Construcción Mantemiento, Alicante, 2002, pp. 2-15.
- [17] Administración Boliviana de Carreteras, , «Ensayos de suelos y materiales,» de *Manuales Técnicos para el diseño de Carreteras*, Bolivia, p. 31.
- [18] C. Crespo Villalaz, Mecánica de suelos y cimentaciones, Monterrey: Limusa, 2004.
- [19] Dirección General de Inversión Pública-DGIP, Pautas metodológicas para el desarrollo de alternativas de pavimentos en carretera, Lima: SNIP, 2015.
- [20] NEVI-12-MTOP, Norma para estudios y diseño vial, Quito: INDEPRO COA Consultores Asociados, 2013.
- [21] L. Bañon Blázquez y J. Beviá García, «Complementos de Proyecto,» de *Manual de carreteras: Elementos Proyecto*, Alicante, 2000, pp. 378-386.
- [22] RTE INEN 004-2, Señalización Vial. Parte 2. Señalización Horizontal, Quito, 2011, p. 4.
- [23] RTE INEN 004-1, Señalización Vial. Parte 1. Señalizacion Vertical, Quito, 2011, p. 17.
- [24] MOP: Ministerio de Obras Públicas, Especificaciones generales para la construcción de caminos y puentes, Quito: MOP-001-F 2002, 2002.
- [25] INAMHI, Determinación de ecuaciones para el cálculo de intesidades maximas de precipitación, Quito: INAMHI, 2019.

- [26] H.G.P de Tungurahua, *Especificaciones Técnicas*, Ambato: Gobierno Provincial de Tungurahua, 2020.
- [27] MTOP-2012, Anteproyecto de Construcción de la Concesión Via entre Santo Domingo y Esmeraldas, Esmeraldas: ineco, 2012.

ANEXOS

Levantamiento topográfico

	PUNTOS TO	POGRÁFICOS -	UTM WGS 84			PUNTOS TO	POGRÁFICOS -	UTM WGS 85	
PUNTO N°	Norte	Este		Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
1	9871839	759746	4008	EST	171	9871379.7	759799.205	3964.5399	VIA
2	9871712	759667	4018	EST	172	9871375.65	759803.564	3964.639	VIA
100	9871713.87	759668.164	4020.4067	EST	173	9871373.95	759801.266	3964.6202	VIA
101	9871873.47	759720.59	4014.8631	VIA	174	9871367.12	759804.187	3964.3439	VIA
102	9871887.4	759715.608	4017.1034	VIA	175	9871367.62	759806.542	3964.2275	VIA
103	9871883.48	759710.596	4016.7228	VIA	176	9871379.46	759794.182	3964.6876	VIA
104	9871830.49	759715.914	4013.2854	VIA	177	9871384.79	759792.049	3965.002	VIA
105	9871833.25	759710.292	4013.5088	VIA	178	9871645.05	759764.607	3985.435	VIA
106	9871866.75	759715.843	4014.1681	VIA	179	9871427.37	759771.896	3970.8733	VIA
107	9871850.4	759722.97	4013.2732	VIA	180	9871429.87	759776.713	3971.0436	VIA
108	9871863.38	759716.759	4013.8365 4013.3987	VIA	181	9871436.88	759773.803	3972.0937	VIA
109 110	9871852.21 9871859.91	759716.995 759717.366	4013.3987	VIA	182 183	9871437.11 9871592.67	759767.804 759766.257	3972.3491 3981.3409	VIA VIA
111	9871855.61	759717.606	4013.4332	VIA	184	9871592.65	759771.074	3981.3051	VIA
112	9871853.43	759717.854	4013.7105	ESTTB	185	9871440.41	759766.816	3972.9002	VIA
113	9871861.39	759724.411	4013.7105	VIA	186	9871441.29	759765.453	3973.9836	TOP
114	9871851.94	759726.528	4011.4594	TB	187	9871456.87	759767.217	3975.5278	TOP
115	9871856.09	759729.526	4012.01	VIA	188	9871477.25	759770.066	3977.5266	TOP
116	9871850.81	759726.909	4011.4662	VIA	189	9871493.19	759770.444	3978.5901	TOP
117	9871854.16	759724.614	4013.0829	VIA	190	9871490.48	759751.795	3984.6431	TOP
118	9871845.65	759733.248	4010.4957	VIA	191	9871437.02	759767.549	3973.1611	TOP
119	9871843.97	759728.666	4010.2121	VIA	192	9871514.56	759770.314	3977.7907	VIA
120	9871834.83	759735.551	4009.1279	VIA	193	9871443.73	759772.232	3973.0449	VIA
121	9871833.21	759730.43	4008.7109	VIA	194	9871514.57	759774.734	3977.8748	VIA
122	9871822.65	759736.92	4007.6125	VIA	195	9871444.92	759766.248	3973.253	VIA
123	9871818.08	759731.63	4007.3199	VIA	196	9871452.01	759766.871	3974.0328	VIA
124	9871808.98	759737.536	4005.0981	VIA	197	9871493.84	759770.942	3977.1918	VIA
125	9871807.09	759732.139	4004.6995	VIA	198	9871452.58	759772.365	3973.9999	VIA
126	9871792.07	759735.037	4003.2559	VIA	199	9871492.38	759775.765	3977.1124	VIA
127	9871794.44	759739.528	4003.4355	VIA	200	9871475.43	759770.26	3976.0225	VIA
128	9871764.84	759742.725	3999.8844	VIA	201	9871474.19	759774.793	3976.1208	VIA
129	9871765.12	759747.54	3999.9039	VIA	202	9871456.46	759767.611	3974.3811	VIA
130	9871711.33	759759.532	3993.6948	VIA	203	9871304.79	759776.057	3954.2539	TOP
131 132	9871711.87 9871697.47	759764.513 759762.904	3993.6886 3991.9651	VIA	204 205	9871303.54 9871304.1	759783.967 759795.242	3954.6833 3954.6922	TOP TOP
133	9871697.47	759762.904	3991.9031	VIA	206	9871304.1	759793.242	3954.4476	TOP
134	9871687.53	759768.808	3990.7966	VIA	207	9871348.04	759773.453	3957.4014	TOP
135	9871689.46	759763.874	3990.9191	VIA	208	9871303.38	759801.118	3955.4527	TOP
136	9871679.47	759764.013	3989.6972	VIA	209	9871371.71	759767.055	3957.7299	TOP
137	9871644.97	759769.949	3985.7578	VIA	210	9871299.93	759806.612	3956.1139	TOP
138	9871676.58	759727.791	3999.4469	TOP	211	9871299.08	759808.812	3956.3154	TOP
139	9871693.01	759729.866	4000.8886	TOP	212	9871387.1	759757.746	3960.0265	TOP
140	9871713.9	759724.825	4004.9039	TOP	213	9871300.34	759809.681	3956.698	TOP
141	9871704.15	759761.33	3994.2661	TOP	214	9871306.62	759809.247	3957.8486	TOP
142	9871756.32	759745.207	4000.3343	TOP	215	9871407	759751.42	3964.9663	TOP
143	9871781.94	759737.243	4003.7198	TOP	216	9871330.16	759802.465	3960.3954	VIA
144	9871802.34	759732.132	4005.8277	TOP	217	9871331.91	759807.722	3960.1415	VIA
145	9871823.09		4008	TOP	218	9871422.77	759750.089	3970.212	TOP
146	9871836.53	759729.216	4010.1326	TOP	219	9871303.26	759816.603	3957.089	TOP
147	9871844.53	759728.097	4011.4738	TOP	220	9871438.34	759740.922	3974.294	TOP
148	9871824.58	759721.162	4010.9467	TOP	221	9871291.33	759821.221	3956.6341	VIA
149	9871806.06	759719.459	4010.6913	TOP	222	9871285.63	759816.921	3955.9269	VIA
150	9871783.85	759708.04	4013.4546	TOP	223	9871455.45	759739.028	3978.9646	TOP
151	9871766.88	759702.333	4014.9919	TOP	224	9871291.67	759806.827	3955.0547	TOP
152	9871766.37	759712.283	4011.5225	TOP	225	9871455.47	759738.988	3978.9451	TOP
153	9871764.08	759720.843	4008.7286	TOP	226	9871295.6	759799.736	3954.3339	VIA
154 155	9871739.11 9871761.2	759721.571 759718.701	4007.3139 4008.8731	TOP TOP	227 228	9871297.39 9871477.97	759793.544 759737.603	3953.8485 3983.8958	VIA TOP
156	9871761.2	759718.701	3961.4416	EST	228	9871477.97	759737.603	3983.8958	VIA
157	9871866.27	759740.563	4010.8172	TOP	230	9871297.31	759777.045	3953.4728	VIA
158	9871849.58	759758.139	4006.7869	TOP	231	9871498.96	759728.74	3989.0463	TOP
159	9871831.43	759767.915	4001.9842	TOP	232	9871301.92	759768.385	3952.8221	VIA
160	9871820.54	759766.233	4000.3721	TOP	233	9871322.97	759752.156	3949.3348	VIA
161	9871804.52	759775.123	3995.8932	TOP	234	9871328.02	759745.24	3948.1013	VIA
162	9871775.74	759786.878	3989.693	TOP	235	9871520.73	759727.799	3991.7439	TOP
163	9871735.49	759801.689	3982.6807	ТОР	236	9871328.57	759738.149	3947.3045	VIA
164	9871709.81	759805.87	3981.2278	TOP	237	9871324.07	759723.328	3945.8144	VIA
165	9871697.57	759800.336	3981.842	TOP	238	9871319.39	759710.608	3943.3099	VIA
166	9871343.59	759805.22	3961.4127	VIA	239	9871534.03	759738.168	3989.1126	TOP
167	9871342.94	759800.369	3961.5793	VIA	240	9871313.46	759700.916	3940.9719	VIA
168	9871374.69	759800.164	3963.8085	VIA	241	9871308.92	759695.765	3939.5031	VIA
169	9871374.16	759795.57	3964.1272	VIA	242	9871300.49	759690.007	3937.489	VIA
170	9871383.31	759797.778	3964.7277	VIA	243	9871561.89	759737.697	3990.1537	TOP

Puntro N		DUNTOS TO	DOCE ÁFICOS	LITMANACS 94	-		DUNITOS TOI	OCD ÁFICOS	LITM MCC OF	
244 9871300.52 79690.011 3937.479	PUNTO N°				Descripción	PUNTO N°				Descripción
246 9871288.07 5968.07.22 3935.666 VA 318 8971238.29 75960.075 3925.0236 TOP 246 9871283.08 75960.075 3925.0236 TOP 247 9871283.09 75960.075 3935.075 248 9871281.72 59793.08 3935.026 VA 320 987127.12 759715.47 3937.1957 75960.075 3939.02233 TOP 248 987131.28 75960.267 3939.976 VA 322 987123.67 759710.378 3935.1217 TOP 247					•					•
249 9871303 46 759685 48 9397,6452 VAA 320 9871271_24 759715.474 3971.975 TOP 249 9871312.89 759682.129 39902.239 39905 VAA 322 8971245.62 75902.0788 3985.1217 TOP 250 8871324.95 759602.607 3991.996 VAA 322 8971245.62 75902.0788 3985.1217 TOP 250 8871324.97 759710.411 3944.545.933 VAA 323 8971164.57 75973.611 3912.417 TOP 250 8871334.95 759702.411 3944.55933 VAA 325 8971124.77 75973.611 3931.3767 TOP 252 8971332.62 759702.54 3946.9269 VAA 325 897114.67 759745.633 3903.539 TOP 255 8971331.86 759736.63 3946.842 VAA 325 8971124.87 75975.529 3905.395 TOP 255 8971331.87 759746.266 3946.842 VAA 326 897112.48 75996.603 3908.4018 TOP 255 8971331.87 75975.529 3958.0088 VAA 326 897124.87 75996.603 3908.4018 TOP 257 8971220.86 75975.93 3946.862 VAA 326 897126.87 75986.213 3948.682 VAA 326 897126.87 75986.213 3948.862 VAA 327 VAA 327 897126.98 75986.213 3948.862 VAA 326 897126.87 75986.213 3948.862 VAA 327 VAA 327 897126.98 75986.213 3948.862 VAA 327 VAA 328 897126.98 75986.213 3948.862 VAA 328 897126.98 75986.213 3949.868 VAA 328 897126.98 75986.213 3949.228 VAA 328 897126.98 75986.213 3949.228 VAA 328 897126.98 75986.213 3949	245		759686.732	3935.4066	VIA	318			3925.6236	TOP
249 987138.1.72 759739.2.56 3990.2333 TOP 321 987138.5.2 7596138.5.3 316.0382 TOP 249 9871312.0.9 75990.0.7 3393.9796 VIA 322 987128.5.2 75970.78 335.5.217 TOP 250 987132.0.2 75970.79 313 349523.2 VIA 324 897124.7.7 75974.6.2 323.2.765 TOP 252 987133.0.2 75972.5 3494.292.0 VIA 325 987113.1.7 75974.6.2 3393.352.0 TOP 252 987133.0.2 75972.5 3494.292.0 VIA 325 987113.1.7 75974.6.2 3393.352.0 TOP 252 987133.3.1 75975.5 75980.0 3390.3599 TOP 252 987133.3.2 75972.5 388 3494.847 VIA 325 987113.1.7 75974.6 538 3390.3599 TOP 255 987133.3.1 75975.5 75980.0 380.011.0 TOP 255 987132.2 75974.5 75975.7 75974.6 75974.5	246	9871288.03	759680.836	3935.1666	VIA	319	9871207.3	759647.684	3919.3948	TOP
299 9871312.89 759902.607 3939.0796 VAA 322 9871245.62 5972.0788 3955.1217 TOP CONTROL										
251 9871320.75 759701.951 3941,9681 VIA 323 8971146.72 759746.20 3912.8147 TOP 252 9871333.94 759705.622 3946,2432 VIA 325 8971146.72 759746.633 3930.359 TOP 253 9871333.14 75975.633 3930.359 TOP 254 9871333.14 75975.634 3946,2424 VIA 325 897112.14 759746.633 3930.359 TOP 255 9871333.14 75975.521 3938.0992 TOP 255 9871333.14 75975.521 3938.0992 TOP 255 987133.15 759745.63 3948.184 VIA 327 9871133.1 75975.521 3938.0992 TOP 255 987133.14 75975.173 3949.0229 VIA 329 9871103.4 75974.109 3926.6901 TOP 257 987123.06 759759.93 3950.0388 VIA 330 987128.2 75988.073 3944.697 VIA 258 3971314.09 759764.517 3951.1919 VIA 331 8971284.27 75986.2 3934.588 VIA 250 9871303.8 75976.3 5395.2 5395.2 VIA 332 897128.2 75988.7 2598.9 3939.3 VIA 250 2598.9 3930.8 75976.3 5395.2 5395.2 VIA 332 897128.2 75988.7 2599.3 2939.3 VIA 250 2598.7 2598.9 2599.3 2599.8 2599.										
251 8871349 799716411 3948-5923 VIA 324 89712467 79973613 3930.359 TOP 253 897133126 799745.83 390.359 TOP 254 89733216 799745.83 3974628 3974487 VIA 327 897146.78 799746.28 3910.1147 TOP 255 8971332.15 799745.83 39746.84 VIA 327 8971124.81 75985.60 3988.60 TOP 255 897132.15 799748.28 3994.022 VIA 329 8971124.81 75985.60 3988.60 TOP 257 8971220.86 79975.51 3984.08 VIA 330 8971285 75986.79 3994.66 TOP 257 8971230.86 79976.51 3994.022 VIA 329 897123.8 75986.79 3994.66 TOP 258 897130.8 75976.51 3994.19 VIA 331 8971245.7 75986.72 3994.66 TOP 259 897130.8 75976.55 3952.175 VIA 332 8971245.2 75986.79 3994.66 TOP 259 897130.8 75976.55 3952.175 VIA 332 8971245.2 75986.79 3994.66 TOP 259 897130.8 75976.55 3952.175 VIA 332 8971245.2 75986.70 3399.0028 VIA 259 897130.8 75976.54 3953.20 VIA 334 897120.5 75986.72 3993.91 VIA 261 897130.3 75976.54 3953.20 VIA 334 897120.5 75986.72 3993.91 VIA 261 897130.3 75976.55 3952.61 VIA 334 897120.5 75986.7 279 2							t			
252 987133.06 759726.822 3946.2432 VA 325 987117.47 759745.633 3990.535 TOP 254 987133.48 759715.54 3945.754 3945							t			
253 987133.67 75973.54 3946.9269 VIA 326 9871146.78 759640.826 3991.02							t			
254 9871333.48 796735.48 3947.4847 VIA 377 8871133.1 75975.529 3928.0927 TOP 255 9871327.43 73675.529 3928.0928 TOP 256 9871327.43 73675.521 3949.0229 VIA 329 9871103.4 759764.109 3926.6011 TOP 257 9871320.68 79797.595 3959.0088 VIA 330 987128.28 75969.179 3934.6687 VIA 258 9871314.09 789764.517 3934.6687 VIA 258 9871314.09 789764.517 3934.6687 VIA 258 9871314.09 78976.515 3952.1757 VIA 331 987128.27 75966.213 3934.488 VIA 259 987130.85 759765.515 3952.1757 VIA 331 987128.27 75966.213 3934.488 VIA 256 987130.28 75974.357 3952.8129 VIA 333 987126.749 759767.509 3959.0328 VIA 261 987130.21 59795.54 3952.210 VIA 334 887126.35 759678.599 3579.318 VIA 262 987130.21 59795.56 3954.602 VIA 335 987126.35 75967.701 3923.4762 VIA 265 987130.23 73978.29 3954.5022 VIA 335 987126.52 75967.61 3913.366 VIA 265 987130.23 73978.29 3954.5022 VIA 335 987126.50 75968.216 3913.366 VIA 265 987130.23 73978.29 3954.5022 VIA 335 987126.50 75968.216 3913.366 VIA 265 987130.23 73978.83 3954.5012 VIA 335 987126.50 75968.216 3913.366 VIA 265 397130.13 75968.83 3955.2499 VIA 340 987120.22 75968.075 3910.8070 VIA 265 397130.13 75968.83 3955.2499 VIA 340 987120.22 75968.075 3910.8070 VIA 265 397130.21 75968.83 3955.2499 VIA 340 397120.22 75968.375 3910.8070 VIA 265 397130.21 75968.83 3955.2499 VIA 340 397130.21 75968.83 3955.2491 VIA 340 397130.21 75968.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969.23 397130.21 75969										
255 99713215 759748.286 3948.1894 VIA 328 9871124.81 75965.058 3908.0518 TOP 255 9971320.86 759759.953 3930.0088 VIA 330 987128.5 759660.739 3934.6567 VIA 259 397130.85 759660.739 3934.6567 VIA 259 397130.85 759660.739 3934.6567 VIA 259 397130.85 759660.739 3934.568 VIA 259 397130.85 759665.55 3952.1752 VIA 331 98724.77 75966.739 3934.658 VIA 250 397130.81 759779.544 3935.21752 VIA 332 98724.74 75967.839 3932.318 VIA 261 397130.81 759779.544 3935.291 VIA 334 88724.69 397330.81 75979.546 3935.291 VIA 335 98725.69 39730.77 3923.4768 VIA 262 397130.87 75979.576 3984.1637 VIA 336 98721.69 3973.07 3923.4768 VIA 264 397130.87 75979.765 3984.1637 VIA 336 98721.69 3973.07 3923.4768 VIA 266 397130.87 75990.576 3984.5632 VIA 336 98721.69 759676.47 3919.06 VIA 266 397130.87 75990.31 3984.5622 VIA 338 98721.69 759676.47 3919.06 VIA 266 397130.19 75980.33 3984.5622 VIA 338 98721.69 759676.47 3919.06 VIA 266 397130.19 75980.33 3954.5622 VIA 339 98713.64 75976.33 3918.3372 VIA 266 397130.19 75980.33 3954.5622 VIA 339 98713.64 75976.33 3918.3372 VIA 266 397130.19 75980.30 3918.35 3918.3372 VIA 266 397130.19 75980.01 3975.65 3964.562 VIA 340 39712.91 75978.30 75980.01 3975.65 VIA 340 39712.91 75978.30 75980.01 3975.65 VIA 340 39712.91 75978.30 75980.01 3975.24 VIA 340 39712.01 75986.30 75980.01					1					
255 987130.08 789759.963 3950.0088 VIA 330 987128.8 759680.739 3934.6867 VIA 259 987130.51 759765.51 3952.1752 VIA 331 987126.52 775966.31 3934.588 VIA 259 987130.51 75976.515 3952.1752 VIA 332 987126.52 75968.707 3929.0028 VIA 256 987130.51 759775.541 3952.2752 VIA 335 987126.52 75968.707 3929.0028 VIA 256 987130.31 759775.541 3953.201 VIA 336 987126.53 75968.301 3923.552 VIA 263 397130.31 759795.391 3954.266 VIA 335 987126.55 75968.301 3923.4768 VIA 264 987130.31 759795.391 3954.2261 VIA 336 987126.55 75966.47 3919.506 VIA 265 987130.31 759795.391 3954.2261 VIA 337 987126.55 75966.47 3919.506 VIA 266 987130.56 75980.310 3954.5062 VIA 337 987126.56 759795.391 3954.2261 VIA 266 987130.56 75980.310 3954.5062 VIA 339 9871315.64 759676.353 3915.3576 VIA 266 397130.19 75980.5384 3954.7749 VIA 339 9871315.64 759676.353 3915.3576 VIA 266 397130.19 759810.075 3955.646 VIA 341 987110.19 75978.203 3911.454 VIA 270 397130.19 759810.075 3957.1555 VIA 343 987127.12 759681.21 3907.354 VIA 270 397130.12 75980.0791 3975.1555 VIA 343 987100.38 75968.085 3903.8364 VIA 270 397130.12 75980.0791 3975.1555 VIA 343 987100.38 75968.085 3903.8364 VIA 270 397146.11 759993.583 3968.9851 TOP 347 987100.38 75968.085 3903.384 VIA 272 987150.63 759792.613 3970.8140 TOP 345 987103.81 715969.095 3900.0510 VIA 272 987130.12 75980.915 3970.395 TOP 347 987130.13 75960.020 VIA 272 987130.13 75980.252 3970.350 TOP 349	255		759748.286	3948.1894	VIA	328	9871124.81	759636.063	3908.4018	TOP
258 997130.6.1 75976.517 3951.1919 VIA 331 8971284.27 75968.213 394.588 VIA 259 897130.6.8 75977.546 395.22 VIA 333 897124.5 37596.6 77977.546 395.219 VIA 333 897124.5 37596.6 77977.546 395.219 VIA 334 897124.5 37596.8 301 3923.518 VIA 326 997130.2.8 75977.546 3953.291 VIA 335 897126.8 75968.3 201 3923.518 VIA 262 997130.2.8 75979.5 3594.637 VIA 336 397167.2 75967.47 3923.4768 VIA 263 997130.2.7 75978.3 308 3954.637 VIA 336 397167.2 75967.47 3923.4768 VIA 265 997130.7 57998.3 3954.821 VIA 336 397167.2 75967.47 3912.206 VIA 265 997130.7 57998.3 3954.821 VIA 338 397137.13 75988.245 3915.336 VIA 266 997130.1 75998.3 3954.821 VIA 339 397131.3 75988.245 3915.336 VIA 267 9971298.59 75988.8 16 3955.289 VIA 340 997100.2 75968.3075 3910.8702 VIA 268 9971302.1 75968.10.2 3955.289 VIA 340 997100.2 75968.3075 3910.8702 VIA 269 99871302.1 75968.10.2 3954.545 VIA 342 397107.1 75968.128 3907.954 VIA 270 9971302.2 75989.971 3957.1555 VIA 342 987107.1 75968.128 3907.954 VIA 271 997150.2 75969.0 759	256	9871327.43	759755.173	3949.0229	VIA	329	9871103.4	759764.109	3926.6601	TOP
259 9871308.5 75976.515 3892.1752 WA 332 8871245.3 75968.707 3922.0028 VIA 260 9871308.1 75977.347 3593.291 WA 334 987126.5 75968.201 3927.032.2 VIA 261 9871308.1 75977.575 3932.4784 75968.201 3927.082.5 75968.201 3927.082.5 75968.201 3927.082.5 75968.201 3927.082.5 75968.201 3927.082.5 75968.201 3927.082.5 75968.201 75978.5 75968.201 75978.5 75968.201 75978.5 75968.201 75978.5 75968.201 75978.5 75968.201 75978.5 75968.201 75978.5 75978.5 75968.201 75978.5	257	9871320.86	759759.963	3950.0088	VIA	330	-	759680.739	3934.6687	VIA
260 9871304.83 759774.357 3952.8129 VIA 333 8971247.49 759678.999 3922.3918 VIA 261 9871301.7 759784.308 3983.6286 VIA 335 9871208.5 75968.221 3923.7265 VIA 262 9871302.7 759788.391 3954.6267 VIA 336 9871205.8 759676.47 3915.206 VIA 263 9871303.7 759798.391 3954.6267 VIA 337 3871169.06 759681.049 3915.306 VIA 265 9871302.6 759981.301 3954.522 VIA 338 3871157.13 759681.245 3915.306 VIA 266 9871300.1 75968.384 3954.7459 VIA 338 3871157.13 759681.245 3915.336 VIA 266 9871300.1 75968.384 3954.7459 VIA 339 3871169.06 759681.049 3915.306 VIA 266 9871300.1 75968.301.29 3955.466 VIA 340 3871100.22 75968.3075 3910.8702 VIA 266 9871302.19 759681.049 3915.306 VIA 266 9871302.19 759681.049 3915.306 VIA 266 9871302.19 759681.049 3915.306 VIA 266 9871302.19 759681.051 3956.3712 VIA 342 987107.21 759681.218 3907.954 VIA 270 9871302.19 759681.051 3956.3712 VIA 342 987107.21 759681.218 3907.954 VIA 271 987150.22 759781.091 3972.1921 TOP 344 387103.34 75968.025 3903.7364 VIA 272 9871463.18 759792.519 3970.3993 TOP 346 987100.34 75968.025 3903.7364 VIA 273 9871483.87 759792.519 3970.3993 TOP 346 987100.34 75968.056 3908.7374 VIA 274 987142.81 75969.25 3873.838 TOP 346 987100.18 75968.085 3908.7376 TOP 374 987101.85 75968.085 3908.756 TOP 374 987101.85 75968.085 3908.756 TOP 374 987101.85 75968.085 3908.7676 TOP 375 39713.56 759712.093 3905.6994 TOP 375 39713.56 759712.373 3912.85 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 75968.62 7596										
261 9871302.1 759779.544 3953.291 VIA 334 9871208.5 75968.201 3922.7622 VIA 262 9871302.8 75978.408 3836 401 335 8971305.3 75976.47 3922.4762 VIA 263 9871303.7 759798.391 3594.2821 VIA 336 9871167.5 75966.47 3919.206 VIA 265 9871303.7 759798.391 3594.2821 VIA 338 3871167.13 759681.245 3915.3061 VIA 265 9871300.6 759800.301 5594.6062 VIA 338 3871157.13 759681.245 3915.3061 VIA 266 9871300.13 759808.384 3954.7749 VIA 339 3871156.40 759676.333 3915.3378 VIA 266 9871300.13 759808.816 3955.2849 VIA 339 3871157.13 759681.245 3915.3367 VIA 266 9871300.12 759808.816 3955.2849 VIA 334 387100.2 759678.202 3911.445 VIA 269 9871300.2 759808.002 3955.646 VIA 341 9871101.9 759678.202 3911.445 VIA 270 9871307.2 759808.9791 3957.1595 VIA 343 3871070.38 759686.136 3907.8168 VIA 271 9871302.2 759809.791 3970.8149 TOP 345 987103.34 75968.025 3903.887 VIA 272 9871502.63 759792.613 3970.8149 TOP 345 987103.34 75968.025 3903.387 VIA 273 9871456.1 759793.533 3968.8851 TOP 347 987100.13 75968.059 3903.887 VIA 275 987143.67 75980.07 3965.3889 TOP 349 3871008.44 759691.591 3900.6022 VIA 275 987134.67 75980.07 3965.3859 75968.3556 TOP 347 987100.13 75968.656 3960.6594 TOP 277 9871366.65 75980.665 3963.3566 TOP 350 987100.15 759716.093 3906.6994 TOP 279 9871361.1 75980.568 3963.566 TOP 350 987100.1 759716.093 3906.6994 TOP 279 9871361.1 75980.568 3963.566 TOP 350 987100.1 759716.093 3906.6994 TOP 279 9871361.1 75980.568 3963.566 TOP 350 987100.1 759716.093 3906.6994 TOP 279 9871361.1 75980.568 3963.566 TOP 350 987100.1 759716.093 3906.6994 TOP 279 9871361.1 75980.568 3963.3566 TOP 350 987100.1 75986.669 TOP 350 987100.1										
Proceedings										
263 9871303.91 75975.765 3954.1637 VIA 336 9871307.52 759676.473 3319.206 VIA 264 3871303.7 75978.931 3954.5042 VIA 338 9871317.13 759681.048 319.3061 VIA 266 9871300.63 759801.3061 3954.5042 VIA 338 9871317.13 759681.048 3915.336 VIA 266 987130.63 759803.816 3955.2649 VIA 349 987130.02 759805.836 3955.2649 VIA 340 9871100.22 759808.3073 3910.8702 VIA 266 987130.17 759808.816 3955.2649 VIA 341 9871101.9 759578.202 3911.1445 VIA 269 9871302.19 759808.816 3555.2649 VIA 341 987100.19 759578.202 3911.1445 VIA 270 9871302.19 759808.815 3555.2649 VIA 342 987100.22 759680.138 3907.8168 VIA 270 9871302.19 759910.01 3957.5959 VIA 343 9871072.12 759686.128 3907.8168 VIA 271 987150.26 75997.613 3970.8149 TOP 344 987103.74 759680.635 3907.8168 VIA 272 987150.26 75997.519 370.939 TOP 346 987103.71 759680.658 3903.374 VIA 273 987143.83.87 759973.583 3968.9851 TOP 345 987100.37 75968.96.95 3905.619 VIA 275 987143.78 75980.07 3963.389 7509 75980.78 75980.07 75980.07 VIA 275 987143.78 75980.07 3963.389 7509 75980.07							1			
266 9871306.13 79598.391 3954.2821 VIA 337 9871160.06 759681.049 3919.3061 VIA 266 9871306.18 75980.301 3954.5042 VIA 338 9871317.13 759681.245 3315.336 VIA 266 9871306.19 75980.384 3954.7749 VIA 339 987136.44 759676.553 3915.3378 VIA 268 9871295.07 75980.0029 3955.646 VIA 340 9871100.22 759683.075 3910.8702 VIA 269 9871307.21 759801.0161 3956.3712 VIA 342 9871007.12 759681.218 3907.954 VIA 270 9871307.22 759690.971 3977.1955 VIA 342 987107.12 759681.218 3907.954 VIA 271 9871519.25 759791.091 3972.1921 TOP 344 987103.44 759684.025 3903.7364 VIA 272 9871502.63 759792.613 3970.3093 TOP 345 987103.44 759684.025 3903.7364 VIA 273 9871483.87 759792.613 3970.3093 TOP 346 987103.07.4 759684.025 3903.7364 VIA 273 9871483.87 759792.613 3970.3093 TOP 346 9871003.07 759685.97 3900.5619 VIA 275 987143.47 75960.027 3966.504 TOP 348 9871003.47 75969.056 3896.747 EST 276 9871417.81 759802.01 3965.388 TOP 347 3987101.38 759691.381 3906.022 VIA 277 9871396.68 759805.685 3695.3966 TOP 348 9871004.47 75969.596 3896.747 EST 277 9871396.68 759805.685 3695.3966 TOP 348 9871005.44 75969.0593 3901.0296 TOP 278 9871381.17 759856.653 3961.3185 TOP 352 9871013.15 75969.093 3901.0296 TOP 279 9871361.17 75985.663 3901.1524 TOP 279 9871361.17 75985.663 3901.0296 TOP 279 9871361.17 75985.663 3901.0296 TOP 352 9871005.18 75960.093 3901.0296 TOP 279 9871361.17 75985.663 3901.0396 TOP 352 9871005.17 75975.003 3901.0296 TOP 280 9871381.91 75985.663 3961.3597 TOP 352 9871005.17 75975.003 3901.0296 TOP 280 9871381.17 75986.633 3901.1524 TOP 352 9871005.17 75975.003 3901.0296 TOP 280 9871336.17 75986.538 3963.3857 TOP 356 9871005.17 75975.0							t			
265 9871301.63 759801.301 3954.5042 VIA 338 9871137.13 759681.263 3915.336 VIA 266 9871301.01 759808.816 3955.2849 VIA 340 9871100.22 759683.075 3910.8702 VIA 268 987129.01 759810.029 3955.646 VIA 341 9871101.9 759578.202 3911.1445 VIA 270 9871302.19 75980.161 3955.8712 VIA 342 987107.12 759683.075 3910.8702 VIA 270 9871302.19 75980.910.161 3955.8712 VIA 342 987107.12 759683.135 3907.8168 VIA 271 9871519.25 75991.091 3977.1921 TOP 344 987100.38 759686.128 3907.8168 VIA 271 9871519.25 75991.091 3977.1921 TOP 344 987103.47 759680.058 3903.3764 VIA 272 987150.263 759792.613 3970.8149 TOP 345 987103.47 759689.085 3903.3764 VIA 273 9871483.87 759793.583 3968.9851 TOP 346 9871003.47 759689.085 3903.0367 VIA 275 9871483.87 759980.047 3966.0504 TOP 346 9871003.47 759695.656 3866.7476 EST 275 9871483.87 75980.085 3963.9566 TOP 347 987101.03 759691.381 3900.6022 VIA 275 987136.61 75988.383 3963.9566 TOP 346 9871006.41 759659.656 3866.7476 EST 277 9871396.68 759805.685 3963.9566 TOP 350 987101.55 759716.093 3905.6994 TOP 277 9871396.68 759805.685 3963.9566 TOP 350 987101.55 759716.093 3905.6994 TOP 278 9871381.17 759848.53 3963.3461 TOP 352 987103.18 759680.066 3906.022 TOP 278 9871381.17 759848.53 3963.3461 TOP 353 987105.15 759915.003 3905.0921 TOP 279 9871381.17 759848.53 3963.3461 TOP 353 987107.06 759715.003 3905.0921 TOP 279 9871381.17 759848.53 3963.3461 TOP 353 987107.06 759715.003 3905.0921 TOP 280 9871332.17 759680.686 3909.0531 TOP 366 987108.18							 			
266 9871300.19 759805.384 3954.7749 VIA 339 9871136.44 759676.353 3915.378 VIA 268 9871298.19 759808.816 3955.2849 VIA 340 9871100.22 75968.30.75 3910.8702 VIA 268 9871390.19 759810.029 3955.646 VIA 341 9871101.9 759678.202 3911.1445 VIA 270 9871307.21 759810.021 3595.3712 VIA 342 987107.12 759681.218 3907.954 VIA 271 9871307.22 75969.971 3957.1595 VIA 343 987107.03 759686.363 3907.8168 VIA 271 9871519.25 759791.091 3972.1921 TOP 344 987103.44 759684.025 3903.7364 VIA 272 987150.26 379972.613 3970.8149 TOP 345 987103.74 759684.025 3903.7364 VIA 273 987148.387 75992.519 3970.3093 TOP 346 9871003.74 759686.908 3030.3764 VIA 274 9871464.1 759793.583 3966.9561 TOP 347 9871001.30 759691.939 3900.022 VIA 275 9871443.78 759804.024 3966.004 TOP 348 9871004.17 759695.965 3986.746 EST 276 9871447.81 759805.685 363.399 TOP 349 9871004.4 759691.959 3901.0266 TOP 277 9871336.93 759805.685 363.399 566 TOP 349 9871004.4 759691.959 3901.0266 TOP 278 9871338.17 759826.623 3961.3546 TOP 350 987105.5 759715.093 3905.694 TOP 279 9871361.1 759826.623 3961.354 TOP 352 987105.18 759680.949 3004.1524 TOP 281 9871265.41 759846.53 3961.355 EST 355 987104.89 759680.646 3990.5051 TOP 282 9871338.17 759826.623 3961.354 TOP 352 987105.18 759680.941 300.2927 TOP 282 9871338.17 759826.623 3961.354 TOP 352 897105.18 759680.969 3901.2927 TOP 282 9871338.17 759826.623 3961.354 TOP 353 987105.12 759680.404 3911.807 TOP 282 9871338.17 759826.623 3961.355 TOP 355 987109.77 759680.404 3911.807 TOP 282 9871338.17 759826.623 3961.355 TOP 356 987109.77 759680.404 3911.807 TOP 282 9871338.17 759680.834 3902.227 TOP 360 9871338.33 75966.836 3					1					
268 9871299.01 759810.012 3955.646 VIA 341 9871101.9 759678.202 3911.1445 VIA 269 9871302.12 759801.0161 3956.3712 VIA 342 9871070.38 759686.136 3907.954 VIA 271 9871307.22 759809.791 3957.1595 VIA 343 9871070.38 759686.136 3907.8168 VIA 271 987150.25 75979.1691 3972.0121 TOP 344 9871033.44 75968.025 3903.7364 VIA 272 987150.63 75979.1691 3970.8149 TOP 345 9871030.34 759686.05 3903.7364 VIA 273 9871463.18 75979.191 3970.3093 TOP 346 9871009.74 759666.597 3900.5619 VIA 274 9871464.1 75995.183 3968.9851 TOP 346 987100.47 75965.065 3866.7476 EST 276 9871417.81 759802.101 3965.3389 TOP 349 9871008.44 759691.391 3900.022 VIA 277 9871396.68 759805.685 3963.3566 TOP 349 9871008.44 759691.999 3000.622 VIA 277 9871396.68 759805.685 3963.3566 TOP 350 9871031.5 759716.093 3905.6994 TOP 278 9871381.39 759813.39 3963.4856 TOP 352 9871031.5 759716.093 3905.6994 TOP 278 9871381.37 59826.623 3961.1394 TOP 352 9871031.5 759716.093 3905.6994 TOP 278 9871381.37 59826.623 3961.1394 TOP 352 9871051.5 759716.093 3905.6994 TOP 278 9871381.37 759826.623 3961.1394 TOP 352 9871051.5 759716.093 3900.6997 TOP 280 9871381.37 759826.623 3961.8396 TOP 352 9871050.02 759715.003 3900.5915 TOP 281 987126.541 75982.026 3900.031 TOP 282 9871358.2 75980.3182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 282 9871358.2 75980.388 3962.4525 TOP 357 98710.095 779912.373 3915.3271 TOP 282 9871338.3 759768.8 3966.7452 TOP 357 36980.6468 3900.031 TOP 285 9871329.3 759718.8 3966.276 3900.031 TOP 285 9871329.3 75976.8 3900.031 TOP 357 36980.0468 3900.031 TOP 36980.0468 3900.031 TOP 36980.0468 3900.031 TOP 3900.031 TOP 3900.031 TOP 3900.0					1					
279 9871307.12 759810.161 3395.3712 VIA 342 9871072.12 75986.1218 3907.954 VIA 270 9871307.22 75980.971 3957.1595 VIA 343 9871073.34 75968.61.63 3907.376168 VIA 271 9871519.25 75979.1613 3972.1921 TOP 344 9871033.47 75968.025 3903.7364 VIA 272 987150.63 75979.1613 3970.8149 TOP 345 9871033.71 75968.005 3903.7364 VIA 272 9871434.78 75980.047 390.099 TOP 346 9871003.47 75968.095 3903.387 VIA 274 9871464.11 75979.5183 3968.9851 TOP 346 9871001.38 75961.381 3900.6022 VIA 275 9871434.78 75980.0.47 3966.0504 TOP 347 9871001.38 75961.381 3900.6022 VIA 276 987141.781 75980.101 3965.3389 TOP 348 9871008.44 759951.959 3901.0296 TOP 277 9871396.68 75980.685 3963.9566 TOP 351 9871008.44 759951.959 3901.0296 TOP 278 9871381.91 3968.1856 TOP 351 9871008.44 759961.959 3904.1524 TOP 279 9871361.1 759818.953 3962.3661 TOP 352 9871051.82 75968.094 3904.1524 TOP 280 9871351.1 75988.66.23 3361.1394 TOP 352 9871051.82 75968.262 3301.025 TOP 281 9871265.41 75988.853 3962.857 EST 354 9871074.88 75968.626 3090.0531 TOP 284 9871265.41 75988.853 3962.857 EST 354 9871074.88 759686.266 3090.0531 TOP 285 9871347.89 75980.043 3961.951 TOP 356 9871015.5 759718.03 3911.195 TOP 286 9871322.9 759810.89 3959.984 TOP 357 9871091.95 759712.33 3911.195 TOP 286 9871322.9 759810.89 3959.894 TOP 356 9871118.18 75968.206 3915.1486 TOP 289 9871334.33 75975.678 3956.1777 TOP 356 9871128.19 75968.206 3915.1486 TOP 290 9871334.78 75975.602 3955.3643 TOP 366 987132.19 75968.206 3915.1486 TOP 290 9871332.13 75975.620 3955.3643 TOP 366 987132.19 75968.334 3917.0169 TOP 290 987133.13 75976.540 3956.1777 TOP 367 987130.68 75968.304 3917.0169 TOP 290	267	9871298.59	759808.816	3955.2849	VIA	340	9871100.22	759683.075	3910.8702	VIA
2770 9871307.22 759809.791 3957.1595 VIA 343 9871070.38 75986.136 3907.8168 VIA 271 9871519.25 759791.091 3972.1921 TOP 344 9871033.41 75968.025 3903.387 VIA 273 987150.53 75979.2513 3970.8149 TOP 345 9871033.71 75968.025 3903.387 VIA 273 987146.41 75979.2513 3970.3093 TOP 346 9871009.74 75968.65.97 3900.5619 VIA 275 987146.41 75993.583 3968.951 TOP 347 9871010.38 759691.381 300.0022 VIA 275 9871474.78 75980.047 3966.0504 TOP 348 9871004.17 75965.666 8386.7476 EST 276 987147.81 75980.047 3966.0504 TOP 349 9871008.44 759691.959 301.026 TOP 277 987139.68 75980.263 3963.9566 TOP 350 9871051.5 759716.093 3905.6994 TOP 279 987138.13 75981.633 3963.1856 TOP 351 9871031.6 75980.004 3904.1524 TOP 279 897138.13 75982.623 3961.1394 TOP 352 8971051.5 759716.093 3905.6994 TOP 280 987138.17 75982.623 3961.1394 TOP 352 8971051.2 759715.093 3910.295 TOP 280 987138.17 75982.623 3961.815 EST 354 9871070.6 759716.093 3910.295 TOP 281 9871265.41 75988.85 3961.815 EST 354 9871070.6 759718.093 3910.295 TOP 283 987138.12 75980.182 3962.452 TOP 352 987109.57 759682.041 3911.195 TOP 284 987139.91 759815.489 3959.0071 TOP 357 987109.57 759682.041 3911.195 TOP 286 9871324.98 75980.4628 3962.4322 TOP 359 987112.13 75968.050 3913.3222 TOP 286 9871324.98 75980.683 3965.1777 TOP 362 987120.18 759682.09 3913.3222 TOP 287 987132.13 75976.878 3956.1777 TOP 362 987123.13 75968.290 3923.2299 TOP 289 987133.43 75976.878 3956.1777 TOP 362 987123.15 75968.249 3923.2299 TOP 299 987133.13 75976.878 3956.677 TOP 366 987125.64 75968.595 3933.3222 TOP 3673.324.87 75976.878 3956.6777 709 368 987120.18 75968.250 3923.2299 TOP 369 987133.43	268	9871299.01	759810.029			341	9871101.9	759678.202	3911.1445	
271 9871501.25 759791.091 3972.1921 TOP 344 9871033.44 75968.025 3903.3564 VIA 272 9871502.63 759792.613 3970.8149 TOP 345 9871033.71 75968.085 3903.387 VIA 274 9871464.1 759793.583 3968.9851 TOP 347 9871010.38 759691.381 3900.05619 VIA 275 987143.48 759800.47 3966.0504 TOP 347 9871010.38 759691.381 3900.0522 VIA 275 987143.48 759800.47 3966.0504 TOP 348 9871001.47 75969.65 3866.7476 EST 276 9871431.81 759800.47 3966.0504 TOP 348 9871008.44 759691.959 3901.0296 TOP 277 987136.68 759805.685 3963.9566 TOP 350 9871015.5 75976.093 3905.6994 TOP 277 987136.1.1 759818.953 3963.1856 TOP 350 9871015.6 75960.094 3906.1524 TOP 279 987136.1.1 759818.953 3963.3856 TOP 352 9871051.6 75968.094 3904.1524 TOP 280 9871365.1 759848.53 3961.8515 EST 354 987107.06 759743.20 3910.295 TOP 281 9871358.2 759803.182 3963.2857 EST 355 987107.06 759743.207 TOP 282 9871358.2 759803.182 3963.2857 EST 355 987107.06 759743.37 3915.277 TOP 284 9871325.2 75980.384 3962.3257 TOP 356 987107.05 779743.307 3912.27 TOP 284 9871325.2 75980.384 3962.3257 TOP 357 9871361.4 759848.59 3959.0071 TOP 357 987107.06 759743.307 3913.272 TOP 286 9871327.9 75980.884 3962.325 TOP 358 987107.06 75974.373 3915.3271 TOP 286 9871327.9 75980.884 3962.425 TOP 356 987107.06 75980.689 3913.3222 TOP 286 9871347.89 75980.684 3962.425 TOP 360 9871128.15 75980.206 3915.126 TOP 286 9871323.3 759756.78 3965.477 TOP 362 987123.15 75988.342 3963.322 TOP 290 9871341.89 75996.248 3965.4777 TOP 362 987123.15 75988.344 TOP 290 987133.40 759756.24 3955.343 TOP 366 987122.9 75988.344 TOP 290 987133.80 759756.20 3949.345 TOP 366 987122.9 75998.349 390.5728 TOP 290										
272 9871463.18 759792.513 3970.8149 TOP 345 9871093.71 75968.085 3903.817 VIA 273 9871464.1 759793.583 3968.9851 TOP 346 987100.38 75969.181 3900.6022 VIA 275 987143.78 75990.477 3966.0504 TOP 348 987100.17 75959.666.579 3907.6022 VIA 275 987143.78 75980.101 3966.0504 TOP 348 987100.17 75959.666.53 3896.7476 EST 276 987143.78 75980.101 3965.3389 TOP 349 9871004.47 759659.656.53 3896.7476 EST 277 9871396.68 75980.5685 3963.9566 TOP 350 9871015.5 759716.093 3905.6994 TOP 278 9871381.93 759813.19 3963.856 TOP 351 3871031.6 755690.094 3904.1524 TOP 279 3971361.1 759846.53 3965.3461 TOP 352 9871051.2 7599715.203 3910.295 TOP 280 9871383.17 759826.623 3961.1394 TOP 353 9871050.12 759715.203 3910.295 TOP 281 9871265.1 759846.53 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 282 9871352.2 75980.3182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 284 9871393.17 759804.628 3962.4322 TOP 356 9871057.7 759684.041 3911.195 TOP 285 9871347.89 759804.628 3962.4322 TOP 356 9871128.15 75980.628 3913.3222 TOP 286 987132.9 759810.89 3959.9894 TOP 359 9871111.84 75968.059 3913.3222 TOP 286 987132.9 759810.89 3959.8984 TOP 360 9871128.15 75968.058 3913.3222 TOP 286 987132.13 75976.870 3955.6777 TOP 360 9871128.15 75968.383 3915.3216 TOP 287 9871091.7 75968.183 3915.3216 TOP 289 9871313.13 75976.870 3955.6777 TOP 360 9871128.15 75968.383 3915.486 TOP 290 9871331.46 759765.402 3955.643 TOP 361 987122.0 75968.374 3906.3219 TOP 290 9871331.47 759765.402 3955.643 TOP 366 987128.60 75968.374 3906.3319 TOP 369 987122.0 75968.374 3906.3319 TOP 369 987122.0 75968.344 3909.315 TOP 369 987122.0 75968.344 TOP 3960 9										
273 9871484.87 759792.519 3970.3093 TOP 346 987100.74 759586.597 3900.6022 VIA 9871464.1 759793.583 3968.9851 TOP 347 9871010.38 759691.381 3900.6022 VIA 759793.583 3968.0504 TOP 348 9871004.17 75969.565 3890.7476 EST 276 987141.81 759802.101 3965.3389 TOP 349 9871084.44 759691.595 3901.0296 TOP 277 987136.68 759805.685 3963.956 TOP 350 9871015.5 759716.093 3905.6994 TOP 279 9871381.91 75981.191 3963.1856 TOP 351 9871031.6 759690.094 3904.1524 TOP 279 9871361.1 759818.953 3962.3461 TOP 352 9871051.2 75969.094 3904.1524 TOP 280 9871385.1 75984.53 3961.8515 EST 354 9871051.2 759715.203 3910.295 TOP 281 9871265.4 75980.182 3963.2857 EST 355 9871070.0 75973.407 3912.8072 TOP 284 9871369.1 759815.89 3959.0071 TOP 356 987109.0 75991.397 3912.8072 TOP 284 9871369.1 759815.489 3959.0071 TOP 357 987109.1 759815.489 3959.0071 TOP 357 987109.1 75981.89 3959.9894 TOP 359 9871128.15 75962.026 3913.3222 TOP 286 9871332.9 75980.638 3962.2456 TOP 360 987118.15 75968.206 3913.3222 TOP 287 9871331.3 759776.878 3955.1777 TOP 362 9871200.1 75981.389 3959.9894 TOP 361 987120.1 75981.389 3959.3894 TOP 363 987120.1 75982.389 3913.3222 TOP 288 9871313.4 75976.878 3955.1777 TOP 362 987133.4 37978.687 3955.1777 TOP 362 987120.1 75982.389 3991.389										
274 9871464.1 759793.583 3968.9851 TOP 347 8871001.38 75960.181 3900.6022 VIA 275 9871434.78 759800.47 3966.0504 TOP 348 9871004.17 759659.656 368.67476 EST 276 9871417.81 759802.101 3965.3389 TOP 349 9871008.44 759691.599 3901.0296 TOP 277 987136.68 759805.685 3963.9566 TOP 350 9871015.5 759716.093 3906.6994 TOP 278 9871361.1 759818.953 3963.3566 TOP 351 9871031.6 759590.094 3904.1524 TOP 279 9871361.1 759818.953 3962.3461 TOP 352 9871051.82 759687.947 3906.2927 TOP 280 9871265.41 759848.53 3961.3394 TOP 353 9871051.12 759715.203 3910.295 TOP 281 9871265.41 759848.53 3961.8315 EST 354 9871074.08 759686.04 3908.0531 TOP 283 9871265.41 759848.53 3963.2857 EST 355 9871097.06 759713.407 3912.8072 TOP 283 9871265.81 759819.997 3957.475 TOP 356 9871097.07 759684.041 3911.195 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 9871011.84 75968.095 3913.222 TOP 285 9871347.89 759810.89 3959.9984 TOP 359 987111.84 75968.095 3913.222 TOP 286 9871320.37 759810.89 399.9984 TOP 359 9871148.15 75968.205 3915.1486 TOP 287 9871331.43 759765.402 3955.5716 TOP 361 9871142.31 75968.593 3913.222 TOP 288 9871334.33 759776.878 3955.5716 TOP 362 9871200.18 75968.599 3923.2299 TOP 290 9871313.46 759765.402 3955.0431 TOP 363 987112.91 75968.734 3919.15 TOP 291 9871341.31 759765.507 3955.5716 TOP 366 9871200.18 75968.293 3932.3239 TOP 292 9871331.31 759765.507 3955.5716 TOP 367 9871005.77 75968.185 3919.0169 TOP 290 9871313.46 759765.402 3955.3431 TOP 367 9871005.67 759965.507 3949.9451 TOP 367 9871005.67 75968.59 392.3239 TOP 295 9871323.13 759765.072 3955.075 3949.9451 TOP 368 9871300.18 75968.59 392.3239 TOP 296 9871330.84 759							t			
275 9871434.78 75980.47 3966.0504 TOP 348 9871004.17 75965.656 3896.7476 EST 276 9871417.81 75980.2101 3965.3389 TOP 349 9871008.44 75969.1959 3910.0296 TOP 277 9871361.68 75980.5685 3896.3566 TOP 350 9871015.5 759716.093 3995.6994 TOP 279 9871361.11 759818.953 3962.3461 TOP 351 9871031.6 75969.094 3905.6994 TOP 279 9871361.11 759818.953 3962.3461 TOP 352 9871051.12 759715.03 3910.295 TOP 280 9871388.17 75982.6623 3961.1394 TOP 353 987105.12 759715.203 3910.295 TOP 281 9871265.41 75984.853 3962.857 EST 354 9871074.89 75968.2640 3901.331 TOP 282 9871388.2 759803.182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 283 9871296.88 759819.997 3957.475 TOP 356 987109.77 759684.041 3911.195 TOP 284 987139.11 759815.488 3959.0071 TOP 357 9871091.95 759712.373 3915.3271 TOP 286 9871347.89 759804.628 3962.4322 TOP 358 8971118.41 75968.206 3915.1486 TOP 287 9871339.16 75980.6384 3962.2456 TOP 359 9871128.15 75968.206 3915.1486 TOP 288 9871337.33 759771.807 3953.5716 TOP 361 9871143.31 75968.1583 3917.0169 TOP 288 98713343.3 759776.878 3952.037 TOP 362 987120.018 75968.206 3915.1486 TOP 290 9871313.43 759765.402 3955.3643 TOP 364 987122.19 75968.742 3926.3134 TOP 291 9871341.33 75976.402 3955.3643 TOP 366 987122.19 75968.873 3910.5728 TOP 299 9871334.07 759755.075 3949.9451 TOP 367 8871250.64 75968.879 3910.5728 TOP 299 9871334.07 759756.302 3948.1707 TOP 366 987128.96 75968.873 3910.5728 TOP 299 9871334.09 759746.743 3948.6677 TOP 369 9871371.97 75908.537 3942.99 TOP 299 9871334.04 759765.262 3948.7677 TOP 369 987137.19 759706.527 3943.309 TOP 370 3871308.03 759765.262 3948.7777 TOP 367 3871308.03 75968.525							1			
276 9871417.81 759802.101 3965.3389 TOP 349 987108.44 759691.959 3901.0296 TOP 777 9871396.68 75980.688 3963.9566 TOP 350 9871015.5 759716.093 3906.056.994 TOP 279 9871361.1 759818.953 3962.4561 TOP 351 9871051.8 75960.094 3904.1524 TOP 280 9871381.1 75982.6623 3961.1394 TOP 352 9871051.82 75968.947 3906.9227 TOP 280 9871381.1 75982.6623 3961.1394 TOP 353 9871051.12 759715.203 3910.295 TOP 281 9871265.41 75984.853 3962.8451 EST 354 9871074.89 75968.62.66 3909.0531 TOP 282 9871388.2 759803.182 3963.857 EST 355 9871070.06 759713.407 3911.8072 TOP 283 9871296.58 759819.997 3957.475 TOP 356 9871091.95 759712.373 3915.3271 TOP 284 9871309.11 759815.489 3959.8041 TOP 357 9871091.95 759712.373 3915.3271 TOP 286 9871322.9 759810.89 3959.8894 TOP 359 9871111.84 75968.026 3913.3222 TOP 286 9871322.9 759810.89 3965.875 TOP 360 9871128.15 75968.206 3913.3222 TOP 288 9871309.13 759810.89 3953.5716 TOP 361 9871143.31 75968.15.83 3917.069 TOP 289 9871313.46 75976.578 3955.3716 TOP 361 9871143.31 75968.583 3917.069 TOP 290 9871313.46 75976.578 3955.3643 TOP 363 9871179.74 75968.783 392.8854 TOP 291 9871313.46 75976.578 3955.3643 TOP 364 987120.18 75968.599 3923.2299 TOP 292 9871313.43 75976.578 3949.9451 TOP 366 987120.64 75968.593 3930.5728 TOP 294 9871332.87 75976.678 3949.9451 TOP 366 987130.64 75968.579 3930.5728 TOP 295 9871332.87 75976.678 3949.8451 TOP 368 987130.09 75968.373 3930.5728 TOP 296 9871332.87 759766.78 3948.8707 TOP 369 987130.64 75968.579 3930.5728 TOP 296 9871332.87 75976.678 3948.8707 TOP 369 987130.64 75968.593 3930.5728 TOP 296 9871332.87 75976.678 3948.8707 TOP 369 987130.09 75969.859 3930.57	-				1					
278 9871381.93 759813.19 3963.1856 TOP 351 9871051.6 75960.094 3904.1524 TOP 279 9871361.1 759818.953 3962.3461 TOP 352 9871051.2 759687.947 3906.2927 TOP 281 9871265.41 75984.623 3961.1394 TOP 353 9871051.12 759715.203 3910.295 TOP 281 9871265.41 75984.83 3961.8151 EST 354 9871070.48 759686.266 3990.0531 TOP 282 9871388.2 759803.182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 283 9871296.55 759819.997 3957.475 TOP 356 9871095.77 759684.041 3911.95 TOP 284 9871309.11 759815.489 3959.0071 TOP 357 9871091.59 759712.373 3915.3271 TOP 285 9871374.89 759804.628 3962.4322 TOP 358 9871111.84 759683.005 3913.3222 TOP 286 9871392.9 759810.89 3959.9894 TOP 359 9871128.15 759682.026 3915.1486 TOP 287 9871339.16 759806.384 3962.2456 TOP 360 987118.89 759681.533 3917.0169 TOP 289 9871334.33 759776.878 3955.6177 TOP 361 987142.31 759681.583 3917.0169 TOP 290 987133.14 759765.406 3955.9373 TOP 362 987120.018 759685.299 3923.2299 TOP 290 987133.14 759765.406 3955.3643 TOP 363 987127.17 759681.785 3920.8854 TOP 291 987133.14 759765.059 3955.3643 TOP 366 9871250.64 759685.793 3930.5728 TOP 292 987133.13 759765.07 3949.9451 TOP 366 9871220.64 759685.793 3930.5728 TOP 294 987133.209 759746.473 3946.6677 TOP 366 9871220.64 759685.793 3930.5728 TOP 295 987133.297 759746.743 3946.6677 TOP 367 987120.68 75968.532 3942.995 TOP 296 987133.40 759746.813 3947.2682 TOP 367 987108.68 759756.02 3948.1707 TOP 369 987131.19 759768.532 3948.6677 TOP 369 987131.19 75968.532 3948.6677 TOP 369 987131.19 75968.532 3948.6677 TOP 369 987131.19 75968.539 3930.5728 TOP 370 987138.60 759746.743 3947.2682 TOP 370 987108.68 75996.5436										
279 9871361.1 759818.953 3962.3461 TOP 352 9871051.82 759687.947 3906.2927 TOP 280 987138.17 759826.623 3961.1394 TOP 353 9871074.89 75968.266 3990.0531 TOP 281 9871265.41 759848.53 3961.8515 EST 355 9871074.89 75968.266 3990.0531 TOP 282 9871358.2 759803.182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 283 9871296.58 759819.997 3957.475 TOP 356 9871095.77 759684.041 3911.195 TOP 284 9871391.91 759815.489 3959.0071 TOP 357 9871091.57 759684.041 3911.195 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 9871118.44 759683.095 3913.3222 TOP 286 9871322.9 759804.628 3962.4322 TOP 359 9871128.15 759682.026 3915.1486 TOP 287 9871339.15 759806.384 3962.2456 TOP 360 9871128.15 759682.026 3915.1486 TOP 288 9871307.33 759776.878 3955.5716 TOP 361 9871142.31 759681.583 3917.0169 TOP 289 9871334.33 759776.878 3952.9037 TOP 362 987120.18 759682.909 3923.2299 TOP 290 9871314.53 759765.402 3955.3643 TOP 364 987122.19 759683.742 3926.3134 TOP 293 9871321.13 759765.402 3955.3643 TOP 366 9871220.9 759683.742 3926.3134 TOP 294 9871350.87 759755.075 3951.2435 TOP 367 987129.77 759685.793 3930.5728 TOP 295 9871332.97 759754.483 3951.7727 TOP 367 987120.67 759685.595 3932.978 TOP 296 9871332.97 759754.67 3948.1707 TOP 368 987130.03 75968.290 3938.662 TOP 297 9871350.67 759754.67 3948.1707 TOP 368 987130.03 75964.7127 3988.8617 TOP 296 9871332.97 759754.67 3948.1707 TOP 367 987130.03 75965.505 3932.978 TOP 297 9871350.56 759750.75 3948.1707 TOP 367 987130.03 75968.290 3938.662 TOP 370 987130.03 75965.262 3089.305.7231 TOP 300 9871330.13 759765.403 3948.1707 TOP 376 987130.05 75973.313 3946.2165 TOP 376 987130.05 75973.	277	9871396.68	759805.685	3963.9566	TOP	350	9871015.5	759716.093	3905.6994	TOP
280 9871338.17 759826.623 3961.1394 TOP 353 9871050.12 759715.203 3910.295 TOP 281 9871265.41 75984.853 3961.8515 EST 354 9871070.60 759713.407 3912.8072 TOP 283 9871296.58 759819.997 3957.475 TOP 356 9871097.06 759713.407 3912.8072 TOP 284 9871309.11 759815.489 3959.0071 TOP 357 9871091.95 759712.373 3915.3271 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 9871118.14 759683.095 3913.3222 TOP 286 9871322.99 759806.89 3959.9894 TOP 359 9871118.15 759682.026 3915.1486 TOP 288 9871307.33 759776.878 3955.177 TOP 361 987104.13 759681.583 3917.0169 TOP 289 9871313.43 75976.878 3956.1777 TOP 362 987120.18 759682.090 3923.2299 TOP 290 9871313.45 759765.402 3955.3643 TOP 364 987122.19 759682.090 3923.2299 TOP 292 9871321.13 759765.402 3955.3643 TOP 364 987122.19 759683.742 3926.3134 TOP 292 9871321.13 759765.402 3955.3643 TOP 366 987125.64 759685.793 3930.5728 TOP 293 9871383.87 759756.402 3955.3643 TOP 367 987125.064 759685.793 3930.5728 TOP 294 9871350.87 759755.402 3955.3643 TOP 367 987127.27 759685.793 3930.5728 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 987127.27 759684.340 759754.483 3951.7727 TOP 367 987127.27 759684.340 759736.73 3949.4429 TOP 297 9871332.97 759746.743 3948.6677 TOP 368 987120.64 759685.793 3932.978 TOP 299 9871332.97 759746.743 3948.6677 TOP 369 987137.19 759694.346 3938.662 TOP 299 9871380.40 759739.362 3948.1707 TOP 369 987137.19 759694.346 3938.662 TOP 370 987098.89 759739.396 3949.417 TOP 370 987098.89 759739.508 3902.7231 TOP 370 987098.89 759739.294 3951.313 3940.6024 TOP 374 3895.0024 759729.241 3905.3179 TOP 3900 3971380.49 759720.539 3947.8757 TOP 375 387098.87 759694.836 3	278	9871381.93	759813.19	3963.1856	TOP	351	9871031.6	759690.094	3904.1524	TOP
281 9871265.41 759848.53 3961.8515 EST 355 9871070.66 759713.07 3912.8072 TOP 282 9871358.2 759803.182 3963.2857 EST 355 9871070.06 759713.07 3912.8072 TOP 284 9871309.11 759815.489 3957.475 TOP 356 9871091.95 759712.373 3915.3271 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 987111.84 759680.905 3913.3222 TOP 286 98713247.89 759804.628 3962.4322 TOP 358 9871111.84 759680.905 3913.3222 TOP 287 9871339.16 759806.384 3962.2456 TOP 360 9871128.15 759682.026 3915.1486 TOP 288 9871330.33 759771.807 3953.5716 TOP 360 9871128.15 759681.583 3917.0169 TOP 289 9871334.33 759776.878 3956.1777 TOP 362 9871200.18 759682.003 3913.222 TOP 290 9871313.45 759765.402 3955.3643 TOP 363 9871127.7 759682.903 3923.2299 TOP 291 9871341.53 759765.579 3951.2435 TOP 365 987128.06 759685.793 3930.5728 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 9871280.67 759685.793 3930.5728 TOP 294 9871334.30 759764.83 3954.6777 TOP 366 9871280.67 759687.82 3936.4429 TOP 295 9871343.30 759764.483 3951.7727 TOP 366 9871280.64 759685.793 3930.5728 TOP 296 9871328.36 759755.075 3949.9451 TOP 366 9871280.64 759685.793 3930.5728 TOP 297 9871328.30 759764.483 3954.6777 TOP 367 9871280.64 759685.593 3932.978 TOP 298 9871334.30 759764.483 3954.6777 TOP 369 9871280.64 759685.593 3930.9782 TOP 299 9871356.56 759736.61 3952.0481 TOP 368 9871280.64 759685.593 3932.978 TOP 299 9871350.87 759754.483 3954.6627 TOP 369 987130.02 759685.995 3932.998 TOP 299 9871334.00 759736.61 3952.0481 TOP 370 9870995.24 759729.241 3905.3179 TOP 367 9871350.87 759764.73 3948.1070 TOP 369 9871301.07 759708.337 3942.99 TOP 299 9871350.56 759736.61 3952.0481 TOP 370 987095.59 759739.68 3930.0563 TOP 300 9871330.84 759766.42 3947.3289 TOP 372 98871066.89 759739.68 3930.0563 TOP 301 9871350.15 759705.539 3947.8757 TOP 369 9870955.97 759749.99 398.8617 TOP 302 9871350.15 759705.339 3947.8757 TOP 376 987095.97 759739.90 3990.058 TOP 303 9871350.15 759705.391 3947.8757 TOP 376 987095.97 759739.90 3990.058 TOP 304 9871323.51 759706.67 3943.3091 TOP 377 987006.89 759739.310 3990.058 TOP	279				TOP					
282 9871358.2 759803.182 3963.2857 EST 355 9871070.06 759713.407 3912.8072 TOP 283 9871296.58 759819.997 3957.475 TOP 356 9871095.77 759864.041 3911.195 TOP 284 9871309.11 759815.489 3959.0071 TOP 357 987109.195 759712.373 3915.3271 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 9871111.84 759683.095 3913.3222 TOP 286 9871322.9 759810.89 3959.9894 TOP 359 98711128.15 759682.026 3915.1486 TOP 287 9871331.0 759806.384 3962.2456 TOP 360 9871158.15 759682.026 3915.1486 TOP 288 9871331.33 759771.807 3953.5716 TOP 361 9871142.31 759681.583 3917.0169 TOP 289 9871334.33 759776.878 3956.1777 TOP 361 9871142.31 759682.090 3923.2299 TOP 290 9871341.53 759765.426 3952.9037 TOP 363 9871179.74 759681.78 3920.8854 TOP 292 9871321.13 759765.426 3952.9037 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.33 759765.402 3955.3643 TOP 365 9871250.64 759685.793 3930.5728 TOP 294 9871382.86 759755.075 3949.9451 TOP 366 9871289.67 759685.793 3930.5728 TOP 295 9871332.37 759764.743 3948.6677 TOP 367 9871302.87 759685.595 3932.978 TOP 295 9871334.02 759754.83 3951.727 TOP 368 9871302.87 75968.595 3932.978 TOP 296 9871334.02 759754.83 3951.727 TOP 368 9871302.87 75968.595 3932.978 TOP 296 9871334.02 759754.83 3951.727 TOP 368 9871302.87 75968.595 3932.978 TOP 296 9871334.02 759754.83 3951.727 TOP 368 9871302.87 75968.595 3932.978 TOP 296 9871334.02 759733.128 3947.682 TOP 370 987108.03 75964.7127 3898.8667 TOP 369 9871315.19 75976.43 3948.6677 TOP 369 9871315.19 75976.43 3948.6677 TOP 369 9871306.89 759730.837 3942.99 TOP 397 9871356.56 759736.191 3952.0481 TOP 370 987108.03 75964.7127 3898.8617 TOP 369 9871331.19 759762.29 39871350.49 759731.328 3947.2682 TOP 371 987099.24 759739.06 3902.7231 TOP 301 9871351.01 759669.63 3947.8682 TOP 372 987108.03 75964.23 3947.388 TOP 373 9870983.7 75965.266 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 987098.27 75974.193 3990.0088 TOP 379 987094.77 75969.63 3947.3575 TOP 376 987094.77 75969.63 3994.3531 TOP 378 987094.77 75969.63 3994.3531 TOP 378 987094.77 75969.63 3994.3531 TOP										
283 9871296.58 759819.997 3957.475 TOP 356 9871095.77 759684.041 3911.195 TOP 284 9871309.11 759815.489 3959.071 TOP 357 9871091.95 759712.373 3915.3271 TOP 285 9871347.89 759806.389 3962.4322 TOP 358 9871111.85 759803.095 3913.3222 TOP 286 9871322.9 759810.89 3959.9894 TOP 359 9871128.15 759682.026 3915.1486 TOP 287 9871339.16 759806.384 3962.2456 TOP 360 9871158.98 759681.494 3919.315 TOP 288 987133.43 759771.807 3953.5716 TOP 361 9871142.31 759681.583 3917.0169 TOP 289 987133.43 759776.878 3956.777 TOP 362 9871200.18 759681.93 3913.017.0169 TOP 290 9871313.46 759765.426 3952.9037 TOP 363 987127.97 759681.785 3920.8854 TOP 291 987341.53 759765.402 3955.3643 TOP 364 987121.9 759681.785 3920.8854 TOP 292 9871321.3 759765.579 3951.2435 TOP 366 9871250.64 759683.742 3926.3134 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 987127.28 759685.793 3930.5728 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 987127.28 759685.793 3930.5728 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 987127.08 759685.793 3930.5728 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 369 9871317.19 759708.537 3942.99 TOP 299 9871330.84 759756.43 3948.6677 TOP 369 9871371.19 759708.537 3942.99 TOP 299 9871330.49 759736.29 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 299 9871330.49 75972.643 3948.1629 TOP 370 9871038.03 75964.712 3898.8617 TOP 369 9871330.84 75972.643 3948.1629 TOP 371 987098.29 759739.08 3902.7231 TOP 301 9871330.84 75972.643 3947.682 TOP 372 987066.89 75973.08 3902.7231 TOP 302 9871330.84 75972.643 3947.682 TOP 373 9870968.29 75973.08 3902.7231 TOP 303 9871330.84 75972.643 3947.3289 TOP 373 9870968.29 75973.08 3902.7231 TOP 304 9871330.84 75972.643 3947.3289 TOP 374 9870955.97 75968.539 3947.8757 TOP 376 987006.89 75973.908 3902.7231 TOP 304 9871330.84 75972.643 3947.3289 TOP 377 987006.89 75973.908 3902.7231 TOP 378 9870968.29 75973.008 3902.7231 TOP 378 9870968.29 75973.008 3902.7231 TOP 379 9870968.29 75973.008 3902.7231 TOP 379 9870968.39 759										
284 9871309.11 759815.489 3959.0071 TOP 357 9871091.95 759712.373 3915.3271 TOP 285 9871347.89 759804.628 3962.4322 TOP 358 9871111.84 759681.095 3913.3222 TOP 286 9871339.16 759805.384 3962.4256 TOP 350 9871128.15 759682.026 3913.3222 TOP 287 9871339.16 759806.384 3962.4256 TOP 360 9871158.98 759681.434 3919.315 TOP 288 9871333.15 759708.033 759771.807 3953.5716 TOP 361 987142.31 759681.583 3917.0169 TOP 289 9871334.33 759776.878 3956.1777 TOP 362 9871201.8 759682.090 3923.2299 TOP 290 9871313.46 759765.426 3952.9037 TOP 363 9871179.74 759681.785 3920.8854 TOP 291 9871341.53 759765.402 3955.3643 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.13 759760.579 3951.2435 TOP 365 9871250.64 759685.793 3930.5728 TOP 293 9871383.67 759754.483 3951.7727 TOP 366 9871280.64 759685.793 3930.5728 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 9871272.78 759685.595 3932.978 TOP 295 9871334.02 759739.62 3948.6677 TOP 368 9871306.29 759964.36 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 987137.9 759708.537 3942.99 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 987099.24 759729.241 3905.3179 TOP 298 9871336.04 759731.328 3947.2682 TOP 371 987099.24 759729.241 3905.3179 TOP 360 9871380.04 759722.964 3954.1629 TOP 372 987136.04 759730.331 3952.0681 TOP 370 987136.04 759730.831 3952.0681 3952.0681 3952.0781 TOP 370 987098.7 759741.93 3900.0058 TOP 370 9871350.15 759705.33 3947.857 TOP 376 987098.7 75964.485 3895.1762 VIA 300 9871323.11 759971.793 3943.399 TOP 377 987130.85 75969.364 3942.3009 TOP 377 987130.85 75										
285 9871347.89 759804.628 3962.4322 TOP 358 9871118.41 759683.095 3913.3222 TOP 286 9871322.9 759810.89 3959.9894 TOP 359 9871128.15 759682.026 3915.1486 TOP 287 987339.16 759806.384 3962.2456 TOP 360 9871132.1 759681.83 3917.0169 TOP 288 987334.33 759776.878 3955.1777 TOP 362 987120.18 759681.85 3917.0169 TOP 290 9871313.46 759765.426 3955.9037 TOP 363 987127.9 759681.785 3920.8854 TOP 291 9871321.3 759765.402 3955.3643 TOP 365 9871250.64 759681.785 3920.8854 TOP 292 9871321.31 759765.402 3955.2435 TOP 365 9871250.64 759681.785 3930.5728 TOP 293 9871328.97 759754.483 3951.7727 TOP 366 98712							t			
286 9871322.9 759810.89 3959.9894 TOP 359 9871128.15 759682.026 3915.1486 TOP 287 9871339.16 759806.384 3962.2456 TOP 360 987118.98 759681.434 3919.315 TOP 288 9871307.33 759771.807 3953.5716 TOP 361 9871200.18 75968.289 3917.0169 TOP 289 9871313.46 759765.426 3952.9037 TOP 363 9871179.74 759681.785 3920.8854 TOP 291 9871311.3 759765.402 3955.3643 TOP 363 9871122.19 759681.785 3920.8854 TOP 292 9871321.3 759765.402 3955.3643 TOP 366 9871225.064 759681.785 3920.8854 TOP 293 9871328.36 75975.075 3951.2435 TOP 366 9871289.67 759687.324 3936.4229 TOP 294 9871330.87 759754.483 3951.7727 TOP 367 9							1			
288 9871307.33 759771.807 3953.5716 TOP 361 9871142.31 759681.583 3917.0169 TOP 289 9871334.33 759768.7878 3956.1777 TOP 362 9871200.18 759682.909 3923.2299 TOP 290 9871313.46 759765.426 3952.037 TOP 363 98711717.74 759681.785 3920.8854 TOP 291 9871341.53 759765.402 3955.3643 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.13 759760.579 3951.2435 TOP 365 9871220.64 759685.793 3930.5728 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 9871289.67 759687.324 3936.4429 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 9871272.78 759685.595 3932.978 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 987130.29 759694.436 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870999.24 759729.241 3905.3179 TOP 300 9871330.84 759722.964 3954.1629 TOP 372 9871066.89 759694.33 3946.2175 TOP 373 9870968.29 759739.06 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871332.81 759717.903 3946.2175 TOP 374 9870955.97 759741.938 3901.0643 TOP 304 9871330.84 759726.33 3947.8757 TOP 376 987108.07 759741.938 3901.0643 TOP 304 9871331.11 759706.27 3943.3033 TOP 377 9870968.29 759739.068 3902.7231 TOP 304 9871350.15 759706.27 3943.3003 TOP 377 987098.7 759691.514 3900.3161 VIA 305 9871317.61 759696.633 3941.3531 TOP 378 9870947.78 759652.263 3899.133 TOP 379 987133.85 759693.654 3942.3408 TOP 379 9870947.78 759658.919 3884.244 TOP 380 9871295.47 759752.53 3943.3358 TOP 387 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 389 9870947.78 759659.29 3913.3727 TOP 380 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 381 9870947.78 759659.29 3913.3727 TOP 382 9870947.78 759659.29 3913.3727 TOP 382 9870944.79 759659.29 3913.3727 TOP 389 9870947.78 759659.29 3913.3727							t			
289 9871334.33 759776.878 3956.1777 TOP 362 9871200.18 759682.909 3923.2299 TOP 290 9871313.46 759765.426 3952.9037 TOP 363 9871179.74 759681.785 3920.8854 TOP 291 9871313.15 759765.402 3955.3643 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.13 759760.579 3951.2435 TOP 365 9871250.64 759685.793 3930.5728 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 9871289.67 759687.324 3936.4429 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 9871272.78 759685.595 3932.978 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 9871306.29 759694.436 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871038.03 759647.127 3898.8617 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 987099.24 75972.241 3905.3179 TOP 300 9871330.49 759722.964 3954.1629 TOP 372 9871066.89 759630.221 3899.512 TOP 301 9871361.13 759711.123 3951.3012 TOP 373 9870985.29 759739.068 3902.7231 TOP 302 9871328.21 759717.903 3946.2175 TOP 376 987098.29 759739.68 3902.7231 TOP 303 9871330.15 759702.539 3947.8757 TOP 376 987006.74 759686.834 3900.058 TOP 304 9871331.91 759696.633 3941.3531 TOP 377 9871006.74 759686.834 3900.058 TOP 305 9871317.61 75969.673 3933.3943.3093 TOP 378 9870942.74 759741.691 3899.131 TOP 306 9871331.85 759693.654 3942.3408 TOP 379 9870947.78 759652.626 3893.7035 TOP 307 9871317.61 759673.473 3936.0462 TOP 379 9870947.78 759652.646 3888.9683 TOP 308 9871295.47 759659.29 3931.3727 TOP 381 9870942.74 759741.691 3899.131 TOP 309 987137.61 759673.473 3936.0462 TOP 380 9870947.78 759654.465 3888.9683 TOP 301 987127.70 759659.29 3931.3727 TOP 381 9870965.57 759694.485 3895.1762 VIA 309 987129.74 759659.29 3931.3727 TOP 381 9870947.78 759654.60 3888.9683 TOP 301 987129.74 759659.29 3931.3727 TOP 381 9870947.78 759654.60 3888.9683 TOP 303 987129.74 759659.29 3931.3727 TOP 381 9870947.78 759654.40 3889.299 VIA 309 987129.37 759752.533 3944.6374 TOP 385 9870947.78 759694.405 3889.9299 VIA 310 987129.30 759752.533 3944.6374 TOP 385 9870947.78 759694.605 3889.9	287	9871339.16	759806.384	3962.2456	TOP	360	9871158.98	759681.434	3919.315	TOP
290 9871313.46 759765.426 3952.9037 TOP 363 9871179.74 759681.785 3920.8854 TOP 291 9871341.53 759765.402 3955.3643 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.13 759765.575 3949.4951 TOP 366 9871250.64 759687.324 3936.4429 TOP 294 9871350.87 759755.075 3949.9451 TOP 366 9871272.78 759685.793 3930.5728 TOP 294 9871350.87 75975.075 3949.9451 TOP 366 9871272.78 759685.595 3932.978 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 9871306.29 759694.363 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871307.19 759708.537 3942.99 TOP 297 9871360.49 759731.328 3947.2682 TOP 371 9	288	9871307.33	759771.807	3953.5716	TOP	361	9871142.31	759681.583	3917.0169	TOP
291 9871341.53 759765.402 3955.3643 TOP 364 9871221.9 759683.742 3926.3134 TOP 292 9871321.13 759760.579 3951.2435 TOP 365 9871280.64 759685.793 3930.5728 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 9871289.67 759687.324 3936.4429 TOP 294 9871332.97 759746.743 3948.6677 TOP 367 987137.78 759685.595 3932.978 TOP 296 9871332.07 759746.743 3948.6677 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759747.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870992.4 75972.241 3905.3179 TOP 300 9871330.49 759722.964 3954.1629 TOP 371 9										
292 9871321.13 759760.579 3951.2435 TOP 365 9871250.64 759685.793 3930.5728 TOP 293 9871328.36 759755.075 3949.9451 TOP 366 9871289.67 759687.324 3936.4429 TOP 294 9871350.87 759746.743 3948.6677 TOP 366 9871370.27 75969.436 3938.662 TOP 296 9871334.02 759736.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 296 9871334.02 759736.6191 3952.0481 TOP 370 9871038.03 75964.357 3942.99 TOP 297 9871360.49 759731.328 3947.2682 TOP 371 9870999.24 759739.068 3905.3179 TOP 299 9871360.49 759722.964 3954.1629 TOP 372 9871066.89 759739.068 3902.7231 TOP 300 9871328.11 75971.123 3951.3012 TOP 373 98										
293 9871328.36 759755.075 3949.9451 TOP 366 9871289.67 759687.324 3936.4429 TOP 294 9871350.87 759754.483 3951.7727 TOP 367 9871272.78 759685.595 3932.978 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 9871306.29 759694.436 3938.662 TOP 296 9871334.02 759736.191 3952.0481 TOP 370 9871308.03 75964.127 3898.8617 TOP 297 987136.649 759731.328 3947.2682 TOP 370 987099.24 75972.241 3905.3179 TOP 298 9871330.49 759722.964 3954.1629 TOP 372 9871066.89 75964.121 3899.512 TOP 300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9										
294 9871350.87 759754.483 3951.7727 TOP 367 9871272.78 759685.595 3932.978 TOP 295 9871332.97 759746.743 3948.6677 TOP 368 9871306.29 759694.436 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870999.24 75972.241 3905.3179 TOP 300 9871330.49 759726.432 3947.3289 TOP 372 9871068.89 759739.068 3902.7231 TOP 300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871328.21 759711.123 3951.3012 TOP 374										
295 9871332.97 759746.743 3948.6677 TOP 368 9871306.29 759694.436 3938.662 TOP 296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870999.24 759729.241 3905.3179 TOP 299 9871360.49 75972.964 3954.1629 TOP 372 9871066.89 759630.221 3899.512 TOP 300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871328.21 759717.903 3946.2175 TOP 375 9870983.7 759652.626 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 987091.09 759689.197 3895.6787 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 987091.09 759689.197 3895.6787 VIA 310 9871270.5 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 311 987127.05 759737.331 3942.4232 TOP 384 9870927.27 759694.05 3889.289 VIA 312 9871270.36 75973.323 3944.6374 TOP 385 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870845.46 759676.151 3876.1351 TOP										
296 9871334.02 759739.62 3948.1707 TOP 369 9871317.19 759708.537 3942.99 TOP 297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870999.24 759729.241 3905.3179 TOP 299 9871360.49 759722.964 3954.1629 TOP 372 9871066.89 759739.068 399.512 TOP 300 9871330.84 759722.964 3954.1629 TOP 373 9870968.29 759739.068 399.512 TOP 301 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759730.08 3902.7231 TOP 301 9871326.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 303 9871320.15 759702.539 3947.8757 TOP 376 98							1			
297 9871356.56 759736.191 3952.0481 TOP 370 9871038.03 759647.127 3898.8617 TOP 298 9871332.49 759731.328 3947.2682 TOP 371 9870999.24 759729.241 3905.3179 TOP 299 9871360.49 759722.964 3954.1629 TOP 372 9871066.89 759630.221 3899.512 TOP 300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871328.21 759717.903 3946.2175 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759686.834 3900.0058 TOP 304 9871319.01 759666.633 3941.3531 TOP 378 <										
299 9871360.49 759722.964 3954.1629 TOP 372 9871066.89 759630.221 3899.512 TOP 300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871328.21 759717.903 3946.2175 TOP 375 9870983.7 759652.626 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.0161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 987137.61 759693.473 3936.642 TOP 379 9									3898.8617	
300 9871330.84 759726.432 3947.3289 TOP 373 9870968.29 759739.068 3902.7231 TOP 301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871328.21 759717.903 3946.2175 TOP 375 9870983.7 759652.626 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759659.29 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 75973.7431 3942.4232 TOP 384 9870927.27 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870971.02 759669.26 3879.8859 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871251.57 759805.027 3949.7328 TOP 388 987086.89 759745.195 3893.6488 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 987086.89 759745.195 3893.6488 TOP										
301 9871361.13 759711.123 3951.3012 TOP 374 9870955.97 759741.938 3901.0643 TOP 302 9871328.21 759717.903 3946.2175 TOP 375 9870983.7 759652.626 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871270.05 759737.431 3942.4232 TOP 384 9870927.27 759669.26 3879.8859 TOP 313 9871277.05 759753.232 3944.6374 TOP 385 987087.32 759669.26 3879.8859 TOP 314 9871255.07 759792.278 3947.3031 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 381 987086.89 759745.195 3893.6488 TOP					1					
302 9871328.21 759717.903 3946.2175 TOP 375 9870983.7 759652.626 3893.7035 TOP 303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871279.19 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870910.94 759658.919 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871277.05 759737.331 3942.4232 TOP 384 9870927.27 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
303 9871350.15 759702.539 3947.8757 TOP 376 9871006.74 759686.834 3900.0058 TOP 304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383										
304 9871323.51 759706.27 3943.3093 TOP 377 9871008.5 759691.514 3900.3161 VIA 305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
305 9871319.01 759696.633 3941.3531 TOP 378 9870942.74 759741.691 3899.133 TOP 306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP							†			
306 9871333.85 759693.654 3942.3408 TOP 379 9870947.78 759652.436 3888.9683 TOP 307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 75969.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386										
307 9871317.61 759673.473 3936.0462 TOP 380 9870971.09 759689.197 3895.6787 VIA 308 9871295.47 759659.29 3931.3727 TOP 381 9870968.56 759694.485 3895.1762 VIA 309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 75969.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387							t			
309 9871279.19 759653.902 3929.8708 TOP 382 9870910.94 759658.919 3884.244 TOP 310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP	307		759673.473	3936.0462	ТОР	380	9870971.09	759689.197	3895.6787	VIA
310 9871299.3 759722.553 3943.3358 EST 383 9870931.13 759742.751 3897.3105 TOP 311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP							†			
311 9871277.05 759737.431 3942.4232 TOP 384 9870927.27 759694.405 3889.9289 VIA 312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
312 9871270.36 759753.232 3944.6374 TOP 385 9870877.32 759669.26 3879.8859 TOP 313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
313 9871257.59 759658.44 3928.3933 TOP 386 9870916.11 759744.826 3895.7924 TOP 314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
314 9871255.07 759792.278 3947.3031 TOP 387 9870845.46 759676.151 3876.1351 TOP 315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										
315 9871261.15 759805.027 3949.7328 TOP 388 9870896.89 759745.195 3893.6488 TOP										

