

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO CIVIL

TEMA:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI"

AUTOR: Jhimy Alejandro Gomez Morales

TUTOR: Ing. Mg. Favio Paúl Portilla Yandún

AMBATO - ECUADOR Marzo - 2023

CERTIFICACIÓN

En mi calidad de Tutor del Trabajo Experimental, previo a la obtención del Título de Ingeniero Civil, con el tema: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI", elaborado por el señor Jhimy Alejandro Gomez Morales, portador de la cédula de ciudadanía: C.I. 1401145527, estudiante de la Carrera de Ingeniería Civil, de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente trabajo experimental es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Esta concluido en su totalidad.

Ambato, marzo 2023

Ing. Mg. Favio Paul Portilla Yandún

TUTOR

AUTORÍA DEL TRABAJO DE INTEGRACIÓN CURRICULAR

Yo, Jhimy Alejandro Gomez Morales, con C.I. 1401145527, declaro que todas las actividades y contenidos expuestos en el presente trabajo experimental con el tema: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI", así como también los análisis estadísticos, gráficos, conclusiones y recomendaciones son de mi exclusiva responsabilidad como autor del proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, marzo 2023

Jhimy Alejandro Gomez Morales

C.I. 1401145527 AUTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Trabajo Experimental o parte de él, un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedo los derechos en línea patrimoniales de mi Trabajo Experimental, con fines de difusión pública, además apruebo la reproducción de este documento dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, marzo 2023

Jhimy Alejandro Gomez Morales

C.I. 1401145527

AUTOR

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Trabajo Experimental, realizado por el estudiante Jhimy Alejandro Gomez Morales, de la Carrera de Ingeniería Civil, bajo el tema: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI".

Ambato, marzo 2023

Para constancia firman:

Ing. Mg. Galo Wilfrido Núñez Aldáz MIEMBRO CALIFICADOR

Ing. Maritza Elizabeth Ureña Aguirre MSc. MIEMBRO CALIFICADOR

DEDICATORIA

Este trabajo y años de estudio se lo dedico a mi familia en especial a mi madre Laura Morales que desde pequeño me inculco valores y principios que me servirán para ser un buen profesional.

A mis amigos y compañeros de carrera Alison I, Bryan M, Álvaro E, Javier P, Xavier C. Por el apoyo brindado en estos años. Buenos momentos y experiencias que de seguro recordare por siempre.

A mi amiga C.A, que con su apoyo se logró culminar esta bonita etapa de la vida, aprendiendo uno del otro y siendo un complemento para lograr culminar la carrera, gracias por la paciencia al enseñar.

Gomez Morales Jhimy Alejandro.

AGRADECIMIENTO

Un agradecimiento a Dios por brindarme sabiduría y energías para culminar este proceso en mi vida.

Agradecimiento a la Universidad Técnica de Ambato especialmente a la Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Civil y docentes por su formación académica durante estos años.

A mi tutor de tesis Ing. Favio Portilla quien con su conocimiento me guio durante el desarrollo del presente trabajo.

A mis amigos y compañeros de grupo que durante este proceso

Gomez Morales Jhimy Alejandro.

ÍNDICE DE CONTENIDOS

CERTIFICACI	ÓN	ii
AUTORÍA DE	LA INVESTIGACIÓN	iii
DERECHOS D	E AUTOR	iv
DEDICATORIA	A	vi
AGRADECIMI	IENTO	vii
ÍNDICE DE CO	ONTENIDOS	viii
ÍNDICE DE TA	ABLA	xii
ÍNDICE DE IL	USTRACIONES	xviii
RESUMEN		xxi
	ÓRICO	
1.1 Antec	cedentes investigativos	1
1.1.1 Antec	cedentes	1
1.1.2 Justif	icación	5
1.1.3 Funda	amentación teórica	6
1.1.3.1	Ubicación Geo-referenciada	6
1.1.3.2	Suelo	6
1.1.3.3	Clasificación del suelo.	6
1.1.3.3.1	Sistema Unificado de Clasificación de Suelos (SUCS)	7
1.1.3.3.2	Sistema de clasificación de suelos AASHTO	9
1.1.3.3.3	Tipos de Suelo	12
1.1.3.4	Propiedades índices del suelo	15
1.1.3.4.1	Contenido de humedad (ω, W%)	16
1.1.3.4.2	Relación de Vacíos (e)	16