	DI INITOS TOI	POGRÁFICOS -	LITM MGS 94	•		DI INTOS TOS	OGRÁFICOS - I	ITM WGS 95	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
390	9870803.74	759682.991	3870.6952	TOP	463	9870668.97	759756.014	3865.1767	TOP
391	9870855.14	759749.49	3889.47	TOP	464	9870566.77	759866.945	3865.4319	TOP
392	9870777.87	759688.62	3867.9699	TOP	465	9870646.39	759766.415	3863.1026	TOP
393 394	9870840.98 9870749.18	759751.093 759688.185	3888.1586 3864.3087	TOP TOP	466 467	9870519.11 9870546.75	759788.403 759875.14	3839.8634 3864.0971	TOP
395	9870822.31	759753.991	3886.6913	TOP	468	9870628.63	759775.544	3861.4517	TOP
396	9870803.24	759759.648	3885.2009	TOP	469	9870615.96	759784.066	3860.3705	TOP
397	9870724.59	759690.919	3861.3039	TOP	470	9870526.52	759884.985	3861.8302	TOP
398	9870785.32	759766.246	3884.555	TOP	471	9870494.87	759796.337	3838.7439	TOP
399	9870700.91	759700.69	3859.3016	TOP	472	9870615.93	759784.055	3860.3651	TOP
400	9870672.45 9870774.43	759758.771 759764.732	3866.7215 3882.663	TOP	473 474	9870608.84 9870596.7	759789.702 759800.373	3860.0132 3858.5163	TOP
401	9870688.08	759704.732	3858.9505	TOP	474	9870507.29	759901.549	3859.2541	TOP
403	9870767.11	759767.53	3882.4497	TOP	476	9870470.36	759811.837	3841.4398	TOP
404	9870664.06	759714.018	3856.474	TOP	477	9870587.27	759809.972	3856.9425	TOP
405	9870753.57	759776.124	3882.6105	TOP	478	9870474.94	759903.459	3853.4414	TOP
406	9870687.57	759784.283	3874.8797	TOP	479	9870580.64	759817.448	3855.8592	TOP
407	9870711.47	759780.568	3878.1009	TOP	480	9870447.39	759828.273	3840.0186	TOP
408 409	9870735.37 9870660.06	759778.524 759753.589	3881.1192 3863.1476	TOP VIA	481 482	9870574.74 9870469.96	759821.8 759892.311	3855.3715 3852.7456	TOP
410	9870662.03	759758.224	3862.9529	VIA	483	9870567.33	759826.301	3854.7758	TOP
411	9870670.71	759754.881	3863.8482	VIA	484	9870419.8	759835.75	3838.4814	ТОР
412	9870669.82	759749.751	3864.027	VIA	485	9870556.7	759830.688	3854.3056	TOP
413	9870672.14	759755.197	3865.5119	TOP	486	9870387.98	759839.799	3834.5883	TOP
414	9870686.47 9870672.57	759743.91 759754.127	3865.5 3863.9923	VIA VIA	487 488	9870451.89 9870545.28	759888.296	3850.0633	TOP
415	9870672.57	759754.127	3863.9923	TOP	488	9870545.28	759834.486 759889.133	3854.994 3848.1751	TOP
417	9870689.22	759748.856	3865.3453	VIA	490	9870528.71	759838.677	3853.9976	TOP
418	9870708.97	759743.8	3868.5472	TOP	491	9870358.36	759846.144	3831.2425	TOP
419	9870706.82	759737.404	3867.1409	VIA	492	9870428.03	759894.675	3846.1805	TOP
420	9870729.18	759729.458	3869.2096	VIA	493	9870508.36	759844.982	3853.0373	TOP
421	9870709.24	759742.869	3867.1128	VIA	494	9870406.36	759896.739	3842.8524	TOP
422	9870729.59 9870749.61	759735.758 759723.784	3870.376 3870.915	TOP VIA	495 496	9870334.81 9870488.47	759851.391 759850.651	3829.084 3851.2849	TOP TOP
424	9870749.8	759730.513	3872.3704	TOP	497	9870313.68	759856.775	3826.8125	TOP
425	9870730.07	759734.969	3868.8901	VIA	498	9870458.23	759860.458	3848.0849	TOP
426	9870752.77	759728.865	3870.9089	VIA	499	9870394.78	759910.123	3840.6113	TOP
427	9870774.53	759717.091	3872.6569	VIA	500	9870284.84	759860.729	3824.9873	TOP
428	9870775.24 9870774.05	759722.712	3873.5394	TOP	501	9870432.07	759870.043	3845.6798	TOP
429	9870774.05	759722.488 759710.681	3872.5301 3875.4393	VIA VIA	502 503	9870406.38 9870261.97	759876.263 759864.413	3841.9165 3822.4482	TOP TOP
431	9870807.98	759715.67	3875.5123	VIA	504	9870380.09	759881.886	3839.1287	TOP
432	9870807.82	759716.506	3876.4042	TOP	505	9870377.39	759913.398	3837.4017	TOP
433	9870830.48	759706.808	3878.5018	VIA	506	9870243.15	759879.072	3822.1328	TOP
434	9870832.64	759711.7	3878.6367	VIA	507	9870352.82	759888.411	3835.8553	TOP
435 436	9870833.07 9870855.92	759712.508 759702.689	3879.6772 3881.5409	TOP VIA	508 509	9870243.02 9870242.62	759890.416 759898.395	3822.6465 3822.7439	TOP
437	9870857.01	759702.089	3881.3796	VIA	510	9870197.65	759877.817	3817.617	TOP
438	9870856.74	759708.38	3882.3888	TOP	511	9870161.91	759871.742	3813.7916	TOP
439	9870895.96	759703.303	3886.8664	TOP	512	9870323.67	759900.073	3832.6254	TOP
440	9870900.11	759702.128	3886.3501	VIA	513	9870120.88	759875.59	3811.2959	TOP
441	9870899.04	759697.026	3886.5636	VIA	514	9870078.5	759870.01	3807.5467	TOP
442	9870923.84 9870923.72	759699.28 759699.886	3889.4604 3890.2815	VIA TOP	515 516	9870323.45 9870321.09	759899.71 759894.45	3831.7231 3832.1911	VIA
444	9870923.72	759699.886	3893.896	TOP	517	9870321.09	759863.898	3804.4431	TOP
445	9871001.62	759692.731	3900.4114	TOP	518	9870352.69	759887.787	3835.3603	VIA
446	9870629.52	759730.344	3853.4205	TOP	519	9870351.56	759882.169	3835.7216	VIA
447	9870663.82	759788.512	3871.3442	TOP	520	9869993.25	759848.896	3798.6332	TOP
448	9870648.63	759802.411	3871.4766	TOP	521	9870380.01	759881.135	3838.303	VIA
449 450	9870638.27 9870602.43	759810.089 759743.877	3870.8141 3850.7779	TOP TOP	522 523	9870379.03 9870406.36	759875.512 759875.483	3838.3708 3840.9427	TOP
451	9870627.16	759821.905	3870.2162	TOP	524	9869944.98	759852.795	3795.4694	TOP
452	9870585.69	759756.339	3849.7587	TOP	525	9870405.41	759869.504	3841.1134	VIA
453	9870614.03	759830.202	3867.7677	TOP	526	9870431.03	759868.041	3843.9812	VIA
454	9870604.74	759841.88	3867.1425	TOP	527	9869918.37	759851.356	3792.5406	TOP
455	9870563.18	759767.027	3846.194	TOP	528	9870429.95	759862.758	3844.4463	VIA
456 457	9870563.28 9870595.23	759767.062 759849.911	3845.1103 3866.3269	TOP TOP	529 530	9869889.16 9870458.2	759839.746 759859.866	3789.9005 3847.2308	TOP VIA
458	9870487.32	759859.005	3853.6588	EST	531	9870457.02	759855.126	3847.543	VIA
459	9870668.95	759755.998	3865.1845	TOP	532	9870489.27	759849.892	3850.0613	VIA
460	9870595.15	759850.418	3866.5512	TOP	533	9869867.81	759830.155	3788.7601	TOP
461	9870536.4	759788.545	3842.7883	TOP	534	9870489.49	759843.734	3850.346	VIA
462	9870582.19	759859.597	3865.5615	ТОР	535	9870508.48	759844.041	3851.4253	VIA

	DI INITOS TOI	POGRÁFICOS -	LITM MGS 94	•		DI INITOS TOE	OGRÁFICOS - I	LITM WGS 95	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
536	9870507.78	759838.763	3851.6554	VIA	609	9870061.01	759892.811	3806.8491	VIA
537	9869865.18	759816.593	3788.0747	TOP	610	9870060.88	759896.481	3806.9804	VIA
538	9870528.85	759837.866	3852.5682	VIA	611	9870037.16	759891.206	3803.9842	VIA
539	9870527.9	759832.607	3852.8287	VIA	612	9870036.96	759894.652	3804.0596	VIA
540 541	9869826.27 9870545.34	759797.165 759833.587	3784.9944 3853.1223	TOP TOP	613 614	9870094.71 9870001.62	759943.304 759885.48	3803.7667 3800.7102	TOP VIA
542	9870544.88	759828.833	3853.1539	VIA	615	9870001.02	759889.472	3800.7102	VIA
543	9869788.83	759772.052	3780.3234	TOP	616	9869999.86	759928.529	3797.1324	TOP
544	9870556.2	759830.064	3853.3634	VIA	617	9870082.3	759941.474	3803.9907	TOP
545	9870554.69	759824.485	3853.3966	VIA	618	9869985.35	759881.21	3798.4244	VIA
546	9869721.3	759740.326	3771.115	TOP	619	9869984.41	759885.527	3799.4283	VIA
547	9870567.06	759825.65	3855.9539	VIA	620	9869975.06	759922.206	3794.1417	TOP
548 549	9870564.55	759820.276	3855.8859	VIA TOP	621 622	9869951.23	759915.832	3791.9821	TOP TOP
550	9869674.74 9870574.68	759728.662 759821.5	3768.3837 3854.39	VIA	623	9869930.11 9869911.79	759905.62 759898.246	3789.7793 3788.3163	TOP
551	9869639.86	759714.574	3761.8452	VIA	624	9869880.51	759885.19	3785.7433	TOP
552	9870571.36	759816.265	3854.1455	VIA	625	9869850.39	759882.155	3782.6312	TOP
553	9870580.37	759816.976	3854.9913	VIA	626	9869821.41	759873.973	3779.5907	TOP
554	9870576.31	759812.913	3854.8505	VIA	627	9869793.9	759797.993	3783.3858	EST
555	9869591.68	759687.668	3757.028	TOP	628	9869961.01	759880.261	3796.4939	VIA
556	9870587.08	759809.489	3855.6995	VIA	629	9869961.66	759876.264	3796.2848	VIA
557 558	9870583.01 9870596.52	759805.907 759799.415	3855.7064 3856.8524	VIA VIA	630 631	9869798.16 9869962.01	759851.82 759875.881	3778.8511 3796.9557	TOP TOP
559	9870593.2	759795.415	3857.0183	VIA	632	9869936.66	759873.881	3796.9557	VIA
560	9870095.11	759890.606	3810.2397	EST	633	9869936.69	759872.315	3793.4073	TOP
561	9869548.14	759651.378	3750.9401	TOP	634	9869936	759877.326	3793.196	VIA
562	9870608.18	759789.12	3858.1089	VIA	635	9869770.49	759841.394	3775.8763	TOP
563	9870604.87	759785.471	3858.3563	VIA	636	9869919.43	759874.83	3791.1911	VIA
564	9870616.01	759782.945	3858.9601	VIA	637	9869919.19	759868.304	3791.5151	TOP
565 566	9870613.02	759778.72 759755.6	3859.1901	VIA VIA	638 639	9869920.26	759869.101	3790.8968	VIA TOP
567	9870667.83 9870665.51	759751.127	3863.5018 3863.6323	VIA	640	9869747.53 9869890.14	759825.356 759864.093	3771.8075 3788.6424	VIA
568	9869515.01	759652.242	3751.0108	TOP	641	9869892.16	759858.522	3789.4984	TOP
569	9870098.32	759901.717	3810.7614	EST	642	9869892.04	759859.146	3788.51	VIA
570	9870334.68	759913.131	3831.9857	TOP	643	9869861.29	759850.42	3786.4133	VIA
571	9870060.99	759924.334	3804.9687	TOP	644	9869864.41	759846.112	3787.3606	TOP
572	9870330.83	759919.637	3830.423	TOP	645	9869722.36	759802.619	3769.0073	TOP
573	9870304.19	759923.514	3826.7276	TOP	646	9869864.03	759846.316	3786.3685	VIA
574 575	9870304.76 9870285.96	759903.7 759925.203	3828.8696 3823.8952	VIA TOP	647 648	9869833.45 9869833.48	759839.285 759832.622	3784.2773 3784.8007	VIA TOP
576	9870310.4	759901.474	3830.4945	VIA	649	9869692.97	759774.698	3764.8007	TOP
577	9870314.85	759904.425	3830.1491	VIA	650	9869833.68	759833.385	3784.1184	VIA
578	9870312.12	759906.967	3829.9421	VIA	651	9869810.89	759830.97	3782.888	VIA
579	9870307.08	759909.375	3829.0878	VIA	652	9869812.39	759825.462	3783.474	TOP
580	9870269.34	759929.866	3821.046	TOP	653	9869812.29	759826.14	3782.7331	VIA
581	9870298.92	759909.851	3828.0366	VIA	654	9869792.69	759823.066	3781.4753	VIA
582 583	9870297.51 9870271.05	759904.929 759903.466	3827.9084 3825.2932	VIA VIA	655 656	9869793.66 9869794.1	759817.235 759818.116	3782.0418 3781.2334	TOP VIA
584	9870271.03	759908.291	3825.221	VIA	657	9869657.23	759760.402	3764.1179	TOP
585	9870251.61	759932.282	3819.4298	TOP	658	9869774.91	759810.434	3779.5397	VIA
586	9870239.72	759906.728	3821.831	VIA	659	9869779.52	759806.682	3780.5208	TOP
587	9870239.49	759901.528	3821.6773	VIA	660	9869778.48	759806.646	3779.508	VIA
588	9870232.56	759933.568	3817.0985	TOP	661	9869756.93	759792.471	3777.0728	VIA
589	9870203.61	759904.027	3818.5094	VIA	662	9869638.86	759752.423	3761.3334	TOP
590 591	9870203.86 9870220.38	759899.46 759934.694	3818.3913 3815.4755	TOP	663 664	9869760.03 9869760.29	759788.627 759788.291	3776.892 3777.9076	VIA TOP
591	9870220.38	759934.694	3816.5453	VIA	665	9869743.35	759781.884	3777.9076	VIA
593	9870175.99	759898.082	3816.1753	VIA	666	9869745.52	759776.387	3774.86	VIA
594	9870206.5	759935.286	3814.5296	TOP	667	9869745.15	759774.721	3775.2862	TOP
595	9870146.95	759900.992	3813.8001	VIA	668	9869724.81	759763.167	3772.7959	TOP
596	9870146.46	759896.692	3813.7765	VIA	669	9869723.29	759769.187	3772.4418	VIA
597	9870195.38	759932.674	3813.6656	TOP	670	9869726.79	759764.464	3772.4498	VIA
598	9870116.38	759894.88	3811.6476	VIA	671	9869615.5	759744.12	3758.1915	TOP
599 600	9870114.96 9870181.35	759899.117 759933.795	3811.8184 3811.672	VIA TOP	672 673	9869710.97 9869712.75	759762.7 759756.725	3771.2136 3771.6424	VIA TOP
601	9870170.98	759933.793	3810.0104	TOP	674	9869713.56	759750.725	3771.6424	VIA
602	9870098.17	759913.601	3809.5067	PLACA	675	9869696.51	759754.533	3769.5044	VIA
603	9870155.74	759931.744	3809.2304	TOP	676	9869698.15	759747.377	3769.5847	TOP
604	9870134	759936.103	3807.0534	TOP	677	9869699.49	759748.802	3769.2812	VIA
605	9870037.39	759932.939	3800.671	TOP	678	9869592.01	759730.739	3756.4484	TOP
606	9870089.56	759898.015	3809.485	VIA	679	9869694.58	759746.02	3768.9127	VIA
607	9870089.4	759894.097	3809.3611	VIA	680	9869691.55	759752.629 759751 138	3769.0151	VIA
608	9870113.87	759938.541	3805.4004	TOP	681	9869685.19	759751.138	3768.429	VIA

	PLINTOS TO	POGRÁFICOS -	IITM WGS 84			PLINTOS TOE	OGRÁFICOS -	ITM WGS 85	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
682	9869688.18	759745.03	3768.4701	VIA	755	9869557.95	759865.37	3729.5912	TOP
683	9869674.05	759744.597	3767.3001	VIA	756	9869555.71	759870.053	3728.7854	VIA
684	9869673.01	759749.683	3767.4963	VIA	757	9869582.56	759905.659	3731.0629	TOP
685	9869663.43	759748.128	3766.4675	VIA	758	9869528.84	759762.941	3737.1858	TOP
686 687	9869663.81 9869651.61	759743.088 759744.343	3766.0497 3765.0291	VIA VIA	759 760	9869532.46 9869533.71	759860.578 759856.198	3725.4902 3725.5467	VIA
688	9869654.76	759740.304	3764.8251	VIA	761	9869533.66	759856.03	3726.2731	TOP
689	9869564.31	759718.287	3752.9734	TOP	762	9869566.07	759904.285	3727.888	TOP
690	9869642.49	759733.798	3763.4711	VIA	763	9869538.05	759788.767	3735.193	TOP
691	9869639.17	759737.586	3763.4402	VIA	764	9869512.47	759852.447	3722.5029	VIA
692	9869612.62	759722.338	3760.3982	VIA	765	9869515	759848.648	3722.8306	VIA
693	9869614.85	759717.654	3760.2326	VIA	766	9869515.44	759848.332	3723.549	TOP
694	9869595.16	759707.23	3758.415	VIA VIA	767	9869546.93	759899.149	3724.2595	TOP VIA
695 696	9869592.99 9869571.3	759712.413 759700.001	3758.5907 3756.7843	VIA	768 769	9869501.6 9869503.9	759847.121 759842.82	3720.7407 3721.007	VIA
697	9869574.1	759694.894	3756.5261	VIA	770	9869503.94	759842.682	3721.8123	TOP
698	9869547.48	759705.079	3752.7929	TOP	771	9869547.62	759813.663	3733.7772	TOP
699	9869518.52	759677.848	3752.0011	EST	772	9869486.09	759837.468	3718.2733	VIA
700	9869556.48	759676.467	3754.9717	VA	773	9869488.98	759832.45	3718.4232	VIA
701	9869550.76	759676.387	3754.2854	VIA	774	9869489.14	759832.29	3718.7584	TOP
702	9869545.94	759680.406	3754.1706	VIA	775	9869554.51	759829.98	3733.3975	TOP
703 704	9869541.23 9869537.61	759667.803 759672.572	3753.0623 3752.9867	VIA VIA	776 777	9869483.79 9869529.17	759830.02 759900.927	3717.6178 3720.728	TOP
704	9869534.06	759672.372	3752.7125	VIA	777	9869484.02	759829.568	3720.728	TOP
706	9869535.31	759664.176	3752.9028	VIA	779	9869478.22	759828.304	3716.9223	VIA
707	9869528.66	759663.767	3752.7653	VIA	780	9869478.66	759827.803	3717.8028	TOP
708	9869530.45	759671.417	3752.2607	VIA	781	9869475.41	759832.05	3716.6212	VIA
709	9869527.5	759673.483	3751.7899	VIA	782	9869480.38	759833.745	3717.3084	VIA
710	9869522.45	759669.735	3752.175	VIA	783	9869563.72	759851.226	3732.6004	TOP
711	9869526.06 9869520.5	759676.705 759677.42	3751.3061 3751.508	VIA	784 785	9869465.91 9869467.25	759829.46 759825.276	3715.6488 3715.5644	VIA
712	9869525.94	759681.206	3750.81	VIA	786	9869513.54	759894.59	3719.8122	TOP
714	9869521.51	759686.088	3750.8681	VIA	787	9869467.76	759825.025	3716.7119	TOP
715	9869526.9	759703.062	3749.1169	VIA	788	9869458.13	759821.407	3714.2512	VIA
716	9869529.54	759696.777	3749.6289	VIA	789	9869458.2	759821.197	3715.0211	TOP
717	9869530.8	759671.722	3752.7829	TOP	790	9869547.38	759847.175	3729.312	TOP
718	9869527.11	759675.108	3752.4992	TOP	791	9869456.06	759825.383	3714.1968	VIA
719	9869539.52	759736.53	3744.9473	VIA	792	9869443.98	759819.152	3712.1788	VIA
720 721	9869543.21 9869527.68	759733.871 759688.091	3744.8478 3751.2251	VIA TOP	793 794	9869446.58 9869446.76	759815.119 759814.553	3712.2511 3712.8574	TOP
722	9869551.5	759769.342	3741.3312	VIA	795	9869535.38	759831.982	3712.8574	TOP
723	9869556.03	759767.66	3741.3482	VIA	796	9869428.21	759807.932	3709.7724	VIA
724	9869536.82	759716.188	3747.9642	TOP	797	9869430.84	759804.366	3709.6278	VIA
725	9869547.11	759741.77	3745.1319	TOP	798	9869431.21	759804.028	3710.7769	TOP
726	3003300.03	759807.262	3737.9933	VIA	799	9869515.96	759820.36	3726.0501	TOP
727	9869563.16		3738.1479	VIA	800	9869499.77	759872.759	3718.7927	TOP
728 729	9869557.05 9869568.08	759769.656 759805.716	3741.8787 3739.1269	TOP TOP	801 802	9869491.08 9869490.91	759813.996 759875.426	3722.3534 3715.7762	TOP TOP
730	9869577.9	759851.861	3734.4072	VIA	803	9869468.71	759809.361	3713.7702	TOP
731	9869573.18	759852.373	3734.5259	VIA	804	9869447.4	759795.106	3715.2	TOP
732	9869612.36	759792.892	3750.7779	TOP	805	9869420.61	759774.394	3712.842	TOP
733	9869603.1	759832.962	3743.1572	TOP	806	9869402.87	759756.773	3710.9345	TOP
734	9869577.08	759845.188	3735.7696	TOP	807	9869387.49	759740.273	3709.4006	TOP
735	9869581	759866.744	3733.1043	VIA	808	9869374.11	759724.29	3709.5544	TOP
736 737	9869575.04 9869581.45	759866.609 759865.912	3732.6923 3734.0736	VIA TOP	809 810	9869355.92 9869393.7	759716.322 759785.542	3707.6794 3706.118	TOP EST
737	9869581.46	759873.954	3732.6806	VIA	811	9869490.49	759875.941	3716.5852	TOP
739	9869573.43	759870.517	3732.0000	VIA	812	9869342.2	759699.853	3710.3832	TOP
740	9869570.08	759870.928	3730.8429	VIA	813	9869472.58	759863.756	3714.0425	TOP
741	9869581.37	759878.38	3732.6219	VIA	814	9869435.35	759837.29	3707.4397	TOP
742	9869579.78	759881.975	3732.3046	VIA	815	9869420.67	759829.32	3705.544	TOP
743	9869575.31	759880.821	3731.961	VIA	816	9869462.1	759857.679	3711.8817	TOP
744	9869569.64	759878.045	3730.7168	VIA	817	9869313.31	759716.486	3694.8304	TOP
745 746	9869578.11 9869499.02	759879.952 759681.138	3732.1981 3747.1817	EST TOP	818 819	9869404.56 9869319.62	759817.621 759735.362	3703.4243 3693.8764	TOP TOP
746	9869499.02	759852.874	3747.1817	TOP	819	9869319.62	759805.643	3701.3156	TOP
748	9869504.72	759700.883	3744.5739	TOP	821	9869436.07	759837.422	3707.6149	TOP
749	9869602.38	759878.865	3737.2112	TOP	822	9869381.23	759805.027	3698.1865	TOP
750	9869515.21	759722.501	3742.8027	TOP	823	9869337.45	759748.899	3694.4829	TOP
751	9869568.75	759878.124	3730.6983	VIA	824	9869366.28	759794.049	3697.877	TOP
752	9869602.52	759903.952	3735.4209	TOP	825	9869344.32	759764.492	3694.7061	TOP
753	9869522.33	759742.931	3739.6745	TOP	826	9869358.98	759782.801	3696.5398	TOP
754	9869557.79	759865.757	3728.9213	VIA	827	9869353.49	759774.284	3696.3622	TOP

	PLINTOS TO	POGRÁFICOS -	IITM WGS 84	•		PLINTOS TOP	OGRÁFICOS -	IITM WGS 85	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
828	9869404.81	759785.989	3706.433	VIA	901	9869306.75	759664.737	3697.1135	VIA
829	9869400.14	759783.052	3706.0431	VIA	902	9869311.97	759659.751	3696.706	VIA
830	9869398.11	759787.883	3706.077	VIA	903	9869307.16	759659.673	3696.687	VIA
831	9869399.17	759782.113	3706.8315	TOP	904	9869307.61	759594.097	3704.7007	TOP
832 833	9869393.74 9869389.99	759777.71 759780.73	3705.3747 3705.4018	VIA VIA	905 906	9869244.93 9869289.9	759616.938 759575.021	3681.7384 3702.6618	TOP TOP
834	9869393.93	759777.669	3706.4909	TOP	907	9869239.3	759601.47	3682.4733	TOP
835	9869389.65	759772.728	3704.9539	VIA	908	9869311.8	759650.648	3696.6753	VIA
836	9869385.35	759775.142	3704.793	VIA	909	9869306.56	759650.89	3696.5258	VIA
837	9869389.83	759772.592	3705.7125	TOP	910	9869303.72	759641.233	3696.5293	VIA
838	9869383.34	759763.307	3704.1153	VIA	911	9869307.6	759639.597	3696.6741	VIA
839	9869378.82	759765.115	3704.0026	VIA	912	9869275.21	759558.142	3701.2071	TOP
840 841	9869383.48	759763.186	3705.4016	TOP TOP	913 914	9869300.19	759635.998	3696.4498	VIA VIA
842	9869377.96 9869377.76	759754.586 759754.734	3703.9104 3703.4235	VIA	914	9869304.04 9869222.43	759633.347 759576.573	3696.7874 3681.2375	TOP
843	9869373.88	759757.145	3703.4034	VIA	916	9869289.94	759620.297	3695.8204	VIA
844	9869361.49	759743.161	3702.6404	VIA	917	9869293.58	759617.777	3695.7931	VIA
845	9869365.14	759739.368	3702.7185	VIA	918	9869257.96	759544.164	3698.5808	TOP
846	9869365.33	759738.999	3703.6068	TOP	919	9869277.87	759595.064	3694.3605	VIA
847	9869360.64	759733.968	3702.9909	TOP	920	9869274.07	759598.077	3693.9968	VIA
848	9869360.5	759734.127	3702.3686	VIA	921	9869204.09	759551.567	3680.0846	TOP
849 850	9869356.35 9869352.59	759736.599 759733.628	3702.3248 3702.266	VIA VIA	922 923	9869261.13 9869257.85	759577.794 759581.822	3692.4811 3692.2557	VIA VIA
850	9869352.59	759733.628	3702.266	VIA	923	9869257.85	759581.822 759531.755	3692.2557	TOP
852	9869355.5	759729.893	3703.1936	TOP	925	9869184.02	759534.423	3678.2294	TOP
853	9869350.54	759727.27	3703.481	TOP	926	9869248.88	759564.936	3690.7119	VIA
854	9869350.28	759727.622	3702.1966	VIA	927	9869245.29	759568.273	3690.9	VIA
855	9869347.56	759730.738	3702.3221	VIA	928	9869221.61	759513.25	3695.4145	TOP
856	9869344.54	759723.183	3701.907	VIA	929	9869169.9	759528.649	3675.4081	TOP
857 858	9869341.74 9869344.77	759726.167 759723.005	3702.1477 3703.6209	VIA TOP	930 931	9869224.57 9869220.65	759537.95 759540.703	3688.0008 3687.8962	VIA
859	9869340.52	759718.915	3703.6209	VIA	932	9869201.74	759496.112	3693.6219	TOP
860	9869336.49	759720.345	3701.7208	VIA	933	9869140.12	759510.255	3673.7299	TOP
861	9869340.72	759718.902	3702.8149	TOP	934	9869196.39	759518.397	3686.6869	VIA
862	9869329.34	759702.671	3701.3189	TOP	935	9869199.52	759515.395	3686.7818	VIA
863	9869329.23	759702.788	3699.9909	VIA	936	9869187.88	759510.98	3686.4537	VIA
864	9869325.83	759705.564	3700.1083	VIA	937	9869190.66	759507.428	3686.7383	VIA
865	9869315.06	759690.504	3698.7897 3700.3524	VIA TOP	938	9869172.31	759479.64 759500.966	3688.9564	TOP
866 867	9869318.83 9869307.84	759687.788 759679.209	3698.1867	EST	939 940	9869121.05 9869191.08	759500.966	3671.8571 3688.0972	TOP TOP
868	9869318.44	759687.606	3698.8686	VIA	941	9869121.05	759500.859	3671.9015	TOP
869	9869314.9	759690.28	3698.7571	VIA	942	9869176.51	759504.329	3685.8027	VIA
870	9869314.48	759682.106	3700.2637	TOP	943	9869178.72	759500.361	3685.9941	VIA
871	9869312.35	759677.624	3700.097	TOP	944	9869144.3	759465.538	3684.3831	TOP
872	9869311.84	75507 11 107	3699.9188	TOP	945	9869178.97		3687.4454	TOP
873	9869311.26		3699.5854	TOP	946	9869088.52	759485.237	3670.7094	TOP
874 875	9869307.37 9869301.98	759638.225 759629.365	3698.086 3697.8176	TOP TOP	947 948	9869107.62 9869160.14	759452.939 759488.752	3679.1887 3684.5955	TOP VIA
876	9869294.52	759618.591	3697.57	TOP	949	9869160.37	759488.627	3685.8551	TOP
877	9869289.49	759610.475	3697.1241	TOP	950	9869157.13	759493.166	3684.5235	VIA
878	9869274.5	759591.366	3695.7927	ТОР	951	9869039.65	759464.628	3664.2934	TOP
879	9869267.56	759584.497	3694.5874	TOP	952	9869141.79	759483.644	3682.8741	VIA
880	9869258.42	759574.144	3693.5375	TOP	953	9869145.15	759479.474	3683.0697	VIA
881	9869236.58	759548.039	3691.8384	TOP	954	9869065.13	759436.993	3671.9929	TOP
882 883	9869217.22 9869205.12	759530.306 759520.073	3689.5995 3688.5761	TOP TOP	955 956	9869146.16 9869015.95	759479.549 759455.907	3683.8951 3661.3261	TOP TOP
884	9869331.67	759677.926	3706.1243	TOP	957	9869132.66	759455.907	3681.5992	VIA
885	9869282.47	759686.652	3689.6095	TOP	958	9869132.89	759473.184	3681.9598	TOP
886	9869311.24	759685.733	3698.5136	VIA	959	9869130.78	759478.169	3681.2773	VIA
887	9869314.81	759682.79	3698.7476	VIA	962	9869037.41	759428.529	3667.5848	TOP
888	9869332.27	759660.244	3704.1496	TOP	965	9869110.09	759470.221	3679.0772	VIA
889	9869277.17	759675.521	3685.6844	TOP	966	9868925.95	759415.096	3651.5468	VIA
890	9869313.34	759680.291	3698.4759	VIA	967	9868930.26	759414.629	3651.5552	VIA
891 892	9869308.65 9869307.04	759681.874 759676.888	3698.3695 3698.0899	VIA VIA	968 969	9868927.74 9868931.45	759408.141 759409.881	3652.1106 3652.1361	VIA VIA
893	9869307.04	759675.793	3698.1084	VIA	970	9868930.29	759409.881	3652.4949	VIA
894	9869327.52	759638.754	3703.9432	TOP	971	9868934.23	759407.208	3652.4912	VIA
895	9869263.7	759651.556	3682.3918	TOP	972	9868935.42	759402.183	3652.9321	VIA
896	9869311.44	759671.359	3697.7296	VIA	973	9868937.56	759406.149	3652.9929	VIA
897	9869306.33	759671.27	3697.7105	VIA	974	9868940.35	759403.252	3653.2812	VIA
898	9869317.72	759615.622	3705.3914	TOP	975	9868952.91	759407.256	3654.9818	VIA
899	9869254.78	759635.432	3682.6566	TOP	976	9868952.62	759410.868	3655.0562	VIA
900	9869311.4	759665.474	3697.0963	VIA	977	9868963.47	759409.299	3656.4043	VIA

Part		PLINTOS TO	POGRÁFICOS -	IITM WGS 84			PLINTOS TOP	OGRÁFICOS -	IITM WGS 85	
999 9868970.47 75940.779 3607.4999 VIA 1052 9868941.68 75949.0205 3630.8895 VIA 990 9868970.59 75940.701 3651.106 VIA 1054 9868941.89 759597.841 3632.0132 TOP 982 986893.04 75941.93 3651.1589 VIA 1056 986891.21 759489.002 3603.0684 TOP 9889 986893.04 75943.076 3649.3956 VIA 1056 986891.51 759489.002 3603.0684 TOP 9889 986893.04 75943.076 3649.3956 VIA 1056 986891.51 759489.002 3603.0684 TOP 9899 986893.04 75940.070 3649.3956 VIA 1057 986891.51 759489.002 3603.0684 TOP 986995.05 75940.070 3649.3856 VIA 1059 986891.51 75949.0256 3624.8576 TOP 986995.05 759440.000 3649.0000 VIA 1060 986890.06 759502.256 3624.8576 TOP 986995.05 759440.0000 3649.252 3649.3520 VIA 1060 986890.06 759473.44 3673.1413 TOP 9889 966995.05 759443.253 3669.3690 VIA 1060 986890.06 759472.449 3674.0400 VIA 986995.0000 759473.247 3674.0100 366995.000 759472.249 3673.6359 TOP 986995.0000 759473.247 3674.0105 VIA 1064 986890.0000 759472.249 3674.0350 VIA 1069 986895.000 759472.548 3676.000 VIA 1069 986895.000 759472.548	PUNTO N°				Descripción	PUNTO N°				Descripción
980 986898.41 59413.959 3659.397 VIA 1053 9868940.26 759501.89 360.6871 VIA 981 986990.25 75940.2013.21 707 982 982 986893.04 759419.309 3651.189 VIA 1055 9868919.21 759498.002 3630.6884 TOP 983 986893.03 75940.07 3649.3356 VIA 1055 9868919.21 759498.002 3630.6884 TOP 983 986893.03 75940.07 3649.3356 VIA 1057 9868919.21 759498.002 3630.6884 TOP 983 986893.04 75943.109 3649.3356 VIA 1057 9868919.21 759498.002 3630.6884 TOP 9858 586893.04 759431.109 366853.05 8349.3356 VIA 1058 9868919.21 759493.024 367.7443 VIA 1059 986891.00 759493.224 367.74459 VIA 1059 986895.00 7594945.23 368.3509 VIA 1050 986895.01 759493.244 367.74459 VIA 1059 986895.01 759495.244 367.74459 VIA 1059 986895.01 759495.01 759495.244 367.74459 VIA 1059 986895.01 759495	978	9868962.47	759413.747		•		9868946.38	759478.825		•
981 986992.6.5 59402.701 3051.106 VIA 1054 9869841.89 759997.841 3032.0322 TOP 982 988993.09 759919.39 3051.189 VIA 1056 986991.5.1 759989.002 3051.06644 TOP 4059894 986993.40 75993.007 3059	979	9868970.47	759410.719	3657.4909	VIA	1052	9868941.64	759498.025	3630.8895	VIA
982 986933.94 959433.09 36951.25 9499.356 VA 1059 986919.21 75949.6963 92.0866 VA 986919.23 75949.6963 92.0866 VA 1059 986919.21 75949.6963 92.0866 VA 986919.29 75949.256 3629.0066 VA 1059 986916.97 75949.6963 92.0866 VA 1059 986916.97 75949.6963 92.0869.39 75949.30 15954.					+		†			
984 986938.01 959431.07 3649.3956 VIA 1050 9869915.33 759498.068 3629.000 VIA 9859 986994.05 959494.25 93541.34 3628.3893 EST 1058 986994.06 759902.258 3624.8576 TOP 9869 986995.22 759541.33 3648.2315 VIA 1059 986992.07 19794.44 3927.1413 TOP 986995.25 759443.25 3668.2315 VIA 1059 986992.07 19794.24 3927.1413 TOP 98797.94 19794.25 105										
986 986934.59 39633.100 3697.9055 VIA 1057 986916.97 759092.25 3520.102 VIA 985 986984.02 759052.36 3058.3893 675 1058 986984.01 759072.484 3637.1413 TOP 9869893.88 986992.25 759451.193 3686.231 VIA 1059 9868892.14 759072.484 3637.1413 TOP 987 986893.81 759472.343 363.3683.999 VIA 1060 9868892.14 759472.483 VIA 1060 9868892.14 759472.483 VIA 1061 986893.14 759472.483 VIA 1061 986893.14 759472.483 VIA 1061 986893.14 759472.483 VIA 1062 986893.18 759472.343 363.555 TOP 990 986893.17 759442.568 3651.471 TOP 1063 9868903.18 759452.293 363.555 TOP 991 986895.16 759457.343 3647.615 VIA 1064 986893.2 759472.383 362.678 TOP 1069 986895.0 759453.14 3647.615 VIA 1064 986893.3 759472.384 362.678 TOP 992 986895.5 759453.2 364 3647.615 VIA 1064 986893.3 759472.384 362.678 TOP 993 986895.0 759433.1 364 3645.0 VIA 1063 986893.3 759473.3 403.2 5557 VIA 1064 986890.2 759472.384 365.578 VIA 1065 986887.0 759475.384 365.578 VIA 1065 986887.0 759475.384 365.578 VIA 1065 986887.0 759475.284 365.507 VIA 1064 986895.1 VIA 1065 986887.0 759475.284 365.507 VIA 1064 986895.1 VIA 1065 986887.0 759445.284 367.74412 TOP 995 9868951.4 759475.284 366.507 VIA 1064 986895.2 VIA 1065 986887.0 759445.284 367.74412 TOP 995 9868951.2 759448.8 180.8 1694.0 VIA 1069 986887.0 759445.284 367.2448 VIA 1069 986887.0 759446.253 363.2854 TOP 997 986895.5 759448.8 180.8 1694.0 VIA 1069 986887.0 759446.925 363.3454 POP 997 986895.5 759446.2 Sib 1064.0 VIA 1069 986887.0 759446.925 363.3454 POP 999 986895.0 VIA 1068 986891.0 759446.925 363.3454 POP 999 986895.0 VIA 1069 986895.0 VIA										
985 986897.393 759417.403 5658.3923 EST 1058 9868906.6 7959520.286 3621.4133 TOP 9869896.9869.9869.32 759451.913 3648.231 VIA 1050 9868892.66 795917.801 3627.4293 VIA 9869895.96 75943.23 26505.907 PLACA 1050 9868892.66 795917.801 3627.4293 VIA 9869895.96 75943.23 26505.907 PLACA 1050 9868892.67 759447.801 3627.4293 VIA 9869895.95 75945.85 68 3051.471 TOP 1052 9868906.08 79457.29 3637.6339 TOP 990 986893.77 75945.86 3051.471 TOP 1052 9868906.08 79457.29 3637.6339 TOP 991 986895.91 7579457.874 3647.6165 VIA 1064 9868892.07 759447.834 3627.8578 TOP 992 986899.93 5759458.63 3631.471 TOP 1056 9868876.67 759475.878 3626.6934 VIA 1056 9868876.07 759457.878 10526.6934 VIA 1056 9868876.07 759475.878 3626.6934 VIA 1056 9868876.07 759457.878 3626.6934 VIA 1056 9868875.07 759475.878 3626.6934 VIA 1056 9868875.07 759475.878 3626.6934 VIA 1056 9868875.07 759475.678 3627.6912 VIA 994 9868951.47 759423.431 3646.1058 VIA 1068 9868875.07 759475.678 3627.8412 VIA 995 96 986879.17 759473.343 366.1058 VIA 1068 9868875.07 759440.386 6946.403 VIA 1068 9868875.07 759446.29 3653.9181 TOP 1070 9868895.3 67 759446.29 3624.481 TOP 1070 9868895.3 67 759446.29 3624.481 TOP 1070 9868895.0 759446.80 VIA 1068 9868895.0 759446.29 3623.481 TOP 1070 9868895.0 759446.80 VIA 1069 9868898.80 VIA 759462.087 3634.9181 VIA 1070 9868895.0 759446.0 VIA 1069 9868899.80 VIA 986896.0 VIA 986896										
986 988694.98.7 [75944.152] 3648.2919 V/A 1059 9886928.14 [759473.444] 3627.4736 V/A 988697.997 98695.5 (97 75944.95.2) 3648.3679 V/A 1050 9868091.2 [75948.244] 327.472.68 V/A 1059 986893.37 [75942.456] 3659.3077 P.P.A.CA 1051 9868891.2 [75948.244] 327.72.68 V/A 1059 986893.37 [75942.456] 3651.471 TOP 1053 986892.6 [759515.347] 3627.1556 TOP 990 986893.37 [75943.456] 3614.71 TOP 1053 986892.6 [759515.347] 3623.1555 TOP 991 9868595.10 [75947.347] 347] 347.1416 V/A 1055 986897.6 [75947.258] 3626.6934 V/A 1059 986894.0 [75948.37] 367.3456.341 10.055 986887.6 [75947.258] 3626.6934 V/A 1059 986894.0 [75948.37] 367.3456.341 10.055 986887.6 [75947.258] 3626.6934 V/A 1059 986899.0 [75949.37] 347.3461 367.34512 TOP 1067 986887.6 [75947.258] 3626.6934 V/A 1059 986899.0 [75949.3] 384.545.00 V/A 1069 986887.0 [75947.364] 3627.6412 TOP 1067 986887.0 [75947.364] 3627.6412 TOP 995 98697.9 [75947.348] 3645.5064 V/A 1069 986887.0 [75947.364] 3627.6412 TOP 996 986897.1 [75947.364] 368.364.0 [7694.258] 3628.693.0 [75944.0.62] 3628.3 [75944.0.62] 362							1			
988 9869891.43 75941.94 75942.45 87 75942.45 88 361.61 70							t			
999 986893.1.43 79943.167 865.0.2866 TOP 1002 986890.68 799457.29 3627.6359 TOP 990 986893.77 79945.68 3651.471 TOP 1003 986892.67 799457.874 807.875.87 TOP 991 986896.16 799457.874 807.876.87 807.991.991 986896.16 799457.874 807.876.87 807.991.991.991.991.991.991.991.991.991.99	987	9868953.69	759449.523	3648.3699	VIA	1060	9868892.64	759478.981	3627.4493	VIA
990 9868933.77 759424.568 3851.471 TOP 1003 9868923.6 739515.471 3623.1555 TOP 991 9868950.16 75945.634 3647.7366 VIA 1006 986897.7 739478.381 3628.6798 VIA 1006 986897.6 759475.282 3626.6934 VIA 994 9868950.3 75945.634 3647.7366 VIA 1006 986897.6 759475.282 3626.6934 VIA 994 9868961.4 75945.169 3648.816 TOP 1007 986897.6 759475.283 3626.6934 VIA 994 9868961.4 759423.169 3648.816 TOP 1007 986897.6 759475.283 3626.6934 VIA 994 9868961.4 759423.169 3648.816 TOP 1007 986897.8 759475.343 3646.1580 VIA 1008 986807.6 759475.345 3619.705 TOP 995 986897.217 759476.319 3665.9066 VIA 1008 986807.6 759475.436 3619.705 TOP 996 986897.217 759476.319 3665.9066 VIA 1008 986807.6 759474.364 3619.705 VIA 999 9868066.81 75946.2687 3619.395 TOP 1071 986806.219 75946.035 3624.806 VIA 1009 986806.81 75946.2687 3649.3939 TOP 1072 986806.81 75946.2687 3649.3939 TOP 1075 986806.81 75946.2687 3649.3939 TOP 1075 986806.81 75946.2687 3649.81 759476.219 3646.2586 TOP 1075 986806.81 75946.2687 3746.2687 3649.81 759476.219 3646.2586 TOP 1075 986806.81 75946.2687 3746.2687 3649.278 3649.81 36		9868992.95	759443.32	3659.3077	1		9868891.2		3627.2268	
991 986895.16 75945.63 4 3647.6165 VIA 1004 986882.97 759478.384 3026.5098 TOP 992 986890.35 75948.54 3948.64 327.8412 TOP 1066 986887.65 75948.58 3626.5093 VIA 993 9868891.35 75948.15.99 3656.24 1005.94.15.99 366891.4 5948.21.9 3646.1508 VIA 1008 986891.26 759519.541 5617.00 TOP 1066 986887.65 759476.58 3626.5072 VIA 1069 995 986897.21 759476.313 3645.5046 VIA 1068 986891.26 759519.541 3617.00 TOP 995 986895.26 759476.21 30 3645.9046 VIA 1068 986891.26 759519.541 3617.00 TOP 997 986895.26 759446.83 3649.4603 TOP 1070 986885.36 759446.42 3622.4468 VIA 998 986895.20 759446.83 3649.4603 TOP 1071 986885.56 759476.31 3623.877 TOP 1070 986895.20 75944.88 36 3649.600 VIA 1068 986895.50 759476.31 3623.877 TOP 1070 986897.81 75946.51 3644.81 3644.01 1073 986895.56 759476.31 3623.877 TOP 1070 986897.81 75946.21 3623.877 TOP 1070 986897.81 75946.21 3623.877 TOP 1070 986897.81 75946.31 3642.7194 VIA 1073 986897.71 759476.21 3664.7958 TOP 1075 986897.11 759491.34 3623.4095 TOP 1070 986897.71 759495.72 75945.22 3652.7040 TOP 1075 986897.71 759491.34 3623.4095 TOP 1070 986898.81 75940.50 3625.151 TOP 1070 986898.81 75940.81 3625.82 3										
993 98889010,75 P3943183,73 S50,624 34,77336 VA 1065 986876,45 P39472,588 362,6034 VA 1993 98889010,75 P394318,73 S5044,73 P3947, 199473,189 368891,74 P39473,143 3641,610 P0P 1067 986876,76 P39473,64 862,78412 TOP 1067 986887,76 P39473,64 862,78412 TOP 1067 986887,77 P39473,64 862,78412 TOP 1067 986887,71 P39476,73 P39473,74 P3					1					
993 9868901.4 759431.219 3654.815. TOP 1006 986887.50, 759475.028 3626.5072 VIA 994 994 986891.4 759431.219 3654.816. TOP 1007 986887.6 7595475.328 16278.412. TOP 995 988871.4 77 95473.343 3646.1508 VIA 1008 9868912.65 759519.543 3619.705 TOP 996 988871.21 75945.319 3645.9646 VIA 1008 9868912.65 759519.543 3619.705 TOP 997 9868895.21 75946.023 3628.854 TOP 1007 99868895.21 75946.023 3628.854 TOP 1007 99868895.21 75946.023 3628.854 TOP 1007 9868895.32 75946.023 3628.854 TOP 1007 999 986896.81 75946.023 3628.918 TOP 1007 1986885.36 75946.025 3624.858 VIA 1007 986895.81 75946.023 3628.854 TOP 1007 986895.81 75946.023 3628.854 TOP 1007 986895.81 75946.023 3628.854 TOP 1007 986895.61 75946.023 3628.854 TOP 1007 986895.61 75946.023 3628.854 TOP 1007 986895.61 75946.023 3625.8567 TOP 1007 986897.11 759476.219 3646.7938 TOP 1007 986895.61 75946.83 3625.8667 TOP 1007 9868900.16 759512.21 3652.7034 TOP 1007 986895.61 75946.83 3625.8667 TOP 1007 986895.62 75946.83 3625.8667 TOP 1007 986895.62 75946.83 3625.8667 TOP 1007 9868950.16 759512.24 3641.936 VIA 1007 9868988.21 759457.42 3622.0098 VIA 1007 9868988.21 759457.42 3622.0098 VIA 1007 9868988.21 759457.42 3622.0098 VIA 1007 9868990.01.6 759512.24 3641.6593 VIA 1007 9868988.21 759458.55 3623.357 TOP 1007 9868990.01.6 759512.45 3644.6901 TOP 1007 9868990.01 759512.45 3644.6901 TOP 1007 9868990.01 759512.45 3644.6901 TOP 1008 986899.11 75946.74 5644.6901 TOP 1008 986898.11 75946.75 3623.357 TOP 1009 986899.11 75947.45 3644.6901 TOP 1008 986898.11 75946.75 3623.357 TOP 1009 986899.11 75947.45 3644.6901 TOP 1008 986898.11 75946.75 3623.357 TOP 1009 986899.11 75947.45 3644.6901 TOP 1008 986891.01 75946.45 3644.65 3					1		1			
994 986897.4 7 5947.3 43 364.5 07P 1067 986887.6 75 5947.3 44 362.78412 TOP 995 986897.4 77 5947.3 43 364.5 08.5 VIA 1068 986897.6 75 59595.3 3619.0 TOP 1079 9968885.1 5948.3 3619.0 TOP 1070 986885.3 5948.0 TOP 1070 9999 986895.5 5948.3 5948.0 TOP 1070 986885.5 59497.5 TOP 1070 9999 986895.5 TOP 1070 986885.5 TOP 1070 986887.1 TOP 1070 986885.5 TOP 1070 986887.1 TOP 1070 986888.2 TOP 1070 9868889.1 TOP 1070 986888.2 TOP 107					+		1			
996 986897.1 75946.03 1079 997 9868853.2 6 759448.36 3694.96 030 1079 1070 9868853.2 6 759448.36 3694.96 030 1070 1070 9868853.2 6 759448.20 3624.80 1070 999 9868865.2 6 759448.36 3694.90 1070 9868867.2 9 75944.80 3623.377 109 999 9868867.80 759949.371 3644.0814 VIA 1073 9868867.9 75946.30 3623.377 109 1000 986887.80 759949.371 3644.0814 VIA 1073 9868854.6 75946.30 3625.867 109 1002 9868978.1 75946.20 219 3664.7938 109 1075 986885.3 6 75946.30 3625.867 109 1003 9868978.1 75946.20 364.03 364.1335 01.00 1074 9868878.1 75946.20 3625.80 100 3 9868978.1 75946.20 3625.20 364.1335 01.00 100 986897.1 75945.20 3625.20 364.1335 01.00 100 986897.1 75945.20 3625.80 100 3 986897.1 75945.2 10 365.2 10	994				TOP					TOP
997 9868935.07 759448.386 3649.4603 TOP 1070 986885.13 75946.325 324.486 VIA 998 9888685.07 75940.629 3653.9181 TOP 1071 9868895.62 75 75944.188 3632.4494 TOP 999 9868865.28 75 75940.28 75 75940.00 9868897.81 75946.2087 3644.0814 VIA 1072 9868895.56 75949.751 3623.3777 TOP 1000 9868891.46 75949.15.63 3644.1336 VIA 1074 986885.75 75946.00 33 3625.865 TOP 1002 986897.17 75946.219 3646.7934 TOP 1075 986887.17 75946.00 3623.377 TOP 1004 986907.17 75946.219 3646.7934 VIA 1077 9868891.77 75946.00 3623.4055 TOP 1076 986887.17 75949.13 3623.4095 TOP 1004 9869001.56 759508.285 3642.2888 VIA 1077 9868891.17 75949.13 3623.4095 TOP 1076 98689001.36 759511.344 3611.936 VIA 1078 9868891.18 75945.41 38623.2545 VIA 1006 9869003.59 575555.57 3641.074 VIA 1080 986893.18 375945.41 3623.2545 VIA 1006 9869003.89 759515.67 3641.074 VIA 1080 986881.83 75948.85 53 6323.257 TOP 1007 9869003.89 759515.67 3641.074 VIA 1080 986893.99 75942.54 3631.5401 TOP 1009 9868903.99 759518.314 3641.6593 VIA 1081 986893.99 75942.54 3631.5401 VIA 1010 9868901.57 75950.62 56 3642.752 TOP 1082 986888.39 75942.54 3624.256 TOP 1011 9869004.59 759518.105 3640.5700 VIA 1081 986883.39 75944.67 3624.256 TOP 1012 9869004.59 759518.05 3640.5700 VIA 1081 986883.19 75944.67 3624.256 TOP 1011 9869004.59 759518.05 3640.5700 VIA 1080 986883.15 75944.67 3626.2659 VIA 1011 9869004.59 759518.05 3640.5700 VIA 1080 986883.15 75944.67 3626.2659 VIA 1011 9869005.21 759509.626 3642.9725 TOP 1083 986883.15 75944.67 3626.2659 VIA 1011 9869005.21 759509.626 3642.9725 TOP 1084 986888.79 759506.62 3690.990.990.990.990.990.990.990.990.990.	995	9868974.97	759473.343	3646.1508	VIA	1068	9868912.65	759519.543	3619.705	TOP
999 99680618, 179640,629 3653,9181 TOP 1071 98688612,9 759441,888 3632,4549 TOP 1070 98688618, 179640,208 3647,939 TOP 1072 986885,56 759461,431 3624,7194 VIA 1001 986897,89 779493,713 3644,0814 VIA 1073 986885,76 759461,431 3624,7194 VIA 1001 986897,17 3676,720 1002 986897,11 75946,721 3664,7958 TOP 1075 986885,77 759460,803 3625,6867 TOP 1003 986897,11 75946,721 3664,7958 TOP 1075 986887,11 75945,77 3674,720 1001 9869001,56 75956,828 3642,2888 VIA 1077 986888,71 175945,77 28,323,4088 VIA 1005 9869001,56 75956,828 3642,828 VIA 1078 986884,83 75945,713 3623,2454 VIA 1006 986898,883 75945,87 3641,936 VIA 1078 986884,83 75945,4713 3623,2454 VIA 1007 9869003,89 759515,67 3641,074 VIA 1080 9868863,83 75948,84 22 3645,961 TOP 1079 9869003,89 759515,67 3641,074 VIA 1080 9868863,83 75948,84 22 3645,961 TOP 1079 9868863,83 75945,85 3644,980 TOP 1083 9869003,89 759515,67 3641,074 VIA 1080 9868863,83 75945,84 36 3612,961 VIA 1010 9868899,17 75946,85 365 3652,0429 TOP 1083 986682,51 75948,55 3623,3257 TOP 1083 98689003,89 759515,67 3644,9801 TOP 1083 9868863,89 75945,47 38 3624,2455 TOP 1099 9868997,14 759497,445 3644,9801 TOP 1082 986883,83 759449,976 3623,048 VIA 1010 9868997,17 75950,980 568 3642,9725 TOP 1083 986882,51 759446,673 3624,2455 TOP 1012 9869006,49 759518 105 3604,706 VIA 104 986901,50 759515,934 3642,475 TOP 1085 986883,17 37944,673 3624,4255 TOP 1013 9869001,50 759515,934 3642,475 TOP 1085 986881,50 75943,473 3624,6256 TOP 1014 986901,50 759515,934 3642,475 TOP 1086 986888,79 759506,632 3619,6689 TOP 1015 986901,55 75952,755 344 3623,444 TOP 1086 986888,79 75959,51 3619,1088 VIA 1019 986891,51 75951,51 364 3642,475 TOP 1086 986883,93 75944,51 37 3622,1688 VIA 1019 986901,52 75952,255 3642,775 TOP 1086 986883,93 75944,51 37 3622,1688 VIA 1019 986901,51 75951,51 364 3642,474 TOP 1087 986881,51 75954,51 37 3642,51 50 TOP 1087 986891,51 75950,51 50 34 3642,675 TOP 1086 986883,93 75948,31 37 3622,688 VIA 1019 986901,51 75951,51 364 3642,675 TOP 1086 986883,93 75944,51 37 3622,51 50 VIA 1019 986891,51 75952,51	996	9868972.17	759476.319	3645.9046	VIA	1069	9868879.03	759454.053	3632.8854	TOP
999 9868964.81 759462.087 3647.9339 TOP 1072 9868895.56 759497.751 3623.3777 TOP 1000 9868987.89 759493.713 3644.0814 VIA 1073 986885.6 759596.030 3675.6867 TOP 1001 986897.17 75946.030 3675.8667 TOP 1002 986897.17 759445.219 3646.7938 TOP 1075 986887.17 759493.43 3623.4095 TOP 1003 9868967.2 759444.22 3652.7204 TOP 1076 986887.17 759494.5 3623.4095 TOP 1004 9869001.56 7595113.24 3641.936 VIA 1077 986883.17 759454.5 3623.4095 TOP 1005 9869001.56 7595113.24 3641.936 VIA 1078 986884.18 75945.4 13 3623.2545 VIA 1006 9869001.56 7595113.24 3641.595 VIA 1078 986884.18 75945.7 12 3623.0498 VIA 1006 9869003.89 759515.57 3641.074 VIA 1080 986884.89 75945.4 13 3623.2554 VIA 1006 9869008.69 759513.214 3641.6593 VIA 1081 986883.99 759425.43 3631.5241 TOP 1007 98689008.69 759513.214 3641.6593 VIA 1081 986883.99 759425.43 3631.5903 TOP 1009 9868990.89 759518.105 3644.8001 TOP 1029 986883.89 759425.43 3631.5903 TOP 1010 9868997.14 759497.445 3644.8001 TOP 1029 986883.89 759425.43 3631.5903 TOP 1010 9868997.15 75941.816.500.75 VIA 1084 986883.89 759425.43 3631.5903 TOP 1010 9868997.15 75941.816.500.400 VIA 1084 986883.89 759425.43 3631.5903 TOP 1011 9869004.59 759518.105 3640.800 VIA 1084 986883.89 759425.43 3631.5903 TOP 1012 986900.62 17 75950 9.62 3642.7725 TOP 1085 9868881.03 75944.67 3624.256 TOP 1012 986900.62 17 75950 9.62 3642.7725 TOP 1085 986881.03 75944.67 3626.69 VIA 1084 986888.15 75944.67 3624.656 TOP 1014 986901.05 759515.93 43 3642.4745 TOP 1085 986881.20 75944.69 13 3624.3005 TOP 1014 986901.05 759515.93 43 3642.4745 TOP 1086 986881.73 75944.479 3623.3088 VIA 1016 986901.65 75952.20 50 3642.7444 TOP 1087 986881.52 75944.479 3623.3088 VIA 1019 986901.55 75952.21 5 3641.834 VIA 1090 986881.52 75944.179 3623.3088 VIA 1019 986901.51 75952.21 3641.834 VIA 1090 986881.52 75944.836 3624.3557 VIA 1019 986901.81 75952.01 56 363.9331 VIA 1099 986881.52 75944.89 3624.3557 VIA 1019 986901.81 75952.01 56 3642.7444 TOP 1093 986880.83 75949.89 3624.3557 VIA 1019 986901.81 75952.01 56 363.9340 VIA 1099 986881.52 775944.89 362										
1000 986897.88 75949.3713 3644.0814 VIA 1073 966884.68 759461.431 3624.7194 VIA 1001 986887.11 759476.219 3646.7938 TOP 1075 986887.11 759491.34 3623.4095 TOP 1003 9868878.72 759491.34 3623.4095 TOP 1003 9868978.12 759491.34 3623.4095 TOP 1003 9869004.65 759508.285 3642.288 VIA 1077 986887.11 759491.34 3623.4095 TOP 1003 9869004.65 759508.285 3642.288 VIA 1078 986888.31 75945.772 3623.0498 VIA 1005 9869001.36 759513.324 3641.936 VIA 1078 986888.31 759454.713 3623.2545 VIA 1006 986898.88.38 75948.822 3645.936 VIA 1080 9868861.39 75943.341.65 3631.241 TOP 1007 9869003.89 759515.67 3641.074 VIA 1080 9868861.39 75945.34 3615.930 TOP 1008 9869006.89 759513.214 3641.6939 VIA 1081 986888.39 75945.43 3615.930 TOP 1008 9869006.89 759518.105 3640.5706 VIA 1084 986888.59 75944.673 3622.4256 TOP 1011 9869004.59 759508.62 3642.9725 TOP 1083 986882.50 75944.673 3622.6891 VIA 1011 9869006.07 759508.62 3642.9725 TOP 1083 986882.50 75944.673 3622.6891 VIA 1014 9869010.05 759550.526 3642.5725 TOP 1086 986888.79 759509.517 3619.0139 TOP 1013 9869007.15 75957.520 4364.6562 TOP 1086 986888.79 759506.623 3619.0689 TOP 1015 986901.55 75952.05 3613.3444 TOP 1086 986888.79 759506.623 3619.0689 TOP 1015 986901.45 75952.015 3641.524 VIA 1090 986881.03 75944.373 3624.355 VIA 1014 986901.15 75952.015 3641.524 VIA 1090 986881.03 75944.373 3622.0889 VIA 1014 986901.55 75952.015 3641.524 VIA 1091 986881.97 75943.473 3623.375 VIA 1012 986901.55 75952.05 3642.6744 TOP 1087 986888.38 75943.772 3623.7297 VIA 1012 986901.55 75952.05 3642.6764 TOP 1086 986888.38 75943.773 3623.088 VIA 1019 986801.55 75952.05 3642.6764 TOP 1098 986888.38 759							t			
1001 9688991.61 759491.653 3644.1336 VIA 1074 968854.75 759469.83 3675.6867 TOP 1003 968897.11 759461.24 3627.095 TOP 1003 968897.17 759451.42 3652.7204 TOP 1076 9868892 759454.05 3625.1151 TOP 1004 986909.65 759508.285 3642.2888 VIA 1077 9868893.14 759457.42 3623.0498 VIA 1006 986898.33 759487.822 3645.9612 TOP 1079 986884.39 759457.31 3623.2455 VIA 1006 986898.33 759487.822 3645.9612 TOP 1079 986884.93 759485.465 3632.3257 TOP 1007 9869003.89 759513.214 3641.6593 VIA 1008 986908.89 759513.214 3641.6593 VIA 1008 986898.81 75945.836 3652.0429 TOP 1028 986885.51 75944.673 3624.4256 TOP 1012 9868908.99 759513.105 3640.5706 VIA 1084 986885.79 75940.976 3624.6256 TOP 1012 986900.57 75940.976 3624.976 TOP 1012 986900.57 75940.976 3624.976 TOP 1012 986900.57 75940.976 3624.976 TOP 1012 986900.57 75950.652 3642.9725 TOP 1085 9868881.79 75940.976 3624.805 TOP 1014 986900.57 75950.652 3642.9725 TOP 1085 986881.57 759506.521 3619.0139 TOP 1014 9869011.05 75950.652 3642.9725 TOP 1085 986882.57 75990.513 3619.0139 TOP 1014 9869011.05 75952.0794 3642.5222 TOP 1085 986882.57 75990.6521 3624.805 TOP 1014 9869011.05 75952.0794 3642.5222 TOP 1087 986882.59 75990.6521 3619.0139 TOP 1014 9869011.05 75952.0794 3642.5222 TOP 1087 986882.59 75990.6523 3619.0089 TOP 1014 986901.54 75952.0795 3641.8344 VIA 1090 9868815.27 75944.714 7362.1453 TOP 1017 986901.54 75952.15 3641.8344 VIA 1090 9868815.87 75943.773 3623.0388 VIA 1018 986901.54 75952.15 3641.8344 VIA 1090 9868815.87 75943.773 3623.0388 VIA 1018 986901.54 75952.105 3641.8344 VIA 1090 9868815.87 75943.773 3623.0444 TOP 1014 9868913.87 75943.836 3642.6516 TOP 1016 9868815.							†			
1002 9868976.71 759476.219 3646.7958 TOP 1075 9868877.11 759491.34 3623.4095 TOP 1004 9869004.56 759508.285 3642.2888 VIA 1077 9868839.14 75945.742 3623.098 VIA 1005 9869004.56 759508.285 3642.2888 VIA 1077 9868839.14 75945.7731 3623.2455 VIA 1006 9868988.83 75948.7878 822 3645.5612 TOP 1079 9868848.33 75945.7131 3623.2545 VIA 1007 9869008.89 759515.67 3641.074 VIA 1080 9868845.51 75948.515.55 3623.3257 TOP 1008 9869008.69 759513.214 3641.6593 VIA 1081 9868835.31 75945.755 3623.3257 TOP 1009 9868991.44 759497.445 3644.8901 TOP 1082 9868835.38 759445.976 3623.3257 TOP 1010 9868903.49 759518.105 3640.5706 VIA 1084 9868881.79 75940.5914 3622.6891 VIA 1011 986900.59 759518.105 3640.5706 VIA 1084 9868881.79 75940.5914 3622.6891 VIA 1011 986900.59 759515.934 3642.4754 TOP 1085 9868881.70 759446.673 3624.4205 TOP 1014 986901.05 759515.934 3642.4754 TOP 1086 986888.79 75950.517 3619.089 TOP 1015 986901.55 75950.794 3642.6754 TOP 1086 986881.70 759445.914 3622.6891 VIA 1014 986901.55 75950.794 3642.6722 TOP 1086 986881.70 759445.914 3622.6891 VIA 1016 9869024.98 759487.768 3653.2484 TOP 1089 986881.50 759445.914 3622.6891 TOP 1015 986901.55 75952.0794 3642.6722 TOP 1088 986882.79 759544.5137 3624.3055 TOP 1018 986901.55 75952.245 3641.3834 VIA 1090 986881.50 75944.914 3622.6891 VIA 1016 9869024.38 759487.768 3653.2484 TOP 1089 986881.50 75944.9147 3623.0388 VIA 1016 986903.17 75950.961 3641.3834 VIA 1091 986803.73 75944.9147 3623.0388 VIA 1016 986903.83 75952.1015 3641.3834 VIA 1091 986883.93 75944.9147 3623.0388 VIA 1016 986901.83 75952.1015 3641.3834 VIA 1091 986883.93 75944.949 36224.1055 VIA 1010 986901.83 75952.101					1					
1003 986897-127 75945-122 3652-1204 TOP 1076 9868842 75945-742 3623-0348 VA 1005 9869001.36 759508.285 3642-2888 VIA 1077 8968881-14 75945-742 3623-0348 VIA 1005 9869001.36 759511.324 3641-936 VIA 1078 9868841.31 75945-742 3623-2345 VIA 1006 9868988.31 75945-741 3623-2345 VIA 1006 986898.31 75945-741 3623-2345 VIA 1008 9869008.38 759515.67 3641-074 VIA 1080 9868881.31 75945-741 3623-2345 TOP 1007 9869008.39 759513.214 3641.6593 VIA 1081 986883.39 759425-43 3631.5903 TOP 1009 9868997-14 759445-83 3652-048 VIA 1010 9869897-14 759445-83 3652-048 VIA 1010 9869897-14 759445-83 3652-0429 TOP 1083 9868825-51 75944-976 3624-0308 VIA 1011 986900-15 75959-66 3642-9725 TOP 1085 986881-15 75944-976 3624-3005 TOP 1012 986900-15 75959-66 3642-9725 TOP 1085 986881-15 75944-976 3624-3005 TOP 1014 9869001-15 75950-95 3642-2754 TOP 1087 986881-15 75944-976 3624-3005 TOP 1015 986901-15 75950-594 3642-4754 TOP 1087 986881-15 75945-473 3622-088 VIA 1016 986901-15 75952-0794 3642-6522 TOP 1087 986881-25 75944-976 3624-1533 TOP 1017 986901-15 75952-0794 3642-6522 TOP 1088 986881-25 75943-173 3622-1088 VIA 1019 986901-15 75952-16 3641-344 VIA 1090 986881-92 75944-197 3623-0388 VIA 1019 986901-15 75952-16 3641-544 VIA 1090 986881-92 75944-197 3623-0388 VIA 1019 986901-15 75952-16 3641-544 VIA 1090 986881-92 75944-197 3623-0388 VIA 1019 986901-18 75952-195 3642-444 TOP 1093 986880-18 75948-93 3623-227 TOP 1002 986900-18 75952-195 3642-444 TOP 1093 986880-18 75948-93 3623-227 TOP 1004 986891-18 75948-93 3642-357 VIA 1019 986890-18 75948-93 3642-357 VIA 1019 986890-18 75948-93 3642-357 VIA 1019 986890-18 75948-93 3642-357 VIA					!					
1005 986901.36 759511.324 3641.936 VIA 1078 9868841.83 759454.713 3622.255 VIA 1006 986898.83 759487.822 3641.9612 TOP 1079 9868949.39 75943.555 3623.3257 TOP 1008 986900.69 759513.214 3641.6593 VIA 1081 986883.99 759425.43 3631.5903 TOP 1009 986899.714 759464.9801 TOP 1082 9868863.8 75948.3555 3623.325 TOP 1009 986899.714 759465.836 3652.0429 TOP 1082 9868863.8 759449.761 3624.4256 TOP 1011 986900.19 759465.836 3652.0429 TOP 1083 9868825.61 759444.673 3624.4256 TOP 1011 986900.53 75950.562 3640.5706 VIA 1084 986881.5 759446.914 3622.6891 VIA 1011 986900.53 75950.562 3642.9725 TOP 1085 986881.5 759446.914 3622.6891 VIA 1013 986900.53 75950.525 3642.9725 TOP 1086 9868817.03 75943.7403 3624.3005 TOP 1014 986901.105 759515.934 3624.754 TOP 1087 9868812.5 759446.914 3622.6891 VIA 1016 986901.55 759550.794 3642.6522 TOP 1088 9868812.5 759446.914 3622.6891 VIA 1016 9869024.98 759487.768 3653.2848 TOP 1089 9868812.5 759446.137 3622.1068 VIA 1018 986901.54 759522.05 3641.5342 VIA 1090 9868812.5 759444.197 3622.088 VIA 1018 986901.54 759522.65 3642.7444 TOP 1089 9868812.5 759444.973 3623.088 VIA 1018 986901.54 759522.65 3642.7444 TOP 1093 9868812.5 75944.1497 3623.088 VIA 1018 986901.58 75952.25 3642.7444 TOP 1093 9868812.5 75944.836 3673.272 VIA 1019 986903.717 75950.96 3651.7991 TOP 1092 9868873.6 75993.613 3617.732 VIA 1019 986903.717 75950.96 3617.591 TOP 1094 9868861.8 75945.486 3622.593 VIA 1021 986901.8 75952.053 3648.974 VIA 1099 9868813.8 75945.466 3622.593 VIA 1022 986903.78 75952.053 3648.974 VIA 1099 9868813.8 75945.66 3622.5939 VIA 1022 986903.8 75952.053 3642.6616 TOP 1096 986883.8 75945.96 3622.59										
1006 9869908.83 759457.622 3645.9612 TOP 1079 9868849.39 75943.416 3631.2441 TOP 1007 9869003.89 759515.67 3641.074 VIA 1081 9868865.1 759443.54.3 3631.3593 TOP 1008 9869907.44 759497.445 3644.9801 TOP 1082 986883.39 759425.43 3631.5903 TOP 1009 986997.44 759497.445 3644.9801 TOP 1082 986883.39 759449.976 3623.048 VIA VIA 1010 9868989.19 759455.83 3652.0429 TOP 1083 9868826.16 759444.673 3624.4256 TOP 1011 986900.459 759518.105 3640.5706 VIA 1084 986888.79 759509.517 3619.0139 TOP 1011 986900.73 759477.542 3652.6154 TOP 1086 9868831.5 759446.914 3622.6891 VIA 1014 986901.05 759515.934 3642.4754 TOP 1086 986882.59 759506.632 3619.0899 TOP 1014 986901.05 759515.934 3642.4754 TOP 1086 986882.59 759506.632 3619.0899 TOP 1015 986901.45 759520.794 3642.6522 TOP 1088 9868812.52 759487.472 3622.1068 VIA 1016 986901.45 759520.074 3645.6522 TOP 1088 9868812.52 759484.772 3624.1553 TOP 1017 986901.45 759521.015 3641.3834 VIA 1091 9868819.22 759444.497 3623.0888 VIA 1019 986901.77 759501.961 3651.5941 VIA 1091 9868913.77 759501.961 3651.7941 TOP 1092 9868873.63 75950.513 3619.3222 TOP 1012 986901.52 75950.965 3638.9313 VIA 1091 9868818.39 75948.497 3623.0388 VIA 1012 986901.38 75952.756 3638.9313 VIA 1091 986882.88 759498.497 3620.4464 TOP 1022 986900.33 75952.756 3638.9313 VIA 1097 9868883.88 759498.697 3620.4464 TOP 1022 986900.33 75952.756 3638.9313 VIA 1097 9868883.88 759498.697 3620.4664 TOP 1024 986901.38 75952.756 3638.9313 VIA 1097 986883.88 759490.52 3620.0088 TOP 1022 986900.33 75952.756 3638.9313 VIA 1097 986883.88 759490.52 3620.0088 TOP 1023 986900.33 75952.756 3638.9313 VIA 1097 986883.88 759490.53 3620.008	1004	9869004.56	759508.285	3642.2888	VIA	1077	9868839.14	759457.742	3623.0498	VIA
1007 986900.88 759513.214 3641.6593 VIA 1080 986885.1 759483.555 3623.3257 TOP 1089 9868997.14 759497.445 3644.9601 TOP 1082 986883.39 75945.43 3631.5903 TOP 1010 9868997.14 759497.445 3644.9601 TOP 1082 986883.38 75944.976 3623.048 VIA VIA 1010 986899.91 759465.836 3652.0429 TOP 1083 9868825.61 75944.673 3624.4256 TOP 1011 986900.512 759509.626 3642.9725 TOP 1085 9868831.5 75944.6914 3622.6891 VIA VIA 1034 986900.733 759477.542 3652.6154 TOP 1086 9868817.03 75945.914 3622.6891 VIA VIA 986901.105 759515.934 3624.4754 TOP 1087 9868825.6 759506.623 3619.0689 TOP 1011 986901.105 759515.934 3622.6754 TOP 1086 9868817.03 759506.623 3619.0689 TOP 1015 986904.85 759506.623 3619.0689 TOP 1015 986904.85 759847.768 3652.484 TOP 1087 9868824.87 759445.137 3622.1088 VIA 1016 9869024.85 759847.768 3652.484 TOP 1089 9868812.57 759506.623 3624.1553 TOP 1017 986901.15 759521.013 3641.3834 VIA 1090 9868819.22 759441.977 3623.0388 VIA 1018 986901.54 759522.455 3641.5424 VIA 1090 9868819.22 759441.977 3623.0388 VIA 1018 986901.55 759522.255 3642.7444 TOP 1093 9868807.83 759505.613 3619.7322 TOP 1020 986901.53 759522.55 3642.7444 TOP 1093 9868807.83 759493.972 3623.7279 VIA 1021 986901.83 759527.98 3651.5426 TOP 1094 9868883.88 759493.052 3623.7279 VIA 1021 986903.18 759527.98 3651.826 TOP 1096 986883.83 759456.166 3622.6676 VIA 1024 986902.18 759527.98 3651.826 TOP 1096 986883.83 75945.616 3622.6676 VIA 1024 986902.18 759527.98 3641.826 TOP 1098 986883.83 75945.616 3622.6676 VIA 1024 986903.18 75952.02 3639.816 VIA 1007 986883.83 75945.616 3622.6676 VIA 1024 986903.18 75952.02 3639.816 VIA 1009 986883.83 75945.93 3620.0098					-					
1008 9869006.60 759513.214 3641.6593 VIA 1081 986883.99 759425.43 3631.5003 TOP 1009 9868997.14 759497.445 3644.9801 TOP 1082 9868883.81 759449.976 3622.4256 TOP 1011 986900.51 759456.836 3652.0429 TOP 1083 986888.87 759509.517 3619.0139 TOP 1012 986900.51 759509.626 3642.9725 TOP 1085 986881.51 759446.973 3622.6931 VIA 1013 9869007.53 759477.542 3652.6154 TOP 1086 986881.51 759447.403 3622.6931 VIA 1014 986901.105 759550.794 3642.6752 TOP 1086 986881.03 759506.623 3619.0689 TOP 1015 986881.05 759506.623 3619.0689 TOP 1015 9868901.45 759520.794 3642.6522 TOP 1088 986882.478 759443.173 3622.1068 VIA 1016 986901.45 759521.015 3641.3834 VIA 1099 986881.25 75943.4772 3624.1553 TOP 1017 986901.54 759522.45 3641.5424 VIA 1091 986881.92 75943.4836 3624.3257 VIA 1019 986901.57 759522.56 3641.5424 VIA 1091 986881.98 75943.836 3624.3257 VIA 1019 986901.57 759522.56 3641.5424 VIA 1091 986881.98 75943.836 3624.3257 VIA 1019 986901.57 759521.015 3641.3834 VIA 1099 986887.03 75950.513 3619.7322 TOP 1020 986901.58 759522.56 3641.5424 VIA 1091 986885.39 75948.68 3624.3257 VIA 1020 986901.58 759522.56 3643.9331 VIA 1095 986885.39 75948.68 3624.3257 VIA 1021 986901.38 759522.56 3643.9331 VIA 1095 986883.89 75948.68 3624.3257 VIA 1024 986901.38 759527.38 3641.5240 VIA 1097 986883.89 75948.68 3622.5393 VIA 1024 986901.38 759527.38 3651.526 TOP 1096 986883.89 75948.61 3622.6676 VIA 1024 986901.38 759527.08 3651.5426 TOP 1096 986883.89 75948.61 3622.6676 VIA 1024 986901.38 759527.08 3639.8616 VIA 1097 986885.89 75945.61 3622.6676 VIA 1024 986902.38 759552.003 3642.6616 TOP 1098 986883.89 75946.338 3622.65727 VIA 1024 986903.87										
1009 9868997.14 759497.445 3644.9801 TOP 1082 9868836.38 759449.976 3622.048 VIA 1010 986898.91 759465.836 3652.0429 TOP 1083 9868825.81 759446.73 3624.4566 TOP 1011 9869004.59 75955818.105 3604.5706 VIA 1084 9868888.79 759509.17 3619.0139 TOP 1012 9869006.21 759508.66 3642.9725 TOP 1085 986881.5 75946.914 3622.6891 VIA 1013 986901.50 759515.934 3662.6154 TOP 1086 986881.50 759446.914 3622.6891 VIA 1014 986901.50 759515.934 3642.4754 TOP 1087 986888.79 759506.632 3619.0689 TOP 1015 9869014.55 759520.794 3642.6522 TOP 1088 986882.59 759506.632 3619.0689 TOP 1016 9869014.55 759520.794 3642.6522 TOP 1088 986882.59 759445.137 3622.1068 VIA 1016 9869014.15 759521.015 3641.3834 VIA 1090 9868819.22 759441.497 3623.0388 VIA 1018 9869015.44 759522.45 3641.5424 VIA 1091 986881.92 759441.497 3623.0388 VIA 1018 9869015.44 759522.54 3641.5424 VIA 1091 986881.98 75943.836 3624.3577 VIA 1021 9869018.38 759522.056 3642.7444 TOP 1093 9868807.83 75943.836 3624.3577 VIA 1021 9869018.38 759522.0756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5393 VIA 1023 986901.78 759521.99 3661.5426 TOP 1096 9868833.88 759456.146 3622.6767 VIA 1024 986901.38 759520.705 3638.9313 VIA 1095 9868835.88 75945.96 3622.6676 VIA 1024 986901.83 759520.076 3638.9313 VIA 1095 9868835.88 75945.96 3622.6676 VIA 1024 986902.88 759520.910 3662.8600 VIA 1099 9868840.77 75945.15 3622.678 VIA 1026 986902.88 759520.210 3639.8616 VIA 1099 9868840.76 75946.533 3622.6676 VIA 1026 986902.88 759520.213 3639.8616 VIA 1099 9868840.76 75946.238 3620.5727 VIA 1034 986901.12 759532.208 3639.8616 VIA 1100 986882.88 75940.041 3620.5277 VIA 1034 986900.12 759532.08 3639.8616										
1010 9868981.9 759468.366 3652.0429 TOP 1083 9868825.61 759446.673 3624.4256 TOP 1011 9869006.21 759508.057 3640.57056 VIA 1084 9868888.7 759509.517 3622.6891 VIA 1013 9869005.21 759509.527 3642.9725 TOP 1085 9868813.5 759446.914 3622.6891 VIA 1013 9869005.23 759475.42 3652.6154 TOP 1086 9868817.03 759437.403 3624.3005 TOP 1015 9869014.55 759520.794 3642.6522 TOP 1088 9868824.78 759437.403 3624.3005 TOP 1015 9869014.55 759520.794 3642.6522 TOP 1088 9868824.78 759445.137 3622.1068 VIA 1016 9869014.55 759520.794 3642.6522 TOP 1088 9868824.78 759445.137 3622.1068 VIA 1016 9869014.55 759521.015 3641.3834 VIA 1090 9868819.22 759444.37 3623.3038 VIA 1018 9869014.55 759521.015 3641.3834 VIA 1090 9868819.22 759444.363 3624.3557 VIA 1019 9869015.52 759522.256 3642.7444 TOP 1092 986887.83 759438.36 3624.3257 VIA 1010 9869015.52 759522.256 3642.7444 TOP 1093 9868807.83 759438.97 3620.4464 TOP 1020 9869015.52 759522.256 3642.7444 TOP 1094 9868863.39 759498.497 3620.4464 TOP 1022 9869003.39 759520.756 3638.9313 VIA 1095 9868835.18 759456.861 3622.6676 VIA 1024 9869013.38 759527.389 3641.8249 VIA 1097 9868853.88 75945.861 3622.5393 VIA 1002 9869011.58 759527.389 3641.8249 VIA 1097 9868823.88 759457.89 3620.4464 TOP 1024 9869011.38 759527.010 3642.6616 TOP 1096 9868823.88 759457.95 3620.7833 TOP 1024 9869021.38 759527.010 3642.6616 TOP 1098 9868823.88 759457.89 3620.6783 VIA 1002 9869021.88 759527.389 3642.8002 TOP 1101 9868843.85 759472.838 3620.5754 TOP 1024 9869025.89 759529.217 3642.1115 VIA 1100 9868823.88 759478.83 3620.5754 TOP 1024 9868907.87 759529.217 3642.6115 VIA 1100 9868823.88 7594578.08 3620.7554 TOP 1033 9869001.8										
1011 9869004.59 759518.10.5 3640.5706 VIA 1084 9868881.5 759446.914 3622.6891 VIA 1013 9869007.53 75947.542 3652.6154 TOP 1085 986881.5 759446.914 3622.6891 VIA 1014 9869011.05 759515.934 3642.4754 TOP 1087 986881.03 759437.403 3624.3005 TOP 1015 9869014.55 759520.794 3642.6522 TOP 1088 986882.78 75950.632 3619.0689 TOP 1015 9869014.55 759520.794 3642.6522 TOP 1088 986882.478 759445.173 3622.1068 VIA 1016 9869024.98 759487.768 3653.2484 TOP 1089 9868812.52 759441.497 3624.1553 TOP 1017 9869014.15 759521.015 3641.8334 VIA 1090 9868819.22 759441.497 3624.1553 TOP 1018 9869015.44 759522.45 3641.5244 VIA 1019 986881.92 759441.497 3623.0388 VIA 1019 9869037.17 759501.961 3651.7591 TOP 1092 9868873.63 75953.513 3619.7322 TOP 1020 9869018.55 759522.256 3642.7444 TOP 1093 9868807.83 75949.672 3623.7297 VIA 1021 9869018.38 759525.148 3641.977 TOP 1094 9868865.39 75948.497 3620.4464 TOP 1022 9869037.17 759521.956 3638.9313 VIA 1095 9868835.18 759456.164 3622.5393 VIA 1023 9869018.38 75952.756 3638.9313 VIA 1095 9868835.18 759456.164 3622.5393 VIA 1024 9869021.38 75952.709 3642.6616 TOP 1096 986883.88 759456.164 3622.5393 VIA 1024 9869021.58 75952.003 3642.6616 TOP 1096 9868832.88 759456.96 3620.0098 TOP 1025 986902.18 75952.003 3642.6616 TOP 1098 9868842.77 759484.455 3621.6196 VIA 1024 986902.59 759520.102 3639.8616 VIA 1100 986882.217 759454.455 3620.7833 TOP 1027 986902.59 759520.203 3642.600 TOP 1101 9868832.57 75945.038 3620.7833 TOP 1029 9868840.76 759454.455 3621.6196 VIA 1039 986904.88 759532.023 3639.3404 VIA 1100 9868832.55 75946.055 3621.1512 TOP 1031 986902.47 759532.008 3638.5074 VIA 1100 9868832.55 75946.055							1			
1013 9869017.53 75947.542 3652.6154 TOP 1086 9868817.03 759437.403 3624.3005 TOP 1014 9869011.105 759515.934 3642.6754 TOP 1087 986882.79 75956.632 3619.689 TOP 1015 9869014.55 759520.794 3622.068 VIA 1016 9869024.98 759520.794 3632.3484 TOP 1089 9868824.78 759445.137 3622.1068 VIA 1016 9869014.15 759521.015 3641.8334 VIA 1090 9868819.22 759434.772 3624.1553 TOP 1017 9869015.44 759522.45 3641.5324 VIA 1090 9868819.22 759441.497 3623.0388 VIA 1019 9869015.47 75950.161 3651.7591 TOP 1091 9868811.98 759434.836 3624.3257 VIA 1019 9869015.25 759522.256 3642.7444 TOP 1093 9868807.83 759438.436 3624.3257 VIA 1021 9869015.35 759522.256 3642.7444 TOP 1093 9868807.83 759438.497 3623.0464 TOP 1022 9869015.38 759525.148 3641.97 TOP 1094 986885.39 759498.497 3623.04464 TOP 1022 986903.39 759520.756 3638.9313 VIA 1095 986885.31 759456.146 3622.6567 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 986883.98 759456.861 3622.6676 VIA 1024 9869021.38 759527.098 3642.6616 TOP 1098 986883.98 759457.96 3623.7333 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 986883.78 75942.052 3620.0098 TOP 1026 986888.89 759457.96 3621.6196 VIA 1027 9869025.89 759529.059 3642.8002 TOP 1019 986884.97 759481.5 3620.7833 TOP 1027 9869025.89 759529.069 3642.8002 TOP 1010 986882.17 75946.455 5621.5819 VIA 1029 986904.88 759532.421 3639.8616 VIA 1030 9869001.12 759513.20 3639.765 VIA 1103 986882.55 75946.055 3621.5119 VIA 1031 986902.77 759532.008 3642.600 VIA 1104 986883.89 75946.019 3622.2638 VIA 1034 9868903.81 759532.408 3638.765 VIA 1104 986883.59 75946.019 3622.2638 VIA 1034 9868903.81 759532.408 3638.765 VIA 1104 986887.59 75946.019 3622.263							t			
1014 9869011.05 759515.934 3642.4754 TOP 1087 986882.59 759506.632 3619.0689 TOP 1015 9869014.55 75952.0794 3642.6522 TOP 1088 9868824.78 759485.137 3622.1068 VIA 1016 9869024.98 759487.68 3653.2484 TOP 1089 9868812.52 759434.777 3624.1553 TOP 1017 9869014.15 759521.015 3641.3834 VIA 1090 9868819.22 759441.497 3623.0388 VIA 1018 9869015.44 759522.45 3641.5424 VIA 1091 9868811.98 759434.873 3624.3257 VIA 1019 9869037.17 759501.961 3651.7591 TOP 1092 9868813.83 759439.672 3623.7297 VIA 1019 9869018.15 759522.256 3642.7444 TOP 1093 9868805.83 759439.672 3623.7297 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868865.39 759498.497 3620.4464 TOP 1022 9869003.37 759525.148 3641.97 TOP 1094 9868865.39 759498.497 3620.4644 TOP 1022 9869003.39 759520.756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5939 VIA 1023 9869021.78 759527.389 3641.8249 VIA 1097 9868832.89 759456.861 3622.6676 VIA 1024 9869021.85 759527.089 3642.6616 TOP 1098 9868832.89 759457.96 3621.6196 VIA 1026 9869003.34 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1026 9869003.59 759529.217 3642.1115 VIA 1100 986882.17 75944.455 3621.5819 VIA 1029 986906.48 759529.217 3642.8002 TOP 1101 9868843.85 75947.838 3620.7554 TOP 1029 986906.48 759519.829 3642.600 VIA 1103 986901.12 759519.829 3639.1765 VIA 1103 9868907.7 75948.83 3620.5757 VIA 1103 9869001.12 759519.829 3642.600 VIA 1104 986883.89 75946.541 3621.0339 VIA 1035 986990.78 759520.088 3642.060 VIA 1104 986887.67 75946.541 3621.0339 VIA 1035 986990.78 759519.829 3640.0201 VIA 1100 9868834.89 75946.541 3621.0339 VIA 1035 986990.78 759519.831 3638.71577 VIA 1109 9868853.68 75990.418 3	1012	9869006.21	759509.626	3642.9725	TOP	1085	9868831.5	759446.914	3622.6891	VIA
1015 9869014.55 759520.794 3642.6522 TOP 1088 9868824.78 759445.137 3622.1068 VIA 1016 9869024.98 759487.768 3653.2484 TOP 1089 9868815.22 759441.497 3623.0388 VIA 1018 9869015.44 759522.45 3641.5424 VIA 1091 9868811.28 759441.497 3623.0388 VIA 1018 9869015.44 759522.45 3641.5424 VIA 1091 9868811.98 759441.897 3623.0388 VIA 1019 9869015.47 759501.051 3651.7591 TOP 1092 9868873.87 759439.672 3623.2797 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868807.83 759439.672 3623.2797 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868853.93 759439.672 3623.2797 VIA 1022 986903.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.861 3622.5393 VIA 1024 9869021.38 759514.989 3651.4526 TOP 1096 9868835.18 759456.861 3622.6676 VIA 1024 9869021.38 759527.389 3642.6616 TOP 1098 9868835.87 759456.861 3622.6676 VIA 1025 986903.14 759520.102 3639.8616 VIA 1099 9868838.87 759456.861 3622.6676 VIA 1026 986903.41 759520.102 3639.8616 VIA 1099 9868832.87 75948.15 3620.7833 TOP 1027 9869025.89 759520.102 3639.8616 VIA 1099 9868832.88 75945.965 3621.5819 VIA 1028 9869025.89 759520.212 3642.7615 VIA 1100 9868822.17 75948.15 3620.7833 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1101 9868843.85 759472.838 3620.7557 VIA 1030 986901.12 759531.406 3641.5508 VIA 1103 9868900.718 759531.406 3641.5508 VIA 1104 9868834.84 759460.951 3621.2518 VIA 1034 9869007.18 759531.406 3641.5508 VIA 1105 9868840.76 75940.093 3619.7225 VIA 1034 986990.718 759531.406 3641.5508 VIA 1106 9868840.76 75940.093 3619.7225 VIA 1034 986990.30 759531.206 3642.506 VIA 1107 9868840.77 75948.86 3622.638 TOP 1101 9868890.78 759530.688 3632.636 TOP 1110 9868840.77 75948.										
1016 9869024.98 759487.768 3653.2484 TOP 1089 9868812.52 759434.772 3624.1553 TOP 1017 9869015.44 759522.10.15 3641.3834 VIA 1090 9868819.22 759441.477 3623.0388 VIA 1019 9869015.74 759522.56 3642.7444 TOP 1092 9868813.63 759434.836 3624.3257 VIA 1019 9869015.52 75952.256 3642.7444 TOP 1093 986887.83 759439.672 3623.7297 VIA 1021 9869018.38 759525.256 3642.7444 TOP 1093 9868807.83 759439.672 3623.7297 VIA 1021 9869018.38 759525.256 3642.7444 TOP 1094 9868855.38 759496.6146 3622.5393 VIA 1022 986903.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5393 VIA 1023 9869051.78 759521.4998 3651.5426 TOP 1096 9868833.99 759456.616 3622.6676 VIA 1024 9869021.58 759527.098 3641.8249 VIA 1097 98689858.88 759457.96 3621.6196 VIA 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 9869023.87 759529.107 3642.1151 VIA 1100 9868824.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.210 3642.8002 TOP 1101 9868848.85 759472.838 3620.5754 TOP 1029 986906.48 759523.241 3648.7654 TOP 1102 9868948.85 759472.838 3620.5754 TOP 1031 9869021.7 759513.20 3639.165 VIA 1103 9868901.87 759533.208 3642.60 VIA 1104 9868834.84 75946.0541 3621.0389 VIA 1032 9869018.1 759533.208 3642.06 VIA 1104 9868835.39 75946.0541 3621.1512 TOP 1031 9869902.47 759533.208 3642.06 VIA 1104 9868875.39 75940.541 3621.1512 TOP 1031 986990.718 759529.094 3640.0201 VIA 1107 9868848.85 759472.838 3620.5727 VIA 1034 9869907.87 759533.208 3642.06 VIA 1104 9868875.39 75940.19 3622.638 TOP 1034 9869907.87 75952.938 3638.636 TOP 1110 9868875.39 75940.19 3622.638 TOP 1034 9868995.30 759520.608 3640.0201 VIA 1107 9868885.32 759490.13					1					
1017 9869015.44 75952.1015 3641.3834 VIA 1090 9868819.22 759441.497 3623.0388 VIA 1018 9869015.44 75952.245 3641.5424 VIA 1091 9868811.98 759434.836 3624.3257 VIA 1019 9869031.77 759501.961 3651.7591 TOP 1092 986897.83 75950.513 3619.7322 TOP 1020 9869015.52 759522.256 3642.7444 TOP 1093 9868807.83 759439.672 3623.7297 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868865.39 759498.497 3620.4464 TOP 1022 986903.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5393 VIA 1023 9869021.38 759527.389 3651.5426 TOP 1096 9868835.18 759456.146 3622.5393 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 9868835.87 759492.052 3620.0098 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868828.78 759492.052 3620.0098 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1000 9868822.17 759484.455 3621.5819 VIA 1028 9869025.89 759529.217 3642.1115 VIA 1100 9868822.17 759454.455 3621.5819 VIA 1030 986902.88 759532.421 3648.7654 TOP 1102 9868904.88 759532.421 3648.7654 TOP 1102 9868948.87 575946.055 3621.5151 TOP 1031 986902.17 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.5151 TOP 1031 986901.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.5151 TOP 1031 986900.17 759533.00 3641.5050 VIA 1104 986884.74 75946.055 3621.5151 TOP 1031 986900.17 759529.094 3640.0001 VIA 1106 9868840.76 759467.055 3621.1512 TOP 1031 986900.17 759526.094 3640.0001 VIA 1107 9868895.30 759517.537 3638.0747 VIA 1109 9868865.31 759475.038 3619.8550 VIA 1036 9868995.03 759517.83 3639.657 TOP 1110 9868871.38 75950.086 3618.8512 VIA 1039 986890.34 759517.283 3639.667 TOP 1110 9868887.25 759490.418 3619.8505 VIA 1049 986895.34 75950					1					
1018 9869015.44 759522.45 3641.5424 VIA 1091 9868811.98 759434.836 3624.3257 VIA 1019 9869015.17 759501.961 3651.7591 TOP 1092 9868873.63 75953.513 3619.7322 TOP 1020 9869015.52 759522.56 3642.7444 TOP 1093 9868807.83 759438.672 3623.7297 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868863.93 759498.497 3620.4464 TOP 1022 9869003.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.861 3622.6393 VIA 1024 9869013.18 759514.998 3651.5426 TOP 1096 9868835.18 759456.861 3622.6676 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 9868835.88 759492.052 3620.0098 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 986903.34 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.91 759529.069 3642.8002 TOP 1101 9868828.75 759472.838 3620.5754 TOP 1029 986906.488 759532.421 3648.7654 TOP 1102 9868948.85 759472.838 3620.5754 TOP 1031 986901.12 759519.829 3639.1765 VIA 1103 9868940.76 75946.051 3621.5152 TOP 1031 9869021.17 759533.208 3642.666 VIA 1104 9868834.85 75946.278 3620.5727 VIA 1032 9869901.1 759533.208 3642.606 VIA 1104 9868834.85 75946.0541 3621.0389 VIA 1032 9869901.1 759533.208 3642.066 VIA 1104 9868840.76 75946.0541 3621.0389 VIA 1032 9869903.7 759533.208 3642.066 VIA 1104 9868835.93 75946.178 3619.1255 VIA 1103 986890.79 759533.208 3642.606 VIA 1104 9868835.93 75946.178 3619.1255 VIA 1103 986890.79 759533.208 3642.606 VIA 1104 986885.53 75946.278 3620.5727 VIA 1103 986890.79 759533.208 3640.607 VIA 1106 986885.53 75946.278 3619.8550 VIA 1034 986990.71 759533.60 3640.2079 TOP 1110 9868855.32 75949.018 3619.1855 VIA 1036 9868995.03 759517.633 3639.					1		1			
1020 9869015.52 759522.256 3642.7444 TOP 1093 9868807.83 759439.672 3623.7297 VIA 1021 9869018.38 759525.148 3641.97 TOP 1094 9868865.39 759498.497 3620.4464 TOP 1022 986903.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5393 VIA 1023 9869021.38 759527.389 3651.5426 TOP 1096 9868833.99 759456.861 3622.6576 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 9868858.78 759492.052 3620.0098 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 9869023.41 759520.102 3639.8616 VIA 1099 9868842.88 759457.96 3621.6196 VIA 1026 9869025.91 759529.217 3642.1115 VIA 1100 9868822.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 986882.85 759462.378 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 986828.255 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868843.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1104 9868840.76 759460.054 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.76 759478.083 3619.7225 VIA 1035 9868995.37 759513.2 3640.3741 TOP 1108 9868840.75 759478.083 3619.1853 VIA 1035 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 75990.108 3618.8512 VIA 1038 9868995.03 759552.098 3639.7557 TOP 1110 986887.35 759490.418 3619.8553 VIA 1038 9868990.34 759513.2 3640.3741 TOP 1108 9868871.35 75950.108 3618.8512 VIA 1039 986890.34 759513.2 3639.637 TOP 1110 986887.35 75950.108 3618.8512 VIA 1049 986895.05 75950.668 3640.2795 TOP 1111 9868871.35 75950.108 3618.8512 VIA 1049 986895.67 75950.863					-		†			
1021 9869018.38 759525.148 3641.97 TOP 1094 9868865.39 759498.497 3620.4464 TOP 1022 9869003.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.166 3622.5393 VIA 1023 9869051.78 759514.998 3651.5426 TOP 1096 9868835.18 759456.861 3622.6676 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 9868858.78 759456.861 3622.6676 VIA 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868838.88 759457.96 3621.6196 VIA 1026 9869003.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 9868821.77 759481.5 3620.7833 TOP 1029 9869025.89 759529.217 3642.1115 VIA 1100 9868823.85 759472.838 3620.7554 TOP 1029 9869064.88 759520.421 3648.7654 TOP 1102 9868828.55 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868844.84 759467.055 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 986901.12 759513.20 3640.0201 VIA 1106 9868840.74 759478.083 3619.1255 VIA 1034 986995.03 759510.90 3640.0201 VIA 1106 9868849.92 759490.418 3619.853 VIA 1035 9868995.03 759517.283 3639.2637 TOP 1110 9868851.58 75950.108 3618.8512 VIA 1037 986995.03 759517.283 3639.2637 TOP 1110 9868871.35 759509.916 3617.3007 VIA 1049 9868995.03 759510.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1049 9868995.03 75950.833 3637.656 TOP 1111 9868871.35 759505.293 3619.3105 VIA 1041 986897.12 75950.833 3637.656 TOP 1111 9868871.35 759505.293 3619.3105 VIA 1041 986897.12 75950.833 3637.656 TOP 1111 9868871.35 759505.293 3617.9374 VIA 1044 9868975.54 75950.833	1019	9869037.17	759501.961	3651.7591	TOP	1092	9868873.63	759503.513	3619.7322	TOP
1022 9869003.93 759520.756 3638.9313 VIA 1095 9868835.18 759456.146 3622.5393 VIA 1023 9869051.78 759514.998 3651.5426 TOP 1096 9868833.99 759456.861 3622.6676 VIA 1024 9869021.38 759527.098 3641.8249 VIA 1097 9868832.88 759457.96 3621.6196 VIA 1026 9869021.58 75952.009 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 9869003.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 9868822.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868823.85 759472.838 3620.7524 TOP 1029 9869064.88 759532.21 3648.7654 TOP 1102 9868828.55 759462.378 3620.7527 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868834.84 759467.055 3621.1512 TOP 1031 986901.71 759519.829 3639.1765 VIA 1104 9868834.84 759467.055 3621.1512 TOP 1031 986901.71 759519.829 3639.1765 VIA 1104 9868834.84 759467.055 3621.1512 TOP 1031 986901.71 759519.829 3639.747 VIA 1106 9868840.76 759467.055 3621.1512 TOP 1033 986990.718 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 9869007.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868995.03 759517.283 3639.2637 TOP 1110 9868851.58 759520.08 3618.506 VIA 1036 9868990.33 759517.283 3639.2637 TOP 1110 9868851.58 759509.916 3617.3007 VIA 1039 986902.9 759500.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868950.33 759517.283 3638.666 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1041 986897.12 75950.833 3637.5572 TOP 1111 9868872.62 759515.085 3617.9374 VIA 1042 986995.65 75950	1020	9869015.52	759522.256	3642.7444	TOP	1093	9868807.83	759439.672	3623.7297	VIA
1023 9869051.78 759514.998 3651.5426 TOP 1096 9868833.99 759456.861 3622.6676 VIA 1024 9869021.38 759527.389 3641.8249 VIA 1097 9868858.78 759492.052 3620.0098 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 986883.88 759457.96 3621.6196 VIA 1026 986903.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 9868822.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868843.85 759472.838 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 9868828.55 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868940.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868834.84 759460.541 3621.0389 VIA 1034 986995.65 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 9869097.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868995.03 759517.537 3638.0747 VIA 1109 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.283 3639.2637 TOP 1110 9868871.35 759509.018 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868871.35 759509.16 3617.3007 VIA 1040 9868991.88 75952.098 3637.5572 TOP 1111 9868871.35 759509.16 3617.3007 VIA 1040 986897.74 75950.83 3635.8557 VIA 1113 9868872.67 75950.366 3618.711 VIA 1041 9868977.17 75950.336 3638.5557 VIA 1114 9868871.38 75951.086 3618.711 VIA 1042 986997.54 75950.33 3638.557 VIA 1116 9868871.38 75951.086 3615.2332 VIA 1044 9868957.55 75950.345 3633.638.6507 VIA 1111 9868871.38 75951.086 3615.2332 VIA 1044 9868957.55 75950.37							t			
1024 9869021.38 759527.389 3641.8249 VIA 1097 9868858.78 759492.052 3620.0098 TOP 1025 9869021.58 759527.098 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 9869003.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 986822.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868843.85 759472.838 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 9868828.55 759462.378 3620.5727 VIA 1030 986901.12 759519.829 3639.1765 VIA 1103 9868843.84 759460.541 3621.0389 VIA 1032 9869024.7 759533.208 3642.606 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759519.32 3640.0201 VIA 1107 9868849.92 75940.418 3619.1853 VIA 1035 9868995.34 759517.33 3638.0747 VIA 1109 9868849.92 759490.418 3619.1853 VIA 1036 9868995.03 759517.283 3638.0747 VIA 1109 9868851.58 759545.108 3618.8512 VIA 1036 9868995.03 759517.283 3639.2637 TOP 1110 9868871.35 759509.916 3617.3007 VIA 1039 986995.03 759517.283 3639.2637 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868991.88 75952.098 3637.5572 TOP 1111 986887.26 75951.977 3616.3623 VIA 1040 986897.12 759508.83 3635.656 TOP 1114 986887.77 75951.676 3617.9374 VIA 1041 986897.14 759508.33 3635.656 TOP 1114 986887.38 759510.366 3618.71 VIA 1044 986897.14 759508.33 3635.6507 VIA 1119 9868888.99 759510.366 3618.7332 VIA 1044 986897.14 759508.33 3635.6507 VIA 1111 986887.89 759510.366 3618.7332 VIA 1044 9868957.59 759508.33 3635.										
1025 9869021.58 759527.098 3642.6616 TOP 1098 9868832.88 759457.96 3621.6196 VIA 1026 9869003.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 9868821.77 759484.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868843.85 759472.838 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 9868828.55 759462.378 3620.5727 VIA 1030 986901.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.512 TOP 1031 9869024.7 759533.208 3642.66 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868840.74 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759513.23 3640.3741 TOP 1108 9868840.74 759478.083 3619.7225 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868849.92 75940.418 3619.1853 VIA 1036 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 75949.127 3619.8506 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868991.88 75952.098 3637.5572 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 986897.12 759507.876 3637.636 TOP 1114 986887.77 759503.366 3618.171 VIA 1042 986997.12 759508.33 3638.656 TOP 1114 986887.77 759508.296 3618.171 VIA 1042 986997.14 759508.33 3633.656 TOP 1114 986887.38 759505.293 3617.9374 VIA 1044 986897.54 759508.33 3633.656 TOP 1114 986887.38 759505.293 3617.9374 VIA 1044 986897.54 759508.33 3633.656 TOP 1114 986887.38 759507.662 3617.9374 VIA 1044 986897.54 759508.33 3633.656 TOP 1114 986887.38 759507.662 3617.9374 VIA 1044 9868957.54 759508.35 3633.31249 V							1			
1026 9869003.41 759520.102 3639.8616 VIA 1099 9868849.77 759481.5 3620.7833 TOP 1027 9869025.89 759529.217 3642.1115 VIA 1100 9868822.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868843.85 759472.838 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 986885.55 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868843.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868840.76 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759529.094 3640.0201 VIA 1107 9868849.92 759479.048 3619.1853 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868851.85 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868853.32 759489.127 3619.4887 VIA 1038 9868902.9 759552.098 3637.5572 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868991.88 759507.876 3637.636 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868977.12 759507.876 3637.636 TOP 1114 986887.27 759503.366 3618.171 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 986887.38 759515.085 3615.2332 VIA 1044 9868975.14 759508.33 3635.6207 VIA 1116 9868871.38 759515.085 3615.2332 VIA 1044 986895.51 759502.873 3633.31249 VIA 1116 9868872.89 759505.293 3617.39374 VIA 1044 9868975.14 759508.33 3635.6207 VIA 1117 9868889.9 759510.366 3618.171 VIA 1046 9868957.59 759503.453 3633.31249 VIA 1119 9868889.89 759510.366 3618.2538 VIA 1046 9868955.51 7595							 			
1027 9869025.89 759529.217 3642.1115 VIA 1100 986882.17 759454.455 3621.5819 VIA 1028 9869025.91 759529.069 3642.8002 TOP 1101 9868843.85 759472.838 3620.7554 TOP 1029 9869064.88 759532.421 3648.7654 TOP 1102 986882.55 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.60 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868834.84 759460.541 3622.0388 VIA 1032 9869018.1 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868996.34 759512.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.283 3639.2637 TOP 1110 9868851.58 759502.108 3618.8512 VIA 1038 986890.7 75950.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1040 9868997.12 759507.876 3637.556 VIA 1113 986897.17 759507.876 3637.636 TOP 1114 986887.27 759503.366 3618.171 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.67 759512.977 3616.3623 VIA 1041 986897.14 759508.33 3638.6557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759508.33 3635.656 TOP 1115 9868868.89 759505.693 3615.8029 VIA 1044 9868975.14 759508.33 3635.6207 VIA 1116 9868871.38 759510.86 3615.3032 VIA 1049 986895.61 759507.473 3633.0332 VIA 1119 9868889.8 759507.662 3617.8033 VIA 1046 986895.61 759507.473 3633.0332 VIA 1119 9868878.9 759510.386 3618.2533 VIA 1048 986995.14 759507.473 3633.0332 VIA 1112 9868876.94 75948.6561 3635.3429 VIA 1048 986895.15 759507.474 3633.0332 VIA 1121 9868878.99 759515.667 36							1			
1029 9869064.88 759532.421 3648.7654 TOP 1102 9868828.55 759462.378 3620.5727 VIA 1030 9869001.12 759519.829 3639.1765 VIA 1103 986840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 9868995.66 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759513.2 3640.3741 TOP 1108 9868849.92 759475.222 3619.8506 VIA 1035 9868995.03 759517.537 3638.0747 VIA 1109 9868845.16 759475.222 3619.8506 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110					1					
1030 9869001.12 759519.829 3639.1765 VIA 1103 9868840.76 759467.055 3621.1512 TOP 1031 9869024.7 759533.208 3642.06 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 9869007.18 759529.094 3640.0201 VIA 1107 9868845.16 759475.222 3619.853 VIA 1035 9868995.03 759513.2 3640.3741 TOP 1108 9868851.58 759502.108 3618.8502 VIA 1036 9868995.03 759517.283 3639.2637 TOP 1110 9868851.58 759502.108 3618.8512 VIA 1038 986995.03 759500.668 3640.2795 TOP 1111					TOP					TOP
1031 9869024.7 759533.208 3642.06 VIA 1104 9868834.84 759460.541 3621.0389 VIA 1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 9869007.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868990 759500.668 3640.2795 TOP 1111										
1032 9869018.1 759531.406 3641.5508 VIA 1105 9868835.93 759460.19 3622.2638 TOP 1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 986907.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868980 759500.668 3640.2795 TOP 1111 9868873.35 759509.916 3617.3007 VIA 1049 9868971.88 7595521.621 3637.856 VIA 1113 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>†</td> <td></td> <td></td> <td></td>							†			
1033 9868998.56 759526.894 3638.9744 VIA 1106 9868840.74 759478.083 3619.7225 VIA 1034 9869007.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868980 759500.668 3640.2795 TOP 1111 9868873.35 759509.916 3617.3007 VIA 1040 9868991.88 759512.098 3637.856 VIA 1113 9868872.7 759503.366 3618.171 VIA 1041 9868971.12 759507.867 3637.636 TOP 1114										
1034 9869007.18 759529.094 3640.0201 VIA 1107 9868849.92 759490.418 3619.1853 VIA 1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868980 759500.668 3640.2795 TOP 1111 9868873.35 759509.916 3617.3007 VIA 1039 9869022.9 759552.098 3637.5572 TOP 1112 9868863.92 759497.613 3619.1105 VIA 1040 9868971.88 759521.621 3637.856 VIA 1113 9868872.67 759503.366 3618.171 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114										
1035 9868996.34 759513.2 3640.3741 TOP 1108 9868845.16 759475.222 3619.8506 VIA 1036 9868995.03 759517.537 3638.0747 VIA 1109 9868861.58 759502.108 3618.8512 VIA 1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868980 759500.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1039 98699022.9 759552.098 3637.5572 TOP 1112 9868863.92 759497.613 3619.1105 VIA 1040 9868991.88 759521.621 3637.856 VIA 1113 9868872.67 759503.366 3618.171 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759542.808 3636.686 TOP 1115										
1037 9868995.03 759517.283 3639.2637 TOP 1110 9868855.32 759489.127 3619.4887 VIA 1038 9868980 759500.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1039 9869022.9 759552.098 3637.5572 TOP 1112 9868863.92 759497.613 3619.1105 VIA 1040 986891.88 759521.621 3637.856 VIA 1113 9868872.62 759512.977 3616.3623 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759508.33 3635.8557 VIA 1116 9868876.89 759505.293 3617.9374 VIA 1043 9868975.14 759512.263 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.56 759502.873 3634.311 TOP 1118							t			
1038 9868980 759500.668 3640.2795 TOP 1111 9868871.35 759509.916 3617.3007 VIA 1039 9869022.9 759552.098 3637.5572 TOP 1112 9868863.92 759497.613 3619.1105 VIA 1040 9868991.88 759521.621 3637.856 VIA 1113 9868872.62 759512.977 3616.3623 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759542.808 3636.686 TOP 1115 9868876.89 759505.293 3617.9374 VIA 1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 9868869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118	1036	9868995.03	759517.537	3638.0747	VIA	1109	9868861.58	759502.108	3618.8512	VIA
1039 9869022.9 759552.098 3637.5572 TOP 1112 9868863.92 759497.613 3619.1105 VIA 1040 9868991.88 759521.621 3637.856 VIA 1113 9868872.62 759512.977 3616.3623 VIA 1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759542.808 3636.686 TOP 1115 9868876.89 759505.293 3617.9374 VIA 1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 9868869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 <td></td>										
1040 9868991.88 759521.621 3637.856 VIA 1113 9868872.62 759512.977 3616.3623 VIA 1041 986897.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759542.808 3636.686 TOP 1115 9868876.89 759505.293 3617.9374 VIA 1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 9868869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 9868888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 <td></td>										
1041 9868977.12 759507.876 3637.636 TOP 1114 9868872.77 759503.366 3618.171 VIA 1042 9869003.34 759542.808 3636.686 TOP 1115 9868876.89 759505.293 3617.9374 VIA 1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 9868869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 9868888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 <td></td>										
1042 9869003.34 759542.808 3636.686 TOP 1115 9868876.89 759505.293 3617.9374 VIA 1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 9868869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 9868888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 986879.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>					1					
1043 9868976.74 759508.33 3635.8557 VIA 1116 9868871.38 759515.085 3615.8029 VIA 1044 9868975.14 759512.263 3635.6207 VIA 1117 986869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 9868888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 9868798.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 986887.22 759515.677 3617.5038 VIA										
1044 9868975.14 759512.263 3635.6207 VIA 1117 986869.55 759516.361 3615.2332 VIA 1045 9868957.65 759502.873 3634.311 TOP 1118 9868882.8 759507.662 3617.8083 VIA 1046 9868957.59 759503.453 3633.1249 VIA 1119 986888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 9868798.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 986887.22 759515.677 3617.5038 VIA										
1046 9868957.59 759503.453 3633.1249 VIA 1119 986888.99 759510.346 3618.2538 VIA 1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 9868798.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 986887.22 759515.677 3617.5038 VIA		9868975.14	759512.263	3635.6207	VIA	1117		759516.361	3615.2332	VIA
1047 9868958.47 759486.651 3639.3442 TOP 1120 9868872.38 759520.68 3615.1662 VIA 1048 9868956.1 759507.147 3633.0332 VIA 1121 9868798.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 986887.22 759515.677 3617.5038 VIA										
1048 9868956.1 759507.147 3633.0332 VIA 1121 9868798.49 759433.984 3624.454 EST 1049 9868965.21 759536.395 3628.7982 TOP 1122 986887.22 759515.677 3617.5038 VIA							1			
1049 9868965.21 759536.395 3628.7982 TOP 1122 9868887.22 759515.677 3617.5038 VIA							t			
							t			
	1050	9868956.16	759507.032	3633.0842	VIA	1123	9868858.87	759525.844	3613.0229	VIA