1.1	.3.4.3	Porosidad (n%)	17
1.1	.3.4.4	Grado de saturación de agua (Gw%)	17
1.1	.3.4.5	Grado de saturación de aire (Ga%)	18
1.1	.3.4.6	Peso específico seco (γd)	18
1.1	.3.4.7	Gravedad específica (Gs)	19
1.1	.3.4.8	Densidad de campo (cono y arena)	19
1.1	.3.4.9	Límites de Atterberg	20
1.1	.3.4.10	Granulometría	24
1.1	.3.5	Propiedades mecánicas	26
1.1	.3.5.1	Compactación del suelo	26
1.1	.3.5.2	Resistencia al esfuerzo cortante	27
1.1	.3.5.3	Energía de compactación	27
1.1	.3.5.4	Prueba Proctor	28
1.1	.3.5.5	Ensayo CBR (California Bearing Ratio)	30
1.1	.3.5.6	Cono Dinámico de Penetración (DCP)	31
1.1	.3.6	Diseño de Pavimento	32
1.1	.3.6.1	Pavimento	32
1.1	.3.6.2	Estructura del pavimento	33
1.1	.3.6.3	Tipos de Pavimento	34
1.1	.3.6.4	Método de diseño AASHTO93 Pavimento flexible	36
1.1	.3.7	Correlaciones	43
1.1	.3.7.1	Correlación lineal	44
1.1	.3.7.2	Método Mínimos Cuadrados	45
1.1	.3.7.3	Coeficiente de determinación	45
1.1	.3.7.4	Correlación Multiple	46
1.1.4	Hipá	otesis	47
1.2	Obje	etivos	47
1.2.1	Obje	tivo General	47

1.2.2 Objetivo Específico	47
CAPÍTULO II	48
2 METODOLOGÍA	48
2.1 Equipos y Materiales	48
2.2 Métodos	51
2.2.1 Fases de investigación	51
2.2.1.1 FASE 1: Análisis de campo y laboratorio de las propiedades í	índice
y mecánicas del suelo	51
2.2.1.1.1 Ensayos de campo	51
2.2.1.1.2 Ensayos de laboratorio	53
2.2.1.2 FASE 2 Ampliación de base de datos referente a correlacione	s 59
2.2.1.3 FASE 3 Diseño de pavimento	63
2.2.1.4 FASE 4 Zonificación de acuerdo a la clasificación de suelos S	SUCS
y AASHTO	63
2.3 Población y muestra	64
2.3.1 Población	64
2.3.2 Muestra	65
CAPÍTULO III	66
3 RESULTADOS Y DISCUSIÓN	66
3.1 Análisis y discusión de los resultados	66
3.1.1 FASE 1: Análisis de campo y laboratorio de las propiedades ínc	lice y
mecánicas del suelo.	66
3.1.1.1.1 Propiedades índices	67
3.1.1.1.2 Propiedades mecánicas	

	3.1.1.2	FASE 2: Ampliación de base de datos referente a correlaciones.71
	3.1.1.2.1	Correlaciones analizadas72
	3.1.1.2.2	Comparación de resultados99
	3.1.1.3	FASE 3: Diseño de pavimento
	3.1.1.3.1	Diseño del pavimente flexible AASHTO 93 103
	3.1.1.3.2	Resumen diseño de pavimento
	3.1.1.4	FASE 4: Zonificación de acuerdo a la clasificación de suelos SUCS
)
CAl	PÍTULO IV	<i>J</i>
4 C	ONCLUS	ONES Y RECOMENDACIONES
4.1	Cond	elusiones
4.2	Reco	omendaciones
BIB	LIOGRAF	ÍA140
AN	EXOS	