	PLINTOS TO	POGRÁFICOS -	IITM WGS 84	•		PLINTOS TOP	OGRÁFICOS - I	IITM WGS 85	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
1124	9868881.69	759517.191	3616.9222	VIA	1210	9868769.36	759563.727	3596.3209	VIA
1125	9868856.46	759521.11	3612.8278	VIA	1211	9868762.45	759566.625	3594.9358	VIA
1126	9868848.19	759522.31	3611.3685	VIA	1212	9868836.29	759506.412	3612.8555	TOP
1127	9868848.38	759527.3	3611.4357	VIA	1213	9868760.5	759561.573	3594.8972	VIA
1128 1129	9868836.94 9868836.88	759522.181 759527.02	3609.6827 3609.5451	VIA VIA	1214 1215	9868746.19 9868746.74	759564.869 759569.845	3591.9913 3591.9207	VIA VIA
1130	9868871.78	759513.184	3617.4313	TOP	1215	9868814.92	759505.321	3609.6047	TOP
1131	9868825.89	759521.961	3607.975	VIA	1217	9868726.77	759570.08	3588.5406	VIA
1132	9868826.42	759527.212	3607.9799	VIA	1218	9868727.83	759565.388	3588.7544	VIA
1133	9868871.1	759514.643	3616.8695	TOP	1219	9868711.88	759569.867	3586.4395	VIA
1134	9868818.4	759522.864	3606.6894	VIA	1220	9868696.53	759566.995	3584.2346	VIA
1135	9868819.34	759528.303	3606.9791	VIA	1221	9868698.12	759572.2	3584.2462	VIA
1136 1137	9868869.9 9868863.49	759515.908 759518.226	3616.4946	TOP TOP	1222 1223	9868804.21 9868690.04	759543.542 759568.825	3601.4453	TOP VIA
1137	9868860.19	759519.376	3615.5819 3614.2196	TOP	1223	9868682.09	759577.431	3583.4269 3582.3122	VIA
1139	9868858.38	759519.528	3614.1795	TOP	1225	9868793.24	759554.117	3598.9299	TOP
1140	9868857.59	759520.559	3614.1626	TOP	1226	9868713.98	759565.303	3586.806	VIA
1141	9868881.71	759518.373	3617.1505	EST	1227	9868682.1	759577.448	3582.2717	VIA
1142	9868848.05	759521.954	3612.746	TOP	1228	9868686.33	759581.102	3582.1912	VIA
1143	9868841.66	759522.173	3611.6885	TOP	1229	9868694.55	759575.047	3584.4582	TOP
1144	9868833.47	759521.558	3610.7132	TOP	1230	9868773.85	759571.907	3595.5483	TOP
1145 1146	9868828.9 9868827.62	759521.351 759520.996	3609.8697 3609.4316	TOP TOP	1231 1232	9868687.08 9868674.62	759581.897 759595.263	3583.6812 3580.3743	TOP VIA
1147	9868986.03	759413.863	3659.5522	VIA	1232	9868671.27	759593.203	3580.3743	VIA
1148	9868985.89	759410.382	3659.4242	VIA	1234	9868677.66	759593.966	3582.2749	TOP
1149	9868991.34	759411.318	3659.9294	VIA	1235	9868751.96	759586.039	3591.9013	TOP
1150	9868990.48	759415.303	3660.2191	VIA	1236	9868663.41	759608.111	3580.442	TOP
1151	9868996.44	759420.574	3661.4444	VIA	1237	9868657.37	759605.775	3578.1753	VIA
1152 1153	9868999.99 9869109.55	759416.506 759464.475	3661.5132 3678.6492	VIA VIA	1238 1239	9868660.64 9868724.32	759609.057 759588.369	3578.2365 3588.1905	VIA TOP
1154	9869009.91	759425.057	3663.58	VIA	1239	9868650.86	759617.799	3578.5606	TOP
1155	9869006.51	759429.116	3663.6323	VIA	1241	9868651.38	759616.612	3576.866	VIA
1156	9869087.92	759456.706	3675.4052	VIA	1242	9868648.59	759612.622	3576.8629	VIA
1157	9869086.28	759460.344	3675.4135	VIA	1243	9868703.16	759592.592	3585.2869	TOP
1158	9869029.15	759433.901	3666.8041	VIA	1244	9868640.01	759617.002	3575.5788	VIA
1159	9869063.06	759446.854	3671.7924	VIA	1245	9868641.91	759621.819	3575.6832	VIA
1160 1161	9869026.89 9869061.26	759438.505 759450.657	3666.806 3671.806	VIA	1246 1247	9868682.93 9868609.11	759607.297 759629.43	3582.9258 3571.726	TOP TOP
1162	9869030.58	759434.668	3666.9764	TB	1247	9868621.1	759629.43	3572.7243	VIA
1163	9869025.98	759433.734	3666.2929	ТВ	1249	9868620.27	759621.369	3572.7876	VIA
1164	9869022.04	759433.127	3665.7172	ТВ	1250	9868620.56	759654.756	3571.4901	TOP
1165	9869061.27	759441.366	3671.9486	VA	1251	9868663.47	759626.794	3580.8168	TOP
1166	9869062.04	759441.547	3671.9797	VA	1252	9868604.44	759624.145	3570.3057	VIA
1167	9869063.5	759441.857	3672.0235	VA	1253 1254	9868605.28	759629.357 759637 484	3570.3146	VIA
1168 1169	9869063.82	759440.047 759440.537	3671.7109 3671.8877	CN CN	1254	9868649.49 9868595.12	759637.484 759632.606	3577.1537 3568.4233	TOP VIA
1170	9868982.48	759424.675	3659.1158	TB	1256	9868593.07	759628.316	3568.5092	VIA
1184	9869003.69	759403.862	3659.5445	EST	1257	9868590.52	759614.433	3566.288	TOP
1185	9868997.79	759390.071	3654.3642	CN	1258	9868622.32	759605.235	3568.6926	TOP
1186	9869021.16	759401.904	3660.5178	CN	1259	9868581.54	759636.849	3566.6307	VIA
1187	9868979.98	759389.785	3653.5475	CN	1260	9868584.38	759639.991	3566.6251	VIA
1188 1189	9868958.29	759388.883 759386 301	3651.9704	CN	1261	9868633.79 9868575.67	759590.15 759649.023	3571.5985 3565.1148	TOP
1189	9868935.32 9868798.47	759386.301 759446.076	3649.6064 3618.8475	CN TOP	1262 1263	9868573.67	759649.023 759646.293	3565.1148 3565.1316	VIA VIA
1191	9868791.1	759505.721	3604.6675	TOP	1264	9868653.08	759560.073	3576.2668	TOP
1192	9868778.06	759521.056	3601.7079	TOP	1265	9868599.61	759651.002	3569.1927	TOP
1193	9868763.15	759534.822	3598.5634	TOP	1266	9868561.98	759662.895	3563.0118	VIA
1194	9868729.13	759548.35	3587.3229	TOP	1267	9868565.83	759664.521	3563.11	VIA
1195	9868687.8	759555.878	3580.6993	TOP	1268	9868582.55	759669.311	3565.6676	TOP
1196 1197	9868675.2 9868805.02	759559.539 759484.68	3582.1379 3611.1431	TOP TOP	1269 1270	9868677.81 9868561.25	759568.705 759676.993	3582.3692 3561.2648	TOP VIA
1197	9868805.02	759484.68	3617.9728	TOP	1270	9868556.05	759676.993	3561.2648	VIA
1199	9868803.98	759532.351	3604.053	VIA	1272	9868573.91	759686.963	3562.9311	TOP
1200	9868793.86	759537.208	3602.2564	VIA	1273	9868569.05	759700.754	3561.115	TOP
1201	9868790.94	759533.235	3602.1604	VIA	1274	9868552.85	759689.868	3559.3296	VIA
1202	9868822.75	759473.233	3615.8844	TOP	1275	9868556.63	759691.896	3559.5739	VIA
1203	9868778.78	759546.502	3599.4005	VIA	1278	9868548.39	759693.307	3558.6911	CA
1204 1205	9868782.24 9868834.6	759549.669 759495.179	3599.4941 3614.4164	VIA TOP	1279 1280	9868554.4 9868553.88	759705.421 759699.907	3558.4461 3558.5201	CA VIA
1205	9868775.86	759557.711	3597.7437	VIA	1280	9868554.3	759699.907	3558.5201	VIA
1207	9868772.04	759554.075	3597.5531	VIA	1282	9868544.37	759708.495	3557.7602	CA
1208	9868852.19	759514.229	3615.4528	TOP	1283	9868538.32	759684.151	3558.5614	CA
1209	9868765.92	759559.106	3595.9988	VIA	1284	9868548.78	759698.022	3558.4704	VIA

	PUNTOS TO	POGRÁFICOS -	UTM WGS 84	•		PUNTOS TOF	OGRÁFICOS - I	UTM WGS 85	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
1285	9868546.62	759682.675	3558.5698	CA	1359	9868500.11	759686.824	3550.9404	TOP
1286	9868560.34	759725.034	3558.2546	CA	1360	9868532.58	759647.461	3554.2092	TOP
1287	9868542.57	759703.169	3557.7148	VIA	1361	9868497.84	759668.429	3549.9785	TOP
1288 1289	9868524.26 9868518.48	759743.754 759726.076	3556.079	CA CA	1362 1363	9868541.08 9868560.93	759634.607 759632.658	3554.5807 3557.7706	TOP TOP
1290	9868525.58	759694.571	3556.1821 3555.0698	VIA	1364	9868501.15	759632.038	3549.8465	TOP
1291	9868520.74	759694.609	3554.9005	VIA	1365	9868545.45	759626.895	3552.9879	TOP
1292	9868528.74	759704.664	3555.8845	VIA	1366	9868503.9	759629.481	3546.2967	TOP
1293	9868530.68	759706.906	3556.3796	VIA	1367	9868547.26	759624.988	3552.7781	TOP
1294	9868531.99	759707.223	3556.7665	VIA	1368	9868509.28	759615.995	3543.8295	TOP
1295	9868533.99	759707.154	3556.9724	VIA	1369	9868549.11	759620.379	3552.2403	TOP
1296 1297	9868535.88 9868515.93	759712.446 759718.345	3556.6915 3555.9403	VIA CA	1370 1371	9868551.85 9868506.22	759617.423 759597.107	3552.865 3542.1146	TOP TOP
1298	9868509.51	759720.28	3555.468	CA	1372	9868552.96	759610.191	3552.6798	TOP
1299	9868533.5	759713.86	3556.8281	VIA	1373	9868263.21	759654.658	3535.4904	EST
1300	9868529.75	759714.927	3556.7824	VIA	1374	9868499.76	759578.5	3541.2386	TOP
1301	9868506.88	759716.052	3555.3118	CAN	1375	9868553.9	759608.448	3552.8297	TOP
1302	9868519.56	759709.288	3555.9707	CA	1376	9868572.53	759606.595	3558.933	TOP
1303 1304	9868519.36 9868518.33	759708.019 759708.19	3555.5785 3555.6387	CA CA	1377 1378	9868492.12 9868550.8	759566.283 759599.969	3541.9501 3551.7711	TOP TOP
1304	9868510.91	759708.19	3555.1724	CAN	1378	9868547.93	759589.302	3550.962	TOP
1306	9868526.18	759713.673	3556.539	VIA	1380	9868544.28	759580.624	3550.99	TOP
1307	9868781.13	759587.159	3594.4408	TOP	1381	9868567.22	759569.492	3555.8216	TOP
1308	9868816.34	759573.846	3595.4748	TOP	1382	9868540.6	759572.594	3550.5722	TOP
1309	9868857.29	759546.55	3606.2767	TOP	1383	9868539.5	759569.986	3549.6053	TOP
1310 1311	9868885.91 9868899.21	759555.541 759539.242	3607.835 3612.8427	TOP TOP	1384 1385	9868538.08 9868534.14	759568.234 759563.552	3549.6642 3550.141	TOP TOP
1312	9868923.45	759556.634	3615.7025	TOP	1386	9868527.89	759556.893	3550.4878	TOP
1313	9868910.36	759525.036	3618.0056	TOP	1387	9868523.58	759553.557	3550.6219	TOP
1314	9868921.93	759533.049	3619.8521	TOP	1388	9868520.56	759551.605	3550.778	TOP
1315	9868814.47	759566.333	3597.5237	TOP	1389	9868576.36	759534.377	3560.6252	TOP
1316	9868797.92	759565.052	3596.7753	TOP	1390	9868552.81	759529.911	3562.4307	TOP
1317 1318	9868777.46 9868524.75	759578.639 759684.061	3596.2446 3554.7317	TOP VIA	1391 1392	9868538.49 9868522.97	759514.247 759524.992	3565.6943 3559.1688	TOP TOP
1319	9868517.75	759684.632	3554.4693	VIA	1393	9868523.66	759534.977	3559.4127	TOP
1320	9868516.2	759675.152	3554.4341	VIA	1394	9868518.1	759542.217	3555.5516	TOP
1321	9868523.26	759673.456	3554.621	VIA	1395	9868521.44	759546.805	3553.4261	TOP
1322	9868523.16	759666.986	3553.9557	VIA	1396	9868539.84	759538.21	3559.8169	TOP
1323	9868516.48	759665.549	3554.0429	VIA	1397	9868543.54	759545.806	3556.4107	TOP
1324 1325	9868518.22 9868524.86	759659.071 759660.251	3553.848 3553.571	VIA VIA	1398 1399	9868545.2 9868543.59	759554.65 759567.195	3553.6714 3551.3233	TOP TOP
1326	9868526.95	759655.941	3553.2671	VIA	1400	9868585.79	759543.88	3560.4527	TOP
1327	9868521.5	759652.327	3553.5783	VIA	1401	9868515.12	759558.701	3548.7491	VIA
1328	9868524.78	759646.419	3553.0869	VIA	1402	9868517.39	759552.134	3548.9395	VIA
1329	9868531.35	759648.21	3552.709	VIA	1403	9868502.85	759551.661		VIA
1330	9868541.47	759630.667	3551.8437	VIA	1404	9868505.13	759546.465	3548.9297	VIA
1331 1332	9868535.5 9868539.35	759627.585 759619.107	3551.7939 3551.2906	VIA VIA	1405 1406	9868516.82 9868496.51	759547.901 759548.168	3552.489 3549.2782	TOP VIA
1333	9868546.43	759620.623	3551.1041	VIA	1407	9868509.25	759545.315	3553.0747	TOP
1334	9868548.1	759615.947	3550.8377	VIA	1408	9868505.24	759543.01	3553.6586	TOP
1335	9868541.56	759613.147	3550.8463	VIA	1409	9868500.12	759540.287	3553.396	TOP
1336	9868542.15	759604.745	3550.3643	VIA	1410	9868497.1	759536.494	3551.7794	TOP
1337	9868549.04	759603.796	3550.3488	VIA	1411	9868501.24	759544.407	3548.9273	VIA
1338 1339	9868547.28 9868541.1	759595.821 759596.762	3549.9387 3549.7623	VIA VIA	1412 1413	9868492.45 9868497.73	759530.901 759541.796	3549.4565 3548.6561	TOP VIA
1340	9868538.09	759588.72	3549.3634	VIA	1414	9868495.69	759539.12	3548.6043	VIA
1341	9868543.07	759585.06	3549.3222	VIA	1415	9868493.64	759535.757	3548.3707	VIA
1342	9868540.45	759577.563	3548.9311	VIA	1416	9868494.71	759546.51	3549.0326	VIA
1343	9868532.91	759579.741	3549.0129	VIA	1417	9868493.41	759545.411	3549.0296	VIA
1344 1346	9868529.59	759573.029 759568.884	3548.8045 3548.7558	VIA VIAAGUA	1418 1419	9868491.79 9868489.72	759543.498 759540.985	3548.9881 3548.9365	VIA VIA
1346	9868535.46 9868535.18	759568.884	3548.7558	VIAAGUA	1419	9868489.72	759540.985	3548.9365	TOP
1348	9868526.27	759692.062	3555.8845	TOP	1421	9868489.29	759524.029	3549.1142	TOP
1349	9868529.55	759561.314	3548.9009	VIA	1422	9868468.98	759552.224	3544.3288	TOP
1350	9868524.51	759565.337	3548.6321	VIA	1423	9868486.17	759535.46	3548.2996	VIA
1351	9868526.61	759533.559	3560.5564	EST	1424	9868460.84	759540.718	3541.5421	TOP
1352 1353	9868519.08 9868524.7	759560.764 759678.423	3548.6393 3555.7325	TOP	1425 1426	9868505 9868481.92	759511.905 759527.148	3552.6191 3547.4766	TOP VIA
1354	9868523.79	759669.932	3556.2329	TOP	1426	9868456.85	759527.148	3538.6175	TOP
1355	9868533.01	759685.097	3557.0797	TOP	1428	9868484	759513.517	3548.545	TOP
1356	9868534.46	759668.662	3557.6685	TOP	1429	9868486.8	759523.884	3547.3442	VIA
1357	9868525.82	759659.381	3555.7092	TOP	1430	9868447.07	759521	3536.0989	TOP
1358	9868545.45	759650.168	3558.1041	TOP	1431	9868490.74	759488.409	3550.2565	TOP

	PUNTOS TO	POGRÁFICOS -	UTM WGS 84	•		PUNTOS TOF	OGRÁFICOS - I	UTM WGS 85	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción	PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
1432	9868483.74	759517.916	3546.759	VIA	1505	9868354.27	759444.197	3535.4217	VIA
1433	9868478.92	759520.322	3546.684	VIA	1506	9868351.45	759449.048	3535.8508	VIA
1434	9868481.35	759509.892	3547.3265	TOP	1507	9868350.98	759436.602	3538.449	TOP
1435	9868437.71	759512.012	3534.4011	TOP	1508	9868313.08	759437.07	3528.7569	TOP
1436 1437	9868476.81 9868427.13	759502.034 759506.535	3545.8038 3535.3626	TOP TOP	1509 1510	9868346.33 9868350.7	759446.366 759441.452	3535.6758 3535.0086	VIA VIA
1437	9868475	759512.978	3545.9696	VIA	1511	9868350.08	759432.066	3538.3355	TOP
1439	9868479.5	759508.96	3545.7398	VIA	1512	9868312.1	759427.952	3526.3497	TOP
1440	9868470.83	759496.197	3545.6616	TOP	1513	9868348.44	759438.693	3534.6706	VIA
1441	9868414.88	759501.161	3535.4839	TOP	1514	9868342.47	759442.67	3535.3166	VIA
1442	9868474.9	759502.726	3544.8113	VIA	1515	9868348.4	759425.909	3535.2375	TOP
1443	9868470.04	759505.425	3544.7698	VIA	1516	9868306.87	759417.91	3525.8867	TOP
1444 1445	9868464.79 9868401.01	759491.071 759495.436	3544.8623 3535.336	TOP TOP	1517 1518	9868340.75 9868339.75	759437.438 759433.047	3534.7467 3534.3029	VIA VIA
1446	9868465.94	759501.03	3544.2333	VIA	1519	9868345.59	759431.311	3534.0373	VIA
1447	9868468.95	759496.469	3544.0554	VIA	1520	9868345.21	759424.832	3533.6084	VIA
1448	9868458.49	759487.183	3544.0033	TOP	1521	9868339.13	759426.157	3533.6598	VIA
1449	9868389.26	759489.057	3535.6692	TOP	1522	9868337.66	759417.937	3533.0525	VIA
1450	9868463.59	759492.058	3543.4501	VIA	1523	9868343.18	759416.375	3533.0218	VIA
1451	9868453.1	759484.887	3543.6892	TOP	1524	9868340.24	759409.232	3532.5972	VIA
1452	9868443.75	759482.624	3543.7107	TOP	1525	9868335.1	759411.871	3532.68	VIA TOP
1453 1454	9868434.16 9868460.37	759480.739 759496.416	3543.622 3543.5323	TOP VIA	1526 1527	9868297.81 9868364.59	759402.035 759423.357	3526.3934 3541.3501	TOP
1455	9868454.22	759493.059	3542.6577	VIA	1528	9868289.46	759378.91	3524.2853	TOP
1456	9868454.85	759487.273	3542.6174	VIA	1529	9868288.86	759374.035	3522.8089	TOP
1457	9868449.6	759485.734	3542.0904	VIA	1530	9868285.66	759366.278	3520.2636	TOP
1458	9868447.15	759490.503	3541.9731	VIA	1531	9868358.25	759416.395	3536.3562	TOP
1459	9868438.56	759489.019	3541.4768	VIA	1532	9868281.42	759353.479	3517.5845	TOP
1460 1461	9868438.75 9868485.92	759483.373 759479.901	3541.3355 3550.4253	VIA TOP	1533 1534	9868358.37 9868274.02	759410.246 759344.109	3536.8697 3513.7618	TOP TOP
1461	9868429.59	759481.996	3540.9124	VIA	1535	9868355.09	759404.217	3538.0768	TOP
1463	9868427.25	759486.883	3541.0814	VIA	1536	9868344.16	759411.372	3533.9237	TOP
1464	9868468.09	759469.053	3549.2426	TOP	1537	9868263.5	759334.428	3512.8301	TOP
1465	9868422.21	759485.811	3540.9117	VIA	1538	9868338.59	759401.113	3533.682	TOP
1466	9868447.35	759466.328	3548.4757	TOP	1539	9868337.05	759402.359	3532.2648	VIA
1467	9868415.65	759483.641	3540.7083	VIA	1540	9868331.97	759388.902	3533.045	TOP
1468 1469	9868416.98 9868426.56	759478.802 759459.887	3540.2788 3545.9653	TOP	1541 1542	9868332.28 9868344.7	759405.39 759388.16	3532.5365 3537.0659	VIA TOP
1470	9868412.15	759476.4	3539.9627	VIA	1543	9868255.96	759321.273	3515.0288	TOP
1471	9868409.18	759480.674	3540.3667	VIA	1544	9868333.02	759376.958	3533.992	TOP
1472	9868424.04	759479.02	3542.6735	TOP	1545	9868323.06	759388.189	3531.5114	VIA
1473	9868417.1	759476.594	3541.8042	TOP	1546	9868244.45	759310.577	3514.5633	TOP
1474	9868410.84	759473.456	3541.9027	TOP	1547	9868345.66	759369.9	3540.6793	TOP
1475	9868403.23	759476.674 759469 508	3539.9756	VIA	1548	9868327.72	759384.818	3531.219	VIA
1476 1477	9868405.78	759459.508	3541.2449 3546.4678	TOP TOP	1549 1550	9868230.86 9868325.27	759302.793 759378.859	3512.4044 3530.9555	TOP VIA
1477	9868397.93	759472.397	3539.4749	VIA	1551	9868349.35	759358.471	3538.6212	TOP
1479	9868410.94	759444.916	3544.2795	TOP	1552	9868216.86	759296.846	3512.0186	TOP
1480	9868395.74	759460.972	3539.2863	TOP	1553	9868325.23	759378.88	3530.9464	VIA
1481	9868383.58	759481.78	3535.7291	TOP	1554	9868204.91	759293.291	3512.152	TOP
1482	9868384.38	759453.693	3538.4689	TOP	1555	9868320.12	759381.745	3531.3328	VIA
1483	9868401.61 9868374.84	759468.099	3539.3599	VIA	1556	9868326.21 9868317.52	759375.576	3533.0069	TOP
1484 1485	9868374.84	759449.945 759471.953	3538.1359 3534.1656	TOP TOP	1557 1558	9868317.52	759375.414 759370.584	3531.0947 3533.7745	VIA TOP
1486	9868392.63	759460.978	3534.1030	VIA	1559	9868324.92	759366.708	3532.838	TOP
1487	9868392.33	759434.543	3543.9711	TOP	1560	9868325	759362.675	3532.357	TOP
1488	9868396.48	759439.484	3542.1848	TOP	1561	9868322.91	759372.132	3530.2629	VIA
1489	9868363.46	759464.625	3533.5761	TOP	1562	9868327.92	759357.696	3532.8765	TOP
1490	9868389.51	759465.702	3538.457	VIA	1563	9868316.89	759371.547	3530.8667	VIA
1491	9868352.04	759466.999	3530.525	TOP	1564	9868316.71	759365.294	3530.2533	VIA
1492 1493	9868364.97 9868384.46	759446.885 759462.741	3537.7273 3537.9569	TOP VIA	1565 1566	9868322.45 9868323.25	759365.223 759361.188	3529.6224 3529.3222	VIA VIA
1494	9868387.46	759457.97	3537.9309	VIA	1567	9868317.82	759359.302	3529.7003	VIA
1495	9868339.28	759462.653	3529.6829	ТОР	1568	9868320.04	759354.004	3529.0893	VIA
1496	9868356.76	759442.95	3537.9303	TOP	1569	9868324.98	759355.459	3528.6987	VIA
1497	9868374.23	759451.698	3536.5651	VIA	1570	9868323.31	759347.907	3528.3414	VIA
1498	9868371.75	759456.277	3536.8011	VIA	1571	9868330.23	759352.542	3531.9662	TOP
1499 1500	9868353.33 9868323.47	759440.293 759455.017	3538.1013 3528.8676	TOP TOP	1572 1573	9868313.39 9868332.46	759317.854 759348.946	3525.8825 3530.9996	VIA TOP
1500	9868323.47	759453.017	3528.8676	VIA	1573	9868332.46	759348.946	3530.9996	VIA
1502	9868362.06	759447.648	3535.9166	VIA	1575	9868306.66	759305.063	3524.8491	VIA
1503	9868367.29	759426.847	3543.1477	TOP	1576	9868303.28	759308.801	3525.0463	VIA
1504	9868317.3	759448.035	3529.2111	TOP	1577	9868284.13	759291.991	3522.9576	VIA