ÍNDICE DE TABLA

Tabla 1 Identificación de los suelos método SUCS	7
Tabla 2 Clasificación del suelo según SUCS	8
Tabla 3 Clasificación de materiales para subrasante AASHTO	10
Tabla 4 Clasificación de suelo según el tamaño (AASHTO)	11
Tabla 5 Clasificación de suelo según el tamaño (SUCS)	12
Tabla 6 Clasificación de suelo según el tamaño (ASTM)	12
Tabla 7 :Nomenclatura esquema muestra de suelo (3 fases)	15
Tabla 8 :Valor Gs de los suelos	19
Tabla 9: Tamaño de tamices ASTM	24
Tabla 10: Prueba Proctor Estándar	28
Tabla 11 Prueba Proctor Modificado.	29
Tabla 12: Clasificación suelo según CBR	30
Tabla 13: Periodo de diseño en función del tipo de carretera	37
Tabla 14: Porcentaje (W18)	38
Tabla 15: Nivel de serviciabilidad	38
Tabla 16: Nivel de confianza	39
Tabla 17: Factor de desviación normal	39
Tabla 18: Capacidad de drenaje	40
Tabla 19: Valores de coeficiente de drenaje "m"	40
Tabla 20: Espesor mínimo en pulgadas	41
Tabla 21 : Funciones matemáticas curvas correlación	43
Tabla 22: Rango de ajuste R ²	46
Tabla 23: Equipos y Materiales	48
Tabla 24 : Correlación lineal múltiple	59
Tabla 25: Sistema de ecuaciones para correlación lineal múltiple	60
Tabla 26: Correlación lineal múltiple	60
Tabla 27: Sistema de ecuaciones correlación potencial múltiple	61
Tabla 28 : Sistema de ecuaciones correlación potencial múltiple	62
Tabla 29: Sistema de ecuaciones correlación exponencial múltiple	62
Tabla 30: Ubicación de calicatas - Angamarca	65
Tabla 31: Nomenclatura propiedades índice y mecánicas	66

Tabla 32 : Resultados propiedades índice.	67
Tabla 33: Propiedades obtenidas a partir de ensayo densidad de campo.	69
Tabla 34: Resumen propiedades mecánicas	70
Tabla 35: Resumen correlaciones	71
Tabla 36 : Ecuación de CBR según varios autores	99
Tabla 37: Resultados errores en comparación a distintas ecuaciones de CBR v	s DN-
Parte 1	101
Tabla 38 Resultados errores en comparación a distintas ecuaciones de CBR vs	S DN-
Parte 2	101
Tabla 39: Conteo vehicular.	103
Tabla 40: Comportamiento diario del tránsito	103
Tabla 41: Vehículos hora pico	104
Tabla 42: Valor de "k" para poblaciones.	106
Tabla 43: Tráfico actual del proyecto	109
Tabla 44: Periodo de diseño para distintos tipos de carreteras	110
Tabla 45:Tasa de crecimiento anual de tráfico	110
Tabla 46: Tabla de % de crecimiento y transito promedio diario vehicular	112
Tabla 47: Tipo de carretera del proyecto.	112
Tabla 48: Tipo de vehículo, numero de ejes y peso.	113
Tabla 49: Factor de daño según vehículo.	113
Tabla 50: W18 para el diseño	115
Tabla 51: Nivel de confianza del proyecto.	115
Tabla 52: Confiabilidad (R) y la desviación estándar	116
Tabla 53: Valores de "a1" para el diseño de pavimento	119
Tabla 54 Valores de "a2" para el diseño de pavimento	120
Tabla 55: Valores de "a3" para el diseño de pavimento	122
Tabla 56: Calidad de drenaje para el diseño.	123
Tabla 57: Coeficiente de drenaje	123
Tabla 58: Valores de espesores mínimos	124
Tabla 59: Datos para diseño de pavimento	125
Tabla 60: Numero estructural carpera Asfáltica	126
Tabla 61: Espesores del paquete estructural con CBR de laboratorio	129
Tabla 62: Datos de diseño para pavimento con las correlaciones	131