		PUNTOS TO	POGRÁFICOS -	UTM WGS 84	•		PUNTOS TOF	OGRÁFICOS - I	UTM WGS 85	
1507 9862367.73 759287.694 3327.5805 VAA 1070 986708.05 759313.974 3059.0129 VAA 1507 986708.05 759283.049 3069.0129 VAA 1507 986708.05 759283.049 3069.0129 VAA 1507 986708.05 759283.049 3069.0129 VAA 1507 986708.05 759287.049 3069.0128 VAA 1507 986708.05 759287.049 3069.0128 VAA 1507 986708.05 759287.049 3069.0128 VAA 1507 986708.05 759287.049 3068.0124 TOP 1507 986708.015 759282.013 3068.0124 TOP 1507 986708.015 759282.013 3068.0224 VAA 1507 986708.015 759282.013 3068.0224 VAA 1507 986708.015 759280.023 3068.0229 VAA 1508 986819.18 759280.023 3068.0229 VAA 1508 986819.18 759280.023 3068.0229 VAA 1508 986809.01 VAA 1508 986829.01 VAA 1508 986829.	PUNTO N°				Descripción	PUNTO N°	II .			Descripción
1581 9868276 799373 1588 3578125 TOP 1071 9867880.93 759818.6.39 3491.6121 TOP 1581 9868276 759277759 35221476 VIA 1675 986785.8.3 7598881.1 3488.1927 TOP 1581 9868276 75927759 35221476 VIA 1675 9867872.7.3 759394.813 3488.1927 TOP 1597 986785.8.3 75988.811 3488.1927 TOP 1597 986780.2.1 759394.813 3488.1927 TOP 1597 9868002.5.3 759327.213 3507.896 VIA 1598 986820.5.6.7 759309.437 3528.0719 TOP 1079 986780.4.0 75990.0.043 3484.2616 TOP 1587 9868001.5.1 759312.753 5086.7227 VIA 1588 986823.6.7 759370.0.4 3484.2616 TOP 1589 986823.6.7 759370.0.4 3484.2616 TOP 1589 986823.6.7 759370.0.4 3484.2616 TOP 1589 986823.6.7 759370.0.4 3524.2616 TOP 1589 986823.6.7 759370.0.4 3624.2616 TOP 1589 986823.6.7 759370.0.4 3624.2616 TOP 1589 986823.6.7 759370.0.4 3624.2616 TOP 1589 986823.6.7 75938.2618 3521.6752 VIA 1584 986779.6.7 75938.2618 3625.0627 VIA 1584 986781.6.7 75938.2618 3625.0628 VIA 1589 986781.6.8 75938.6.1 3634.7488 VIA 1589 9868230.1 75938.2618 3635.0828 VIA 1589 9868230.1 75938.2618 3635.2828 VIA 1589 9868230.1 75938.2618 3635.2828 VIA 1589 9868230.1 75938.2618	1578	9868202.6	759251.406	3518.9198	EST	1669	9867905.8	759381.199	3493.9419	TOP
1581 3986335.6 759293.314 3355.2409 TOP 1074 3986015.32 759313.898 3099.1189 VIA 1595 396752.62 759367.62 7593	1579	9868287.73	759287.694	3522.5805	VIA	1670	9868015.35	759313.974	3509.0129	VIA
1582 98682764 Q 79277799 35212476										
1586 9868213.8 87 759268.734 5313.102 TOP 1676 9867827.43 759394.801 3686.1414 TOP 1586 9868207.2 81 759282.438 532.0662 VAA 1678 9868001.3 47 759393.7 5308.2222 VAA 1578 9868101.4 75920.0025 513.4416 TOP 1680 9867979.43 75935.218 3067.7657 VAA 1578 9868103.1 75920.0025 313.4416 TOP 1680 9867979.43 759335.218 3067.7657 VAA 1588 986823.3 47 75923.0 4321.5050 VAA 1681 9867979.6 759328.7 4307.0122 VAA 1589 986823.3 47 759247.0 3121.7757 VAA 1682 986780.5 9 759347.0 4307.0122 VAA 1589 986823.5 18 759367.403 3521.775 VAA 1682 986780.5 9 759347.0 4305.9 4007.0 4007					-					
1584 9868205.69 759279.635 3514.7244 TOP 1677 9868002.53 759327.213 307.896 VAN 1586 986822.228 75932.848 3522.0862 VAN 1579 9868002.51 759320.0682.229 VAN 1587 9868002.51 759320.0682.229 VAN 1588 986822.52 VAN 1581 9867976.8 75932.715 3507.896 VAN 1581 9867976.8 75932.714 3507.0229 VAN 1581 9867976.9 75932.714 3705.9607 VAN 1591 986825.21 759265.28 3521.6752 VAN 1581 9867976.9 75932.716 3693.2229 VAN 1581 9867976.9 75932.7 15932.7										
1585 986827.23 81 79289.248 352.0791										
1586 3868314.67 599309.437 3328.0719 10P 1679 3867804.01 759400.043 3484.2616 TOP 1589 3869797.88 759328.714 3307.0129 MA 1588 3868253.64 75927.407 3321.5009 VIA 1681 3867976.8 759328.714 3307.0129 MA 1590 3868253.65 759327.014 3321.5009 VIA 1681 3867976.8 759328.714 3307.0129 MA 1590 386830.58 759301.393 3305.5906 TOP 1682 3867805.59 759379.004 3492.7907 VIA 1590 386830.58 759301.393 3305.5906 VIA 1594 3868753.66 759341.427 3305.5907 VIA 1592 386820.01 75926.80 3324.257 VIA 1589 3868753.66 759341.427 3305.9276 VIA 1594 386820.01 75926.80 3324.257 VIA 1589 386820.01 75926.81 759							t			
1587 98861394.18 759280.025 3513.4816 TOP 1680 9867979.48 79335.218 3506.7667 VIA 1589 9886236.4 75927.2701 351.581 586850.58 75931.331 352.17275 VIA 1681 986780.59 79379.064 3492.7907 VIA 1591 986850.58 75931.331 352.5550 TOP 1683 986795.59 79391.604 3492.7907 VIA 1591 986851.1 7595.52 75926.528 3521.6725 VIA 1684 9867951.54 75938.214 3506.8177 VIA 1591 986852.1 75926.528 3521.6725 VIA 1684 9867951.54 75938.214 3506.8177 VIA 1593 986852.1 75928.528 3521.6725 VIA 1685 986780.45 75934.254 3505.8707 VIA 1593 986852.01 75958.218 3521.6725 VIA 1688 986780.45 75934.524 3505.7733 VIA 1595 98682.01 75928.517 3517.611 TOP 1686 986786.65 75934.524 3505.7733 VIA 1595 98682.04 79 59206.731 3521.2193 VIA 1688 986784.47 75934.524 3505.7733 VIA 1595 98682.04 79 59208.731 3521.2193 VIA 1688 986786.65 75938.604 3495.2926 VIA 1596 98682.04 79 59208.731 3521.2193 VIA 1689 986781.65 75938.604 3495.2926 VIA 1597 9866801.33 75954.614 3529.9118 TOP 1699 9867931.65 75934.2524 3505.5335 VIA 1599 986272.1 75952.52.21 3521.1365 VIA 1699 9867931.65 75934.2524 3505.5335 VIA 1699 98682.04 79 98682.04 3495.8226 VIA 1699 98682.12 3505.63 3495.8226 VIA 1699 98682.12 3505.8286 VIA 169							t			
1588 9868253.6 59273.014 3321.5699 VIA 1681 9867976.8 79392.8714 3307.0129 VIA 1590 986830.588 79390.393 325.5906 TOP 1683 986796.59 793973.06 3492.7907 VIA 1592 986820.11 75926.5281 3521.6532 VIA 1584 986795.51 79393.61.63 3506.1977 VIA 1592 986825.01 75926.5281 3521.6532 VIA 1585 986780.16 79393.165 3496.1977 VIA 1593 986820.09 5708.00 3524.2377 TOP 1586 986780.45 79393.165 3496.1977 VIA 1594 986781.47 79392.52 3305.7733 VIA 1595 9868174.12 59288.178 3515.6862 TOP 1587 986781.65 79386.80 3495.0256 VIA 1595 986816.61 79392.85.717 3517.7611 TOP 1689 986781.65 79398.80 3495.0256 VIA 1597 986830.13 79392.65 79398.65 79398.80 79398.51 79398.80							1			
1990 986830.5.88 59390.1.393 3526.5906 TOP 1683 386795.3.66 793941.427 3505.5907 VIA 1992 986827.01 75926.5281 3521.6352 VIA 1684 386797.5154 79393.2.165 3506.1277 VIA 1998 986827.01 75928.5281 3521.6352 VIA 1685 386780.456 793973.165 3409.2296 VIA 1594 986821.05 75928.8581 3515.6862 VIA 1686 386780.456 793973.165 3409.2296 VIA 1596 986820.479 75950.6737 3521.2193 VIA 1688 386781.655 759366.8 3405.1202 VIA 1596 986816.611 759285.717 3517.7611 TOP 1689 986781.655 759366.8 3405.1202 VIA 1596 9868221.21 75922.279 3202.9207 VIA 1599 986793.61 759348.231 3505.3385 VIA 1599 9868227.16 75925.79 3202.9207 VIA 1599 986793.61 75934.523 3505.2884 VIA 1599 9868227.16 75924.623 3505.2884 VIA 1599 9868227.16 75925.63 3505.2884 VIA 1599 9868227.16 75925.63 3505.2884 VIA 1599 9868227.16 75925.63 3505.3884 VIA 1599 9868227.16 75925.63 3505.6386 VIA 1506 986821.23 75995.60 3505.6386 VIA 1506 986821.23 75995.60 3505.6386 VIA 1506 986821.23 75995.60 3505.6386 VIA 1506 986822.23 75995.60 3505.6386 VIA 1506 986822.24 75995.60 3505.6386 VIA 1506	1588	9868253.64	759273.014		VIA	1681	9867976.8	759328.714	3507.0129	VIA
1991 9968251.1 795265.928 3951.6725 VIA 1684 9967961.65 79931.91 596.61977 VIA 1993 9968290.95 795286.06 3153.25 VIA 1685 9867964.65 79531.91 596.517.33 VIA 1685 9867964.65 79531.91 596.517.33 VIA 1685 9868114.12 75928.23 778.518.85 770.91 1686 9867964.67 759316.99 534.42.87 VIA 1698 986781.65 759366.68 495.092.65 VIA 1595 986824.79 75926.9731 3521.2193 VIA 1688 986781.61.77 759368.064 3495.092.65 VIA 1595 986824.79 75925.79 3507.7611 TOP 1689 986781.65 759366.68 3495.092.65 VIA 1597 986801.33 75925.26 143 532.9118 TOP 1692 9867931.85 75934.52 31.355.335 VIA 1599 9868222.11 75952.52 2611 3521.1361 VIA 1698 9867930.61 75934.592 3505.2884 VIA 1603 9868227.1 75952.52 2611 3521.1361 VIA 1698 9867936.69 759355.553 3493.4794 VIA 1603 986812.65 75932.95 533.06.222 TOP 1699 9867918.69 75934.595 3504.546 VIA 1604 9868281.23 759279.634 3523.3821 TOP 1700 9867918.83 75938.322 3495.3832 VIA 1606 9868213.83 759350.809 3520.9397 VIA 1707 9867898.27 759357.007 3505.5888 VIA 1606 9868213.83 759250.809 3520.9397 VIA 1707 9867898.27 759357.007 3505.5888 VIA 1608 9868219.17 75935.3091 3520.6388 VIA 1708 9867891.83 75935.007 3505.5888 VIA 1608 9868219.17 75935.3091 3520.3638 VIA 1708 9867898.77 75935.007 3605.5888 VIA 1616 9868270.99 759371.659 3522.3888 TOP 1701 9867898.77 75935.09 3502.3888 VIA 1616 9868270.99 75930.008 3517.644 CA 1715 986788.604 759355.39 3496.6559 VIA 1616 9868219.17 75930.008 3517.644 CA 1715 986786.64 759355.39 3496.6559 VIA 1625 9868202.10 75930.008 3517.644 CA 1715 986786.64 759355.39 3496.6559 VIA 1625 9868202.10 75930.008 3517.644 CA 1715 986786.65 759351.657 3049.6459 VIA 1625 9868002.27 75930.008	1589	9868254.52	759267.403	3521.7275	VIA	1682	9867805.59	759379.064	3492.7907	VIA
1992 9966220.1 799265.281 3321.6352 VIA 1685 9967804.7 79931.165 3493.296 VIA 1993 996820.95 79928.80 3352.327 TOP 1686 996794.87 79934.204 3495.733 VIA 1595 966824.79 79926.731 3517.2913 VIA 1688 9867816.57 79936.86 3495.1926 VIA 1595 966824.79 79926.731 3517.7611 TOP 1689 9867816.57 79936.86 3495.1926 VIA 1596 9668266.11 79928.717 3517.7611 TOP 1689 9867316.55 79936.8 3495.1926 VIA 1598 9868221.16 79927.79 3502.207 VIA 1693 9867931.65 799345.291 3505.3335 VIA 1598 9868221.16 79927.97 3502.207 VIA 1693 9867930.61 79934.291 3505.3335 VIA 1698 9867806.49 799395.553 3494.3749 VIA 1698 9867806.49 799395.553 3494.3749 VIA 1698 9867806.49 799395.553 3494.3749 VIA 1694 986821.10 VIA 1694 986782.10 79938.561 VIA 1694 986821.10 VIA 1694 986821.10 VIA 1694 986821.10 VIA 1694 986821.10 VIA 1694	1590	9868305.88	759301.393	3526.5906	TOP	1683	9867953.96	759341.437	3505.9607	VIA
1993 9868290.95 759288.03 3324.3257 TOP 1686 986794.647 759342.524 3505.7733 VA 1598 9868214.12 759252.931.78 3515.6862 TOP 1687 986781.615 75936.064 495.0926 VA 1598 9868216.15 75925.25 73527.75 7575.75					1					
1595					-					
1995 9968244.67 759269.731 3571.7193 VIA 1688 9967316.17 75936.064 495.0926 VIA 1597 9868301.33 759254.614 3529.9118 TOP 1692 9867931.8 759348.231 3505.3335 VIA 1598 9968221.1 759252.621 3521.1361 VIA 1693 9867930.61 759342.592 3505.2884 VIA 1698 9868221.1 759252.621 3521.1361 VIA 1698 9867936.67 759345.955 3394.3749 VIA 1693 9867918.69 759345.955 3505.2884 VIA 1603 986821.56 759289.955 3513.3715 TOP 1700 9867918.69 759345.956 3504.346 VIA 1604 9968281.25 75929.958 3513.3715 TOP 1700 9867918.69 759345.956 3504.346 VIA 1604 9968281.25 75929.358 3513.3472 TOP 1700 9867918.69 759347.097 3495.851 VIA 1606 9968213.47 75929.358 3513.3472 TOP 1702 9867918.69 759347.097 3495.851 VIA 1606 9868213.47 75923.508 3512.0397 VIA 1707 9867898.27 759357.007 3502.5688 VIA 1608 9868213.47 75923.5091 3503.6380 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1608 9868213.07 75923.5091 3503.6380 VIA 1708 9867891.17 759350.06 5502.2888 VIA 1618 9868245.91 759230.568 3513.81.179 TOP 1700 9867891.77 759367.089 3496.63 VIA 1618 9868245.91 759257.563 3518.81.179 TOP 1710 9867836.85 759357.153 3496.63 VIA 1625 9868201.05 759235.088 3528.0837 TOP 1712 9867836.85 759357.153 3496.63 VIA 1626 9868201.05 759235.088 3518.0497 TOP 1714 9867836.85 759357.153 3496.63 VIA 1626 9868021.12 759350.083 3517.0488 TOP 1712 9867873.85 759355.593 3499.6621 VIA 1626 9868021.12 759350.083 3517.0488 TOP 1714 9867852.67 759356.67 3499.9797 VIA 1626 9868021.5 759350.838 3518.0466 TOP 1714 9867852.67 759354.938 VIA 1626 9868021.5 759308.83 3518.0466 TOP 1714 9867856.85 759357.153 3496.63 VIA 1626 9868021.5 759308.83 3511.0488 VIA 1718 9867872.6 759354.94 3499.9797					-					
1996 9968316.31 759285.717 3517.76.11 TOP 1689 9867816.55 75936.86 3495.1892 VIA 1598 9868021.41 75925.79 3520.9207 VIA 1693 9867931.61 759342.52] 3505.2884 VIA 1598 9868224.16 75925.79 3520.9207 VIA 1693 9867930.61 759342.52] 3505.2884 VIA 1693 9868271.61 759242.52 3505.2884 VIA 1693 9868271.61 759242.52 3505.2884 VIA 1693 9868271.61 759242.52 3495.326.22 TOP 1699 9867931.60 759345.55 3494.3749 VIA 1603 9868271.61 759279.634 3525.351 TOP 1700 9867931.60 759345.55 3494.3749 VIA 1604 9868281.23 759275.634 3525.521 TOP 1701 9867821.05 759358.221 3495.3483 VIA 1606 9868213.23 759255.089 3517.3515 TOP 1701 9867827.45 759370.079 3495.851 VIA 1606 9868213.83 759255.089 3520.6308 VIA 1707 9867827.45 759357.072 3502.588 VIA 1606 9868213.87 759275.699 3520.6308 VIA 1708 9867898.27 759357.072 3502.888 VIA 1618 9868245.91 759260.746 3522.2887 TOP 1701 9867837.77 759350.096 3502.888 VIA 1618 9868245.91 759255.694 3522.888 VIA 1618 9868245.91 759255.694 3522.888 VIA 1625 9868211.12 759275.693 3513.8179 TOP 1711 986783.77 759357.089 3496.63 VIA 1625 9868229.16 759235.098 3520.888 VIA 1625 9868229.16 759235.098 3520.888 VIA 1625 9868229.16 759235.098 3522.888 TOP 1711 986785.65 759355.938 3499.6521 VIA 1626 986806.3 759300.038 3517.7644 CA 1714 986785.27 759355.983 3499.6521 VIA 1626 986806.3 759300.838 3517.5687 CA 1714 986785.24 759354.593 3499.1839 VIA 1632 986806.3 759305.893 3517.5687 CA 1714 986786.04 759354.593 3499.1839 VIA 1632 986806.3 759305.838 3517.5687 CA 1714 986786.24 759354.593 3499.1839 VIA 1633 9868073.3 759305.838 3517.5687 CA 1714 986786.04 759354.593 3499.953 VIA 1633 9868021.8.9 759305.833 3517.5687 C										
1997 9868201.13 75925.6114 3529.9118 TOP 1692 986793.16 759348.231 3505.3339 VA 1593 9868227.11 75925.79 350.2070 VA 1693 986793.06 759345.593 3494.3749 VIA 1602 986827.11 75925.2621 3521.1361 VIA 1698 986790.64 759345.595 3494.3749 VIA 1603 9868215.26 75928.395 3513.7315 TOP 1700 9867821.05 759345.595 3505.588 VIA 1604 9868215.26 759293.568 3513.7315 TOP 1701 986791.83 759358.221 3695.383 VIA 1605 9868213.21 75923.568 3513.7367 TOP 1702 9867821.05 759355.272 3502.5688 VIA 1606 9868213.21 759253.091 3520.508 VIA 1708 9867821.05 759357.072 3502.5688 VIA 1606 9868219.72 759253.091 3520.508 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1608 9868219.72 759253.091 3520.508 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1618 9868219.27 759253.091 3520.3489 TOP 1709 9867897.1 759350.96 3502.2898 VIA 1619 986827.04 759255.604 5322.2872 TOP 1710 9867897.87 759350.093 3496.63 VIA 1629 986825.501 759251.609 3522.2868 TOP 1711 986783.658 759355.593 3499.6621 VIA 1625 9868229.16 759251.609 3522.2868 TOP 1712 986787.85 759355.593 3499.6621 VIA 1626 986805.25 759300.038 3518.8179 TOP 1714 986783.65 759355.593 3499.6621 VIA 1626 986805.25 759300.038 3517.644 CA 1715 986786.25 759355.593 3499.6621 VIA 1629 9868007.35 759300.133 3518.0427 CA 1716 986786.25 759355.838 3499.183 VIA 1633 986807.35 759300.383 3517.644 CA 1715 986786.25 759355.583 3499.183 VIA 1633 986807.35 759300.893 3517.644 CA 1715 986786.25 759355.483 3499.2963 VIA 1633 986807.35 759300.883 3516.065 TOP 1720 986787.07 759355.838 3499.393 VIA 1635 9868213.20 759350.893 3517.0488 VIA 1719 986788.21 759355.883 3499.393 VIA 1635 9868213.20 759350.893 3517.0488 VIA							†			
1598							t			
1599 9868271.11 75925.671 3521.1361 VIA 1698 9867806.49 759354.5953 3494.3749 VIA 1603 9868121.65 759289.395 3517.3715 TOP 1700 9867918.69 759354.5956 3504.546 VIA 1604 986813.61 759289.395 3517.3715 TOP 1701 9867821.05 759358.221 3495.3483 VIA 1605 986813.61 75929.568 3517.3715 TOP 1701 9867821.05 759358.221 3495.3483 VIA 1606 986813.61 75929.568 3517.3715 TOP 1702 9867821.05 759357.072 3502.5688 VIA 1606 986821.91.27 759253.091 3520.6308 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1608 986821.91.27 759253.091 3520.6308 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1618 986821.91.27 759253.091 3520.6388 VIA 1708 9867898.27 759357.072 3502.5688 VIA 1618 9868245.91 7592571.659 3523.3489 TOP 1709 9867897.1 75935.096 3502.2898 VIA 1619 9868270.48 759297.563 3518.3179 TOP 1711 986783.78 759357.093 3496.635 VIA 1620 9868221.12 759297.563 3518.3179 TOP 1711 986783.78 759357.093 3496.635 VIA 1620 9868229.16 759251.609 3522.2888 TOP 1712 986783.85 759355.7163 3496.4559 VIA 1626 986805.25 75930.038 3528.0837 TOP 1714 986783.85 759355.593 3499.6621 VIA 1629 9868085.25 75930.038 3517.5687 CA 1715 986786.65 759355.294 3499.1231 VIA 1631 9868078.51 75930.038 3517.5687 CA 1716 986786.65 759355.894 3499.1231 VIA 1631 986807.3 75930.5							†			
1602 986812.61 759244.032 3330.6222 TOP 1699 9867918.69 759345.956 3304.546 WA							t			
1604 9868213.12 759279.543 3523.5821 TOP 1701 9867919.83 759351.337 3504.2718 VIA 1605 9868135.41 759293.568 3517.3627 TOP 1702 9867827.45 759370.097 3495.851 VIA 1606 9868213.83 75925.009 3520.6308 VIA 1707 9867888.27 759357.072 3502.5888 VIA 1608 986827.04 759253.091 3520.6308 VIA 1708 9867898.27 759357.072 3502.5888 VIA 1618 986827.04 759271.659 3523.3489 TOP 1709 9867897.17 759350.69 3502.2898 VIA 1618 986827.04 759271.659 3523.3489 TOP 1709 9867873.77 759367.089 3496.63 VIA 1619 986821.11 759297.563 3518.3179 TOP 1711 986783.68 759357.693 3499.6621 VIA 1620 9868254.08 759239.088 3528.0837 TOP 1712 9867873.85 759355.593 3499.6621 VIA 1625 986822.16 759251.609 3522.2868 TOP 1713 9867873.85 759355.593 3499.6946 VIA 1626 9868014.16 759301.12 3518.0404 TOP 1714 9867852.6 759335.593 3499.6946 VIA 1629 9868085.5 759300.038 3517.7644 CA 1715 9867868.04 759355.538 3499.1889 VIA 1631 9868078.51 759305.893 3517.5687 CA 1716 9867869.04 759361.894 3499.1331 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 9867869.14 759361.844 3499.1533 VIA 1633 9868213.02 759249.06 3521.0488 VIA 1719 9867877.02 759361.844 3499.1533 VIA 1633 9868213.02 759249.06 3521.0488 VIA 1719 9867877.02 759341.43 3499.2634 VIA 1633 9868213.65 759305.993 3517.5687 CA 1717 9867869.14 759368.823 3499.9634 VIA 1633 9868213.85 759308.828 3516.065 TOP 1720 9867877.02 759341.43 3499.2634 VIA 1633 9868213.85 759308.828 3516.065 TOP 1720 9867877.02 759341.43 3499.2634 VIA 1633 9868213.65 759234.962 350.0959 VIA 1719 9867877.02 759344.91 3499.5684 VIA 1634 9868213.65 759234.91 3513.6667 VIA 1724 98688213.65 759344.91 3499.5684 VIA 1634 9868213.65 759343.83	1602		759244.032	3530.6222	TOP	1699	9867918.69	759345.956	3504.546	VIA
1605 986813.41 759293.568 3517.3627 TOP 1702 9867827.45 759370.097 3495.851 VIA 1606 9868219.72 759253.091 3520.6308 VIA 1708 986789.27 759357.072 3502.5688 VIA 1610 986827.049 759271.659 3523.3489 TOP 1709 986789.27 759357.072 3502.898 VIA 1610 986827.049 759271.659 3523.3489 TOP 1709 9867897.1 759350.96 3502.8998 VIA 1618 9868215.12 759250.0746 3522.7827 TOP 1710 986783.77 759367.089 3496.63 VIA 1619 986812.11 759237.653 3518.3179 TOP 1711 9867836.85 759357.163 3496.4559 VIA 1620 986825.91 759301.603 3522.2686 TOP 1713 9867873.85 759355.593 3499.6612 VIA 1626 986810.16 759301.412 3518.0404 TOP 1714 9867852.76 759354.95 3499.6904 VIA 1629 986805.25 759300.038 3517.7644 CA 1715 9867866.25 759355.495 3499.1898 VIA 1630 986808.55 759303.833 3517.5687 CA 1716 9867869.14 759366.844 3499.1533 VIA 1631 9868078.51 759305.833 3517.5687 CA 1716 9867873.64 759366.844 3499.1533 VIA 1633 9868213.02 759249.02 3520.0485 VIA 1718 9867873.64 759346.84 3499.963 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867873.64 759348.43 3499.5866 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.44 759348.43 3499.5866 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867873.64 759348.43 3499.4759 VIA 1636 9868215.28 759249.01 3521.048 VIA 1718 9867873.64 759348.49 3499.63 VIA 1636 9868215.28 759249.02 3521.0992 VIA 1721 9867886.44 759348.49 3499.963 VIA 1636 9868215.28 759249.03 3521.0992 VIA 1721 9867886.44 759348.49 3499.5866 VIA 1636 9868215.28 759238.094 3521.6967 VIA 1721 9867882.14 759348.49 3499.634 VIA 1636 9868215.28 759238.094 3521.6967 VIA 1721 9867886.44 759349.491 3499.0748 VIA 1636 9868215.28 759238.094 3521.69					!					
1606 9868219.28 759250.900 3520.9397 VIA 1707 986788.27 75935.0702 3502.5688 VIA 1608 9868219.79 759253.091 3520.6308 VIA 1708 986789.27 75935.0702 3502 VIA 1618 9868270.49 759271.659 3522.3489 TOP 1709 986789.71 759350.69 3496.63 VIA 1618 9868215.91 759260.746 3522.7827 TOP 1710 986783.777 75936.089 3496.63 VIA 1618 9868215.01 759257.563 3518.3179 TOP 1711 9867836.85 759357.63 3494.559 VIA 1620 9868254.08 759239.088 3526.0837 TOP 1711 9867836.85 759357.63 3494.659 VIA 1625 9868254.08 759239.088 3526.0837 TOP 1712 9867873.85 759355.593 3499.6621 VIA 1626 9868104.16 759301.412 3518.0404 TOP 1714 9867852.76 759354.595 3497.9797 VIA 1629 9868085.25 759300.038 3517.7644 CA 1715 9867868.04 759355.838 3499.1889 VIA 1630 9868078.51 759305.893 3517.5687 CA 1716 9867869.14 759368.84 3499.1331 VIA 1631 9868078.51 759305.893 3517.5687 CA 1716 9867869.14 759368.844 3499.1533 VIA 1633 9868218.59 759244.962 3520.9459 VIA 1718 9867870.24 759354.493 3499.5886 VIA 1633 9868218.59 759246.261 3520.1478 VIA 1718 9867870.24 759354.493 3499.5886 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867886.44 759348.443 3499.5886 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867887.04 759354.493 3499.5634 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867880.47 759354.493 3499.5634 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867880.47 759354.493 3499.5634 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867880.47 759354.493 3499.5634 VIA 16363 9868218.59 759246.261 3520.173 VIA 1721 9867890.24 759354.493 3499.0748 VIA 16363 9868218.59 759248.503 3519.51679 VIA 1724 9867892.4 759354.493 3499.0748 VIA 16363 9868218.55 7592							1			
1608 9868219.72 759253.091 3520.6308 VIA 1708 9867892.77 759357.072 3502 VIA 1610 9868270.49 759271.659 3523.3489 TOP 1709 9867897.1 759350.96 3502.2898 VIA 1618 986824.99 759297.563 3518.3179 TOP 1711 9867837.77 759367.089 3496.63 VIA 1619 9868121.12 759297.563 3518.3179 TOP 1711 986783.85 759357.163 3496.635 VIA 1620 986824.99 759297.563 3518.3179 TOP 1711 986783.85 759357.163 3496.635 VIA 1625 9868229.16 759251.609 3522.2868 TOP 1713 9867874.78 759361.667 3499.6921 VIA 1625 9868095.25 759300.038 3517.7644 CA 1715 986786.04 759355.555 3497.7977 VIA 1629 9868085.25 759300.038 3517.644 CA 1715 986786.05 759356.955 3499.1899 VIA 1631 9868068.3 759303.11 3518.0427 CA 1716 986786.65 759350.294 3499.1231 VIA 1631 9868068.3 759305.893 3517.5687 CA 1717 9867867.04 759354.953 3499.1231 VIA 1631 9868078.51 759304.990 3520.9459 VIA 1719 9867870.24 759348.823 3499.2963 VIA 1633 9868087.35 759308.828 3516.065 TOP 1720 9867870.24 759344.911 3499.0759 VIA 1636 9868015.22 759239.099 3521.0992 VIA 1721 986786.64 759354.431 3499.0788 VIA 1637 9868015.22 759239.099 3521.0992 VIA 1721 986786.64 759344.911 3499.0788 VIA 1638 9868212.8 759246.261 3520.173 VIA 1722 986788.13 759344.911 3499.0788 VIA 1638 9868218.8 759246.261 3520.173 VIA 1722 986788.04 759354.913 3499.0788 VIA 1638 986807.39 759214.795 3519.059 VIA 1724 986792.04 759354.913 3499.0788 VIA 1638 986807.39 759214.795 3519.059 VIA 1724 986792.04 759354.913 3505.3561 TQ 1644 986807.3 759248.801 3510.6788 TOP 1720 986791.0 759352.803 3505.3598 TQ 1640 986802.37 759248.401 3518.866 VIA 1725 986792.0 759352.803 3505.3598 TQ 1640 986802.7 759324.491 3510.6782 TOP 1724					1					
1610					+					
1618 9868121.21 759276.764 3522.7827 TOP 1710 9867837.77 759367.089 3496.633 VIA 1619 9868121.12 759275.63 3518.3179 TOP 1711 9867836.85 759357.163 3499.6321 VIA 1612 9868275.16 759275.60 3522.868 TOP 1712 9867873.85 759355.593 3499.621 VIA 16125 9868279.16 759275.60 3522.868 TOP 1713 9867874.78 759361.667 3499.6946 VIA 16126 9868104.16 759201.141 3181.0404 TOP 1714 9867875.76 759345.85 3499.621 VIA 1629 9868085.25 759300.038 3517.7644 CA 1715 9867868.04 759355.838 3499.1889 VIA 1630 9868085.25 759300.038 3517.7644 CA 1715 9867868.04 759355.838 3499.1889 VIA 1631 9868078.51 759305.893 3517.6687 CA 1717 9867866.14 759351.843 3499.1533 VIA 1633 9868213.02 759249.108 3521.0488 VIA 1718 9867870.04 759348.823 3499.5886 VIA 1633 9868213.59 759244.962 3520.9459 VIA 1719 9867876.04 759344.436 3499.5886 VIA 1633 9868212.85 759249.509 3521.0992 VIA 1721 9867868.64 759344.436 3499.5886 VIA 1633 9868212.85 759246.261 3520.0173 VIA 1722 9867882.13 759344.91 3499.0788 VIA 1638 9868212.85 759313.033 3514.6663 TOP 1720 9867977.02 759347.436 3499.634 VIA 1638 9868212.85 759313.033 3514.6663 TOP 1723 9867920.24 759354.031 3499.0786 VIA 1638 9868212.85 759313.033 3514.6663 TOP 1723 9867920.24 759354.031 3499.0788 VIA 1638 9868212.85 759328.094 3521.6987 VIA 1721 9867892.44 759354.031 3505.3612 TQ 1641 986807.4 759322.179 3510.6782 TOP 1726 9867920.24 759354.031 3505.3612 TQ 1644 986807.4 759322.179 3510.6782 TOP 1726 9867920.24 759354.031 3505.3654 TQ 1644 986807.4 759322.81 3506.7481 TOP 1729 9867920.24 759354.031 3505.3598 TQ 1644 986807.4 759324.81 3506.7481 TOP 1726 9867920.47 759354.67 3505.3644 TQ 1644 986807.4 759328.81 35					-					
1619 9868121.12 759297.563 3518.3179 TOP 1711 9867836.35 75935.7163 3496.4559 VIA 1620 9868249.16 759251.609 3522.2868 TOP 1712 9867873.85 759355.93 3499.6621 VIA 1626 9868014.16 759301.412 3518.0404 TOP 1714 9867874.78 759361.667 3499.6946 VIA 1629 9868085.25 759300.038 3517.7644 CA 1715 986786.04 759353.83 3499.1899 VIA 1630 9868085.25 759300.038 3517.7644 CA 1715 986786.04 759355.288 3499.1899 VIA 1630 9868085.25 759303.11 3518.0427 CA 1716 986786.25 759350.294 3499.1231 VIA 1631 9868078.51 759305.939 3517.5687 CA 1717 9867869.14 759351.844 3499.1533 VIA 1632 9868223.02 759249.108 3521.0488 VIA 1718 9867870.24 759348.823 3499.9539 VIA 1633 9868213.25 759239.059 3521.0488 VIA 1719 9867877.04 759348.823 3499.5866 VIA 1636 9868073.37 759330.828 3516.065 TOP 1720 9867877.04 75934.443 3499.5866 VIA 1636 9868073.39 759340.828 3521.0592 VIA 1712 9867886.44 75934.943 3499.4759 VIA 1637 9868213.25 759239.059 3521.0692 VIA 1712 9867886.44 75934.941 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1720 986782.24 759354.103 3499.4759 VIA 1637 9868213.25 759323.099 3521.6867 VIA 1722 986782.44 759354.013 3503.3612 TQ 1640 9868072.4 759321.279 3510.6782 VIA 1725 9867920.24 759354.671 3503.3454 TQ 1641 9868074.39 759322.179 3510.6782 VIA 1725 9867920.24 759354.131 3503.3512 TQ 1644 9868074.39 759322.179 3510.6782 VIA 1727 9867920.47 759354.073 3505.3584 TQ 1644 9868024.37 759324.813 3510.6782 VIA 1729 9867920.47 759354.671 3505.3454 TQ 1644 9868024.37 759322.173 3510.6782 VIA 1729 9867920.47 759352.181 3505.3799 TQ 1644 9868024.37 759322.183 3510.6782 VIA 1729 9867920.47 759352.23 3505.3584 TQ 1644 9868023.07 759324.81										
1620 9868254.08 759239.088 3528.0837 TOP 1712 9867873.85 759355.593 3499.6621 VIA 1625 9868229.16 75930.1412 3518.0404 TOP 1713 9867874.78 75936.667 3499.6946 VIA 1629 9868085.25 75930.038 3517.7644 CA 1715 986786.27 759354.995 3499.7977 VIA 1629 9868085.25 75930.038 3517.7644 CA 1715 986786.62 759355.838 3499.1889 VIA 1630 986806.37 75930.311 3518.0427 CA 1716 986786.25 759355.838 3499.1889 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 986786.25 759350.294 3499.1231 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 986786.914 759361.844 3499.1533 VIA 1633 9868213.02 759244.962 3520.9459 VIA 1719 9867877.02 759347.436 3499.9586 VIA 1635 9868087.33 759308.828 3516.065 TOP 1720 9867877.02 759347.436 3499.5634 VIA 1637 9868212.85 759246.261 3520.173 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868212.85 759246.261 3520.173 VIA 1722 986788.21 37934.491 3499.0759 VIA 1638 9868212.85 759246.261 3519.2619 VIA 1722 986782.14 759334.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 986782.4 759351.937 3498.9293 EST 1639 9868212.85 759241.745 519.2619 VIA 1724 9867922.44 759354.103 3505.3612 TQ 1640 986820.21 759241.745 519.2619 VIA 1725 9867919.67 759352.803 3505.3584 TQ 1641 986807.37 759248.8101 3518.8764 VIA 1728 9867920.44 759352.803 3505.3584 TQ 1644 9868194.67 759242.448 3519.2619 VIA 1727 9867924.67 759352.803 3505.3584 TQ 1644 9868191.67 759242.448 3511.952 VIA 1728 9867920.63 759352.803 3505.3598 TQ 1644 9868191.67 759245.43 3510.3755 VIA 1731 9867924.47 759352.803 3505.9598 TQ 1644 9868191.67 759245.42 3518.8576 VIA 1731 9867924.37 759353.83 3505.9598 TQ 1644 9868191.67 759245.42 3516.876										
1626 9868104.16 759301.412 3518.0404 TOP 1714 9867852.76 759354.595 3497.9797 VIA 1629 9868085.25 759300.038 3517.7644 CA 1715 9867866.25 759355.838 3499.1891 VIA 1631 9968086.3 759303.13 3518.0427 CA 1716 9867866.25 759350.294 3499.1231 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 9867866.14 759361.844 3499.1533 VIA 1632 986823.02 759244.962 3520.9459 VIA 1719 9867867.14 759348.823 3499.2963 VIA 1633 9868087.35 759244.962 3520.9459 VIA 1719 9867873.64 759348.823 3499.2963 VIA 1635 9868087.33 759308.828 3516.065 TOP 1720 9867877.02 759347.436 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868212.88 759246.261 3520.173 VIA 1722 9867882.13 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867826.4 759344.911 3499.0748 VIA 1640 9868207.21 759241.745 3519.2619 VIA 1725 9867920.24 759354.611 3505.3454 TQ 1641 9868057.4 759328.179 3510.6782 TOP 1726 9867910.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 9867920.47 759352.181 3505.3955 TQ 1643 9868213.3 759240.438 3519.7555 VIA 1728 9867926.83 759353.283 3505.9553 TQ 1644 9868024.37 759248.101 3518.8764 VIA 1727 9867924.47 759352.181 3505.9595 TQ 1646 9868210.93 759240.448 3521.1952 VIA 1731 9867924.47 759353.183 3505.9553 TQ 1646 9868210.93 759240.448 3521.1952 VIA 1731 9867924.47 759353.283 3505.9598 TQ 1646 9868025.97 759338.11 3503.7689 VIA 1731 9867924.47 759353.283 3505.9598 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1660 986803.87 759938.49										
1629 9868085.25 759300.038 3517.7644 CA 1715 9867868.04 759355.838 3499.1889 VIA 1630 9868086.3 759305.31 3518.0427 CA 1716 9867866.25 759350.294 3499.1231 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 9867869.14 759361.844 3499.1231 VIA 1632 9868218.59 75924.962 3520.9459 VIA 1719 9867870.24 759348.823 3499.2963 VIA 1633 98680818.59 759244.962 3520.9459 VIA 1719 9867877.02 759347.436 3499.2634 VIA 1636 9868081.59 759308.283 3516.065 TOP 1720 9867877.02 759347.436 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868012.88 759246.261 3520.173 VIA 1722 9867862.41 759349.451 3499.4759 VIA 1638 9868013.95 759313.083 3514.6663 TOP 1723 9867862.41 759343.913 3499.293 EST 1639 9868218.45 759238.094 3521.6867 VIA 1724 986792.44 759354.103 3505.3612 TQ 1644 986807.37 759324.745 3519.2619 VIA 1725 986792.44 759354.671 3505.3454 TQ 1642 986807.37 759342.48 3521.1952 VIA 1728 9867919.67 759352.803 3505.3584 TQ 1644 986807.37 759324.248 3521.1952 VIA 1728 986792.68 759352.181 3505.3799 TQ 1644 986802.37 75924.48 3521.1952 VIA 1728 986792.63 759353.38 3505.9553 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 986792.63 759353.38 3505.9678 TQ 1646 986802.03 759240.853 3519.7151 VIA 1731 986792.67 759352.89 3505.9868 TQ 1646 986802.05 759245.42 3518.3664 VIA 1731 986792.67 759352.89 3505.9868 TQ 1646 986802.05 759245.42 3518.3264 VIA 1733 986792.67 759353.38 3505.9558 TQ 1646 986802.57 759335.81 3505.7569 VIA 1731 986792.67 759353.63 3505.9588 TQ 1646 986802.55 759245.42 3518.3564 VIA 1733 986792.67 759353.63 3505.9688 TQ 1646 986802.57 759353.81 3505.9586 VIA 1734	1625	9868229.16	759251.609	3522.2868	TOP	1713	9867874.78	759361.667	3499.6946	VIA
1630 9868086.3 759303.11 3518.0427 CA 1716 9867866.25 759350.294 3499.1231 VIA 1631 9868078.51 759305.893 3517.5687 CA 1717 9867869.14 759361.844 3499.1533 VIA 1632 9868213.07 575249.108 3521.0488 VIA 1718 9867870.24 759348.823 3499.2963 VIA 1633 986818.50 759244.962 3520.9459 VIA 1719 9867873.64 759354.443 3499.5866 VIA 1635 986807.33 759308.828 3516.065 TOP 1720 9867877.02 759347.454 3499.2584 VIA 1636 9868215.27 579239.095 3521.0992 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868215.27 579330.828 3516.065 TOP 1720 9867886.47 579349.451 3499.4759 VIA 1637 9868212.88 759238.094 3521.0992 VIA 1722 9867882.13 759349.451 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759351.913 3498.9293 EST 1639 9868212.84 759238.094 3521.6867 VIA 1724 9867922.44 759354.013 3505.3612 TQ 1640 9868202.21 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1641 9868207.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1643 9868219.3 759224.48 3521.1952 VIA 1728 9867921.96 759352.181 3505.3799 TQ 1643 9868194.95 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9578 TQ 1646 9868104.95 759240.453 3519.7115 VIA 1730 9867924.47 759351.324 3505.9598 TQ 1646 9868105.97 759245.42 3518.3264 VIA 1733 9867924.47 759351.928 3506.3817 TQ 1649 9868025.97 759245.42 3518.3264 VIA 1733 9867924.97 759353.388 3505.9578 TQ 1649 9868025.97 759245.42 3518.3265 VIA 1731 9867924.97 759351.338 3506.3817 TQ 1649 9868025.97 759345.12 3516.6786 VIA 1733 9867927.37 375951.23 3506.3417 TQ 1650 9868176.66 759245.42 3518.5266 VIA 1733 9867926.39 759351.835 3506.3417 TQ 1652 9868005.97 759345.42 3	1626	9868104.16	759301.412	3518.0404	TOP	1714	9867852.76	759354.595	3497.9797	VIA
1631 9868078.51 759305.893 3517.5687 CA 1717 9867869.14 759361.844 3499.1533 VIA 1632 9868223.02 759249.108 3521.0488 VIA 1718 9867870.24 759348.83 3499.9636 VIA 1635 9868087.33 759308.828 3516.065 TOP 1720 9867873.64 75934.433 3499.2634 VIA 1635 9868087.33 759308.828 3516.065 TOP 1720 986787.02 759347.436 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 986788.64 75934.431 3499.4759 VIA 1637 9868212.88 759246.261 3520.173 VIA 1722 9867882.13 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759351.937 3498.9293 EST 1639 9868212.84 759323.094 3521.6867 VIA 1724 9867922.44 759351.937 3498.9293 EST 1640 9868007.4 75932.179 3510.6782 TOP 1726 9867913.67 759352.803 3505.3654 TQ 1641 9868057.4 75932.2179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1727 9867921.96 759352.813 3505.3794 TQ 1644 9868042.43 75932.981 3506.7481 TOP 1729 9867921.96 759353.388 3505.9553 TQ 1644 9868042.43 75932.981 3506.7481 TOP 1729 9867921.99 759353.388 3505.9598 TQ 1646 986819.95 759230.92 3518.1857 VIA 1730 9867924.47 759351.928 3505.9598 TQ 1646 986819.67 759245.42 3518.3264 VIA 1733 9867924.47 759351.928 3505.9808 TQ 1649 9868025.97 759338.13 3503.7689 VIA 1734 9867924.47 759351.928 3506.3401 TQ 1649 9868025.97 759338.131 3503.7689 VIA 1734 9867924.47 759351.928 3506.3401 TQ 1650 986815.66 75925.393 3517.2366 VIA 1734 9868935.66 759351.873 3516.7314 TOP 1650 986815.66 75925.393 3517.2366 VIA 1734 9868035.66 759351.873 3506.3419 TQ 1650 986815.66 75925.393 3517.2366 VIA 1734 9868035.66 759351.873 3518.864 TOP 1665 9868032.77 759345.93 3510.5052	1629	9868085.25	759300.038	3517.7644	CA	1715	9867868.04	759355.838	3499.1889	VIA
1632 9868223.02 759249.108 3521.0488 VIA 1718 9867870.24 759348.823 3499.2963 VIA 1633 9868218.59 759244.962 3520.9459 VIA 1719 9867873.64 759348.823 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867876.47 759349.451 3499.6745 VIA 1636 9868212.88 759246.261 3520.173 VIA 1721 9867886.44 759349.451 3499.0748 VIA 1638 9868212.88 759246.261 3520.173 VIA 1722 9867882.13 759349.451 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 986782.4 759351.937 3498.9293 EST 1639 9868218.45 759238.094 3521.6867 VIA 1724 986792.24 759351.937 3498.9293 EST 1640 9868202.21 759241.745 3519.2619 VIA 1725 9867920.24 759352.803 3505.3612 TQ 1641 9868207.4 759324.101 3518.8764 VIA 1725 9867920.24 759352.803 3505.3584 TQ 1642 9868203.7 759242.101 3518.8764 VIA 1727 9867921.96 759352.803 3505.3584 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868204.243 759323.981 3506.7815 VIA 1730 9867924.91 759353.388 3505.9678 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9808 TQ 1648 986819.95 759248.22 3518.1857 VIA 1731 9867928.4 759351.928 3505.9808 TQ 1649 9868203.98 759240.453 3519.7115 VIA 1732 9867920.47 759351.93 3506.3707 TQ 1649 9868203.99 759338.11 3503.7689 VIA 1734 9867930.37 759349.947 3506.4019 TQ 1650 9868176.66 759258.368 3517.2836 VIA 1734 9867930.37 759351.635 3506.3817 TQ 1650 9868176.66 759258.368 3517.2836 VIA 1734 9868035.66 759311.873 3511.1137 TOP 1650 9868176.66 759258.393 3517.2836 VIA 1734 9868033.66 759313.873 3516.3419 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1734 9868033.66 759313.873 3516.845 TOP 1666 9868032.72 75934.99							1			
1633 9868218.59 759244.962 3520.9459 VIA 1719 9867873.64 759354.443 3499.5886 VIA 1635 9868018.73 759930.828 3516.065 TOP 1720 9867877.02 759347.436 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.1 759349.451 3499.0794 VIA 1637 9868218.88 759246.261 3520.173 VIA 1722 9867882.13 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759354.931 3499.0794 VIA 1639 9868218.45 759238.094 3521.6867 VIA 1724 9867922.44 759354.103 3505.3612 TQ 1640 986820.21 759241.745 3519.2619 VIA 1725 9867920.24 759354.671 3505.3454 TQ 1641 9868057.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759242.448 3521.1952 VIA 1728 9867921.96 759352.813 3505.3799 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867924.91 759353.388 3505.9553 TQ 1645 986820.37 759252.922 3518.1857 VIA 1728 9867924.91 759353.388 3505.9578 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759352.1342 3506.3702 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1649 9868025.79 759338.11 3503.7689 VIA 1731 986802.47 759353.1342 3506.3817 TQ 1650 9868176.66 759253.586 3517.2506 VIA 1735 9868035.66 759311.873 3511.137 TOP 1653 9868157.65 759266.575 3516.7814 VIA 1738 9868035.66 759311.873 3511.4349 TOP 1655 9868035.76 759354.932 3510.6582 VIA 1734 9868035.66 759311.873 3511.4344 TOP 1655 9868035.76 759354.932 3510.5686 VIA 1734 9868035.66 759311.873 3511.4344 TOP 1655 9868035.66 759253.586 3517.2506 VIA 1736 9868035.66 759311.873 3511.4349 TOP 1655 9868035.66 759354.593 3510.5657 VIA 1734 9868035.66 759311.873 3511.4349 TOP 1655 9868035.67 759					1					
1635 9868087.33 759308.828 3516.065 TOP 1720 9867877.02 759347.436 3499.2634 VIA 1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868212.88 759246.261 3520.173 VIA 1722 9867886.44 759349.451 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867866.4 759349.4911 3499.0748 VIA 1638 9868218.45 759238.094 3521.6867 VIA 1724 9867922.44 759351.937 3498.9293 EST 1639 986820.21 759241.745 3519.2619 VIA 1724 9867922.44 759354.103 3505.3612 TQ 1640 9868057.4 759322.179 3510.6782 TOP 1726 9867920.24 759354.671 3505.3454 TQ 1642 9868203.7 759242.448 3521.1952 VIA 1727 9867921.96 759352.803 3505.3584 TQ 1643 9868219.3 759242.444 3521.1952 VIA 1728 9867924.91 759352.803 3505.3595 TQ 1644 9868024.43 759328.81 3506.7481 TOP 1729 9867924.91 759353.383 3505.9553 TQ 1645 9868219.3 759242.448 3521.1952 VIA 1728 9867924.91 759353.388 3505.95678 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1730 9867924.47 759351.928 3505.9588 TQ 1646 9868210.93 759240.453 3519.7115 VIA 1731 9867924.47 759351.928 3506.3702 TQ 1648 986820.88 759240.453 3518.364 VIA 1733 9867931.63 759353.893 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867927.73 759351.2 3506.3410 TQ 1651 9868174.65 759255.8393 3517.2836 VIA 1733 9867930.97 759349.947 3506.4019 TQ 1652 986809.5 759235.968 3517.2506 VIA 1733 986806.5 759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759235.66 3759236.77 3759351.2 3516.7814 VIA 1738 986806.55 759236.68 3517.720 1655 986799.71 759365.237 3499.804 TOP					1					
1636 9868215.22 759239.059 3521.0992 VIA 1721 9867886.44 759349.451 3499.4759 VIA 1637 9868212.88 759246.261 3520.173 VIA 1722 9867882.13 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759351.937 3498.9293 EST 1639 986821.84 759351.8094 3521.6867 VIA 1724 9867922.44 759351.93 3498.9293 EST 1639 986821.84 759321.79 3510.6782 TOP 1726 9867920.24 759354.671 3505.3454 TQ 1640 9868057.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 9867920.94 759352.803 3505.3594 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 986792.83 759352.831 3505.3799 TQ 1643 9868219.3 75924.248 3521.1952 VIA 1728 9867926.83 759352.733 3505.9593 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.342 3506.3317 TQ 1649 9868025.97 759381.11 3503.7689 VIA 1734 9867930.77 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1735 9867927.73 759351.22 3506.3419 TQ 1651 9868174.65 759265.558 3517.2506 VIA 1736 986805.66 759311.873 3511.1137 TOP 1653 9868176.66 759253.568 3517.2506 VIA 1736 986805.66 759311.873 3511.1137 TOP 1655 986790.71 759360.237 3496.7678 TOP 1740 986805.58 75928.943 3518.8545 TOP 1665 9868032.07 759313.092 3499.2804 TOP 1740 986805.81 75928.307 3518.6567 TOP 1666 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 75926.942 3518.8661 TOP 1666 9868032.07 759312.359 3510.										
1637 9868212.88 759246.261 3520.173 VIA 1722 986782.13 759344.911 3499.0748 VIA 1638 9868073.96 759313.083 3514.6663 TOP 1723 9867862.4 759351.937 3498.9293 EST 1639 9868218.45 759238.094 3521.6867 VIA 1724 9867922.44 759354.937 3498.9293 EST 1640 986802.21 759241.745 3519.2619 VIA 1725 986792.024 759354.071 3505.3612 TQ 1641 9868057.4 75932.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 986791.96 759352.181 3505.3799 TQ 1643 9868219.3 759242.448 3521.9522 VIA 1728 9867924.91 759352.183 3505.9553 TQ 1644 986804.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9587 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.97 759351.928 3505.9808 TQ 1646 9868021.93 759323.841 3503.7689 VIA 1731 9867924.97 759351.928 3505.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867921.73 759339.947 3506.3019 TQ 1650 9868176.66 759258.356 3517.2836 VIA 1735 986792.73 759351.635 3506.3119 TQ 1650 9868176.66 759258.368 3517.2836 VIA 1735 986792.73 759351.87 3511.137 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1654 9868157.5 759266.575 3516.7814 VIA 1738 9868095.58 759287.406 3518.772 TOP 1665 986790.17 75936.237 3496.7678 TOP 1744 986815.81 759271.665 3518.022 TOP 1666 9868032.77 759313.39 3499.080 TOP 1744 986815.81 759271.665 3518.022 TOP 1666 9868032.77 759313.39 3510.025 VIA 1748 9868138.18 759271.665 3518.022 TOP 1666 9868032.77 759312.39 3510.025 VIA 1748 9868138.19 759271.665 3518.022 TOP 1666 9868032.77 759312.39 3510.025 VIA					-					
1639 9868218.45 759238.094 3521.6867 VIA 1724 9867922.44 759354.103 3505.3612 TQ 1640 9868202.21 759341.745 3519.2619 VIA 1725 9867920.24 759354.671 3505.3454 TQ 1641 9868057.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 9867921.96 759352.181 3505.3799 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867924.91 759353.388 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.342 3505.9598 TQ 1648 9868210.93 759245.42 3518.364 VIA 1732 9867924.47 759351.635 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1650 9868176.66 759253.983 3517.2836 VIA 1735 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759253.568 3517.2506 VIA 1736 986805.66 759311.873 3511.1137 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 75928.618 3515.4439 TOP 1655 986805.66 759364.922 3516.5976 VIA 1739 9868046.97 759303.613 3512.4444 TOP 1655 9868035.06 75931.91 3517.8124 TOP 1656 9868032.07 759349.33 3495.6952 TOP 1740 9868128.39 759278.907 3518.8545 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1741 986819.94 759285.545 3518.3664 TOP 1666 9868032.07 759313.32 3499.204 TOP 1744 9868193.4 759285.545 3518.3664 TOP 1666 9868032.07 759313.32 3499.204 TOP 1744 9868193.4 759285.545 3518.664 TOP 1666 9868032.07 759313.32 3499.206 TOP 1744 986819.34 759285.545 3518.506 TOP 1666 9868032.72 759313.32 3510.0526 VIA 1745 9868133.16 759275.545 3518.50					-					
1640 9868202.21 759241.745 3519.2619 VIA 1725 9867920.24 759354.671 3505.3454 TQ 1641 9868057.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 9867921.96 759352.181 3505.3799 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9988 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 986819.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 986825.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759253.568 3517.2506 VIA 1736 9868073.56 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868046.97 759303.613 3512.4444 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1655 9868997.37 759354.992 3516.5976 VIA 1738 986806.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1738 9868084.56 759291.191 3517.8124 TOP 1655 9867989.73 759350.133 3495.6952 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 986794.94 759373.33 3495.6952 TOP 1744 9868193.94 759271.665 3518.8064 TOP 1661 9868733.01 759375.12 3493.8151 TOP 1744 9868193.94 759271.665 3518.8064 TOP 1666 9868032.77 759310.393 3510.226 VIA 1747 9868197.97 759255.545 3518.8064 TOP 1666 9868032.71 759375.63 3494.9068 TOP 1744 9868155.61 759271.665 3518.8064 TOP 1666 9868032.31 759375.33 3					TOP	1723				EST
1641 9868057.4 759322.179 3510.6782 TOP 1726 9867919.67 759352.803 3505.3584 TQ 1642 9868203.7 759248.101 3518.8764 VIA 1727 9867921.96 759352.181 3505.3799 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867926.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1731 9867926.39 759351.342 3505.9678 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867926.47 759351.928 3505.9608 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.633 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1736 9868035.66 759318.87 3511.1137 TOP 1652 9868009.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.6 759265.575 3516.7814 VIA 1738 9868095.58 759286.18 3515.8124 TOP 1655 9867999.73 759362.23 3516.5976 VIA 1739 9868045.56 759291.191 3517.8124 TOP 1655 9867999.73 759354.932 3499.2804 TOP 1741 9868109.34 759288.307 3518.8545 TOP 1656 9867970.17 759362.237 3499.2804 TOP 1741 9868109.34 75928.307 3518.8545 TOP 1659 9868032.77 759373.13 3495.6952 TOP 1741 9868109.34 75928.307 3518.8545 TOP 1659 9868032.77 759310.33 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1659 9867930.27 759310.33 3495.6952 TOP 1744 9868158.1 759271.665 3518.8661 TOP 1659 9868032.77 759310.33 3495.6952 TOP 1744 9868158.1 759271.665 3518.8661 TOP 1659 9868032.77 759310.379 3500.651 VIA 1749 9868158.1 759271.665 3518.8064 TOP 1660 9868032.77 759310.337 3493.9021 TOP 1744 9868158.1 759271.665 3518.8064 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1744 9868158.1 759276.694 3518.8661 TOP 1660 9868032.77 759310.379 3510.206 VIA 1749 9868158.1 759276.694 3518.8661 TOP 1660 9868032.77 759310.397 3510.206 VIA 1749 9868158.1 759276.694 3518.8664 TOP 1666 9868032.77 759310.397 3510.208 VIA 1748 9868159.39 759265.543 3518.3664 TOP 1666 9868032.77 759310.397 3510.	1639	9868218.45	759238.094	3521.6867	VIA	1724	9867922.44	759354.103	3505.3612	TQ
1642 9868203.7 759248.101 3518.8764 VIA 1727 9867921.96 759352.181 3505.3799 TQ 1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867926.93 759353.388 3505.9578 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9598 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1735 9867927.73 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868046.97 759291.191 3517.8124 TOP 1655 986798.73 759354.932 3499.2804 TOP 1740 9868095.88 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3499.768 TOP 1741 9868109.34 759283.07 3518.8545 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868109.34 759276.942 3518.8661 TOP 1660 9868032.77 759311.322 3510.1052 VIA 1745 9868158.18 759276.942 3518.8664 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868135.14 759260.745 3518.508 TOP 1666 9868032.77 759377.63 3494.9068 TOP 1749 9868354.61 759247.665 3518.3664 TOP 1666 9868032.31 759377.63 3494.9068 TOP 1749 9868355.82 759335.803 3518.266 TOP 1666 9868038.83 759300.728	1640	9868202.21	759241.745	3519.2619	VIA	1725	9867920.24	759354.671	3505.3454	TQ
1643 9868219.3 759242.448 3521.1952 VIA 1728 9867926.83 759352.733 3505.9553 TQ 1644 9868042.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9598 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867924.47 759351.928 3505.9808 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3702 TQ 1648 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1735 9867927.73 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 986806.53 759298.618 3515.4339 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868046.57 75928.618 3515.4439 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 986805.58 759287.476 3518.7772 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1741 9868198.39 759278.907 3518.8861 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868183.14 759276.942 3518.8661 TOP 1660 9868032.77 759311.322 3510.1052 VIA 1745 9868183.14 759260.745 3518.508 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1744 9868183.14 759260.745 3518.508 TOP 1664 9868032.77 759311.322 3510.1052 VIA 1745 9868183.14 759260.745 3518.508 TOP 1664 9868032.77 759311.323 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1664 986923.27 759377.63 3494.9068 TOP 1746 9868185.14 759255.545 3518.3664 TOP 1665 9868032.77 759377.63				3510.6782	TOP	1726	1		3505.3584	TQ
1644 9868042.43 759329.821 3506.7481 TOP 1729 9867924.91 759353.388 3505.9678 TQ 1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868203.88 759240.453 3519.7115 VIA 1731 9867928.46 759352.892 3506.3702 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3702 TQ 1649 9868025.97 75938.11 3503.7689 VIA 1734 9867931.63 759351.635 3506.3419 TQ 1651 9868176.66 759258.393 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737							1			
1645 9868194.95 759250.922 3518.1857 VIA 1730 9867926.39 759351.342 3505.9598 TQ 1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9808 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759253.588 3517.2836 VIA 1736 9867927.73 759351.23 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9869035.66 759311.873 3511.1137 TOP 1652 9868092. 759344.992 3501.5077 TOP 1737										
1646 9868210.93 759239.841 3520.3755 VIA 1731 9867924.47 759351.928 3505.9808 TQ 1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759253.568 3517.2836 VIA 1735 9867927.73 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868046.67 759331.17 3506.3419 TQ 1652 9868092. 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1654 9868157.25 759266.575 3516.5976 VIA 1738										
1647 9868203.88 759240.453 3519.7115 VIA 1732 9867928.46 759352.892 3506.3702 TQ 1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759253.568 3517.2836 VIA 1735 9867927.73 759349.947 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 9868099.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868046.97 75930.613 3512.4444 TOP 1654 986798.73 759354.932 3499.2804 TOP 1740										
1648 9868191.67 759245.42 3518.3264 VIA 1733 9867931.63 759351.635 3506.3817 TQ 1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1735 9867927.73 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 986809.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759286.618 3515.4439 TOP 1654 986798.73 759354.932 3499.2804 TOP 1740 986805.58 759287.476 3518.7772 TOP 1655 9867937.17 759362.237 3496.7768 TOP 1741										
1649 9868025.97 759338.11 3503.7689 VIA 1734 9867930.97 759349.947 3506.4019 TQ 1650 9868176.66 759258.393 3517.2836 VIA 1735 9867927.73 759351.2 3506.3419 TQ 1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 9868009.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868048.56 759291.191 3517.8124 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 986805.58 759281.476 3518.7772 TOP 1656 986791.07 759362.237 3496.7768 TOP 1741										
1651 9868174.65 759253.568 3517.2506 VIA 1736 9868035.66 759311.873 3511.1137 TOP 1652 9868009.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868084.56 759291.191 3517.8124 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 174	1649				VIA		†			
1652 9868009.2 759344.992 3501.5077 TOP 1737 9868046.97 759303.613 3512.4444 TOP 1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868084.56 759291.191 3517.8124 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8661 TOP 1669 9868032.72 759311.322 3510.1052 VIA 174							1			
1653 9868157.25 759266.575 3516.7814 VIA 1738 9868061.53 759298.618 3515.4439 TOP 1654 9868155.6 759261.522 3516.5976 VIA 1739 9868084.56 759291.191 3517.8124 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8661 TOP 1659 9868032.72 759311.322 3510.1052 VIA 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 174							1			
1654 9868155.6 759261.522 3516.5976 VIA 1739 9868084.56 759291.191 3517.8124 TOP 1655 9867989.73 759354.932 3499.2804 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868183.18 759276.6942 3518.8861 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868158.1 759271.665 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746<							t			
1655 9867989.73 759354.932 3499.2804 TOP 1740 9868095.58 759287.476 3518.7772 TOP 1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8661 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868176.98 759263.998 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>							1			
1656 9867970.17 759362.237 3496.7768 TOP 1741 9868109.34 759283.307 3518.7697 TOP 1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8661 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868176.98 759263.998 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 </td <td></td>										
1657 9867949.43 759370.133 3495.6952 TOP 1742 9868128.39 759278.907 3518.8545 TOP 1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8861 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868176.98 759263.998 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 <td></td>										
1658 9868032.07 759310.795 3509.651 VIA 1743 9868143.58 759276.942 3518.8861 TOP 1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868176.98 759263.998 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 9868153.1 759257.737 3516.9168 VIA 1665 9868028.95 759305.372 3509.6851 VIA 1750 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TOP</td>										TOP
1659 9867938.24 759373.33 3493.9021 TOP 1744 9868158.1 759271.665 3518.1022 TOP 1660 9868032.72 759311.322 3510.1052 VIA 1745 9868176.98 759263.998 3518.6267 TOP 1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 9868354.16 759348.488 3534.3518 TOP 1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 </td <td></td>										
1661 9867931.01 759375.12 3493.8151 TOP 1746 9868183.14 759260.745 3518.508 TOP 1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 9868354.16 759348.488 3534.3518 TOP 1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP	1659	9867938.24	759373.33	3493.9021	ТОР	1744	9868158.1	759271.665	3518.1022	TOP
1662 9868032.31 759312.359 3510.226 VIA 1747 9868197.97 759255.545 3518.3664 TOP 1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 9868354.16 759348.488 3534.3518 TOP 1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP										
1663 9868032.72 759312.397 3510.2199 VIA 1748 9868333.96 759345.489 3530.1224 TOP 1664 9867923.29 759377.63 3494.9068 TOP 1749 9868354.16 759348.488 3534.3518 TOP 1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP										TOP
1664 9867923.29 759377.63 3494.9068 TOP 1749 9868354.16 759348.488 3534.3518 TOP 1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP										TOP
1665 9868028.95 759305.372 3509.6851 VIA 1750 9868165.31 759257.737 3516.9168 VIA 1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP										
1666 9868048.83 759300.728 3510.9536 VIA 1751 9868355.82 759335.803 3531.7031 TOP										
							t			
1668 9868018.91 759318.914 3508.7933 VIA 1753 9868141.3 759265.695 3516.4283 VIA										