Tabla 63: Espesores del paquete estructural con CBR de correlaciones.	133
Tabla 64: Resumen diseño de pavimento.	134
Tabla 65: Resumen espesores pavimento.	134
Tabla 66: Clasificación del suelo	135
Tabla 67: Ensayo DCP – Muestra 1	148
Tabla 68: Ensayo DCP – Muestra 2	149
Tabla 69: Ensayo DCP – Muestra 3	150
Tabla 70: Ensayo DCP – Muestra 4	151
Tabla 71: Ensayo DCP – Muestra 5	152
Tabla 72: Ensayo DCP – Muestra 6	153
Tabla 73:Ensayo DCP – Muestra 7	154
Tabla 74:Ensayo DCP – Muestra 8	155
Tabla 75: Ensayo DCP – Muestra 9	156
Tabla 76: Ensayo DCP – Muestra 10	157
Tabla 77: Ensayo DCP – Muestra 11	158
Tabla 78: Ensayo DCP – Muestra 12	159
Tabla 79 : Ensayo Contenido de humedad – Muestra 1	161
Tabla 80: Ensayo Contenido de humedad – Muestra 2	162
Tabla 81: Ensayo Contenido de humedad – Muestra 3	163
Tabla 82: Ensayo Contenido de humedad – Muestra 4	164
Tabla 83: Ensayo Contenido de humedad – Muestra 5	165
Tabla 84: Ensayo Contenido de humedad – Muestra 6	166
Tabla 85: Ensayo Contenido de humedad – Muestra 7	167
Tabla 86: Ensayo Contenido de humedad – Muestra 8	168
Tabla 87: Ensayo Contenido de humedad – Muestra 9	169
Tabla 88: Ensayo Contenido de humedad – Muestra 10	170
Tabla 89: Ensayo Contenido de humedad – Muestra 11	171
Tabla 90: Ensayo Contenido de humedad – Muestra 12	172
Tabla 91 : Ensayo Contenido de humedad – Muestra 1	174
Tabla 92: Ensayo Contenido de humedad – Muestra 2	175
Tabla 93: Ensayo Contenido de humedad – Muestra 3	176
Tabla 94: Ensayo Contenido de humedad – Muestra 4	177
Tahla 95: Ensavo Contenido de humedad – Muestra 5	178

Tabla 96: Ensayo Contenido de humedad – Muestra 6	179
Tabla 97 : Ensayo Contenido de humedad – Muestra 7	180
Tabla 98: Ensayo Contenido de humedad – Muestra 8	181
Tabla 99: Ensayo Contenido de humedad – Muestra 9	182
Tabla 100: Ensayo Contenido de humedad – Muestra 10	183
Tabla 101: Ensayo Contenido de humedad – Muestra 11	184
Tabla 102: Ensayo Contenido de humedad – Muestra 12	185
Tabla 103: Ensayo Gravedad específica – Muestra 1	187
Tabla 104:Ensayo Gravedad específica – Muestra 2	188
Tabla 105 : Ensayo Gravedad específica – Muestra 3	189
Tabla 106: Ensayo Gravedad específica – Muestra 4	190
Tabla 107 : Ensayo Gravedad específica – Muestra 5	191
Tabla 108: Ensayo Gravedad específica – Muestra 6	192
Tabla 109 : Ensayo Gravedad específica – Muestra 7	193
Tabla 110 : Ensayo Gravedad específica – Muestra 8	194
Tabla 111 : Ensayo Gravedad específica – Muestra 9	195
Tabla 112 : Ensayo Gravedad específica – Muestra 10	196
Tabla 113: Ensayo Gravedad específica – Muestra 11	197
Tabla 114: Ensayo Gravedad específica – Muestra 12	198
Tabla 115: Ensayo granulometría – Muestra 1	200
Tabla 116: Ensayo granulometría – Muestra 2	201
Tabla 117 :Ensayo granulometría – Muestra 3	202
Tabla 118 : Ensayo granulometría – Muestra 4	203
Tabla 119 : Ensayo granulometría – Muestra 5	204
abla 120: Ensayo granulometría – Muestra 6	205
Tabla 121 : Ensayo granulometría – Muestra 7	206
Tabla 122 : Ensayo granulometría – Muestra 8	207
Tabla 123 : Ensayo granulometría – Muestra 9	208
Tabla 124 : Ensayo granulometría – Muestra 10	209
Tabla 125: Ensayo granulometría – Muestra 11	210
Tabla 126 : Ensayo granulometría – Muestra 12	211
Tabla 127: Ensayo Límite líquido – Muestra 1	213
Tabla 128 :Ensayo Límite líquido – Muestra 2	214