	PUNTOS TO	POGRÁFICOS -	UTM WGS 84	
PUNTO N°	Norte	Este	Cota m.s.n.m	Descripción
1754	9868353.48	759314.19	3534.1965	TOP
1755	9868124.63	759269.458	3516.008	VIA
1756	9868336.76	759323.793	3529.9308	TOP
1757	9868333.11	759322.927	3528.5419	TOP
1758	9868329.95	759346.752	3526.4266	VIA
1759	9868326.27	759343.028	3527.3657	VIA
1760	9868327.68	759338.545	3526.8469	VIA
1761	9868333.11	759339.265	3526.8	VIA
1762	9868333.49	759333.537	3526.6838	VIA
1763	9868327.87	759332.83	3526.4354	VIA
1764	9868325.33	759327.351	3526.374	VIA
1765	9868328.76	759324.366	3526.3846	VIA
1766	9868324.09	759318.955	3526.0322	VIA
1767	9868320.51	759322.529	3526.0453	VIA
1768	9868119.47	759270.348	3515.72	VIA
1769	9868092.53	759276.41	3514.8022	VIA
1770	9868069.68	759285.006	3513.0019	VIA
1771	9868172.62	759231.627	3513.5676	TOP
1772	9868148.98	759241.416	3510.468	TOP
1773	9868124.98	759250.178	3509.0399	TOP
1774	9868101.89	759256.285	3507.3587	TOP
1775	9868076.32	759263.951	3505.5741	TOP
1776	9868509.69	759717.929	3555.1953	PLACA
1777	9868041.61	759279.163	3502.9695	TOP
1778	9868011.67	759293.511	3500.9489	TOP
1779	9867988.47	759302.863	3500.5604	TOP
1780	9867979.28	759306.25	3498.2168	VIA
1781	9867974.8	759301.955	3497.8972	VIA
1782	9867959.11	759313.606	3498.7603	VIA
1783	9867962.48	759319.23	3499.4196	VIA
1784	9867950.7	759324.023	3499.0214	VIA
1785	9867946.49	759317.398	3498.997	VIA
1786	9867931.27	759322.702	3499.1507	VIA
1787	9867932.54	759330.739	3499.2995	VIA
1788	9867917.52	759336.956	3499.1878	VIA
1789	9867912.93	759329.998	3498.9397	VIA
1790	9867895.2	759338.163	3498.9248	VIA
1791	9867896.88	759344.956	3499.2287	VIA
1792	9867884.85	759350.031	3499.3591	VIA

Estudio de tráfico

Mejoramiento del diseño

Proyecto: gemetrico Ambatillo Alto - Cerro

Pilisurco

Sentido Ambos sentidos Circulación:

Ciudad: Ambato Fecha: Lunes 08 de febrero 2021

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de

12 horas conteo:

Ubicación: Barrio KISHUAR

Estación: 1

Dia : LUNES

HORAS	DEL DÍA	Livianos	Buses	Camiones	Total	Acumulado por Hora
7:00	7:15	3	0	0	3	
7:15	7:30	2	0	1	3	
7:30	7:45	3	0	2	5	
7:45	8:00	3	0	0	3	14
8:00	8:15	4	0	0	4	15
8:15	8:30	1	0	0	1	13
8:30	8:45	3	0	0	3	11
8:45	9:00	1	0	0	1	9
9:00	9:15	3	0	0	3	8
9:15	9:30	1	0	0	1	8
9:30	9:45	1	0	0	1	6
9:45	10:00	1	0	0	1	6
10:00	10:15	5	0	0	5	8
10:15	10:30	3	0	0	3	10
10:30	10:45	3	0	0	3	12
10:45	11:00	1	0	0	1	12
11:00	11:15	5	0	0	5	12
11:15	11:30	3	0	0	3	12
11:30	11:45	2	0	0	2	11
11:45	12:00	2	0	0	2	12
12:00	12:15	3	0	0	3	10
12:15	12:30	3	0	0	3	10
12:30	12:45	1	0	0	1	9
12:45	13:00	4	0	0	4	11
13:00	13:15	3	0	0	3	11
13:15	13:30	3	0	0	3	11
13:30	13:45	3	0	0	3	13
13:45	14:00	2	0	0	2	11
14:00	14:15	3	0	0	3	11
14:15	14:30	2	0	0	2	10
14:30	14:45	1	0	0	1	8
14:45	15:00	2	0	0	2	8
15:00	15:15	1	0	0	1	6
15:15	15:30	3	0	0	3	7
15:30	15:45	2	0	0	2	8
15:45	16:00	2	0	0	2	8
16:00	16:15	3	0	0	3	10
16:15	16:30	4	0	0	4	11
16:30	16:45	4	0	0	4	13
16:45	17:00	1	0	0	1	12
17:00	17:15	2	0	0	2	11
17:15	17:30	2	0	0	2	9
17:30	17:45	2	0	0	2	7
17:45	18:00	2	0	0	2	8
18:00	18:15	3	0	0	3	9
18:15	18:30	2	0	0	2	9
18:30	18:45	1	0	0	1	8
18:45	19:00	1	0	0	1	7
TO	TAL:	115	0	3	118	

Sentido

Mejoramiento del diseño

Proyecto: gemetrico Ambatillo Alto - Cerro

Pilisurco Circulación:

ón: Ambos sentidos

Ciudad: Ambato

Fecha: Martes 09 de febrero 2021

Provincia: Tungurahua

Realizado por: Luis Javier Orozco Analuiza

Duración de conteo:

12 horas

Ubicación: Barrio KISHUAR

Estación: 1

Dia :

MARTES

HORAS	DEL DÍA	Livianos	Buses	Camiones	Total	Acumulado por Hora
7:00	7:15	2	0	0	2	
7:15	7:30	2	0	0	2	
7:30	7:45	2	0	2	4	
7:45	8:00	2	0	2	4	12
8:00	8:15	4	0	0	4	14
8:15	8:30	0	0	0	0	12
8:30	8:45	3	0	0	3	11
8:45	9:00	1	0	0	1	8
9:00	9:15	3	0	0	3	7
9:15	9:30	0	0	0	0	7
9:30	9:45	1	0	0	1	5
9:45	10:00	1	0	0	1	5
10:00	10:15	2	0	1	3	5
10:15	10:30	2	0	1	3	8
10:30	10:45	1	0	0	1	8
10:45	11:00	0	0	2	2	9
11:00	11:15	3	0	0	3	9
11:15	11:30	2	0	1	3	9
11:30	11:45	2	0	0	2	10
11:45	12:00	1	0	0	1	9
12:00	12:15	5	0	1	6	12
12:15	12:30	2	0	0	2	11
12:30	12:45	4	0	0	4	13
12:45	13:00	1	0	0	1	13
13:00	13:15	3	0	0	3	10
13:15	13:30	2	0	0	2	10
13:30	13:45	3	0	0	3	9
13:45	14:00	4	0	0	4	12
14:00	14:15	3	0	0	3	12
14:15	14:30	2	0	0	2	12
14:30	14:45	1	0	0	1	10
14:45	15:00	3	0	0	3	9
15:00	15:15	1	0	2	3	9
15:15	15:30	3	0	1	4	11
15:30	15:45	2	0	0	2	12
15:45	16:00	1	0	0	1	10
16:00	16:15	3	0	0	3	10
16:15	16:30	4	0	1	5	11
16:30	16:45	2	0	0	2	11
16:45	17:00	1	0	0	1	11
17:00	17:15	2	0	0	2	10
17:15	17:30	4	0	0	4	9
17:30	17:45	4	0	0	4	11
17:45	18:00	1	0	0	1	11
18:00	18:15	3	0	0	3	12
18:15	18:30	3	0	0	3	11
18:30	18:45	0	0	0	0	7
18:45	19:00	0	0	0	0	6
	TAL:	101	0	14	115	0

141

Mejoramiento del diseño

Sentido gemetrico Ambatillo Alto -Cerro Pilisurco Proyecto: Ambos sentidos Circulación:

Ciudad: Ambato Fecha: Miercoles 10 de febrero 2021

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de 12 horas conteo:

Ubicación: Barrio KISHUAR

Estación:

Dia : MIERCOLES

HORAS	DEL DÍA	Livianos	Buses	Camiones	Total	Acumulado por Hora
7:00	7:15	2	0	0	2	
7:15	7:30	1	0	0	1	
7:30	7:45	0	0	1	1	
7:45	8:00	2	0	3	5	9
8:00	8:15	2	0	2	4	11
8:15	8:30	2	0	1	3	13
8:30	8:45	1	0	1	2	14
8:45	9:00	2	0	0	2	11
9:00	9:15	2	0	0	2	9
9:15	9:30	1	0	0	1	7
9:30	9:45	0	0	0	0	5
9:45	10:00	1	0	0	1	4
10:00	10:15	2	0	0	2	4
10:15	10:30	3	0	3	6	9
10:30	10:45	2	0	0	2	11
10:45	11:00	3	0	0	3	13
11:00	11:15	1	0	1	2	13
11:15	11:30	2	0	1	3	10
11:30	11:45	2	0	1	3	11
11:45	12:00	1	0	0	1	9
12:00	12:15	2	0	1	3	10
12:15	12:30	5	0	0	5	12
12:30	12:45	1	0	0	1	10
12:45	13:00	2	0	0	2	11
13:00	13:15	0	0	1	1	9
13:15	13:30	1	0	0	1	5
13:30	13:45	2	0	0	2	6
13:45	14:00	3	0	1	4	8
14:00	14:15	2	0	0	2	9
14:00	14:13		0	0	1	9
14:13		2	0		3	The state of the s
	14:45	1	0	1	4	10
14:45	15:00 15:15	1		3 2	3	10 11
15:00		ł	0			
15:15	15:30	1	0	0	1	11
15:30	15:45	1	0	0	1	9
15:45 16:00	16:00 16:15	2	0	0	2	9
16:15	16:30	2	0	0	2	9
16:30	16:45	3	0	1	4	12
16:45	17:00	0	0	0	0	8
17:00	17:15	3	0	0	3	9
17:15	17:30	4	0	0	4	11
17:30	17:45	0	0	0	0	7
17:45	18:00	5	0	0	5	12
18:00	18:15	3	0	0	3	12
18:15	18:30	3	0	0	3	11
18:30	18:45	0	0	0	0	11
18:45	19:00	0	0	0	0	6
TO	TAL:	86	0	24	110	

Mejoramiento del diseño

gemetrico Ambatillo Alto -Proyecto:

Cerro Pilisurco

Sentido Circulación:

Ambos sentidos

Ciudad: Ambato Fecha: Jueves 11 de febrero 2021

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de

12 horas conteo:

Ubicación:

Barrio KISHUAR

Estación:

Dia:

JUEVES

HORAS	DEL DÍA	Livianos	Buses	Camiones	Total	Acumulado por Hora
7:00	7:15	1	0	0	1	
7:15	7:30	2	0	0	2	
7:30	7:45	1	0	0	1	
7:45	8:00	4	0	0	4	8
8:00	8:15	2	0	0	2	9
8:15	8:30	1	0	2	3	10
8:30	8:45	3	0	2	5	14
8:45	9:00	0	0	0	0	10
9:00	9:15	4	0	0	4	12
9:15	9:30	0	0	0	0	9
9:30	9:45	3	0	1	4	8
9:45	10:00	3	0	0	3	11
10:00	10:15	2	0	0	2	9
10:15	10:30	1	0	0	1	10
10:30	10:45	4	0	0	4	10
10:45	11:00	0	0	0	0	7
11:00	11:15	0	0	0	0	5
11:15	11:30	2	0	0	2	6
11:30	11:45	2	0	0	2	4
11:45	12:00	1	0	0	1	5
12:00	12:15	1	0	0	1	6
12:15	12:30	1	0	0	1	5
12:30	12:45	1	0	0	1	4
12:45	13:00	3	0	0	3	6
13:00	13:15	1	0	0	1	6
13:15	13:30	1	0	1	2	7
13:30	13:45	1	0	1	2	8
13:45	14:00	1	0	0	1	6
14:00	14:15	4	0	0	4	9
14:15	14:30	2	0	0	2	9
14:30	14:45	2	0	0	2	9
14:45	15:00	0	0	0	0	8
15:00	15:15	2	0	0	2	6
15:15	15:30	2	0	0	2	6
15:30	15:45	0	0	0	0	4
15:45	16:00	5	0	0	5	9
16:00	16:15	2	0	0	2	9
16:15	16:30	2	0	2	4	11
16:30	16:45	2	0	0	2	13
16:45	17:00	0	0	0	0	8
17:00	17:15	3	0	0	3	9
17:15	17:30	1	0	0	1	6
17:30	17:45	3	0	0	3	7
17:45	18:00	4	0	0	4	11
18:00	18:15	3	0	0	3	11
18:15	18:30	2	0	0	2	12
18:30	18:45	0	0	0	0	9
18:45	19:00	0	0	0	0	5
TOT	AL:	85	0	9	94	

Mejoramiento del diseño

Sentido gemetrico Ambatillo Alto -Cerro Pilisurco Proyecto: Ambos sentidos Circulación:

Ciudad: Viernes 12 de febrero 2021 Ambato Fecha:

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de

12 horas Ubicación: Barrio KISHUAR conteo:

Estación:

Dia : VIERNES

HORAS DI	EL DÍA	Livianos	Buses	Camiones	Total	Acumulado por Hora
7:00	7:15	1	0	0	1	
7:15	7:30	3	0	0	3	
7:30	7:45	1	0	1	2	
7:45	8:00	3	0	3	6	12
8:00	8:15	2	0	0	2	13
8:15	8:30	1	0	0	1	11
8:30	8:45	3	0	0	3	12
8:45	9:00	5	0	0	5	11
9:00	9:15	2	0	0	2	11
9:15	9:30	1	0	1	2	12
9:30	9:45	0	0	1	1	10
9:45	10:00	4	0	0	4	9
10:00	10:15	0	0	2	2	9
10:15	10:30	2	0	0	2	9
10:30	10:45	4	0	0	4	12
10:45	11:00	2	0	0	2	10
11:00	11:15	2	0	0	2	10
11:15	11:30	1	0	1	2	10
11:30	11:45	4	0	0	4	10
11:45	12:00	4	0	0	4	12
12:00	12:15	1	0	0	1	11
12:15	12:30	2	0	0	2	11
12:30	12:45	2	0	0	2	9
12:45	13:00	3	0	0	3	8
13:00	13:15	2	0	0	2	9
13:15	13:30	3	0	2	5	12
13:30	13:45	0	0	0	0	10
13:45	14:00	3	0	0	3	10
14:00	14:15	1	0	0	1	9
14:15	14:30	2	0	0	2	6
14:30	14:45	3	0	0	3	9
14:45	15:00	2	0	0	2	8
15:00	15:15	1	0	0	1	8
15:15	15:30	1	0	0	1	7
15:30	15:45	2	0	0	2	6
15:45	16:00	4	0	0	4	8
16:00	16:15	4	0	0	4	11
16:15	16:30	1	0	0	1	11
16:13	16:30	2	0	0	2	11
			0			9
16:45 17:00	17:00 17:15	2		0	2	8
		3 2	0	0	3 2	9
17:15 17:30	17:30 17:45	2	0	0	2	9
				0		· · · · · · · · · · · · · · · · · · ·
17:45	18:00	3 4	0	0	3 4	10
18:00	18:15		0			11
18:15	18:30	2	0	0	2	9
18:30	18:45	0		0	0	
18:45	19:00	0	0	0	0	6
TOTA	L:	102	0	11	113	

Mejoramiento del diseño

gemetrico Ambatillo Alto -Proyecto:

Cerro Pilisurco

Sentido Ambos sentidos Circulación:

Ciudad: Ambato Fecha: Sabado 13 de febrero 2021

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de 12 horas conteo:

Ubicación: Barrio KISHUAR

Estación:

Dia :

SABADO

HORAS	DEL DÍA	Livianos	Buses	Camiones	Total	Total Vehículos / Hora
7:00	7:15	1	0	0	1	
7:15	7:30	2	0	0	2	
7:30	7:45	2	0	0	2	
7:45	8:00	3	0	0	3	8
8:00	8:15	1	0	0	1	8
8:15	8:30	2	0	1	3	9
8:30	8:45	2	0	2	4	11
8:45	9:00	2	0	0	2	10
9:00	9:15	4	0	0	4	13
9:15	9:30	0	0	1	1	11
9:30	9:45	3	0	0	3	10
9:45	10:00	3	0	0	3	11
10:00	10:15	2	0	0	2	9
10:15	10:30	2	0	0	2	10
10:30	10:45	3	0	0	3	10
10:45	11:00	0	0	0	0	7
11:00	11:15	0	0	0	0	5
11:15	11:30	2	0	0	2	5
11:30	11:45	2	0	0	2	4
11:45	12:00	1	0	0	1	5
12:00	12:15	1	0	0	1	6
12:15	12:30	1	0	0	1	5
12:30	12:45	2	0	0	2	5
12:45	13:00	2	0	0	2	6
13:00	13:15	1	0	0	1	6
13:15	13:30	1	0	1	2	7
13:30	13:45	1	0	1	2	7
13:45	14:00	1	0	0	1	6
14:00	14:00	5	0	0	5	10
14:15	14:30	1	0	0	1	9
14:30	14:45	2	0	0	2	9
14:30	15:00	0	0	0	0	8
15:00	15:15	1	0	0	1	4
15:15	15:13	3	0	0	3	6
15:30	15:45	1	0	0	1	5
15:45	16:00	4	0	0	4	9
16:00	16:15	2	0	0	2	10
16:15	16:30	2	0	1	3	10
16:30	16:30	3	0	0	3	12
16:45	17:00	0	0	0	0	8
17:00	17:15	3	0	0	3	9
17:00		1			1	-
17:13	17:30 17:45	3	0	0	3	7 7
17:30	18:00	3	0	0	3	10
18:00		3	0	0	3	10
	18:15	2	0	0	2	11
18:15 18:30	18:30 18:45	0	0	0	0	8
18:45	19:00	0	0	0	0	5
						3
TOT	AL:	86	0	7	93	

Mejoramiento del diseño

gemetrico Ambatillo Alto - Cerro Pilisurco Proyecto:

Sentido Circulación: Ambos sentidos

Ciudad: Ambato Fecha: Domingo 14 de febrero 2021

Provincia: Tungurahua Realizado por: Luis Javier Orozco Analuiza

Duración de

12 horas conteo:

Ubicación: Barrio KISHUAR

Estación:

Dia : DOMINGO

HORAS D	DEL DÍA	Livianos	Buses	Camiones	Total	Total Vehículos /
						Hora
7:00	7:15	3	0	0	3	
7:15	7:30	3	0	0	3	
7:30	7:45	3	0	0	3	
7:45	8:00	4	0	0	4	13
8:00	8:15	3	0	0	3	13
8:15	8:30	2	0	0	2	12
8:30	8:45	3	0	0	3	12
8:45	9:00	3	0	0	3	11
9:00	9:15	3	0	0	3	11
9:15	9:30	1	0	0	1	10
9:30	9:45	3	0	0	3	10
9:45	10:00	3	0	0	3	10
10:00	10:15	2	0	0	2	9
10:15	10:30	1	0	0	1	9
10:30	10:45	4	0	0	4	10
10:45	11:00	0	0	0	0	7
11:00	11:15	0	0	0	0	5
11:15	11:30	2	0	0	2	6
11:30	11:45	2	0	0	2	4
11:45	12:00	1	0	0	1	5
12:00	12:15	1	0	0	1	6
12:15	12:30	1	0	0	1	5
12:30	12:45	1	0	0	1	4
12:45	13:00	3	0	0	3	6
13:00	13:15	1	0	0	1	6
13:15	13:30	1	0	0	1	6
13:30	13:45	1	0	0	1	6
13:45	14:00	1	0	0	1	4
14:00	14:15	4	0	0	4	7
14:15	14:30	2	0	0	2	8
14:30	14:45	2	0	0	2	9
14:45	15:00	0	0	0	0	8
15:00	15:15	2	0	0	2	6
15:15	15:30	2	0	0	2	6
15:30	15:45	0	0	0	0	4
15:45	16:00	3	0	0	3	7
16:00	16:15	2	0	0	2	7
16:15	16:30	2	0	0	2	7
16:30	16:45	2	0	0	2	9
16:45	17:00	0	0	0	0	6
17:00	17:15	3	0	0	3	7
17:15	17:30	1	0	0	1	6
17:30	17:45	3	0	0	3	7
17:45	18:00	2	0	0	2	9
18:00	18:15	3	0	0	3	9
18:15	18:30	2	0	0	2	10
18:30	18:45	0	0	0	0	7
18:45	19:00	0	0	0	0	5
TOTA	AL:	91	0	0	91	

Volumen de corte y relleno

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco

Ubicación: Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo

ADSCISA FINAI	. 5+409.903						
Abscisas	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
Absolsas	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
0+000.000	2.89	0.00	0.04	0.00	0.00	0.00	0.00
0+020.000	6.03	89.15	0.44	4.84	89.15	4.84	84.31
0+040.000	7.82	138.54	0.00	4.50	227.69	9.34	218.35
0+060.000	7.86	156.80	0.19	1.91	384.49	11.25	373.24
0+080.000	4.41	122.69	0.51	6.96	507.19	18.21	488.98
0+100.000	2.49	69.06	0.56	10.63	576.25	28.84	547.41
0+120.000	2.13	46.13	1.06	16.21	622.38	45.04	577.33
0+140.000	2.89	49.59	0.25	13.61	671.96	58.65	613.31
0+160.000	3.24	61.28	0.09	3.40	733.24	62.05	671.19
0+180.000	5.91	91.45	0.22	3.16	824.69	65.21	759.48
0+200.000	8.14	138.84	0.32	5.53	963.53	70.74	892.79
0+220.000	6.24	143.81	0.47	7.92	1107.34	78.66	1028.68
0+240.000	5.54	115.53	0.47	9.83	1222.87	88.49	1134.38
0+260.000	4.13	96.37	0.19	6.71	1319.24	95.21	1224.04
0+280.000	2.32	64.94	0.14	3.33	1384.18	98.54	1285.64
0+300.000	0.05	23.94	3.40	35.05	1408.12	133.60	1274.52
0+320.000	0.00	0.52	5.45	87.84	1408.63	221.43	1187.20
0+340.000	0.00	0.00	3.49	90.65	1408.64	312.08	1096.55
0+360.000	2.84	29.42	0.40	39.19	1438.06	351.28	1086.78
0+380.000	8.57	115.05	0.00	3.81	1553.11	355.08	1198.03
0+400.000	5.54	141.16	0.00	0.00	1694.27	355.09	1339.18
0+420.000	0.37	59.25	0.44	4.43	1753.51	359.52	1393.99
0+440.000	0.05	4.23	2.39	28.48	1757.74	388.00	1369.74
0+460.000	3.76	38.12	0.00	23.94	1795.86	411.94	1383.92
0+480.000	8.44	122.00	0.00	0.00	1917.86	411.94	1505.92
0+500.000	2.42	111.34	0.02	0.15	2029.20	412.09	1617.11
0+520.000	3.07	63.38	3.90	38.60	2092.58	450.69	1641.89
0+540.000	10.00	127.92	0.00	39.11	2220.50	489.80	1730.70
0+560.000	9.31	183.40	0.00	0.00	2403.89	489.80	1914.10
0+580.000	4.78	140.94	0.00	0.00	2544.83	489.80	2055.04
0+600.000	1.75	65.73	0.08	0.85	2610.56	490.64	2119.92
0+620.000	7.19	86.57	0.00	0.83	2697.13	491.47	2205.66
0+640.000	4.53	106.92	0.20	2.24	2804.05	493.71	2310.34
0+660.000	1.82	63.50	0.08	2.75	2867.54	496.46	2371.08
0+680.000	6.57	84.33	0.00	0.81	2951.87	497.27	2454.61
0+700.000	5.66	120.39	0.06	0.63	3072.27	497.89	2574.37
0+720.000	3.21	85.71	1.69	18.00	3157.98	515.90	2642.08
0+740.000	0.78		1.60		3199.36	548.14	2651.22
0+760.000	4.61	55.56	0.00	15.37	3254.91	563.52	2691.40
0+780.000	11.87	167.07	0.00	0.00	3421.99	563.52	2858.47
0+800.000	18.62	304.90	0.00	0.00	3726.89	563.52	3163.37
0+820.000	25.76	419.15	0.00	0.00	4146.04	563.52	3582.52
0+840.000	4.58	311.14	0.00	0.09	4457.18	563.60	3893.58
0+860.000	0.00	46.92	4.27	43.31	4504.10	606.92	3897.19
0+880.000	0.00	0.00	5.64	99.16	4504.10	706.07	3798.03
0+880.000	0.00	0.00	5.64	0.00	4504.10	706.07	3798.03
0+900.000	0.04	0.42	2.22	78.48	4504.52	784.55	3719.97
0+920.000	2.01	22.09	0.31	25.47	4526.61	810.02	3716.58

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo Ubicación:

Abscisa Final	: 5+409.903						
Abasis s	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
Abscisas	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
0+940.000	2.58	45.92	0.08	3.92	4572.53	813.94	3758.59
0+960.000	2.96	53.93	0.28	3.87	4626.46	817.81	3808.64
0+980.000	2.02	47.87	1.10	14.91	4674.32	832.72	3841.60
1+000.000	0.46	22.60	0.94	22.46	4696.92	855.18	3841.74
1+020.000	4.40	45.93	0.00	10.98	4742.86	866.16	3876.69
1+040.000	4.16	85.63	0.03	0.23	4828.49	866.40	3962.09
1+060.000	5.40	95.38	0.00	0.28	4923.87	866.68	4057.19
1+080.000	2.33	76.65	0.26	2.74	5000.52	869.42	4131.11
1+100.000	0.60	28.35	1.91	23.16	5028.88	892.57	4136.30
1+120.000	2.56	30.26	0.46	25.40	5059.14	917.97	4141.17
1+140.000	6.41	88.70	0.09	5.62	5147.84	923.59	4224.25
1+160.000	8.09	147.93	0.00	0.88	5295.77	924.46	4371.30
1+180.000	4.55	131.20	0.21	1.92	5426.97	926.39	4500.58
1+200.000	0.06	46.55	3.59	37.60	5473.52	963.99	4509.53
1+220.000	0.00	0.56	9.23	128.48	5474.08	1092.47	4381.61
1+240.000	0.00	0.00	12.68	226.75	5474.08	1319.22	4154.87
1+260.000	0.00	0.00	11.40	240.84	5474.08	1560.06	3914.02
1+280.000	0.00	0.00	8.26	196.64	5474.08	1756.69	3717.39
1+300.000	0.03	0.28	1.55	98.71	5474.36	1855.41	3618.96
1+320.000	1.99	20.25	0.06	16.56	5494.61	1871.97	3622.64
1+340.000	2.35	43.37	0.07	1.23	5537.98	1873.19	3664.79
1+360.000	3.10	54.13	0.00	0.76	5592.11	1873.95	3718.16
1+380.000	7.90	110.32	0.00	0.09	5702.43	1874.04	3828.40
1+400.000	19.75	276.47	0.00	0.00	5978.90	1874.04	4104.86
1+420.000	27.07	453.87	0.00	0.00	6432.77	1874.04	4558.73
1+420.000	27.07	0.08	0.00	0.00	6432.84	1874.04	4558.81
1+440.000	36.04	654.99	0.00	0.00	7087.83	1874.04	5213.79
1+460.000	13.31	480.89	0.00	0.00	7568.72	1874.04	5694.68
1+480.000	5.72	190.28	0.89	8.87	7759.00	1882.91	5876.09
1+500.000	6.86	114.40	0.00	11.64	7873.40	1894.55	5978.85
1+520.000	29.00	386.30	0.00	0.00	8259.70	1894.55	6365.15
1+540.000	14.30	433.04	0.00	0.00	8692.74	1894.55	6798.20
1+560.000	12.91	264.36	0.00	0.09	8957.11	1894.64	7062.47
1+580.000	10.70	236.08	0.13	1.43	9193.19	1896.06	7297.13
1+600.000	10.20	208.98	1.04	11.78	9402.17	1907.85	7494.32
1+620.000	6.89	170.87	3.09	41.34	9573.04	1949.19	7623.85
1+640.000	7.74	146.32	1.45	45.36	9719.36	1994.55	7724.81
1+660.000	8.12	158.67	0.70	21.50	9878.03	2016.05	7861.98
1+680.000	25.03	313.72	0.00	8.48	10191.76	2024.53	8167.23
1+700.000	53.52	827.71	0.00	0.00	11019.47	2024.53	8994.94
1+720.000	42.45		0.00	0.00	11979.19	2024.53	9954.66
1+740.000	30.63	730.79	0.00	0.00	12709.97	2024.53	10685.44
1+760.000	24.83	551.91	0.00	0.00	13261.88	2024.53	11237.35
1+780.000	16.36	411.87	0.00	0.00	13673.75	2024.53	11649.22
1+800.000	5.31	206.80	0.13	1.44	13880.55	2025.98	11854.57
1+820.000	4.05	86.19	0.00	1.84	13966.73	2027.81	11938.92
1+840.000	3.12	71.69	0.98	9.85	14038.42	2037.66	12000.76
1+860.000	1.12	42.33	1.43	24.10	14080.75	2061.76	12018.99

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo

Ubicación:

Abscisa Final	5+409.903						
Abasissa	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
Abscisas	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
1+880.000	0.82	18.56	0.89	25.21	14099.31	2086.97	12012.34
1+880.000	0.82	0.01	0.89	0.01	14099.33	2086.99	12012.34
1+900.000	1.87	26.88	0.09	9.82	14126.20	2096.81	12029.39
1+920.000	1.79	36.38	0.07	1.70	14162.58	2098.51	12064.07
1+940.000	0.71	24.97	0.39	4.64	14187.55	2103.15	12084.40
1+960.000	0.02	7.33	2.39	27.79	14194.88	2130.94	12063.93
1+980.000	0.08	0.99	2.54	49.29	14195.87	2180.24	12015.63
2+000.000	1.04	11.21	0.13	26.73	14207.08	2206.97	12000.11
2+020.000	2.40	34.45	0.37	5.01	14241.53	2211.98	12029.55
2+040.000	6.77	92.56	0.00	3.62	14334.09	2215.61	12118.48
2+060.000	11.34	181.11	0.00	0.00	14515.20	2215.61	12299.59
2+080.000	15.54	269.39	0.00	0.00	14784.59	2215.61	12568.98
2+100.000	14.55	307.23	0.00	0.00	15091.82	2215.61	12876.22
2+120.000	12.53	270.80	0.02	0.20	15362.62	2215.81	13146.82
2+140.000	15.00	275.31	0.00	0.20	15637.93	2216.00	13421.93
2+160.000	15.10	303.87	0.00	0.00	15941.80	2216.00	13725.80
2+180.000	13.67	287.66	0.00	0.00	16229.46	2216.00	14013.45
2+200.000	12.49	261.55	0.01	0.10	16491.01	2216.10	14274.91
2+220.000	8.77	215.82	0.09	0.97	16706.83	2217.07	14489.76
2+240.000	11.31	200.81	0.00	0.91	16907.64	2217.98	14689.67
2+260.000	12.00	234.63	0.00	0.00	17142.27	2217.98	14924.30
2+280.000	2.13	145.83	0.52	4.72	17288.10	2222.70	15065.40
2+300.000	9.90	119.90	0.03	5.50	17408.00	2228.19	15179.81
2+320.000	14.89	236.79	0.00	0.31	17644.79	2228.50	15416.29
2+340.000	16.85	317.41	0.00	0.00	17962.21	2228.50	15733.71
2+360.000	20.06	365.35	0.00	0.00	18327.56	2228.50	16099.06
2+380.000	9.62	294.56	0.00	0.00	18622.11	2228.50	16393.62
2+400.000	5.49	153.10	0.11	1.06	18775.21	2229.56	16545.65
2+420.000	6.14	116.24	0.26	3.67	18891.45	2233.23	16658.22
2+440.000	6.13	118.77	0.01	2.85	19010.22	2236.07	16774.15
2+460.000	9.00	149.74	0.00	0.13	19159.97	2236.21	16923.76
2+480.000	12.59	215.89	0.00	0.00	19375.86	2236.21	17139.65
2+500.000	16.04	286.30	0.00	0.00	19662.16	2236.21	17425.95
2+520.000	18.90	347.93	0.00	0.00	20010.09	2236.21	17773.88
2+540.000	8.65	274.93	0.00	0.00	20285.02	2236.21	18048.80
2+560.000	11.42	200.67	0.00	0.00	20485.68	2236.22	18249.46
2+580.000	12.11	235.26	0.00	0.00	20720.94	2236.22	18484.72
2+600.000	8.21	203.20	0.00	0.00	20924.14	2236.22	18687.92
2+620.000	3.47	116.80	0.46	4.57	21040.94	2240.79	18800.15
2+640.000	13.07	160.29	0.00	5.80	21201.23	2246.59	18954.65
2+660.000	14.44	279.69	0.00	0.00	21480.93	2246.59	19234.34
2+680.000	8.80	232.45	0.00	0.00	21713.38	2246.59	19466.79
2+700.000	6.37	151.76	0.04	0.36	21865.14	2246.95	19618.19
2+720.000	6.25	126.28	0.00	0.46	21991.42	2247.40	19744.01
2+740.000	5.72	120.74	0.02	0.33	22112.15	2247.73	19864.42
2+760.000	6.80	125.26	0.01	0.35	22237.42	2248.08	19989.34
2+780.000	6.34	131.42	0.03	0.44	22368.84	2248.52	20120.32
2+800.000	5.03	113.66	0.15	1.79	22482.49	2250.31	20232.18

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo

Ubicación:

Abscisa Final	5+409.903						
Abasis s	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
Abscisas	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
2+820.000	3.06	77.21	0.24	4.14	22559.70	2254.45	20305.25
2+840.000	6.24	84.81	0.00	2.98	22644.51	2257.44	20387.08
2+860.000	6.11	121.72	0.00	0.00	22766.23	2257.44	20508.80
2+880.000	4.40	105.12	0.00	0.00	22871.35	2257.44	20613.91
2+900.000	3.46	78.58	0.00	0.00	22949.94	2257.44	20692.50
2+920.000	3.35	68.06	0.00	0.00	23018.00	2257.44	20760.56
2+940.000	4.06	74.07	0.00	0.00	23092.07	2257.44	20834.63
2+960.000	4.52	85.72	0.00	0.03	23177.79	2257.46	20920.33
2+980.000	5.93	104.26	0.00	0.03	23282.06	2257.49	21024.57
3+000.000	6.00	119.32	0.00	0.00	23401.38	2257.49	21143.89
3+020.000	2.89	88.47	0.00	0.00	23489.85	2257.49	21232.36
3+040.000	2.27	51.57	0.00	0.09	23541.42	2257.58	21283.84
3+060.000	2.18	44.54	0.05	0.56	23585.97	2258.14	21327.83
3+080.000	3.66	58.79	0.02	0.66	23644.76	2258.81	21385.95
3+100.000	5.98	96.40	0.00	0.22	23741.16	2259.03	21482.13
3+120.000	7.64	135.98	0.00	0.00	23877.13	2259.04	21618.10
3+140.000	7.84	152.89	0.00	0.00	24030.03	2259.04	21770.99
3+160.000	6.84	146.06	0.00	0.00	24176.09	2259.04	21917.05
3+180.000	4.08	109.23	0.00	0.08	24285.32	2259.11	22026.21
3+200.000	4.16	82.49	0.01	0.20	24367.80	2259.31	22108.49
3+220.000	4.29	84.54	0.01	0.24	24452.34	2259.55	22192.79
3+240.000	4.41	87.01	0.01	0.22	24539.35	2259.77	22279.58
3+260.000	3.78	81.84	0.04	0.47	24621.19	2260.24	22360.95
3+280.000	4.27	79.65	0.00	0.45	24700.84	2260.69	22440.15
3+300.000	7.86	121.22	0.00	0.07	24822.05	2260.76	22561.29
3+320.000	10.73	185.96	0.00	0.00	25008.01	2260.76	22747.25
3+340.000	9.35	200.88	0.00	0.00	25208.90	2260.77	22948.13
3+360.000	8.44	178.04	0.00	0.00	25386.93	2260.78	23126.16
3+380.000	4.86	132.95	0.00	0.00	25519.89	2260.78	23259.11
3+400.000	4.15	90.06	0.00	0.00	25609.95	2260.78	23349.17
3+420.000	6.01	101.63	0.00	0.00	25711.58	2260.78	23450.80
3+440.000	5.21	112.23	0.00	0.00	25823.81	2260.78	23563.03
3+460.000	6.28	114.86	0.00	0.00	25938.66	2260.78	23677.88
3+480.000	5.03	113.06	0.00	0.00	26051.72	2260.78	23790.95
3+500.000	3.08	81.12	0.00	0.02	26132.85	2260.80	23872.05
3+520.000	3.62	67.01	0.00	0.02	26199.85	2260.82	23939.03
3+540.000	4.09	77.06	0.00	0.00	26276.91	2260.83	24016.09
3+560.000	3.51	75.99	0.00	0.00	26352.91	2260.83	24092.08
3+580.000	3.65	71.58	0.00	0.00	26424.49	2260.83	24163.67
3+600.000	3.27	69.19	0.00	0.01	26493.69	2260.84	24232.85
3+620.000	3.71	69.79	0.01	0.12	26563.48	2260.96	24302.52
3+640.000	1.21	49.15	0.12	1.32	26612.62	2262.28	24350.34
3+660.000	2.94	41.40	0.12	2.39	26654.02	2264.67	24389.35
3+680.000	7.42	103.25	0.00	1.17	26757.27	2265.84	24491.43
3+700.000	7.82	152.14	0.00	0.00	26909.41	2265.84	24643.57
3+720.000	9.60	174.24	0.00	0.00	27083.65	2265.84	24817.81
3+740.000	9.20	188.02	0.00	0.00	27271.67	2265.84	25005.83
3+760.000	4.53	137.33	0.03	0.27	27409.00	2266.11	25142.89

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo Ubicación:

ADSCISA FINAL	. 51405.505						
Abscisas	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
ADSCISAS	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
3+780.000	3.91	84.45	0.00	0.28	27493.45	2266.39	25227.05
3+800.000	4.62	85.29	0.00	0.20	27578.74	2266.41	25312.33
3+820.000	5.96	105.71	0.00	0.00	27684.45	2266.41	25418.04
3+840.000	6.31	122.62	0.00	0.01	27807.08	2266.42	25540.66
3+860.000	6.23	125.38	0.00	0.05	27932.46	2266.47	25665.99
3+880.000	4.70	109.32	0.13	1.30	28041.77	2267.77	25774.00
3+900.000	1.51	62.09	0.82	9.45	28103.87	2277.22	25826.64
3+920.000	0.00	15.09	5.33	61.45	28118.96	2338.67	25780.29
3+940.000	0.06	0.62	4.85	99.81	28119.58	2438.48	25681.10
3+960.000	3.39	35.18	0.28	50.75	28154.76	2489.23	25665.54
3+980.000	8.26	116.53	0.07	3.47	28271.29	2492.70	25778.59
4+000.000	6.68	145.92	0.15	2.30	28417.21	2495.00	25922.21
4+020.000	7.81	144.14	0.22	3.77	28561.36	2498.77	26062.59
4+040.000	6.84	146.49	0.17	3.93	28707.85	2502.70	26205.15
4+060.000	6.11	128.09	0.16	3.42	28835.94	2506.13	26329.81
4+080.000	5.04	110.52	0.05	2.17	28946.46	2508.30	26438.16
4+100.000	5.70	107.42	0.00	0.55	29053.88	2508.85	26545.02
4+120.000	9.78	154.77	0.00	0.05	29208.65	2508.90	26699.75
4+140.000	9.83	196.05	0.00	0.00	29404.69	2508.90	26895.79
4+160.000	6.69	165.13	0.01	0.11	29569.82	2509.01	27060.82
4+180.000	5.35	119.75	0.08	0.90	29689.58	2509.91	27179.67
4+200.000	4.68	99.84	0.12	2.00	29789.42	2511.92	27277.50
4+220.000	9.31	139.67	0.00	1.20	29929.09	2513.11	27415.97
4+240.000	11.20	205.11	0.00	0.00	30134.20	2513.11	27621.08
4+260.000	9.71	209.10	0.00	0.00	30343.30	2513.11	27830.18
4+280.000	7.07	167.81	0.00	0.00	30511.10	2513.11	27997.99
4+300.000	4.99	120.64	0.00	0.03	30631.75	2513.14	28118.61
4+320.000	3.49	84.85	0.21	2.11	30716.60	2515.25	28201.36
4+340.000	3.53	69.95	0.08	2.90	30786.56	2518.15	28268.41
4+360.000	4.19	77.18	0.00	0.87	30863.74	2519.02	28344.72
4+380.000	4.50	86.88	0.02	0.24	30950.62	2519.25	28431.37
4+400.000	4.31	88.13	0.05	0.66	31038.75	2519.91	28518.83
4+420.000	5.70	100.19	0.00	0.50	31138.93	2520.41	28618.53
4+440.000	6.00	117.00	0.00	0.00	31255.93	2520.41	28735.53
4+460.000	5.21	112.07	0.00	0.08	31368.01	2520.49	28847.52
4+480.000	3.91	91.23	0.13	1.36	31459.23	2521.85	28937.38
4+500.000	2.57	64.65	0.36	4.95	31523.88	2526.80	28997.08
4+520.000	3.60				31585.32	2531.77	
4+540.000	5.73	93.03	0.05	1.75	31678.35	2533.53	29144.82
4+560.000	8.01	137.23	0.00	0.46	31815.57	2533.98	29281.59
4+580.000	7.14	151.48	0.00	0.00	31967.05	2533.98	29433.07
4+600.000	5.07	122.15	0.00	0.00	32089.20	2533.98	29555.22
4+620.000	6.22	112.89	0.00	0.00	32202.10	2533.98	29668.11
4+640.000	3.76	99.78	0.00	0.00	32301.88	2533.99	29767.89
4+660.000	1.66	54.18	0.11	1.15	32356.06	2535.14	29820.92
4+680.000	0.77	24.21	2.25	23.68	32380.26	2558.82	29821.44
4+700.000	0.01	7.19	3.74	63.02	32387.46	2621.84	29765.62
4+720.000	3.27	32.94	0.00	41.12	32420.40	2662.97	29757.43

Proyecto: Mejoramiento del diseño geométrico de la vía Ambatillo Alto - Cerro Pilisurco Provincia: Tungurahua Cantón: Ambato Parroquia: Ambatillo

Ubicación:

7 to o o i o a i i i i a i							
Abscisas	Área de Corte	Volumen de	Área de	Volumen de	Volumen de Corte	Volumen de Relleno	Volumen de Relleno
Auscisas	m2	corte m3	relleno m2	relleno m3	Acumulado m3	Acumulado m3	Acumulado m3
4+740.000	11.86	151.28	0.00	0.07	32571.67	2663.04	29908.64
4+760.000	5.36	174.05	0.00	0.00	32745.73	2663.04	30082.69
4+780.000	4.88	105.66	0.00	0.00	32851.39	2663.04	30188.35
4+800.000	8.94	138.92	0.00	0.00	32990.31	2663.04	30327.28
4+820.000	1.37	94.38	1.80	20.79	33084.69	2683.82	30400.87
4+840.000	0.04	13.17	5.93	80.69	33097.86	2764.51	30333.35
4+860.000	6.42	68.67	0.00	67.58	33166.53	2832.09	30334.44
4+880.000	8.61	149.82	0.00	0.00	33316.35	2832.09	30484.26
4+900.000	5.89	144.89	0.00	0.00	33461.24	2832.09	30629.15
4+920.000	3.46	93.73	0.03	0.27	33554.97	2832.36	30722.61
4+940.000	4.03	74.87	0.04	0.66	33629.84	2833.01	30796.83
4+960.000	4.31	83.37	0.03	0.68	33713.21	2833.70	30879.52
4+980.000	4.84	91.50	0.00	0.28	33804.72	2833.98	30970.74
5+000.000	7.06	121.52	0.00	0.00	33926.24	2833.98	31092.26
5+020.000	8.71	157.70	0.00	0.05	34083.94	2834.03	31249.91
5+040.000	10.11	185.72	0.03	0.34	34269.66	2834.37	31435.29
5+060.000	7.49	176.01	0.17	1.98	34445.67	2836.34	31609.33
5+080.000	5.80	132.95	0.26	4.29	34578.62	2840.64	31737.98
5+100.000	4.45	102.54	0.44	6.96	34681.16	2847.60	31833.56
5+120.000	3.41	78.63	0.75	11.83	34759.79	2859.43	31900.36
5+140.000	1.96	53.74	0.43	11.81	34813.54	2871.23	31942.30
5+160.000	4.52	64.76	0.06	4.96	34878.30	2876.19	32002.10
5+180.000	4.15	86.69	0.03	0.90	34964.99	2877.10	32087.89
5+200.000	3.26	74.13	0.07	1.01	35039.12	2878.11	32161.01
5+220.000	4.24	75.02	0.05	1.29	35114.14	2879.39	32234.74
5+240.000	6.70	108.95	0.00	0.56	35223.09	2879.95	32343.14
5+260.000	11.33	178.72	0.00	0.00	35401.81	2879.95	32521.85
5+280.000	9.47	208.03	0.00	0.00	35609.84	2879.95	32729.88
5+300.000	7.31	167.83	0.07	0.73	35777.67	2880.68	32896.99
5+320.000	6.18	134.96	0.05	1.21	35912.63	2881.89	33030.74
5+340.000	6.05	122.29	0.03	0.80	36034.92	2882.69	33152.23
5+360.000	4.83	110.49	0.04	0.68	36145.41	2883.37	33262.04
5+380.000	6.30	111.70	0.00	0.41	36257.11	2883.78	33373.33
5+400.000	3.01	91.09	0.52	5.49	36348.20	2889.26	33458.94
5+409.903	3.15	30.47	0.78	6.45	36378.67	2895.71	33482.96

Estudio de suelos

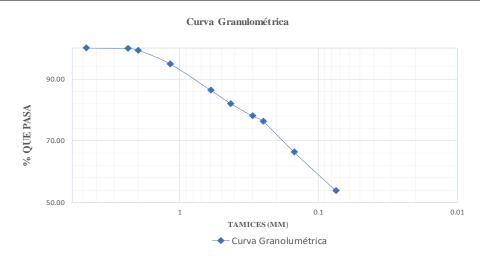
Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

 Abscisa:
 Km 1+000
 Fecha:
 Lunes 5 Abril 2021

 Muestra:
 SUB RASANTE
 Realizado por:
 Javier Orozco Analuiza


 Profundidat:
 0.50 m
 Revisado por:
 Ing. Mg. Favio Portilla

GRANULUMETRÍA DE SUELOS

NORMAS: AASHTO T-87 -70, ASTM -421-58

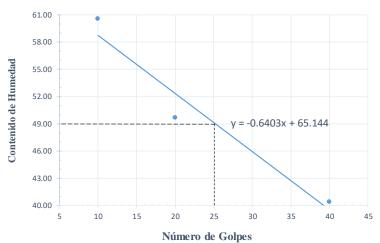
1. DETERMINACIÓN D	E LA GRANULO	METRÍA DE LOS SU	JELOS		
TAMIZ#	mm	PESO RET/ ACUMULADO (gr)	% RETENIDO	% PASA	ESPECIFICACIÓN
		0	0.00	100.00	
#4	4.76	0.00	0.00	100.00	
#8	2.38	0.50	0.20	99.80	
#10	2.00	1.81	0.73	99.27	
#16	1.18	12.72	5.12	94.88	
#30	0.60	33.97	13.66	86.34	
#40	0.43	44.69	17.97	82.03	
#50	0.3	54.72	22.00	78.00	
#60	0.25	59.18	23.80	76.20	
# 100	0.15	83.76	33.68	66.32	
# 200	0.075	114.83	46.18	53.82	
	TOTAL	248.67			
Peso de la muestra a lava	r:	515.40		•	
Peso muestra seca:	248.67		Peso cuarteo antes de	el lavado	248.67
Peso despues lavado:	118.82		Peso cuarteo después	del lavado	118.82
			Diferencia o pasa tan	niz 200	129.85

2. GRÁFICO DE LA DISTRIBUCIÓN GRANULOMÉTRÍCA

3. CONTENIDO DE HUI	MEDAD			
PESO TOTAL SH		515.4		
PESO TOTAL SS		248.7		
Cont. Humedad w %		107.26		
PT +SH	PT+SS	P. AGUA	PSS	PT
246.09	146.5	99.59	92.85	53.65
4.LIMITES DE PLASTIC	CIDAD			
Límite Líquido :	49.00			
Límite Plástico:	34.51			
Índice de plasticidad :	14.49			
5. CLASIFICACIÓN DE	L SUELO:			
SISTEMAS	A	ASHTO	A-4	Limo de baja plasticidad
SISTEMAS		SUCS	ML	Emio de baja piasticidad

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE **Proyecto:** AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE


TUNGURAHUA"

Abscisa:Km 1+000Fecha:Martes 13 de Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:1.00 mRevisado por:Ing. Mg. Favio Portilla

LÍMITES DE ATTERBERG NORMAS: AASHTO T-90 -70, ASTM -424-71, INEN 691

I. DETERMINACIÓN DEL LIMITE LIQUIDO								
Recipiente N°	6T	12F	8T	13C	11-F	113T		
Peso del recipiente Wr	11.54	11.57	11.42	11.27	11.15	11.53		
Peso suelo humedo + P. Recipiente (Wm +Wr)	29.10	28.78	32.09	33.19	30.06	27.27		
Peso suelo seco + P. Recipiente (Ws+Wr)	24.02	23.85	25.21	25.94	22.90	21.36		
Peso de Agua (Ww)	5.08	4.93	6.88	7.25	7.16	5.91		
Peso muestra seca Ws	12.48	12.28	13.79	14.67	11.75	9.83		
Contenido de humedad w% = 100 Ww/Ws	40.71	40.15	49.89	49.42	60.94	60.12		
Promedio W%	4	0.43	49.6	66	60.	53		
N° de golpes		40	20		10)		
Limite Liquido LL%			49.00					

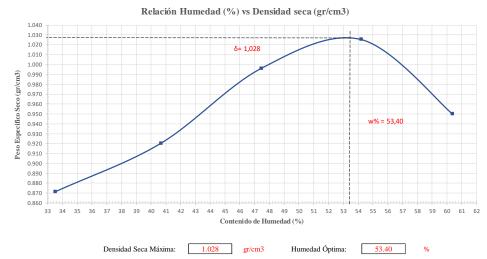
Límite líquido

25 Golpes - Límite Líquido = 49,00

2. DETERMINACIÓN DEL LÍMITE PLÁSTICO			
Recipiente N°	1A	A5	D1
Peso del recipiente Wr	4.21	4.32	4.33
Peso suelo humedo + P. Recipiente (Wm +Wr)	4.60	4.64	4.71
Peso suelo seco + P. Recipiente (Ws+Wr)	4.50	4.56	4.61
Peso de Agua (Ww)	0.10	0.08	0.10
Peso muestra seca Ws	0.29	0.24	0.28
Contenido de humedad w% = 100 Ww/Ws	34.48	33.33	35.71
Promedio W% (LP)		34.51	
3. DETERMINACIÓN DEL ÍNDICE PLÁSTICO			
IP = LL-LP		14.49	

Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"


 Abscisa:
 Km 1+000
 Fecha:
 Miercoles 14 de Abril del 2021

 Muestra:
 SUB RASANTE
 Realizado por:
 Luis Javier Orozco Analuiza

 Profundidad:
 0.50 m
 Revisado por:
 Ing. Mg. Favio Portilla

	ENSAYO DE COMPACTACIÓN PROCTOR MODIFICADO										
		ENSAYO I	DE COMPAC		OCTOR MOI	DIFICADO					
ESPECIFICACIONES		Altura de Caio	da	18"	Peso del molde :		5416.4	gr			
Número de Golpes	56	Peso del Mart	tillo	10 lb	Volumen del	Molde:	2114	cm3			
Número de Capas	5	Normas: AA	SHTO	T-180	ASTM	D1557	INEN	860			
Energia de Compactación											
Peso Inicial	50	000	50	000	50	000	50	000	500	10	
1. PROCESO DE COMPACTACIÓN											
Ensayo Número		1		2		3		4	5		
Humedad inicial Añadida en %		0		5	1	.0	1	15	20)	
Humedad inicial Añadida en cm3		0	2	50	50	00	7	50	1000		
P. molde + suelo húmedo (gr)	7875.60		8152.80		8521.80		8759.00		8637.80		
Peso suelo húmedo Wm (gr)	2459.20		273	6.40	310	5.40	334	2.60	3221	.40	
Peso unitario humedo γm (gr/cm3)	1.	163	1.	294	1.4	169	1.:	581	1.52	24	
2. DETERMINACIÓN DE CONTENI	DOS DE HU	MEDAD									
Recipiente Número	2-F	D-7	B-8	H-1	W-3	Y1	R-5	6T	R-4	P-4	
Peso del Recipiente Wr	47.41	46.47	41.97	43.19	53.30	56.43	43.12	45.42	43.38	49.19	
Recipiente + suelo húmedo Wr+Wm	205.16	185.00	205.89	202.79	246.02	257.24	234.02	221.40	230.65	267.76	
Recipiente + suelo seco Ws+Wm	165.55	150.24	158.50	156.67	184.10	192.50	166.95	159.52	160.09	185.53	
Peso solidos Ws	118.14	103.77	116.53	113.48	130.80	136.07	123.83	114.10	116.71	136.34	
Peso del agua Ww	39.61	34.76	47.39	46.12	61.92	64.74	67.07	61.88	70.56	82.23	
Contenido de Humedad w%	33.53	33.50	40.67	40.64	47.34	47.58	54.16	54.23	60.46	60.31	
Promedio Contenido de Humedad w%	33	.51	40	0.65	47	.46	54	.20	60.3	38	
Peso Unitario Seco γd (gr/cm3)	o γd (gr/cm3) 0.871			920	0.9	0.996		025	0.950		
3. DETERMINACIÓN CRÁFICA DE	I A DENSIE	AD MÁYIM	VHIMED	AD ÓPTIMA							

3. DETERMINACIÓN GRÁFICA DE LA DENSIDAD MÁXIMA Y HUMEDAD ÓPTIMA

4. DESCRIPCIÓN DEL ENSAYO

La máxima densidad alcanzada según la gráfica correspònde a 1.028 gr/cm3, la cual corresponde a un contenido de humedad óptimo de 53.40 %, sin embargo los parámetros pueden variar ligeramente cuando se traza la gráfica.

Proyecto: MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA Proyecto: COMUNIDAD DE AMBATILLO ALTO CON EL CERRO DILISTRICO. CON

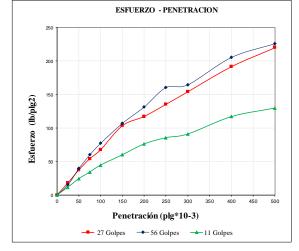
COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA

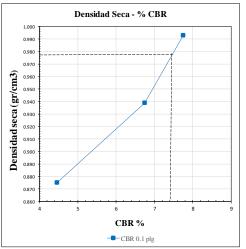
FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Abscisa:Km 1+000Fecha:Miercoles 14 de Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

i ioiunuiuau.	0.50 III		Kevisado por	ing. Mg. Pa	vio i ortina		
	ESPEC	CIFICACION	ES DEL ENSA	YO			
Tipo:	PROCTOR I	MODFICADO)	Peso martil	lo	10lb	
Norma:	AASHTO T-	180		Altura de ca	aida	18"	
Peso Muestra (gr)	5000			Cont. Hum	edad Óptimo	53.40	
	ENSAY	O DE COM	PACTACIÓN (CBR			
N° de Capas	4	5	5		5		
N° de Golpes por capas	5	6	27	•	11	1	
Muestra húmeda + molde (gr)	963	0.20	9428	.80	9216	5.20	
Masa del molde (gr)	646	0.80	6431	.60	6421	.40	
Masa muestra húmeda (gr)	316	9.40	2997	.20	2794	1.80	
Volumen de muestra (cm3)	208	0.28	2080	.28	2080	0.28	
Peso unitario húmedo (gr/cm3)	1.5	524	1.44	11	1.3	43	
			ı				
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo	
Tarro #	P-5	D-8	1-P	C-8	D-7	2-F	
Masa suelo húmedo + tarro (gr)	174.69	180.54	179.22	166.23	154.91	161.84	
Masa suelo seco + tarro (gr)	127.68	134.11	135.27	123.20	117.01	121.85	
Masa del agua (gr)	47.01 46.43		43.95	43.03	37.90	39.99	
Masa del tarro (gr)	39.74	47.20	53.10	42.70	46.23	47.13	
Masa del suelo seco (gr)	87.94	86.91	82.17	80.50	70.78	74.72	
Contenido de agua (%)	53.46	53.42	53.49	53.45	53.55	53.52	
w (%) Promedio		.44	53.4		53.		
Peso unitario seco (gr/cm3)		993	0.93		0.875		
			E LA SATURAC		1		
Muestra húmeda + molde (gr)		0.60	9660		9558		
Masa del molde (gr)		0.80	6431		6421		
Masa muestra húmeda (gr)		9.80	3228		3137		
Masa de agua absorbida (gr)).40	231.		342		
% Agua absorbida	4.	11	7.7	3	12.	26	
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo	
Tarro #	D-8	R-5	C-2	H-1	2-R	W-3	
Masa suelo húmedo + tarro (gr)	239.80	206.33	214.69	179.36	179.28	232.12	
Masa suelo seco + tarro (gr)	167.61	150.82	152.02	128.21	128.31	164.83	
Masa del agua (gr)	72.19 55.51		62.67 51.15		50.97	67.29	
Masa del tarro (gr)	46.82	43.05	43.43	43.17	43.23	53.28	
Masa del suelo seco (gr)	a del suelo seco (gr) 120.79 107.77				85.08	111.55	
Contenido de agua (%)	59.76 51.51		108.59 57.71	85.04 60.15	59.91	60.32	
w (%) Promedio	55	.64	58.9	+	60.12		
			•				

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA" Proyecto:


Km 1+000 SUB RASANTE Fecha: Realizado por: Revisado por: Miercoles 14 de Abril del 2021 Abscisa: Muestra: Javier Orozco Analuiza Ing. Mg. Favio Portilla Profundidad: 0.5 m


	M		-	Área del pistón = 3 plg2 Norma: ASTM			-1883	VELOCIDAD DE CARGA = 2.204 mm/mi plg / min)			nm/min (0.086				
	DATOS DE ESPONJAMIENTO LECTURA DIAL en Pigs * 10-2														
	Mol	de Número				4				5				6	
F	ECHA	TIEM	IPO	LECT	h	ESPONJA	AMIENTO	LECT	h	ESPONJA	MIENTO	LECT	h	ESPONJA	AMIENTO
DÉA	A Y MES	HODA	DIAS	DIAL	Muestra	Plgs. *10-2	0-2 %	DIAL	Muestra	DI *10.2	%	DIAL	Muestra	DI *10.2	%
DIA	A I MES	HORA DIAS	DIAS	Plgs.	Plgs.			Plgs.	Plgs.	Plgs. *10-2	%	Plgs.	Plgs.	Plgs. *10-2	%
12	2/4/2021	15:30	0	0.054	5.00	0.00	0.00	0.024	5.00	0.00	0.00	0.061	5.00	0.00	0.00
13	3/4/2021	16:30	1	0.095		4.17	0.83	0.053		2.91	0.58	0.073		1.22	0.24
14	1/4/2021	17:30	2	0.12		2.87	0.57	0.076		2.24	0.45	0.109		3.54	0.71

ENSAYO DE CARGA - PENETRACIÓN / CBR Constante celda 2.204 lb Área del pistón: 3pl2

	Mol	de Número			1 - 5	56 goples			2 - 2	7 golpes			3 - 11 golpes			
Tio		Dont	maión.	0.00000	Pres	Presiones CBR		Q carga	Pre	Presiones		Q carga	Presiones		CBR	
116	Tiempo Pentración		Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CDK	CBR Q carga	Leida	Corregida	CBK		
Min.	Seg.	mm	plg * 10-3	DIAL	lb/	plg2	%	DIAL	1t	/plg2	%	DIAL	1	b/plg2	%	
		0	0	0.0	0			0.0	0			0.0	0			
0	30	0.64	25	21.0	15.4			24.5	18.0			15.8	11.6			
1	0	1.27	50	54.2	39.8			50.7	37.2			33.1	24.3			
1	30	1.91	75	81.9	60.2			73.6	54.1			46.5	34.2			
2	0	2.54	100	105.4	77.4	77.4	8	91.8	67.4	67.4	6.7	60.7	44.6	44.6	4.5	
3	0	3.81	150	145.8	107.1			140.7	103.4			81.7	60.0			
4	0	5.08	200	179.1	131.6			159.6	117.3			103.6	76.1			
5	0	6.35	250	218.6	160.6			184.1	135.3			116.4	85.5			
6	0	7.62	300	223.9	164.5			209.7	154.1			123.8	91.0			
8	0	10.16	400	279.5	205.3			260.6	191.5			159.1	116.9		,	
10	0	12.79	500	307.5	225.9			299.2	219.8			176.5	129.7			
	CBF	Corregido					8				6.7				4.5	

GRÁFICOS ENSAYO CBR

	0.993	gr/cm3		7.74	%	DENSIDAD MAX	1,028	gr/cm3
DENSIDADES	0.939	gr/cm3	RESISTENCIAS	6.74	%	95 % DE DENSIDAD MAX	0.977	gr/cm3
	0.875	gr/cm3		4.46	%	CBR PUNTUAL	7.4	%

Proyecto:

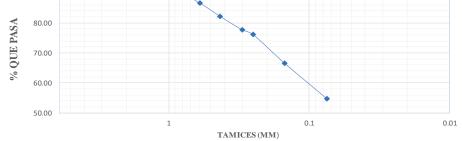
MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA

VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

Abscisa:Km 2+000Fecha:Lunes 5 Abril 2021Muestra:SUB RASANTERealizado por:Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

GRANULUMETRÍA DE SUELOS NORMAS: AASHTO T-87 -70, ASTM -421-58


1. DETERMINACIÓN DE LA GRANULOMETRÍA DE LOS SUELOS

TAMIZ#	mm	PESO RET/ ACUMULADO (gr)	% RETENIDO	% PASA	ESPECIFICACIÓN
		0	0.00	100.00	
#4	4.76	0.00	0.00	100.00	
#8	2.38	0.93	0.41	99.59	
#10	2.00	3.61	1.60	98.40	
#16	1.18	12.73	5.65	94.35	
#30	0.60	30.18	13.40	86.60	
#40	0.43	40.19	17.84	82.16	
#50	0.3	50.22	22.29	77.71	
#60	0.25	53.89	23.92	76.08	
# 100	0.15	75.21	33.38	66.62	
# 200	0.075	101.86	45.21	54.79	
	TOTAL	225.30			
Peso de la muestra a la	var:	511.60			
Peso muestra seca:	225.30		Peso cuarteo antes de	el lavado	225.30
Peso des lavado:	101.86		Peso cuarteo después	del lavado	101.86
			Diferencia o para tan	niz 200	123.44

2. GRÁFICO DE LA DISTRIBUCIÓN GRANULOMÉTRÍCA

90.00

Curva Granulométrica

2	CONTENIDO DE HUMEDAD

PESO TOTAL S	H	511.60		
PESO TOTAL S	S	225.30		
Cont. Humedad	%	127.08		
PT +SH	PT+SS	P. AGUA	PSS	PT
236.63 140.94		95.69	75.3	65.64

Curva Granolumétrica

4.LIMITES DE PLASTICIDAD

Límite Líquido: 44.00 Límite Plástico: 30.67 Índice de plasticidad: 13.33

5. CLASIFICACIÓN DEL SUELO:

SISTEMAS	AASHTO	A-4	Y : d. b.:14:-:d. d	
	SIICS	MH	Limo de baja plasticidad	

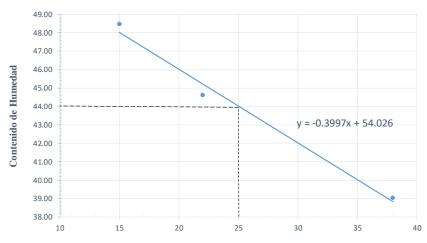
Limite Liquido LL%

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA LABORATORIO DE MECÁNICA DE SUELOS

Proyecto: MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD

EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"


Abscisa:Km 2+000Fecha:Miercoles 14 de Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

LÍMITES DE ATTERBERG NORMAS: AASHTO T-90 -70, ASTM -424-71, INEN 691

1. DETERMINACIÓN DEL LIMITE LIQUIDO								
Recipiente N°	6T	12F	113T	11-F	13C	8T		
Peso del recipiente Wr	11.48	11.54	11.62	11.22	11.27	11.44		
Peso suelo humedo + P. Recipiente (Wm +Wr)	26.66	26.89	30.97	29.41	29.49	31.02		
Peso suelo seco + P. Recipiente (Ws+Wr)	22.40	22.58	25.02	23.78	23.56	24.61		
Peso de Agua (Ww)	4.26	4.31	5.95	5.63	5.93	6.41		
Peso muestra seca Ws	10.92	11.04	13.4	12.56	12.29	13.17		
Contenido de humedad w% = 100 Ww/Ws	39.01	39.04	44.40	44.82	48.25	48.67		
Promedio W%	39.03		44.61		48.46			
N° de golpes	38		22	2	15			

Límite líquido

44.00

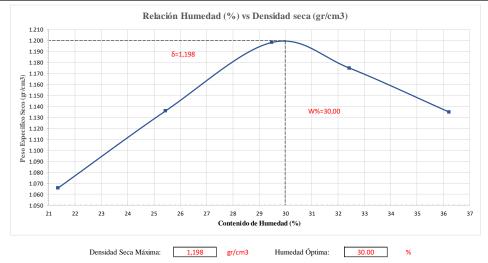
Número de Golpes

25 Golpes - Límite Líquido = 44,00

2. DETERMINACIÓN DEL LÍMITE PLÁSTICO								
Recipiente N°	E-1	D1	A-8					
Peso del recipiente Wr	4.27	4.31	4.35					
Peso suelo humedo + P. Recipiente (Wm +Wr)	4.61	4.70	4.77					
Peso suelo seco + P. Recipiente (Ws+Wr)	4.53	4.61	4.67					
Peso de Agua (Ww)	0.08	0.09	0.10					
Peso muestra seca Ws	0.26	0.30	0.32					
Contenido de humedad w% = 100 Ww/Ws	30.77	30.00	31.25					
Promedio W% (LP)	30.67							
3. DETERMINACIÓN DEL ÍNDICE PLÁSTICO								
IP = LL-LP		13.33						

Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"


 Abscisa:
 Km 2+000
 Fecha:
 Miercoles 14 de Abril del 2021

 Muestra:
 SUB RASANTE
 Realizado por:
 Luis Javier Orozco Analuiza

 Profundidad:
 0.5 m
 Revisado por:
 Ing. Mg. Favio Portilla

		ENSAYO	DE COMPA	CTACIÓN P	ROCTOR MO	DIFICADO				
ESPECIFICACIONES	SPECIFICACIONES		Altura de Caida		Peso del molde :		5416.4	gr		
Número de Golpes	56	Peso del Martillo		10 lb	Volumen del Molde:		2114	cm3		
Número de Capas	5	Normas : AASHTO		T-180						
Energia de Compactación										
Peso Inicial	50	5000 50		000	5000		5000			
1. PROCESO DE COMPACTACIÓN										
Ensayo Número		1		2	3		4		5	
Humedad inicial Añadida en %		0		5	10		15		20	
Humedad inicial Añadida en cm3		0	30	00	600		900		1100	
P. molde + suelo húmedo (gr) 8		0.6 842		129	8696.4		8705.6		8684.4	
Peso suelo húmedo Wm (gr)	elo húmedo Wm (gr) 273		34.2 301		3280		3289.2		3268	
Peso unitario humedo γm (gr/cm3)	1.3	293 1.4		425	1.552		1.556		1.546	
2. DETERMINACIÓN DE CONTENI	DOS DE HU	MEDAD								
Recipiente Número	1-P	F-5	R-4	H-2	D6	D8	Y1	Y1	D3	3T
Peso del Recipiente Wr	53.04	53.82	43.10	43.41	69.57	71.73	56.40	93.66	27.48	28.08
Recipiente + suelo húmedo Wr+Wm	227.58	262.18	192.30	193.74	235.28	239.98	228.76	258.60	128.03	105.57
Recipiente + suelo seco Ws+Wm	196.70	225.70	162.13	163.15	197.46	201.76	186.54	218.20	101.25	85.00
Peso solidos Ws	143.66	171.88	119.03	119.74	127.89	130.03	130.14	124.54	73.77	56.92
Peso del agua Ww	30.88	36.48	30.17	30.59	37.82	38.22	42.22	40.40	26.78	20.57
Contenido de Humedad w%	21.50	21.22	25.35	25.55	29.57	29.39	32.44	32.44	36.30	36.14
Promedio Contenido de Humedad w%	21.36		25.45		29.48		32.44		36.22	
Peso Unitario Seco γd (gr/cm3)	1.0	066	1.1	136	1.198		1.175		1.135	
2. DETERMINACIÓN OR ÉTICA DE	T A DENGTE	A D A C STREET	ST TITES AND	D OPERAL						

3. DETERMINACIÓN GRÁFICA DE LA DENSIDAD MÁXIMA Y HUMEDAD ÓPTIMA

4. DESCRIPCIÓN DEL ENSAYO

La máxima densidad alcanzada según la gráfica correspònde a 1.198 gr/cm3, la cual corresponde a un contenido de humedad óptimo de 30.00 %, sin embargo los parámetros pueden variar ligeramente cuando se traza la gráfica.

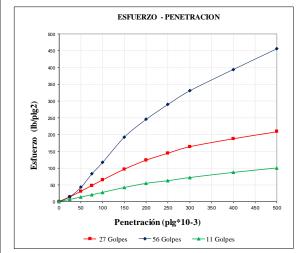
Proyecto:

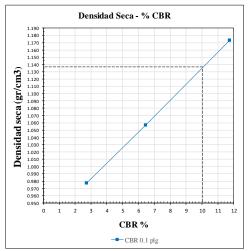
MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Km 2+000 Miercoles 14 de Abril del 2021 Abscisa: Fecha: Muestra: Profundidad: SUB RASANTE Realizado por: Luis Javier Orozco Analuiza 0.50 m Revisado por: Ing. Mg. Favio Portilla

		ESPECIFICA	CIONES DEL ENS	AYO				
Tipo:	PROCTOR MODE			Peso martillo		10lb		
Norma:	AASHTO T-180			Altura de caida		18"		
Peso Muestra (gr)	5000			Cont. Humedad	Óptimo	30.00		
		ENSAYO DE	COMPACTACIÓN	CBR				
N° de Capas	5		5		5			
N° de Golpes por capas	5		27		1			
Muestra húmeda + molde (gr)	9545		9209			5.20		
Masa del molde (gr)	6372		6350			0.20		
Masa muestra húmeda (gr)	3173		2858			5.00		
Volumen de muestra (cm3)	2080	0.28	2080	.28	208	0.28		
Peso unitario húmedo (gr/cm3)	1.5	525	1.33	74	1.2	271		
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo		
Tarro #	P-5	R-5	C-2	H2	D-5	C-7		
Masa suelo húmedo + tarro (gr)	216.49	198.87	181.22	190.29	269.60	192.00		
Masa suelo seco + tarro (gr)	175.60	162.91	149.37	156.31	222.35	157.28		
Masa del agua (gr)	40.89	35.96	31.85	33.98	47.25	34.72		
Masa del tarro (gr)	39.87	43.08	43.47	43.38	65.67	41.81		
Masa del suelo seco (gr)	135.73	119.83	105.90	112.93	156.68	115.47		
Contenido de agua (%)	30.13	30.01	30.08	30.09	30.16	30.07		
w (%) Promedio	30.	.07	30.0)8	30	.11		
Peso unitario seco (gr/cm3)	1.1	.73	1.05	56	0.977			
		DATOS DESPU	ES DE LA SATURA	CIÓN				
Muestra húmeda + molde (gr)	9739	9.80	9609	.40	950	9.60		
Masa del molde (gr)	6372	2.60	6350	.80	635	0.20		
Masa muestra húmeda (gr)	336	7.20	3258	.60	315	9.40		
Masa de agua absorbida (gr)	194	.00	399.		514	.40		
% Agua absorbida	6.	11	13.9	98	19	.45		
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo		
Tarro #	F-5	R-5	R-4	D-5	D-8	1-D		
Masa suelo húmedo + tarro (gr)	241.65	203.14	195.06	253.61	217.13	264.78		
Masa suelo seco + tarro (gr)	190.37	156.37	141.37	188.18	151.21	187.80		
Masa del agua (gr)	51.28	46.77	53.69	65.43	65.92	76.98		
Masa del tarro (gr)	53.70	56.36	43.03	65.63	43.23	53.01		
Masa del suelo seco (gr)	136.67	100.01	98.34	122.55	107.98	134.79		
Contenido de agua (%)	37.52	46.77	54.60	53.39	61.05 57.11			
w (%) Promedio	42.	.14	53.9	99	59	59.08		

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA" Proyecto:


Km 2+000 SUB RASANTE Miercoles 14 de Abril del 2021 Abscisa: Muestra: Fecha: Realizado por: Revisado por: Javier Orozco Analuiza Ing. Mg. Favio Portilla Profundidad: 0.5 m


Máquina de Compresión Simple (CONTROLS)						Área del pi plg2		in = 3 Norma: ASTM D-1883 VELOCIDAD DE CARGA = plg / mi						nm/min (0.086
	DATOS DE ESPONJAMIENTO LECTURA DIAL en Plgs * 10-2													
Mol				5				6						
FECHA	TIEN	MPO	LECT	h	ESPONJA	AMIENTO	LECT	h	ESPONJA	MIENTO	LECT	h	ESPONJA	AMIENTO
DÍA Y MES	TTOD 4	DIAC	DIAL	Muestra	DI *10.2	%	DIAL	Muestra	DI 010.0	%	DIAL	Muestra	DI *10.2	%
DIA 1 MES	HORA	DIAS	Plgs.	Plgs.	Plgs. *10-2	%	Plgs.	Plgs.	Plgs. *10-2		Plgs.	Plgs.	Plgs. *10-2	%
12/4/2021	9:00	0	0.048	5.00	0.00	0.00	0.058	5.00	0.00	0.00	0.039	5.00	0.00	0.00
13/4/2021	10:30	1	0.068		2.05	0.41	0.080		2.13	0.43	0.066		2.76	0.55
14/4/2021	12:30	2	0.10		3.03	0.61	0.120		4.06	0.81	0.110		4.41	0.88

ENSAYO DE CARGA - PENETRACIÓN / CBR Constante celda 2.204 lb Área del pistón: 3pl2

	Mol	de Número			1 - :	56 goples			2 - 2	7 golpes		3 - 11 golpes			
True.			•		Pres	iones	CDD		Presiones		CDD		Presiones		CDD
Tie	mpo	Pent	ración	Q carga	Leida	Corregida	CBR	Q carga	Leida	Corregida	CBR	Q carga	Leida	Corregida	CBR
Min.	Seg.	mm	plg * 10-3	DIAL	lb/	plg2	%	DIAL	lb	/plg2	%	DIAL	11	b/plg2	%
		0	0	0.0	0			0.0	0			0.0	0		
0	30	0.64	25	20.8	15.3			19.2	14.1			8.7	6.4		
1	0	1.27	50	58.1	42.7			41.8	30.7			18.1	13.3		
1	30	1.91	75	112.3	82.5			64.9	47.7			27.6	20.3		
2	0	2.54	100	159.7	117.3	117.3	11.73	87.8	64.5	64.5	6.45	37.1	27.3	27.3	2.73
3	0	3.81	150	262.3	192.7			131.7	96.8			57.2	42.0		
4	0	5.08	200	334.1	245.5			168.4	123.7			73.9	54.3		
5	0	6.35	250	394.7	290.0			196.9	144.7			84.9	62.4		
6	0	7.62	300	449.9	330.5			223.2	164.0			97.6	71.7		
8	0	10.16	400	536.4	394.1			255.7	187.9			118.5	87.1		
10	0	12.79	500	620.4	455.8			284.2	208.8			136.4	100.2		
	CBR Corregido 11.73						6.45				2.73				

GRÁFICOS ENSAYO CBR

	1.173	gr/cm3		11.73	%	DENSIDAD MAX	1,198	gr/cm3
DENSIDADES	1.056	gr/cm3	RESISTENCIAS	6.45	%	95 % DE DENSIDAD MAX	1.138	gr/cm3
	0.977	gr/cm3		2.73	%	CBR PUNTUAL	10.00	%

Ensayos en la Abscisa: 3+000

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA LABORATORIO DE MECÁNICA DE SUELOS

Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

Abscisa:Km 3+000Fecha:Lunes 5 Abril 2021Muestra:SUB RASANTERealizado por:Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

GRANULUMETRÍA DE SUELOS NORMAS: AASHTO T-87 -70, ASTM -421-58

1. DETERMINACIÓN DE LA GRANULOMETRÍA DE LOS SUELOS

TAMIZ#	mm	PESO RET/ ACUMULADO (gr)	% RETENIDO	% PASA	ESPECIFICACIÓN	
		0	0.00	100.00		
#4	4.76	0.00	0.00	100.00		
#8	2.38	0.06	0.03	99.97		
#10	2.00	0.55	0.25	99.75		
#16	1.18	4.33	1.96	98.04		
#30	0.60	15.91	7.21 92.79			
#40	0.43	23.36	10.58	89.42		
#50	0.3	32.93	14.91	85.09		
#60	0.25	37.47	16.97	83.03		
# 100	0.15	65.73	29.77	70.23		
# 200	0.075	93.11	42.17	57.83		
	TOTAL	220.82				
Peso de la muestra a la	var:	534.20				
Peso muestra seca:	220.82		Peso cuarteo antes de	l lavado	220.82	
Peso des lavado:	93.11		Peso cuarteo después del lavado 93.11			
•			Diferencia o para tam	127.71		

2. GRÁFICO DE LA DISTRIBUCIÓN GRANULOMÉTRÍCA

Curva Granulométrica 100.00 90.00 90.00 70.00 60.00 1 0.1 0.01 TAMICES (MM) Curva Granulométrica

3. CONTENIDO	3. CONTENIDO DE HUMEDAD										
PESO TOTAL S	SH .	534.2									
PESO TOTAL S	SS	220.82									
Cont. Humedad	%	141.92									
PT +SH	PT+SS	P. AGUA	PSS	PT							
264.59	140.51	124.08	87.43	53.08							
4 × × × × × × × × × × × × × × × × × × ×	A THE PROPERTY OF THE PARTY OF										

4.LIMITES DE PLASTICIDAD

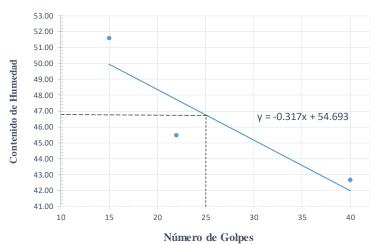
Límite Líquido: 46.80 Límite Plástico: 32.67 Índice de plasticidad: 14.13

5. CLASIFICACIÓN DEL SUELO:

SISTEMAS	AASHTO	A-4	Limo de baja plasticidad
SISTEMAS	SUCS	ML	Limo de baja piasticidad

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE **Proyecto:** AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE


TUNGURAHUA"

Abscisa:Km 3+000Fecha:Martes 6 Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

LÍMITES DE ATTERBERG NORMAS: AASHTO T-90 -70, ASTM -424-71, INEN 691

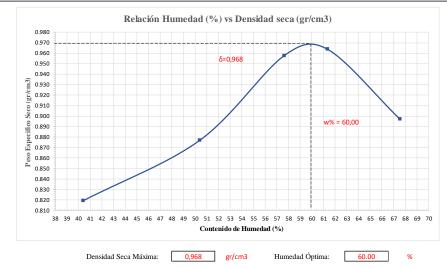
1. DETERMINACIÓN DEL LIMITE LIQUIDO												
Recipiente N°	6T	113T	8T	11-F	13C	12-F						
Peso del recipiente Wr	11.53	11.6	11.45	11.21	11.26	11.58						
Peso suelo humedo + P. Recipiente (Wm +Wr)	24.06	25.3	27.66	30.57	30.72	31.39						
Peso suelo seco + P. Recipiente (Ws+Wr)	20.30	21.22	22.56	24.56	24.12	24.63						
Peso de Agua (Ww)	3.76	4.08	5.1	6.01	6.6	6.76						
Peso muestra seca Ws	8.77	9.62	11.11	13.35	12.86	13.05						
Contenido de humedad w% = 100 Ww/Ws	42.87	42.41	45.90	45.02	51.32	51.80						
Promedio W%	4	2.64	45.4	6	51.56							
N° de golpes		40	22		1:	5						
Limite Liquido LL% 46.80												

Límite líquido

25 Golpes - Límite Líquido = 46,80

. DETERMINACIÓN DEL LÍMITE PLÁSTICO										
Recipiente N°	E-2	A-5	1A							
Peso del recipiente Wr	4.37	4.33	4.34							
Peso suelo humedo + P. Recipiente (Wm +Wr)	4.81	4.74	4.83							
Peso suelo seco + P. Recipiente (Ws+Wr)	4.7	4.64	4.71							
Peso de Agua (Ww)	0.11	0.10	0.12							
Peso muestra seca Ws	0.33	0.31	0.37							
Contenido de humedad w% = 100 Ww/Ws	33.33	32.26	32.43							
Promedio W% (LP)		32.67								
3. DETERMINACIÓN DEL ÍNDICE PLÁSTICO										
IP = LL-LP		14.13								

Proyecto:


MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN

AMBATO, PROVINCIA DE TUNGURAHUA"

Km 3+000 Lunes 12 de Abril del 2021 Abscisa: Muestra: SUB RASANTE Realizado por: Luis Javier Orozco Analuiza Revisado por: Profundidad: 0.5 m Ing. Mg. Favio Portilla

		ENSAYO I	DE COMPAC		OCTOR MOI					
ESPECIFICACIONES		Altura de Caio	da	18"	Peso del molo	le:	5416.3	gr		
Número de Golpes	56	Peso del Mart	tillo	10 lb	Volumen del	Molde:	2114	cm3		
Número de Capas	5	Normas: AA	SHTO	T-180						
Energia de Compactación										
Peso Inicial	50	000	50	000	50	000	50	000	500	00
1. PROCESO DE COMPACTACIÓN										
Ensayo Número		1		2		3		4	5	
Humedad inicial Añadida en %		0		6	1	12	1	.6	20)
Humedad inicial Añadida en cm3	inicial Añadida en cm3 0			00	6	600		00	1000	
P. molde + suelo húmedo (gr)	7848.2		8204		860	8606.8		8703.4		3.8
Peso suelo húmedo Wm (gr)	243	31.9	27	2787.7		90.5	32	37.1	3177	7.5
Peso unitario humedo γm (gr/cm3)	1.	150	1.3	319	1.5	509	1.3	555	1.50)3
2. DETERMINACIÓN DE CONTENI	DOS DE HU	MEDAD								
Recipiente Número	B-8	2-R	6-T	H-1	1-D	113	D-6	D8	4B	D3
Peso del Recipiente Wr	41.97	43.26	45.71	43.26	33.04	26.90	69.49	71.84	31.54	27.43
Recipiente + suelo húmedo Wr+Wm	148.94	152.49	187.45	197.56	139.05	116.05	282.36	299.20	112.58	120.51
Recipiente + suelo seco Ws+Wm	118.09	121.12	139.92	145.90	100.25	83.50	201.00	213.20	79.88	83.01
Peso solidos Ws	76.12	77.86	94.21	102.64	67.21	56.60	131.51	141.36	48.34	55.58
Peso del agua Ww	30.85	31.37	47.53	51.66	38.80	32.55	81.36	86.00	32.70	37.50
Contenido de Humedad w%	ntenido de Humedad w% 40.53 40.29		50.45	50.33	57.73	57.51	61.87	60.84	67.65	67.47
Promedio Contenido de Humedad w%	40	.41	50.39		57.62		61.35		67.56	
Peso Unitario Seco γd (gr/cm3)	0.3	819	0.3	877	0.9	958	0.9	964	0.897	

3. DETERMINACIÓN GRÁFICA DE LA DENSIDAD MÁXIMA Y HUMEDAD ÓPTIMA

4. DESCRIPCIÓN DEL ENSAYO

La máxima densidad alcanzada según la gráfica correspònde a 0.968 gr/cm3, la cual corresponde a un contenido de humedad óptimo de 60.00 %, sin embargo los parámetros pueden variar ligeramente cuando se traza la gráfica.

Proyecto:

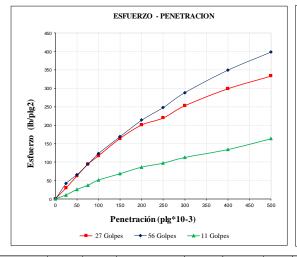
MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

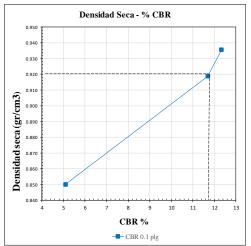
Abscisa:Km 3+000Fecha:Miercoles 14 de Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

Totundidad: 0.30 m Kevisado por: Ing. Mg. Favio Portuia										
	ESPEC	CIFICACION	NES DEL ENSAY	YO						
Tipo:	PROCTOR M	10DFICADO		Peso martillo)	10lb				
Norma:	AASHTO T-1	180		Altura de cai	ida	18"				
Peso Muestra (gr)	5000			Cont. Hume	dad Óptimo	60.00				
	ENSAY	O DE COM	<u>PACTACIÓN C</u>	BR						
N° de Capas	4	5	5		4	5				
N° de Golpes por capas	5	6	27	7	1	1				
Muestra húmeda + molde (gr)	900:	5.60	8867	7.00	854	0.20				
Masa del molde (gr)	589	0.00	5805	5.00	570	9.00				
Masa muestra húmeda (gr)	311:	5.60	3062	2.00	283	1.20				
Volumen de muestra (cm3)	2080	0.28	2080	0.28	208	0.28				
Peso unitario húmedo (gr/cm3)	1.4	198	1.4	72	1.3	361				
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo				
Tarro #	D-8	C-8	2-R	H-1	D-7	2-F				
Masa suelo húmedo + tarro (gr)	185.12	186.89	164.01	180.48	190.08	232.61				
Masa suelo seco + tarro (gr)	133.25	132.75	118.65	128.84	136.09	163.71				
Masa del agua (gr)	51.87	54.14	45.36	51.64	53.99	68.90				
Masa del tarro (gr)	46.88	42.71	43.20	43.20	46.22	49.16				
Masa del suelo seco (gr)	86.37	90.04	75.45	85.64	89.87	114.55				
Contenido de agua (%)	60.06	60.13	60.12	60.30	60.08	60.15				
w (%) Promedio	60.	.09	60.	60.21		.11				
Peso unitario seco (gr/cm3)	0.9	936	0.9	19	0.8	350				
	DATOS I	DESPUES DI	E LA SATURAC	IÓN	•					
Muestra húmeda + molde (gr)	911	6.40	9154	1.00	8853.60					
Masa del molde (gr)	5890	0.00	5805	5.00	570	9.00				
Masa muestra húmeda (gr)	322	6.40	3349	0.00	314	4.60				
Masa de agua absorbida (gr)	110	0.80	287.	.00	313	3.40				
% Agua absorbida	3.	56	9.3	37	11.	.07				
			_							
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo				
Tarro #	6-T	2-R	R-5	B-8	H-1	H-2				
Masa suelo húmedo + tarro (gr)	172.60	182.44	189.43	174.81	193.00	177.99				
Masa suelo seco + tarro (gr)	121.85	130.14	130.00	123.40	130.64	125.79				
Masa del agua (gr)	50.75	52.30	59.43	51.41	62.36	52.20				
Masa del tarro (gr)	45.35	43.15	43.04	41.87	43.16	43.35				
Masa del suelo seco (gr)	76.50	86.99	86.96	81.53	87.48	82.44				
Contenido de agua (%)	66.34	60.12	68.34	63.06	71.28	63.32				
w (%) Promedio	63.	.23	65.	7/0	67.30					

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA LABORATORIO DE MECÁNICA DE SUELOS

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA" Proyecto:


Jueves 15 de Abril del 2021 Abscisa: Muestra: Profundidad: Fecha: Realizado por: Revisado por: Javier Orozco Analuiza Ing. Mg. Favio Portilla SUB RASANTE 0.5 m


Máquina de Compresión Simple (CONTROLS)						Area del pistón = 3 plg2 Norma: ASTM D-1883			VELOCIDAD DE CARGA = 2.204 mm/min (0.086 plg / min)					
	DATOS DE ESPONJAMIENTO LECTURA DIAL en Plgs * 10-2													
Molde Número 4								5				6		
FECHA	TIEN	MPO	LECT	h	ESPONJA	AMIENTO	LECT	h	ESPONJAN	HENTO	LECT	h	ESPONJA	AMIENTO
DÍA Y MES	HORA	DIAS	DIAL	Muestra	DIAL Muestra	%	DIAL	Muestra	DI \$10.2	%				
DIA 1 MES	HOKA	DIAS	Plgs.	Plgs.	Plgs. *10-2	%	Plgs.	Plgs.	Plgs. *10-2	%	Plgs.	Plgs.	Plgs. *10-2	%
13/4/2021	15:30	0	0.037402	5.00	0.00	0.00	0.020	5.00	0.00	0.00	0.032	5.00	0.00	0.00
14/4/2021	16:30	1	0.044		0.71	0.14	0.025		0.47	0.09	0.038		0.63	0.13
15/4/2021	17:30	2	0.055		1.02	0.20	0.033		0.79	0.16	0.048		0.98	0.20

1.02 0.20 0.033 0.7 ENSAYO DE CARGA - PENETRACIÓN / CBR

						Constant	e ceiua 2.204	HD AL	ea dei pi	ston: 5pi2					
	Mol	de Número			1 - 5	6 goples		2 - 27 golpes				3 - 11 golpes			
Tie	mpo	Dont	ración	0	Presiones		CBR O carga		Presiones		CBR	Q carga	Presiones		CBR
1 10	про	renu	acion	Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CBK
Min.	Seg.	mm	plg * 10-3	DIAL	lb/	plg2	%	DIAL	1	lb/plg2	%	DIAL	ll ll	p/plg2	%
		0	0	0.0	0			0.0	0			0.0	0		
0	30	0.64	25	57.6	42.3			40.8	30.0			14.5	10.7		
1	0	1.27	50	89.6	65.8			84.6	62.2			34.6	25.4		
1	30	1.91	75	127.8	93.9			127.5	93.7			49.9	36.7		
2	0	2.54	100	167.8	123.3	123.3	12.33	159.1	116.9	116.9	11.69	69.3	50.9	50.9	5.09
3	0	3.81	150	230.4	169.3			223.4	164.1			93.0	68.3		
4	0	5.08	200	290.6	213.5			273.1	200.6			117.3	86.2		
5	0	6.35	250	337.4	247.9			298.9	219.6			132.1	97.0		
6	0	7.62	300	392.1	288.1			344.1	252.8			153.2	112.6		
8	0	10.16	400	475.1	349.0			407.1	299.1			182.6	134.2		
10	0	12.79	500	541.8	398.0			453.9	333.5			222.4	163.4		
	CBR Corregido				12.33				11.69				5.09		

GRÁFICOS ENSAYO CBR

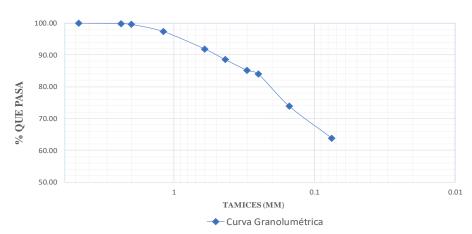
DENSIDAD MAX 95 % DE DENSIDAD MAX CBR PUNTUAL gr/cm3 12.33 11.69 0,968 gr/cm3 DENSIDADES RESISTENCIAS gr/cm3 0.919 gr/cm3 5.09

Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

Abscisa:Km 4+000Fecha:Lunes 5 Abril 2021Muestra:SUB RASANTERealizado por:Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla


GRANULUMETRÍA DE SUELOS NORMAS: AASHTO T-87 -70, ASTM -421-58

1. DETERMINACIÓN DE LA GRANULOMETRÍA DE LOS SUELOS

TAMIZ#	mm	PESO RET/ ACUMULADO (gr)	% RETENIDO	% PASA	ESPECIFICACIÓN
		0	0.00	100.00	
#4	4.76	0.00	0.00	100.00	
#8	2.38	0.40	0.17	99.83	
#10	2.00	1.00	0.42	99.58	
#16	1.18	6.40	2.70	97.30	
#30	0.60	19.40	8.19	91.81	
#40	0.43	27.20	11.48	88.52	
#50	0.3	35.20	14.86	85.14	
#60	0.25	38.00	16.04	83.96	
# 100	0.15	62.00	26.17	73.83	
# 200	0.075	85.60	36.13	63.87	
	TOTAL	236.95			
Peso de la muestra a la	var:	551.20			•
Peso muestra seca:	236.95		Peso cuarteo antes de	el lavado	236.95
Peso des lavado:	85.60		Peso cuarteo después	del lavado	85.60
,			Diferencia o para tan	niz 200	151.35

2. GRÁFICO DE LA DISTRIBUCIÓN GRANULOMÉTRÍCA

Curva Granulométrica

3. CONTENIDO	DE HUMEDAD			
PESO TOTAL S	Н	551.2		
PESO TOTAL S	S	236.95		
Cont. Humedad	%	132.63		
PT +SH	PT+SS	P. AGUA	PSS	PT
167.18	98.32	68.86	51.92	46.40
A T TO STOREGY TO THE	DY A COMPACED A PO			

4.LIMITES DE PLASTICIDAD
Límite Líquido: 44.00
Límite Plástico: 29.81
Índice de plasticidad: 14.19

5. CLASIFICACIÓN DEL SUELO:

CICTEMAC	AASHTO	A-4	Time de beis alendista d
SISTEMAS	SUCS	ML	Limo de baja plasticidad

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE **Proyecto:** AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

Abscisa:Km 4+000Fecha:Martes 6 de Abril del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

LÍMITES DE ATTERBERG NORMAS: AASHTO T-90 -70, ASTM -424-71, INEN 691

1. DETERMINACIÓN DEL LIMITE LIQUIDO										
Recipiente N°	3T	D3	1T	4B	8T	13C				
Peso del recipiente Wr	28.03	27.45	30.3	31.57	11.42	11.27				
Peso suelo humedo + P. Recipiente (Wm +Wr)	52.78	57.96	55.57	58.4	33.14	34.64				
Peso suelo seco + P. Recipiente (Ws+Wr)	45.61	49.12	47.74	50.10	26.13	27.13				
Peso de Agua (Ww)	7.17	8.84	7.83	8.3	7.01	7.51				
Peso muestra seca Ws	17.58	21.67	17.44	18.53	14.71	15.86				
Contenido de humedad w% = 100 Ww/Ws	40.78	40.79	44.90	44.79	47.65	47.35				
Promedio W%	4	0.79	44.8	34	47.	50				
N° de golpes		40	20)	10					
Limite Liquido LL%			44.00							

Hong 48.00 46.00 44.00 42.00 5 10 15 20 25 30 35 40 45 Número de Golpes

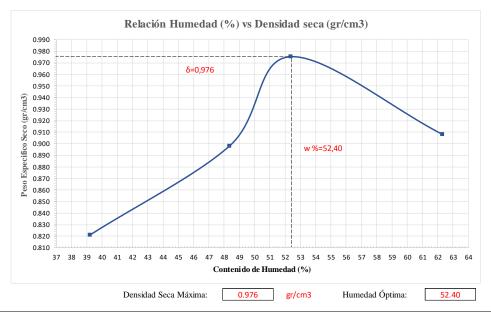
25 Golpes - Límite Líquido = 44,00

Recipiente N°	P5	A-5	A-8
Peso del recipiente Wr	4.27	4.34	4.35
Peso suelo humedo + P. Recipiente (Wm +Wr)	4.75	4.78	4.78
Peso suelo seco + P. Recipiente (Ws+Wr)	4.64	4.68	4.68
Peso de Agua (Ww)	0.11	0.10	0.10
Peso muestra seca Ws	0.37	0.34	0.33
Contenido de humedad w% = 100 Ww/Ws	29.73	29.41	30.30
Promedio W% (LP)		29.81	
3. DETERMINACIÓN DEL ÍNDICE PLÁSTICO			
IP = LL-LP		14.19	

Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATHA O ALTO CON EL CERRO PHA EURO CON LA FINALIDAD DE MEJORAR LA VIA

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"


 Abscisa:
 Km 4+000
 Fecha:
 Miercoles 14 de Abril del 2021

 Muestra:
 SUB RASANTE
 Realizado por:
 Luis Javier Orozco Analuiza

 Profundidad:
 0.5 m
 Revisado por:
 Ing. Mg. Favio Portilla

DIVIDUO DE COMPLICITA CIVÁN PROCETOR MODIVECA PO										
ENSAYO DE COMPACTACIÓN PROCTOR MODIFICADO										
ESPECIFICACIONES	56	Altura de Caio	da	18"	Peso del mold	le:	5416.4	gr		
Número de Golpes	5	Peso del Mart	tillo	10 lb	Volumen del	Molde:	2114	cm3		
Número de Capas	Número de Capas No			T-180						
Energia de Compactación										
Peso Inicial 5000 5000 5000 5000										
1. PROCESO DE COMPACTACIÓN										
Ensayo Número		1	:	2	3	3		4		
Humedad inicial Añadida en %		0	1	0	1	5	2	25		
Humedad inicial Añadida en cm3		0	50	00	7:	50	12	250		
P. molde + suelo húmedo (gr)	78	31.6	823	32.8	855	8.2	853	32.4		
Peso suelo húmedo Wm (gr)	24	15.2	281	6.4	314	1.8	31	16		
Peso unitario humedo γm (gr/cm3)	1.	142	1.3	332	1.4	186	1.4	174		
2. DETERMINACIÓN DE CONTENI	DOS DE HU	MEDAD	•		•		•			
Recipiente Número	6-T	2-F	D-8	P-4	H-1	Y1	2-R	D-7		
Peso del Recipiente Wr	45.42	47.15	47.32	49.14	43.19	56.40	46.25	43.22		
Recipiente + suelo húmedo Wr+Wm	142.08	128.84	148.78	184.14	162.28	186.40	181.85	189.54		
Recipiente + suelo seco Ws+Wm	114.87	105.84	115.71	140.15	121.36	141.72	129.90	133.28		
Peso solidos Ws	69.45	58.69	68.39	91.01	78.17	85.32	83.65	90.06		
Peso del agua Ww	27.21	23.00	33.07	43.99	40.92	44.68	51.95	56.26		
Contenido de Humedad w%	39.18	39.19	48.36	48.34	52.35	52.37	62.10	62.47		
Promedio Contenido de Humedad w%	39	0.18	48	.35	52	.36	62	.29		
Peso Unitario Seco γd (gr/cm3)	0.	821	0.0	398	0.9	75	0.9	908		

3. DETERMINACIÓN GRÁFICA DE LA DENSIDAD MÁXIMA Y HUMEDAD ÓPTIMA

4. DESCRIPCIÓN DEL ENSAYO

La máxima densidad alcanzada según la gráfica correspònde a 0.976 gr/cm3, la cual corresponde a un contenido de humedad óptimo de 52.40 %, sin embargo los parámetros pueden variar ligeramente cuando se traza la gráfica.