Tabla 129 : Ensayo Límite líquido – Muestra 3	215
Tabla 130: Ensayo Límite líquido – Muestra 4	216
Tabla 131 : Ensayo Límite líquido – Muestra 5	217
Tabla 132 : Ensayo Límite líquido — Muestra 6	218
Tabla 133 : Ensayo Límite líquido – Muestra 7	219
Tabla 134 : Ensayo Límite líquido — Muestra 8	220
Tabla 135 : Ensayo Límite líquido — Muestra 9	221
Tabla 136 : Ensayo Límite líquido – Muestra 10	222
Tabla 137: Ensayo Límite líquido – Muestra 11	223
Tabla 138: Ensayo Límite líquido – Muestra 12	224
Tabla 139: Ensayo Límite plástico – Muestra 1	226
Tabla 140 : Ensayo Límite plástico – Muestra 2	227
Tabla 141: Ensayo Límite plástico – Muestra 3	228
Tabla 142 : Ensayo Límite plástico – Muestra 4	229
Tabla 143: Ensayo Límite plástico – Muestra 5	230
Tabla 144: Ensayo Límite plástico – Muestra 6	231
Tabla 145: Ensayo Límite plástico – Muestra 7	232
Tabla 146 : Ensayo Límite plástico – Muestra 8	233
Tabla 147: Ensayo Límite plástico – Muestra 9	234
Tabla 148: Ensayo Límite plástico – Muestra 10	235
Tabla 149: Ensayo Límite plástico – Muestra 11	236
Tabla 150: Ensayo Límite plástico – Muestra 12	237
Tabla 151 : Ensayo Proctor – Muestra 1	239
Tabla 152 :Ensayo Proctor – Muestra 2	240
Tabla 153 : Ensayo Proctor – Muestra 3	241
Tabla 154 : Ensayo Proctor – Muestra 4	242
Tabla 155 : Ensayo Proctor – Muestra 5	243
Tabla 156: Ensayo Proctor – Muestra 6	244
Tabla 157: Ensayo Proctor – Muestra 7	245
Tabla 158 : Ensayo Proctor – Muestra 8	246
Tabla 159 :Ensayo Proctor – Muestra 9	247
Tabla 160 :Ensayo Proctor – Muestra 10	248
Tahla 161. Ensavo Proctor – Muestra 11	249

Tabla 162: Ensayo Proctor – Muestra 12	250
Tabla 163 : Ensayo CBR – Muestra 1	252
Tabla 164: Ensayo CBR – Muestra 2	256
Tabla 165: Ensayo CBR – Muestra 3	260
Tabla 166: Ensayo CBR – Muestra 4	264
Tabla 167: Ensayo CBR – Muestra 5	268
Tabla 168 : Ensayo CBR – Muestra 6	272
Tabla 169 : Ensayo CBR – Muestra 8	277
Tabla 170 : Ensayo CBR – Muestra 8	281
Tabla 171 : Ensayo CBR – Muestra 9	285
Tabla 172 : Ensayo CBR – Muestra 10	289
Tabla 173: Ensayo CBR – Muestra 11	293
Tabla 174: Ensayo CBR – Muestra 12	297

ÍNDICE DE ILUSTRACIONES

Ilustración 1 Carta de plasticidad SUCS	9
Ilustración 2 Carta plasticidad AASHTO	11
Ilustración 3: Aparato Cono y arena	20
Ilustración 4:Límites de Atterberg en función del (%) de humedad	21
Ilustración 5: Copa de Casagrande	21
Ilustración 6: Límite Líquido (#golpes vs W%)	22
Ilustración 7: Distribución Granulométrica	25
Ilustración 8: Ejemplo curvas de compactación	26
Ilustración 9: Equipo Cono Dinámico de Penetración	31
Ilustración 10: Estructura del pavimento	32
Ilustración 11: Estructura Pavimento Flexible	34
Ilustración 12: Estructura Pavimento Rígido	35
Ilustración 13 Estructura Pavimento semirrígido	35
Ilustración 14 Estructura pavimento articulado	36
Ilustración 15: Ábaco para el coeficiente estructural a1	42
Ilustración 16: Ábaco para el coeficiente estructural a2	42
Ilustración 17 Ábaco para el coeficiente estructural a3	43
Ilustración 18: Correlación lineal	44
Ilustración 19 : Pozo a cielo abierto - Angamarca	52
Ilustración 20: Ensayo DCP Angamarca	52
Ilustración 21 : Ensayo Cono y Arena - Angamarca	53
Ilustración 22: Ensayo Granulometría - Angamarca	54
Ilustración 23: Ensayo Contenido de humedad - Angamarca	54
Ilustración 24 Gravedad especifica - Angamarca	55
Ilustración 25 Ensayo Limite Liquido - Angamarca	56
Ilustración 26. Limite Plástico - Angamarca	57
Ilustración 27 : Ensayo Proctor - Angamarca	58
Ilustración 28: Ensayo CBR	58
Ilustración 29: Programa ecuación 1993 para pavimento flexible	63
Ilustración 30: Mapa Cotopaxi	64
Ilustración 31: Correlación LP% vs.LL%	72