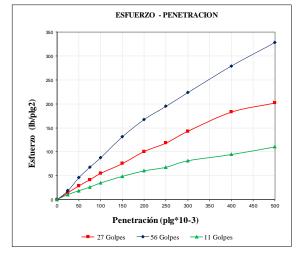
Proyecto:

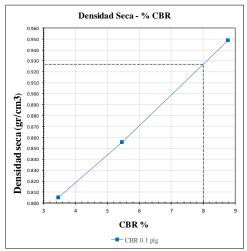
MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Km 4+000 Miercoles 14 de Abril del 2021 Abscisa: Fecha: SUB RASANTE Realizado por: Luis Javier Orozco Analuiza Muestra:

Profundidad:	0.50 m		Revisado por:	Ing. Mg. Favio Po	rtilla		
		ESPECIFICA	CIONES DEL ENS	AYO			
Tipo:	PROCTOR MODE	TCADO		Peso martillo		10lb	
Norma:	AASHTO T-180			Altura de caida		18"	
Peso Muestra (gr)	5000			Cont. Humedad	Óptimo	52.40	
		ENSAYO DE	COMPACTACIÓN	CBR			
N° de Capas	4	5	5			5	
N° de Golpes por capas	5	6	27	,	1	1	
Muestra húmeda + molde (gr)	8899	9.80	8519	.60	826	2.60	
Masa del molde (gr)	589	1.00	5805	.00	570	9.20	
Masa muestra húmeda (gr)	300	8.80	2714	.60	255	3.40	
Volumen de muestra (cm3)	2080	0.28	2080	.28	208	0.28	
Peso unitario húmedo (gr/cm3)	1.4	46	1.30	05	1	227	
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo	
Tarro #	2-F	D-5	6-A	C-8	6-T	B-8	
Masa suelo húmedo + tarro (gr)	148.74	186.48	165.49	178.26	161.91	187.10	
Masa suelo seco + tarro (gr)	113.74	144.91	121.64	131.53	121.78	137.10	
Masa del agua (gr)	35.00	41.57	43.85	46.73	40.13	50.00	
Masa del tarro (gr)	47.10	65.67	38.20	42.66	45.40	41.90	
Masa del suelo seco (gr)	66.64	79.24	83.44	88.87	76.38	95.20	
Contenido de agua (%)	52.52	52.46	52.55	52.58	52.54	52.52	
w (%) Promedio	52.		52.:			53	
Peso unitario seco (gr/cm3)		948	0.83		0.805		
		DATOS DESPU	ES DE LA SATURA	ACIÓN			
Muestra húmeda + molde (gr)	9129	9.60	8943	.20	8790.20		
Masa del molde (gr)	589	1.00	5805	.00	570	9.20	
Masa muestra húmeda (gr)	323	8.60	3138	.20	308	1.00	
Masa de agua absorbida (gr)	229	.80	423.	60	52	7.60	
% Agua absorbida	7.0	64	15.0	50	20	.66	
CONTENIDO DE HUMEDAD	Arriba	Abaia	Arriba	A b	Arriba	Abata	
Tarro #	2-R	Abajo D-7	C-8	Abajo D-8	H-1	Abajo P-4	
Masa suelo húmedo + tarro (gr)	2-R 189.54	170.97	189.27	170.69	187.47	193.23	
Masa suelo seco + tarro (gr)	127.07	118.49	118.41	120.50	122.27	124.45	
Masa del agua (gr)	62.47	52.48	70.86	50.19	65.20	68.78	
Masa del agua (gr) Masa del tarro (gr)					43.19	49.20	
Masa del tarro (gr) Masa del suelo seco (gr)				42.68 46.87 75.73 73.63		75.25	
Contenido de agua (%)	74.50	72.62	93.57	68.17	79.08 75.25 82.45 91.40		
w (%) Promedio		.56	93.57			i.93	
w (70) Promedio	/3.	.30	80.3	31	86	1.93	

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA" Proyecto:


Abscisa: Muestra: Realizado por: Revisado por: SUB RASANTE Javier Orozco Analuiza Ing. Mg. Favio Portilla Profundidad: 0.5 m


М	Maquina de Compresión Simple (CONTROLS)								plg2 Norma: ASTM D-1883				VELOCIDAD DE CARGA = 2.204 mm/min (0.086 plg / min)				
Mol	DATOS DE ESPONJAMIENTO LECTURA DIAL en Pigs * 10-2 Molde Número 4 5 6																
FECHA	TIEN	л РО	LECT	h	ESPONJA	AMIENTO	LECT	ECT h ESPONJAMIENTO			O LECT h ESPONJAN			AMIENTO			
DÍA Y MES	HORA	DIAS	DIAL	Muestra	Plgs. *10-2	%	DIAL	Muestra	Plgs. *10-2	%	DIAL	Muestra	Plgs. *10-2	%			
DIA 1 MES	HOKA	DIAS	Plgs.	Plgs.	Figs. *10-2	70	Plgs.	Plgs.	Figs. *10-2	70	Plgs.	Plgs.	Figs. *10-2	70			
16/4/2021	15:30	0	0.066	5.00	0.00	0.00	0.038	5.00	0.00	0.00	0.051	5.00	0.00	0.00			
17/4/2021	16:30	1	0.070		0.47	0.09	0.047		0.91	0.18	0.065		1.38	0.28			
18/4/2021	8/4/2021 17:30 2 0.08 1.34 0.27 0.055 0.83 0.17 0.078 1.34 0.27																
	ENSAYO DE CARGA - PENETRACIÓN / CBR																

Constante celda 2.204 lb Área del pistón: 3pl2

	Mol	de Número			1 - :	56 goples			2 - 2	7 golpes		3 - 11 golpes			
TO:		D		0	Presiones		CBR	0	Presiones		CBR O	0	Pre	siones	CDD
1 16	mpo	Penti	ración	Q carga Leida Corregida		Corregida	CBK	Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CBR
Min.	Seg.	mm	plg * 10-3	DIAL	lb/	plg2	%	DIAL	lb	/plg2	%	DIAL	ll:	/plg2	%
		0	0	0.0	0			0.0	0			0.0	0		
0	30	0.64	25	25.7	18.9			19.1	14.0			14.2	10.4		
1	0	1.27	50	62.8	46.1			38.8	28.5			25.1	18.4		
1	30	1.91	75	92.2	67.7			55.9	41.1			35.3	25.9		
2	0	2.54	100	119.4	87.7	87.7	8.77	74.3	54.6	54.6	5.46	47.2	34.7	34.7	3.47
3	0	3.81	150	178.9	131.4			102.4	75.2			66.3	48.7		
4	0	5.08	200	228.1	167.6			136.7	100.4			82.0	60.2		
5	0	6.35	250	265.3	194.9			160.9	118.2			92.3	67.8		
6	0	7.62	300	304.2	223.5			194.3	142.7			110.9	81.5		
8	0	10.16	400	379.8	279.0			249.1	183.0			128.7	94.6		
10	0	12.79	500	446.6	328.1			275.0	202.0			150.6	110.6		
	CBR	Corregido					8.8				5.46			3.47	

GRÁFICOS ENSAYO CBR

DENSIDAD MAX gr/cm3 0.976 gr/cm3 DENSIDADES 0.855 RESISTENCIAS 5.46 3.47 95 % DE DENSIDAD MAX CBR PUNTUAL 0.927 gr/cm3 gr/cm3 gr/cm3

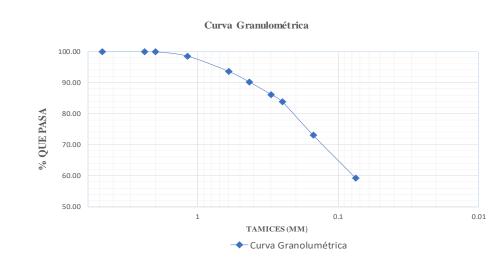
Proyecto:

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE

TUNGURAHUA"

 Abscisa:
 Km 5+000
 Fecha:
 Lunes 19 Abril 2021

 Muestra:
 SUB RASANTE
 Realizado por:
 Javier Orozco Analuiza


 Profundidad:
 0.50 m
 Revisado por:
 Ing. Mg. Favio Portilla

GRANULUMETRÍA DE SUELOS NORMAS: AASHTO T-87 -70, ASTM -421-58

NORMAS: AASHTO 1-07 -70,

. DETERMINACIÓN DE LA GRANULOMETRÍA DE LOS SUELOS										
TAMIZ#	mm	PESO RET/ ACUMULADO (gr)	% RETENIDO	% PASA	ESPECIFICACIÓN					
		0	0.00	100.00						
#4	4.76	0.00	0.00	100.00						
#8	2.38	0.03	0.01	99.99						
#10	2.00	0.20	0.09	99.91						
#16	1.18	3.41	1.50	98.50						
#30	0.60	14.64	6.42	93.58						
#40	0.43	22.28	9.77	90.23						
#50	0.3	31.54	13.83	86.17						
#60	0.25	36.82	16.15	83.85						
# 100	0.15	61.62	27.02	72.98						
# 200	0.075	93.06	40.81	59.19						
	TOTAL	228.03								
Peso de la muestra a la	var:	541.40								
Peso muestra seca: 228.03			Peso cuarteo antes de	el lavado	228.03					
Peso des lavado:	93.06		Peso cuarteo después	del lavado	93.06					
,			Diferencia o para tan	niz 200	134.97					

2. GRÁFICO DE LA DISTRIBUCIÓN GRANULOMÉTRÍCA

3. CONTENIDO	DE HUMEDAD									
PESO TOTAL S	SH	541.4								
PESO TOTAL S	SS	228.03								
Cont. Humedad	%	137.42								
PT +SH	PT+SS	P. AGUA	PSS	PT						
196.9	107.89	89.01	64.77	43.12						
A T TRATIFICATION	THATTER DE DI ACTICIDAD									

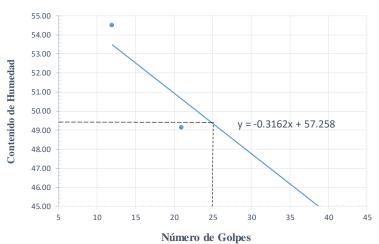
4.LIMITES DE PLASTICIDADLímite Líquido: 49.40
Límite Plástico: 35.45
Índice de plasticidad: 13.95

5. CLASIFICACIÓN DEL SUELO:

CICTEMAC	AASHTO	A-4	Time de beie pleaticided
SISTEMAS	SUCS	ML	Limo de baja plasticidad

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE **Proyecto:** AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA

AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE


TUNGURAHUA"

Abscisa:Km 5+000Fecha:Viernes 12 de Marzo del 2021Muestra:SUB RASANTERealizado por:Luis Javier Orozco AnaluizaProfundidad:0.50 mRevisado por:Ing. Mg. Favio Portilla

LÍMITES DE ATTERBERG NORMAS: AASHTO T-90 -70, ASTM -424-71, INEN 691

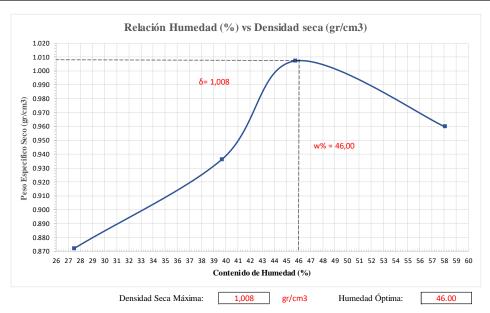
1. DETERMINACIÓN DEL LIMITE LIQUIDO										
Recipiente N°	M-3	M1	X-5	M-3	P1	L1				
Peso del recipiente Wr	23.84	23.89	5.97	5.48	23.16	23.15				
Peso suelo humedo + P. Recipiente (Wm +Wr)	41.02	40.12	22.02	18.54	37.61	38.5				
Peso suelo seco + P. Recipiente (Ws+Wr)	35.70	35.11	16.73	14.24	32.50	33.10				
Peso de Agua (Ww)	5.32	5.01	5.29	4.3	5.11	5.4				
Peso muestra seca Ws	11.86	11.22	10.76	8.76	9.34	9.95				
Contenido de humedad w% = 100 Ww/Ws	44.86	44.65	49.16	49.09	54.71	54.27				
Promedio W%	4	4.75	49.1	.3	54.	49				
N° de golpes		41	21		13	2				
Limite Liquido LL%			49.40							

Límite líquido

25 Golpes - Límite Líquido = 49,40

2. DETERMINACIÓN DEL LÍMITE PLÁSTICO	E 2	1 40	E 1
Recipiente N°	E-2	A-8	E-1
Peso del recipiente Wr	4.37	4.35	4.26
Peso suelo humedo + P. Recipiente (Wm +Wr)	4.97	4.82	4.83
Peso suelo seco + P. Recipiente (Ws+Wr)	4.81	4.7	4.68
Peso de Agua (Ww)	0.16	0.12	0.15
Peso muestra seca Ws	0.44	0.35	0.42
Contenido de humedad w% = 100 Ww/Ws	36.36	34.29	35.71
Promedio W% (LP)		35.45	
3. DETERMINACIÓN DEL ÍNDICE PLÁSTICO			
IP = LL-LP		13.95	

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE Proyecto:


AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD

EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Abscisa: Km 5+000 Fecha: Miercoles 14 de Abril del 2021 Muestra: SUB RASANTE Realizado por: Luis Javier Orozco Analuiza Profundidad: 0.5 m Revisado por: Ing. Mg. Favio Portilla

ENSAVO DE COMPACTACIÓN PROCTOR MODIFICADO										
ENSATO	1			1			Г			
							gr			
56	Peso del Martillo 10 lb Ve		Volumen del	Volumen del Molde:		cm3				
5	Normas : AA	ASHTO T-180								
50	000	50	000	50	000	50	000			
	1		3	4	4		6			
	0	1	2	1	8	3	80			
	0	6	00	90	00	15	500			
77	66.8	818	30.6	851	9.6	86	524			
23	50.4	270	54.2	310	3.2	320	07.6			
1.	112	1.3	308	1.4	168	1.5	517			
DOS DE HU	MEDAD									
6-A	2-F	B-8	D-8	P-5	H1	C-8	C-7			
38.22	45.40	41.94	47.19	39.77	43.16	42.71	41.86			
154.43	168.90	158.09	174.42	143.24	150.90	191.67	192.13			
129.39	142.28	125.10	138.30	110.77	117.09	136.96	136.90			
91.17	96.88	83.16	91.11	71.00	73.93	94.25	95.04			
25.04 26.62 32.99 36.12 32.47 33.81		33.81	54.71	55.23						
27.47	27.48	39.67	39.64	45.73	45.73	58.05	58.11			
27	7.47	39	.66	45	.73	58	.08			
	872	0.9	936	1.0	007	0.9	960			
	56 5 5 777 23 1. DOS DE HU 6-A 38.22 154.43 129.39 91.17 25.04 27.47	Altura de Caix 56 Peso del Mari 5 Normas : AA 5000 1 0 0 0 7766.8 2350.4 1.112 DOS DE HUMEDAD 6-A 2-F 38.22 45.40 154.43 168.90 129.39 142.28 91.17 96.88 25.04 26.62 27.47 27.48 27.47 0.872	Altura de Caida 56 Peso del Martillo 5 Normas : AASHTO 5000 50 1 0 1 0 66 7766.8 818 2350.4 277 1.112 1.3 DOS DE HUMEDAD 6-A 2-F B-8 38.22 45.40 41.94 154.43 168.90 158.09 129.39 142.28 125.10 91.17 96.88 83.16 25.04 26.62 32.99 27.47 27.48 39.67 27.47 39 0.872 0.5	Altura de Caida 18" 56 Peso del Martillo 10 lb 5 Normas : AASHTO T-180	56 Peso del Martillo 10 lb Volumen del l 5 Normas : AASHTO T-180 5 Normas : AASHTO T-180 5 5000 5000 5 5000 5000 1 3 4 0 12 1 0 600 90 7766.8 8180.6 851 2350.4 2764.2 310 1.112 1.308 1.4 DOS DE HUMEDAD 6-A 2-F B-8 D-8 P-5 38.22 45.40 41.94 47.19 39.77 154.43 168.90 158.09 174.42 143.24 129.39 142.28 125.10 138.30 110.77 91.17 96.88 83.16 91.11 71.00 25.04 26.62 32.99 36.12 32.47 27.47 27.48 39.67 39.64 45.73 0.872 0.936 1.6	Altura de Caida	Altura de Caida			

3. DETERMINACIÓN GRÁFICA DE LA DENSIDAD MÁXIMA Y HUMEDAD ÓPTIMA

4. DESCRIPCIÓN DEL ENSAYO

La máxima densidad alcanzada según la gráfica correspònde a 1.008 gr/cm3, la cual corresponde a un contenido de humedad óptimo de 46.00 %, sin embargo los parámetros pueden variar ligeramente cuando se traza la gráfica.

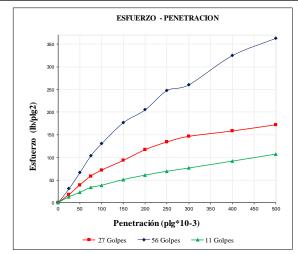
Proyecto:

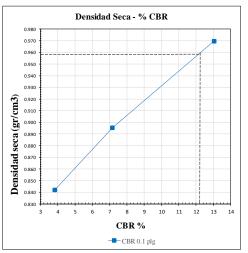
MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA"

Km 5+000 Miercoles 14 de Abril del 2021 Abscisa: Fecha: Realizado por: Revisado por: SUB RASANTE 0.50 m Muestra: Profundidad: Luis Javier Orozco Analuiza Ing. Mg. Favio Portilla

Profundidad:	0.50 m		Revisado por: Ing. Mg. Favio Portilla				
		ESPECIFICA	CIONES DEL ENS	SAYO			
Tipo:	PROCTOR MODE	FICADO		Peso martillo		10lb	
Norma:	AASHTO T-180			Altura de caida		18"	
Peso Muestra (gr)	5000			Cont. Humedad	Óptimo	46.00	
		ENSAYO DE	COMPACTACIÓN	CBR			
N° de Capas	4	5	5			5	
N° de Golpes por capas	5	6	2'	7	1	11	
Muestra húmeda + molde (gr)	940	6.80	9152	2.40	897	9.20	
Masa del molde (gr)	6460	0.80	6431	.60	642	21.40	
Masa muestra húmeda (gr)	294	6.00	2720	0.80	255	57.80	
Volumen de muestra (cm3)	2080	0.28	2080	0.28	208	30.28	
Peso unitario húmedo (gr/cm3)	1.4	116	1.3	08	1.	230	
CONTENIDO DE HUMEDAD	Arriba	Abajo	Arriba	Abajo	Arriba	Abajo	
Tarro #	6-T	2-F	B-8	W-2	1-P	W-1	
Masa suelo húmedo + tarro (gr)	181.00	172.40	207.32	218.99	233.74	233.80	
Masa suelo seco + tarro (gr)	138.25	132.89	155.15	166.81	176.73	177.04	
Masa del agua (gr)	42.75	39.51	52.17	52.18	57.01	56.76	
Masa del tarro (gr)	45.40	47.16	41.92	53.57	53.02	53.81	
Masa del suelo seco (gr)	92.85	85.73	113.23	113.24	123.71	123.23	
Contenido de agua (%)	46.04	46.09	46.07	46.08	46.08	46.06	
w (%) Promedio	46.	.06	46.08		46	5.07	
Peso unitario seco (gr/cm3)	0.9	970	0.8		0.	842	
		DATOS DESPU	ES DE LA SATUR	ACIÓN			
Muestra húmeda + molde (gr)	969	0.20	9558	3.60	946	57.00	
Masa del molde (gr)	6460	0.80	6431	.60	642	21.40	
Masa muestra húmeda (gr)	3229	9.40	3127	7.00	304	5.60	
Masa de agua absorbida (gr)	283	3.40	406	.20	48'	7.80	
% Agua absorbida	9.0	62	14.	93	19	0.07	
CONTENIDO DE HUMEDAD	A smills or	Abajo	A	Abajo	A smith or	Abajo	
Tarro #	Arriba C-8	Abajo D-7	Arriba 2-F	Abajo P-5	Arriba C-2	ADajo C-7	
Masa suelo húmedo + tarro (gr)	201.20	167.70	2-F 179.93	189.95	194.44	186.11	
- 0,			179.93		194.44		
Masa suelo seco + tarro (gr)	136.50	120.33		128.14		126.41	
Masa del agua (gr)	64.70	47.37	56.79	61.81	65.02	59.70	
Masa del tarro (gr)	42.68	46.19	47.08	39.70	43.41	41.81	
Masa del suelo seco (gr)	93.82	74.14	76.06	88.44	86.01	84.60	
Contenido de agua (%)	68.96	63.89	74.66	69.89	75.60	70.57	
w (%) Promedio	66.	.43	72.	28	73	3.08	

MEJORAMIENTO DEL DISEÑO GEOMÉTRICO DE LA VÍA QUE UNE LA COMUNIDAD DE AMBATILLO ALTO CON EL CERRO PILISURCO, CON LA FINALIDAD DE MEJORAR LA VIABILIDAD EN LA PARROQUIA AMBATILLO, CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA" Proyecto:


Fecha: Realizado por: Revisado por: Viernes 19 de Abril del 2021 Abscisa: Muestra: SUB RASANTE Javier Orozco Analuiza Ing. Mg. Favio Portilla Profundidad: 0.5 m


M	áquina de C	ompresión	Simple (Co	ONTROLS)		Área del pistón = 3 plg2 Norma: ASTM D-1883		VELOCIDAD DE CARGA = 2.204 mm/min (0.08) plg / min)						
				DA	TOS DE ESP	ONJAMIENT	о сест	RA DIAI	en Plgs * 10)-2				
Mol	Molde Número 4 5 6													
FECHA	TIEN	MPO	LECT	h	ESPONJA	AMIENTO	LECT	h	ESPONJA	MIENTO	LECT	h	ESPONJA	AMIENTO
DÍA Y MES	HORA	DIAS	DIAL	Muestra	Plgs. *10-2	%	DIAL	Muestra	Plgs. *10-2	%	DIAL	Muestra	Plgs. *10-2	%
DIA Y MES	HOKA	DIAS	Plgs.	Plgs.	Pigs. *10-2	%	Plgs.	Plgs.	Pigs. *10-2	%	Plgs.	Plgs.	Pigs. *10-2	%
16/4/2021	15:30	0	0.037	5.00	0.00	0.00	0.026	5.00	0.00	0.00	0.022	5.00	0.00	0.00
17/4/2021	16:30	1	0.047		0.98	0.20	0.054		2.76	0.55	0.030		0.83	0.17
18/4/2021	17:30	2	0.06		1.22	0.24	0.089		3.46	0.69	0.043		1.26	0.25
	ENSAYO DE CARGA - PENETRACIÓN / CBR													

Constante celda 2.204 lb Área del pistón: 3pl2

	Mol	de Número			1 - 5	56 goples			2 - 2	7 golpes		3 - 11 golpes			
m:-		Down		0	Pres	iones	CBR	0	Pre	siones	CBR	0	Pre	esiones	CDD
1 10	empo	Pent	ración	Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CBK	Q carga	Leida	Corregida	CBR
Min.	Seg.	mm	plg * 10-3	DIAL	lb/	plg2	%	DIAL	ll:	/plg2	%	DIAL	lt-	p/plg2	%
		0	0	0.0	0			0.0	0			0.0	0		
0	30	0.64	25	41.8	30.7			23.7	17.4			16.9	12.4		
1	0	1.27	50	90.4	66.4			52.9	38.9			30.7	22.6		
1	30	1.91	75	140.5	103.2			79.4	58.3			45.2	33.2		
2	0	2.54	100	177.4	130.3	130.3	13.03	97.5	71.6	71.6	7.16	52.0	38.2	38.2	3.82
3	0	3.81	150	240.8	176.9			126.9	93.2			69.0	50.7		
4	0	5.08	200	279.2	205.1			159.1	116.9			82.5	60.6		
5	0	6.35	250	337.1	247.7			182.3	133.9			94.1	69.1		
6	0	7.62	300	354.2	260.2			199.1	146.3			103.8	76.3		
8	0	10.16	400	441.9	324.6			215.4	158.2			124.6	91.5		
10	0	12.79	500	494.1	363.0			234.1	172.0			145.6	107.0		
	CBF	Corregido					13.03				7.16				3.82

GRÁFICOS ENSAYO CBR

	0.970	gr/cm3		13.03	%	DENSIDAD MAX	1,008	gr/cm3
DENSIDADES	0.895	gr/cm3	RESISTENCIAS	7.16	%	95 % DE DENSIDAD MAX	0.958	gr/cm3
	0.842	gr/cm3		3.82	%	CBR PUNTUAL	12.20	%

Análisis de precios unitarios

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

PRO YECTO: Mejorami	J	•				
RUBRO:1					ноја: 1	DE 23
Desbroce, desbosque y li	mpieza.				UNIDAD: H	a
DES CRIPCION:						
EQUIPOS						
DES CRIPCIÓN		CANTIDAD A	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5% de	M .O					6.
Excavadora sobre oruga		1.00	38.00	38.00	6.67	253.
Volqueta 20 Ton		1.00	25.00	30.00	3.30	99.
M otosierra		1.00	1.00	2.00	3.30	6.
S UBTO TAL M						365.
MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Péon	(Est. Ocup E2)	4.00	3.62	14.48	3.30	47.
Ayudante de Operador	(Est. Ocup D2)	1.00	3.72	3.72	6.67	24.
Operador de Excavadora	(Est. Ocup C1)	1.00	4.06	4.06	6.67	27.
Chofer: Volqueta	(Est. Ocup C1)	1.00	5.31	5.31	6.67	35.
S UBTO TAL N						135.
MATERIALES						
DES CRIPCIÓN			UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B
DED CAMP CICH			01(12)112			
SUBTOTAL O						0.
TRANSPORTE				CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN			UNIDAD	A	В	C=A*B
S UBTOTAL P						
		TOTAL COSTO D	IRECTO (M+N+	(O+P)		500.
		INDIRECTOS Y UT				100.
		OTROS INDIRECT				0.
		COSTO TOTAL D				601.
		VALOR PROPUES	го			601.
					1	
NOTA: ESTOS PRECIO	S NO INCLUYEN IVA.					
ELABODADO DOD						
ELABORADO POR.						
				LUGAR	Y FECHA	
	Luis Javier Orozco A	analuiza		Ambato,	Jul-2021	
	FIRMA RES PONS	ABLE				

PRO YECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

RUBRO : 2 HO JA : 2 DE 23

Replanteo y nivelación UNIDAD: Km

EQUIPOS					
DES CRIPCIÓN	CANTIDAD A	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Equipo comapleto de Topografía	1.00	18.00	18.00	12.5	225.00
Herramienta menor	1.00	9.35	9.35	1.00	9.35
S UBTO TAL M					234.35

MANO DE OBRA DES CRIPCIÓN (CATEGORÍA)	A	CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Cadenero	(Est. Ocup. D2)	1.00	3.66	3.66	12.50	45.75
Topógrafo	(Est. Ocup. C1)	1.00	4.06	4.06	12.50	50.75
Péon	(Est. Ocup. E2)	2.00	3.62	7.24	12.50	90.50
SUBTOTAL N						187.00

MATERIALES									
DES CRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B					
Estacas de madera	U	50.00	0.10	5.00					
Clavos 2; 2 1/2; 3; 3 1/2**	KG	1.00	2.13	2.13					
Testigos para Topográfia L = 1m	U	50.00	0.65	32.50					
Pintura Esmalte varios colores	GLN	0.80	16.25	13.00					
SUBTOTAL O				52.63					

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	473.98
INDIRECTOS Y UTILIDADES 20.00%	94.80
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	568.78
VALOR PROPUES TO	568.78

NOTA: ESTOS	PRECIOS	NO	INCLUYEN	IVA.
-------------	---------	----	----------	------

	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RES PONS ABLE	

PRO YECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco
RUBRO : 3 HOJA : 3 DE 23

Excavación sin clasificar incluye desalojo (Conformación de la subrasante)

UNIDAD: m3

EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R
Excavadora de Orugas	1.00	38.00	38.00	0.01	0.38
M otoniveladora	1.00	38.00	38.00	0.01	0.38
Cargadora Frontal	1.00	35.00	35.00	0.01	0.35
Volqueta	1.00	25.00	25.00	0.01	0.25
S UBTOTAL M					1.36

DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
	Est. Ocup C1)	1.00			0.01	0.04
Operador de Motoniveladora (Est. Ocup C1)	1.00	4.06	4.06	0.01	0.04
Operador de Excavadora (Es	st. Ocup C1)	1.00	4.06	4.06	0.01	0.04
Chofer: Volqueta (E	Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05
S UBTOTAL N						0.17

MATERIALES				
		CANTIDAD	PRECIO UNIT.	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL O				0.00

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COS TO DIRECTO (M+N+O+P)	1.53
INDIRECTOS Y UTILIDADES 20.00%	0.31
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	1.84
VALOR PROPUES TO	1.84

NOTA: ESTOS	PRECIOS	NO	INCLUYEN	IVA.

ELABORADO POR.	
	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RES PONS ABLE	

PRO YECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

RUBRO : 4

Relleno compactado con material del sitio

UNIDAD: m3

EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R
Herramienta menor 5% de M.O					0.02
M otoniveladora	1.00	38.00	38.00	0.02	0.92
Rodillo liso Vibratorio	1.00	38.00	38.00	0.02	0.92
Tanquero	1.00	25.00	25.00	0.02	0.61
Volqueta	1.00	25.00	25.00	0.02	0.61
S UBTOTAL M					3.07

MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Operador de Motoniveladora	(Est. Ocup C1)	1.00	4.06	4.06	0.02	0.10
Operador de Rodillo liso Vibratorio	(Est. Ocup C2)	1.00	3.86	3.86	0.02	0.09
Chofer de Tanquero	(Est. Ocup C1)	1.00	5.31	5.31	0.02	0.13
Chofer: Volqueta	(Est. Ocup C1)	1.00	5.31	5.31	0.02	0.13
S UBTOTAL N						0.44

MATERIALES				
		CANTIDAD	PRECIO UNIT.	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
Agua	m3	0.15	2.00	0.30
SUBTOTAL O				0.30

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	3.82
INDIRECTOS Y UTILIDADES 20.00%	0.76
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	4.58
VALOR PROPUES TO	4.58

NOTA: ESTOS	PRECIOS	NO	INCLUYEN	IVA.

ELABORADO POR.		
		LUGAR Y FECHA
	Luis Javier Orozco Analuiza	Ambato, Jul-2021
	FIRMA RES PONS ABLE	

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 5 HOJA: 5 DE 23 Excavación para estructuras menores h= 0-2 m UNIDAD: m3 DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓN C=A*B D=C*RВ 1.00 0.04 0.04 Herramienta menor 0.04 1.00 32.12 0.06 1.93 Retroexcavadora 1.00 32.12 S UBTO TAL M 1.97 MANO DE OBRA DES CRIPCIÓN CANTIDAD JORNAL/HR RENDIMIENTO COSTO HORA COSTO (CATEGORÍA) D=C*R $C\!=\!A\!*\!B$ M aestro may or (Est. Ocup C1) 0.20 4.06 0.81 0.06 0.05 Albañil (Est. Ocup D2) 1.00 3.86 3.86 0.06 0.23 Operador de Excavadora (Est. Ocup C1) Grupo 1 1.00 4.06 4.06 0.06 0.24 Ayudante de Maquinaria (Est. Ocup C3) 1.00 3.72 3.72 0.06 0.22 S UBTOTAL N 0.75 MATERIALES CANTIDAD PRECIO UNIT. COSTO DES CRIPCIÓN UNIDAD C=A*BSUBTOTAL O 0.00 TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD C=A*BS UBTOTAL P 2.71 TOTAL COSTO DIRECTO (M+N+O+P) INDIRECTOS Y UTILIDADES 20.00% 0.54 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 3.26 VALOR PROPUES TO 3.26 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR.

Luis Javier Orozco Analuiza

FIRMA RES PONS ABLE

LUGAR Y FECHA

Ambato, Jul-2021

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco HOJA: 6 DE 23 RUBRO: 6 UNIDAD: m3 Relleno compactado normal con material propio DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO D=C*RDES CRIPCIÓN C=A*BHerramienta menor 5% de M.O 0.14 1.00 2.09 2.09 0.381 0.80 Compactador SUBTOTAL M 0.94 MANO DE OBRA DES CRIPCIÓN CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO COSTO (CATEGORÍA) C=A*B D=C*R Albañil (Est. Ocup D2) 0.10 0.381 0.14 Peón (Est. Ocup E2) 2.00 3.62 7.24 0.381 2.76 SUBTOTAL N MATERIALES PRECIO UNIT. CANTIDAD COSTO DES CRIPCIÓN UNIDAD C=A*B Agua m3 0.20 0.30 0.06 SUBTOTAL O 0.06 TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD C=A*B S UBTO TAL P TOTAL COSTO DIRECTO (M+N+O+P) 3.90 INDIRECTOS Y UTILIDADES 15.00% 0.58 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 4.48 VALOR PROPUES TO 4.48 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR. LUGAR Y FECHA

Ambato, Jul-2021

Luis Javier Orozco Analuiza

FIRMA RESPONSABLE

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco RUBRO: 7 HOJA: 7 DE 23 UNIDAD: m Tubería de metálica corrugada diámetro $D=0.60\ m$, e=2mmDESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO D=C*RDES CRIPCIÓN $C\!=\!A\!*\!B$ Herramienta menor 5% de M.O 0.59 1.00 38.00 38.00 0.02 0.92 Excavadora S UBTOTAL M MANO DE OBRA DES CRIPCIÓN CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO COSTO (CATEGORÍA) C=A*B В Operador de Excavadora (Est. Ocup C1) 1.00 4.06 4.06 0.64 2.60 Albañil (Est. Ocup D2) 1.00 2.34 3.66 3.66 0.64 Peón (Est. Ocup E2) 3.00 10.86 3.62 0.64 6.95 S UBTOTAL N 11.89 MATERIALES CANTIDAD PRECIO UNIT. COSTO DES CRIPCIÓN UNIDAD C=A*B Tubería Gacero Corrugado D = 600 mm 1.00 180.00 180.00 SUBTOTAL O 180.00 TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD В C=A*B S UBTOTAL P TOTAL COSTO DIRECTO (M+N+O+P) 193.41 INDIRECTOS Y UTILIDADES 20.00% 38.68 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 232.09 VALOR PROPUES TO 232.09 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR. LUGAR Y FECHA

Ambato, Jul-2021

Luis Javier Orozco Analuiza

FIRMA RESPONSABLE

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 8 HOJA: 8 DE 23 UNIDAD: m3 Colchón de arena para instalación de tubería e = 20 cm DESCRIPCION: EQUIPOS CANTIDAD TARIFA RENDIMIENTO COSTO HORA COSTO DES CRIPCIÓN D=C*R $C\!=\!A\!*\!B$ Herramienta menor 5% de M.O 0.14 S UBTO TAL M 0.14 MANO DE OBRA DES CRIPCIÓN CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO COSTO (CATEGORÍA) C=A*B Albañil (Est. Ocup D2) 0.50 0.300 0.55 Peón (Est. Ocup E2) 2.00 7.24 0.300 2.17 3.62 S UBTO TAL N MATERIALES CANTIDAD PRECIO UNIT. COSTO DESCRIPCIÓN UNIDAD C=A*B M aterial Petreo Arena 0.30 10.00 3.00 S UBTOTAL O TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD В C=A*B S UBTO TAL P TOTAL COSTO DIRECTO (M+N+O+P) 5.86 INDIRECTOS Y UTILIDADES 5.00% 0.29 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 6.15 VALOR PROPUES TO 6.15 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR.

Luis Javier Orozco Analuiza

FIRMA RES PONS ABLE

LUGAR Y FECHA

Ambato, Jul-2021

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco

RUBRO: 9 HOJA: 9 DE 23 UNIDAD: m3

 $Hormig\acute{o}n\ simple\ para\ cunetas\ f\'{c}=180\ kg/cm2$

DESCRIPCION:

EQUIPOS					
DES CRIPCIÓN	CANTIDAD	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Herramienta menor 5% de M .O	A	ь	C-A*B	K	2.28
Concretera	1.00	1.88	1.88	1.778	3.34
Vibrador	0.50	2.50	1.25	1.778	2.22
S UBTO TAL M					7.84

MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
M aestro may or	(Est. Ocup C1)	0.50	4.06	2.03	1.778	3.61
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	1.778	6.51
Peón	(Est. Ocup E2)	5.00	3.62	18.10	1.778	32.18
Carpintero	(Est. Ocup D2)	0.50	3.66	1.83	1.778	3.25
S UBTO TAL N						45.55

MATERIALES					
DES CRIPCIÓN	UNIDA)	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B
Cemento Portland		saco	6.00	7.00	42.00
Arena		m3	0.50	10.00	5.00
Ripio		m3	0.70	10.00	7.00
Tabla para encofrado		U	5.00	2.00	10.00
Clavos		Kg	0.13	2.00	0.26
Agua		m3	0.18	0.30	0.05
Pingos		m	3.00	0.72	2.16
Alfajías		U	2.00	2.00	4.00
Alambre de Amarre		Kg	0.20	2.94	0.59
SUBTOTAL O					71.06

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
SUBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	124.46
INDIRECTOS Y UTILIDADES 15.00%	18.67
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	143.13
VALOR PROPUES TO	143.13

NOTA: ESTOS	PRECIOS !	NO INCLUYEN I	VA.
-------------	-----------	---------------	-----

ELABORADO POR.

	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RES PONS ABLE	

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco

RUBRO : 10 HOJA : 10 DE 23

Hormigón simple f'c= 210 kg/cm2 para Poceta o Caja Recolectora

UNIDAD: m3

${\bf DES\,CRIPCION}:$

EQUIPOS						
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R	
Herramienta menor 5% de M.O					2.27	
Concretera	1.00	1.88	1.88	1.77	3.33	
Vibrador	0.50	2.50	1.25	1.77	2.21	
S UBTOTAL M					7.81	

MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
M aestro may or	(Est. Ocup C1)	0.50	4.06	2.03	1.77	3.59
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	1.77	6.48
Peón	(Est. Ocup E2)	5.00	3.62	18.10	1.77	32.04
Carpintero	(Est. Ocup D2)	0.50	3.66	1.83	1.77	3.24
S UBTO TAL N						45.35

MATERIALES					
DES CRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B	
Cemento Portland	saco	7.00	7.00	49.00	
Arena	m3	0.50	10.00	5.00	
Ripio	m3	0.70	10.00	7.00	
Tabla para encofrado	U	5.00	2.00	10.00	
Clavos 2; 2 1/2; 3; 3 1/2"	Kg	0.15	2.00	0.30	
Agua	m3	0.22	0.30	0.07	
Pingos	U	3.00	0.72	2.16	
Alfajías	U	2.00	2.00	4.00	
Alambre de amarre	Kg	0.25	2.94	0.74	
SUBTOTAL O				78.26	

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
SUBTOTAL P				

TOTAL COSTO DIRECTO (M+N+O+P)	131.42
INDIRECTOS Y UTILIDADES 15.00%	19.71
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	151.13
VALOR PROPUES TO	151.13

NOTA:	ESTOS	PRECIOS	NO	INCLUYEN	IVA

ELABORADO POR.

	LUGAR Y FECH
Luis Javier Orozco Analuiza	Ambato, Jul-202

FIRMA RES PONS ABLE

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

RUBRO: 11

HOJA: 11 DE 23

Hormigón ciclópeo para muros cabezales: 60% H.S f'c=180 kg/cm2, 40% piedra

UNIDAD: m3

DESCRIPCION:

EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R
Herramienta menor 5% de M.O					1.89
Concretera	1.00	1.88	1.88	1.14	2.14
SUBTOTAL M					4.03

MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
M aestro may or	(Est. Ocup C1)	1.00	4.06	-		-
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	1.14	4.17
Peón	(Est. Ocup E2)	6.00	3.62	21.72	1.14	24.76
Carpintero	(Est. Ocup D2)	1.00	3.66	3.66	1.14	4.17
S UBTOTAL N						37.73

MATERIALES						
DESCRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B		
Piedra Bola	m3	0.40	10.00	4.00		
Cemento Portland	saco	3.60	7.00	25.20		
Arena	m3	0.33	10.00	3.30		
Ripio	m3	0.41	10.00	4.10		
Tabla para encofrado	U	5.00	2.00	10.00		
Clavos 2; 2 1/2; 3; 3 1/2"	Kg	0.45	2.00	0.90		
Agua	m3	0.22	0.30	0.07		
Alambre de amarre	Kg	0.49	2.94	1.44		
SUBTO TAL O				49.01		

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	90.77
INDIRECTOS Y UTILIDADES 15.00%	13.62
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	104.39
VALOR PROPUES TO	104.39

ELABORADO POR.			

NOTA: ESTOS PRECIOS NO INCLUYEN IVA.

LUGAR Y FECHA
Luis Javier Orozco Analuiza Ambato, Jul-2021
FIRMA RES PONS ABLE

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco

RUBRO : 12 HOJA : 12 DE 23

Replantillo de H.S f'c= 180 kg/cm2 para base de Poceta o Caja Recolectora $\ e=20cm$

UNIDAD: m3

DESCRIPCION:

EQUIPOS						
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R	
Herramienta menor 5% de M.O					2.11	
Concretera	1.00	1.88	1.88	1.77	3.33	
S UBTOTAL M					5.43	

MANO DE OBRA						
DES CRIPCIÓN (CATEGORÍA)		CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
M aestro may or	(Est. Ocup C1)	0.50	4.06	2.03	1.77	3.59
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	1.77	6.48
Peón	(Est. Ocup E2)	5.00	3.62	18.10	1.77	32.04
S UBTOTAL N						42.11

MATERIALES						
DES CRIPCIÓN		UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B	
Cemento Portland		saco	6.00	7.00	42.00	
Arena		m3	0.50	10.00	5.00	
Ripio		m3	0.70	10.00	7.00	
Agua		m3	0.18	0.30	0.05	
SUBTOTAL O					54.05	

TRANSPORTE						
		CANTIDAD	TARIFA	COSTO		
DES CRIPCIÓN	UNIDAD	A	В	C=A*B		
SUBTOTAL P				(

TOTAL COSTO DIRECTO (M+N+O+P)	101.60
INDIRECTOS Y UTILIDADES 15.00%	15.24
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	116.83
VALOR PROPUES TO	116.83

NOTA:	ESTOS	PRECIOS	NO	INCLUYEN	IVA.

ELABORADO POR.

	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RESPONS ABLE	

PRO YECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

RUBRO : 13 HOJA : 13 DE 23 Suministro y colocación de Sub - base clase 3 UNIDAD: m3

DESCRIPCION:

EQUIPOS								
,	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO			
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R			
Rodillo Autopropulsador -Estatico	1.00	40.00	40.00	0.01	0.40			
Camión Cisterna	1.00	30.00	30.00	0.01	0.30			
M otoniveladora	1.00	38.00	38.00	0.01	0.38			
SUBTOTAL M					1.03			

MANO DE OBRA									
DES CRIPCIÓN		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO			
(CATEGORÍA)		A	В	C=A*B	R	D=C*R			
M aestro may or	(Est. Ocup C1)	0.50	4.06	2.03	0.01	0.02			
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	0.01	0.04			
Peón	(Est. Ocup E2)	6.00	3.62	21.72	0.01	0.22			
Operador de Rodillo	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05			
Operador de Motoniveladora	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05			
Chofer de Camión Cisterna	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05			
						0.43			

MATERIALES						
DES CRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B		
Sub - Base Clase 3 (Incluye transporte a sitio)	m3	1.05	8.00	8.40		
Agua (Potable)	m3	0.30	1.03	0.31		
SUBTOTAL O				8.71		

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
SUBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	10.22
INDIRECTOS Y UTILIDADES 20.00%	2.04
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	12.27
VALOR PROPUES TO	12.27

NOTA:	ESTOS	PRECIOS	NO	INCLUYEN	IVA.

ELABORADO POR.

	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RES PONS ABLE	

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

RUBRO: 14 HOJA: 14 DE 23 Suministro y colocación de Base clase 4 UNIDAD: m3

DESCRIPCION:

EQUIPOS						
,	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO	
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R	
Rodillo Autopropulsador -Estatico	1.00	40.00	40.00	0.01	0.40	
Camión Cisterna	1.00	30.00	30.00	0.01	0.30	
M otoniveladora	1.00	38.00	38.00	0.01	0.38	
SUBTOTAL M					1.08	

MANO DE OBRA						
DES CRIPCIÓN		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
(CATEGORÍA)		A	В	C=A*B	R	D=C*R
M aestro may or	(Est. Ocup C1)	0.50	4.06	2.03	0.01	0.02
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	0.01	0.04
Peón	(Est. Ocup E2)	6.00	3.62	21.72	0.01	0.22
Operador de Rodillo	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05
Operador de Motoniveladora	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05
Chofer de Camión Cisterna	(Est. Ocup C1)	1.00	5.31	5.31	0.01	0.05
1						0.43

MATERIALES						
UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B			
m3	1.05	9.00	9.45			
m3	0.30	1.03	0.31			
			9.76			
	m3	UNIDAD A m3 1.05	UNIDAD A B m3 1.05 9.00			

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	11.27
INDIRECTOS Y UTILIDADES 20.00%	2.25
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	13.53
VALOR PROPUES TO	13.53

NOTA:	ESTOS	PRECIOS	NO	INCLUYEN	IVA.

Luis Javier Orozco Analuiza	Ambato, Jul-20
	LUGAR Y FEC
ELABORADO POR.	

FIRMA RES PONS ABLE

Ambato, Jul-2021

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco

HOJA: 15 DE 23 UNIDAD: m2

 $C\,apa\,\,de\,\,rodadura\,\,asfáltica\,\,mezclado\,\,en\,\,planta\,\,e=5\,\,cm\,\,incluye\,\,imprimación$

EQUIPOS					
DES CRIPCIÓN	CANTIDAD A	TARIFA B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
Rodillo Autopropulsador - Neumático	1.00	25.00	25.00	0.0100	0.25
Distrubuidor de asfalto - Camión Imprima	1.00	35.00	35.00	0.0100	0.35
Barredora autopropulsadora	1.00	22.00	22.00	0.0100	0.22
Rodillo Autopropulsador -Estatico	1.00	25.00	25.00	0.0100	0.25
Volqueta	1.00	25.00	25.00	0.0100	0.25
Cargadora frontal	1.00	35.00	35.00	0.0100	0.35
Planta Asfaltica	1.00	140.00	140.00	0.0100	1.40
Acabadora de Pavimento Asfáltico	1.00	75.00	75.00	0.0100	0.75
SUBTOTAL M					3.82

MANO DE OBRA						
DES CRIPCIÓN	(CATEGORÍA)	CANTIDAD A	JORNAL/HR B	COSTO HORA C=A*B	RENDIMIENTO R	COSTO D=C*R
M aestro may or	(Est. Ocup C1)	1.00	4.06	4.06	0.010	0.04
Albañil	(Est. Ocup D2)	1.00	3.66	3.66	0.010	0.04
Peón	(Est. Ocup E2)	8.00	3.62	28.96	0.010	0.29
Choferes Profesionales	(Est. Ocup C1)	4.00	5.31	21.24	0.010	0.21
Operador de rodillo autopropulsa	(Est. Ocup C2)	1.00	3.68	3.68	0.010	0.04
Operador de distribuidor de asfalto	(Est. Ocup C2)	3.00	3.68	11.04	0.010	0.11
						0.73

MATERIALES				
DES CRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B
Agregados triturados para carpeta asfaltica	m3	0.04	13.00	0.52
Diesel	Galón	0.58	1.60	0.93
Asfalto RC 250 para Imprimacion (Incluye transporte)	Galón	0.43	3.00	1.29
Asfalto AC20 (Incluye transporte)	Kg	8.00	0.38	3.04
Arena para Asfalto	m3	0.03	6.00	0.18
SUBTOTAL O				5.96

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	10.50
INDIRECTOS Y UTILIDADES 20.00%	2.10
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	12.61
VALOR PROPUES TO	12.61

NOTA: ESTOS	PRECIOS	NO	INCLUYEN	IVA.

ELABORADO POR.

LUGAR Y FECHA Luis Javier Orozco Analuiza Ambato, Jul-2021 FIRMA RES PONS ABLE

PROYECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 16 HOJA: 16 DE 23 UNIDAD: Km

S eñalización horizontal (marcas en pavimento) a = 12 cm

EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R
Herramienta Menor	1.00	0.15	0.15	0.6	0.09
Franjadora	1.00	8.00	8.00	0.6	4.80
Camioneta	1.00	25.00	25.00	0.6	15.00
S UBTOTAL M					19.89

MANO DE OBRA						
DES CDIROTÓN	(CATEGORÍA)	CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	(CATEGO RÍA)	A	В	C=A*B	R	D=C*R
Peón	(Est. Ocup E2)	3.00	3.62	10.86	4.00	43.44
Chofer	(Est. Ocup C1)	1.00	5.31	5.31	0.00	0.02
						43.46

MATERIALES					
			CANTIDAD	PRECIO UNIT.	COSTO
DES CRIPCIÓN	UNIDAD		A	В	C=A*B
Pintura de tráfico Amarilla -Blanco	m3		10.00	20.00	200.00
Microesferas Perladas	Kg		20.00	5.50	110.00
Tiñer	Galó	n	0.50	6.50	3.25
SUBTOTAL O					313.25

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	376.60
INDIRECTOS Y UTILIDADES 20.00%	75.32
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	451.92
VALOR PROPUES TO	451.92

NOTA: ES TOS FRECIOS NO INCLUTENTVA.	
ELABORADO POR.	
	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RESPONS ABLE	

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 17 HOJA: 17 DE 23 Señalización vertical UNIDAD: U DESCRIPCION: EQUIPOS CANTIDAD COSTO HORA DES CRIPCIÓN C=A*B D=C*R1.00 0.15 0.15 Herramienta M enor 0.15 1.0 S UBTOTAL M 0.15 MANO DE OBRA RENDIMIENTO CANTIDAD JORNAL/HR COSTO HORA COSTO DES CRIPCIÓN (CATEGORÍA) D=C*RC=A*BPeón (Est. Ocup E2) 1.00 3.62 3.62 0.20 0.72 Albañil (Est. Ocup D2) 3.00 3.66 10.98 0.20 2.20 2.92 MATERIALES CANTIDAD PRECIO UNIT. COSTO DES CRIPCIÓN UNIDAD C=A*B 80.51 2.42 Hormigón Premezclado f'c 210kg/cm2 (Incluye transporte) 0.03 Láminas de señalización vertical reglametaria 93.63 U 1.00 93.63 Tubos metálicos 2 "1/2 U 1.00 16.00 16.00 SUBTOTALO 112.05 TRANSPORTE CANTIDAD TARIFA COSTO **DES CRIPCIÓN** UNIDAD C=A*BS UBTOTAL P TOTAL COSTO DIRECTO (M+N+O+P) 115.12 INDIRECTOS Y UTILIDADES 20.00% 23.02 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 138.14 VALOR PROPUES TO 138.14 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR.

Luis Javier Orozco Analuiza

FIRMA RESPONSABLE

LUGAR Y FECHA

Ambato, Jul-2021

PRO YECTO : Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco
RUBRO : 18 HOJA : 18 DE 23

Guarda camino - Baranda de seguridad

UNIDAD: m

DES CRIPCION:

EQUIPOS					
	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	A	В	C=A*B	R	D=C*R
Herramienta M enor	4.50	0.05	0.21	1.0	0.21
S UBTOTAL M					0.21

MANO DE OBRA						
		CANTIDAD	JORNAL/HR	COSTO HORA	RENDIMIENTO	COSTO
DES CRIPCIÓN	(CATEGORÍA)	A	В	C=A*B	R	D=C*R
Peón	(Est. Ocup E2)	3.00	3.62	10.86	0.20	2.17
Albañil	(Est. Ocup D2)	2.00	3.66	7.32	0.20	1.46
M aestro may or	(Est. Ocup C1)	1.00	4.06	4.06	0.20	0.81
						4.45

MATERIALES				
DES CRIPCIÓN	UNIDAD	CANTIDAD A	PRECIO UNIT. B	COSTO C=A*B
Cemento Portland TIPO I	saco	6.00	7.00	42.00
Arena	m3	0.02	5.36	0.11
Ripio	m3	0.03	5.36	0.16
Aditivo plastificante	Kg	0.01	2.24	0.02
Perfil Tipo W (Guarda Caminos)	m	2.00	15.80	31.60
Poste para Guarda Camino H 1.8 m	U	0.30	30.50	9.15
Terminal de Guarda Camino	U	0.15	10.00	1.50
Pernos Guarda Caminos 5/8 x 1 1/4 pulg	U	1.50	0.90	1.35
Agua	m3	0.01	0.55	0.01
Gema Reflectiva	U	0.50	2.80	1.40
S UBTOTAL O				87.30

TRANSPORTE				
		CANTIDAD	TARIFA	COSTO
DES CRIPCIÓN	UNIDAD	A	В	C=A*B
S UBTOTAL P				0

TOTAL COSTO DIRECTO (M+N+O+P)	91.95
INDIRECTOS Y UTILIDADES 20.00%	18.39
OTROS INDIRECTOS 0.00%	0.00
COSTO TOTAL DEL RUBRO	110.34
VALOR PROPUES TO	110.34

NOTA: ESTOS PRECIOS NO INCLUYEN IVA.

ELA	BOR	ADO	POR.

	LUGAR Y FECHA
Luis Javier Orozco Analuiza	Ambato, Jul-2021
FIRMA RES PONS ABLE	

PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco RUBRO: 19 HOJA: 19 DE 23 UNIDAD: U Charlas de seguridad industrial DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓN D=C*RВ C=A*BHerramienta M enor 0.00 0.00 0.00 0.00 S UBTOTAL M 0.00 MANO DE OBRA **DES CRIPCIÓN** (CATEGORÍA) C=A*BD=C*R0.00 MATERIALES CANTIDAD PRECIO UNIT. COSTO UNIDAD DESCRIPCIÓN C=A*B U 50.00 50.00 1.00 Charas de concientizacion y seguridad industrial S UBTOTAL O 50.00 TRANSPORTE CANTIDAD TARIFA COSTO **DES CRIPCIÓN** UNIDAD C=A*B В S UBTOTAL P TOTAL COSTO DIRECTO (M+N+O+P) 50.00 INDIRECTOS Y UTILIDADES 5.00% OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 52.50 VALOR PROPUES TO 52.50 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR. LUGAR Y FECHA Luis Javier Orozco Analuiza Ambato, Jul-2021 FIRMA RES PONS ABLE

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 20 HOJA: 20 DE 23 UNIDAD: m3 Agua para control de polvo DESCRIPCION: EQUIPOS RENDIMIENTO CANTIDAD TARIFA COSTO HORA COSTO DES CRIPCIÓN C=A*BD=C*R Herramienta Menor 0.00 0.00 0.00 1.0 0.00 Tanquero de agua 1.00 30.00 30.00 0.01 0.30 S UBTOTAL M 0.30 MANO DE OBRA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO DES CRIPCIÓN (CATEGORÍA) C=A*B D=C*RChofer de Camión Cisterna (Est. Ocup C1) 1.00 5.31 0.01 (Est. Ocup E2) 1.00 3.62 3.62 0.01 0.04 Peón 0.09 MATERIALES CANTIDAD PRECIO UNIT. COSTO UNIDAD DES CRIPCIÓN C=A*B 1.04 U 1.00 1.04 Agua S UBTOTAL O TRANSPORTE CANTIDAD TARIFA COSTO UNIDAD DES CRIPCIÓN C=A*BS UBTO TAL P TOTAL COSTO DIRECTO (M+N+O+P) 1.43 INDIRECTOS Y UTILIDADES 5.00% 0.07 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 1.50 VALOR PROPUES TO 1.50 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR.

Luis Javier Orozco Analuiza

FIRMA RES PONS ABLE

LUGAR Y FECHA

Ambato, Jul-2021

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

PROYECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 21 HOJA: 21 DE 23 UNIDAD: U Batería sanitaria DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓN D=C*RВ C=A*BHerramienta M enor 0.00 0.00 0.00 0.00 SUBTOTAL M 0.00 MANO DE OBRA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO DES CRIPCIÓN (CATEGORÍA) C=A*BD=C*R0.00 MATERIALES CANTIDAD PRECIO UNIT. COSTO UNIDAD DES CRIPCIÓN C=A*B В Baterias sanitria movil 750.00 U 750.00 1.00 SUBTOTAL O 750.00 TRANSPORTE CANTIDAD TARIFA COSTO UNIDAD DES CRIPCIÓN C=A*BSUBTOTAL P TOTAL COSTO DIRECTO (M+N+O+P) 750.00 INDIRECTOS Y UTILIDADES 20.00% 150.00 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 900.00 VALOR PROPUES TO 900.00 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR. LUGAR Y FECHA Luis Javier Orozco Analuiza Ambato, Jul-2021

FIRMA RESPONSABLE

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PRO YECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo Alto con el Cerro Pilisurco RUBRO: 22 HOJA: 22 DE 23 UNIDAD: U Señalética preventiva, Informativa, Restrictiva DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓ N D=C*RC=A*BHerramienta M enor 1.00 0.56 0.56 0.56 SUBTOTAL M 0.56 MANO DE OBRA CANTIDAD JORNAL/HR COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓN (CATEGORÍA) C=A*B D=C*RPeón (Est. Ocup E2) 1.00 3.62 1.00 3.62 3.62 M aestro may or (Est. Ocup C1) 1.00 4.06 4.06 1.00 4.06 Soldador (Est. Ocup D2) 1.00 3.66 3.66 1.00 3.66 11.34 MATERIALES CANTIDAD PRECIO UNIT. COSTO C=A*B DES CRIPCIÓN UNIDAD 21.33 Vinil reflective tipe IV 21.33 Rollo 1.00 Vinil electro corte Rollo 1.00 10.67 10.67 Tol 1.00 7.50 7.50 m2 Tubo cuadrado 2"1/2 1.00 15.83 15.83 Tuercas y arandeles e=12mm 2.00 2.50 5.00 SUBTOTAL O 60.33 TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD В $C\!=\!A\!*\!B$ SUBTOTAL P TOTAL COSTO DIRECTO (M+N+O+P) 72.23 INDIRECTOS Y UTILIDADES 20.00% 14.45 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 86.68 VALOR PROPUES TO 86.68 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR.

Luis Javier Orozco Analuiza

FIRMA RES PONS ABLE

LUGAR Y FECHA

Ambato, Jul-2021

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA PROYECTO: Mejoramiento del diseño geométrico de la vía que une la comunidad de Ambatillo alto con el cerro Pilisurco RUBRO: 23 HOJA: 23 DE 23 Letrero informativo de obra UNIDAD: U DESCRIPCION: EQUIPOS CANTIDAD TARIFA COSTO HORA RENDIMIENTO COSTO DES CRIPCIÓN В C=A*B D=C*RHerramienta M enor 4.50 0.05 0.2 0.21 SUBTOTAL M 0.21 MANO DE OBRA COSTO HORA DES CRIPCIÓN (CATEGORÍA) C=A*B D=C*RPeón (Est. Ocup E2) 13.03 1.00 3.62 3.62 3.60 Albañil (Est. Ocup D2) 1.00 3.66 3.60 13.18 3.66 M aestro may or (Est. Ocup C1) 1.00 4.06 4.06 3.60 14.62 40.82 MATERIALES CANTIDAD PRECIO UNIT. COSTO UNIDAD DES CRIPCIÓN C=A*B Tol 7.50 7.50 m2 1.00 Tubo cuadrado 2 "1/2 U 1.00 16.00 16.00 Tuercas y arandales e= 12 mm U 2.00 2.50 5.00 Cemento Portland TIPO I 0.40 7.00 2.80 saco 0.02 0.11 Arena m3 5.36 Ripio m3 0.03 5.36 0.16 m3 Agua 0.01 0.55 0.01 SUBTOTAL O 31.57 TRANSPORTE CANTIDAD TARIFA COSTO DES CRIPCIÓN UNIDAD C=A*BS UBTO TAL P TOTAL COSTO DIRECTO (M+N+O+P) 72.61 INDIRECTOS Y UTILIDADES 20.00% 14.52 OTROS INDIRECTOS 0.00% 0.00 COSTO TOTAL DEL RUBRO 87.13 VALOR PROPUES TO 87.13 NOTA: ESTOS PRECIOS NO INCLUYEN IVA. ELABORADO POR. LUGAR Y FECHA

Luis Javier Orozco Analuiza FIRMA RES PONS ABLE Ambato, Jul-2021

Archivo fotográfico

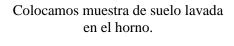
Levantamiento Topográfico

Equipo Topográfico

Cadeneros

Estudio de Tráfico

Estación de Conteo


Registro Vehicular

Ensayo: Granulometría

Lavado de muestra de suelo

Tamizando Muestras de Suelos

Pesando muestras de suelo retenidas en los tamices

Ensayo: Límites de Atteberg

Preparando muestra para ensayo de límite líquido

Secado de muestras de suelo en el horno.

Ensayo de límite líquido

Obtención de muestras para contenido de humedad

Ensayo: Proctor modificado

Preparando muestra para ensayo de proctor modificado

Compactación de la muestra de suelo en 5 capas de 56 golpes con martillo de 10lb a una altura de 18"

Enrasando la muestra de suelo para posteriormente tomar su peso.

Tomando de muestras suelo para contenido de humedad

Ensayo: CBR

Ensayo de CBR

Midiendo esponjamiento

Pesando molde + suelo después del remojo

Ensayo Carga Penetración

Obtención de muestras

Excavación de calicata.

Limitación de la calicata con el fin evitar accidentes

Midiendo profundidad de calicata.

Obtención de muestras de suelo en sacos de yute

Socialización del Proyecto

Socialización del proyecto vial con la Srta. Rosa Masabalin cabilda de la comunidad de Ambatillo Alto.

Planos