Ilustración 32: Correlación Gw% vs Wnat%	73
Ilustración 33: Correlación Ga% vs Wnat %	74
Ilustración 34: Correlación LL% vs e	76
Ilustración 35: Correlación Yd in situ vs LP %	77
Ilustración 36:Correlación Yd in situ vs LL %	78
Ilustración 37: Correlación Yd in situ vs n %	79
Ilustración 38: Correlación Yd in situ vs W nat	80
Ilustración 39:Correlación Yd in situ vs W opt	81
Ilustración 40:Correlación Yd in situ vs W opt	82
Ilustración 41:Correlación Υd in situ vs W opt	83
Ilustración 42:Correlación Yd seca máxima vs LL % - LP %	84
Ilustración 43:Correlación Wopt vs LL - LP	85
Ilustración 44: Correlación Yd max vs Wnat % – LP%	86
Ilustración 45:Correlación Yd in situ vs Yd max – W opt %	87
Ilustración 46:Correlación W opt % vs Yd in situ -LL %	88
Ilustración 47:Correlación DN % vs LL%	89
Ilustración 48:Correlación DN vs Yd max	90
Ilustración 49: Correlación DN vs Yd in situ- Wnat%	91
Ilustración 50:Correlación DN vs Yd in situ- W opt%	93
Ilustración 51:Correlación DN vs IP % - Gw %	94
Ilustración 52: Correlación CBR vs LL %	95
Ilustración 53: Correlación CBR vs %Finos	96
Ilustración 54: Correlación CBR vs DN	97
Ilustración 55:Correlación CBR vs DN - W opt %	98
Ilustración 56: % Error vs CBR obtenido con DCP	102
Ilustración 57: Comportamiento de tránsito el día lunes	104
Ilustración 58: Distribución de tráfico día lunes	105
Ilustración 59: Coeficiente estructural a1	118
Ilustración 60: Coeficiente estructural a2	
Ilustración 61: Coeficiente estructural "a3"	121
Ilustración 62: Precipitación según INAMHI	123
Ilustración 63: Número estructural SN2	127
Hustración 64. Número estructural SN3	128

Ilustración 65: Espesores de paquete estructural con CBR de laboratorio	129
Ilustración 66: SN3 para correlaciones	131
Ilustración 67: Espesores de paquete estructural con CBR de correlaciones	133
Ilustración 68: Mapa de clasificación	136

RESUMEN

En la provincia de Cotopaxi existen vías lastradas que unen localidades y requieren

vías asfaltadas, la base de datos existente referente a propiedades índice y mecánicas

del suelo es insuficiente. Es por ello que el presente trabajo experimental, tiene como

objetivos ampliar la base de datos del suelo de la zona y determinar las correlaciones

existentes de los suelos, siendo la principal correlación el ensayo California Bearing

Ratio (CBR) y el ensayo Penetración Dinámica de Cono (DCP), debido a su incidencia

directa en el diseño de pavimento flexible.

El área de estudio comprende 4 vías ubicadas en la parroquia Angamarca del cantón

Pujilí, provincia de Cotopaxi. Las vías que fueron objeto de estudio son de tercer orden

elegidas estratégicamente. Se realizaron calicatas y se procedió con la extracción de

12 muestras de suelo representativo de la zona cada una de ellas de 50 kilogramos, en

el sitio se procedió con los ensayos Cono de arena y DCP. Las muestras de suelo

extraídas sirvieron para la determinación de las propiedades índices y mecánicas del

suelo en laboratorio basados en las normas AASHTO, ASTM y SUCS.

Los resultados fueron 25 correlaciones con un índice de correlación poisson mayor del

50 por ciento, siendo la correlación más importante la de 77 porciento correspondiente

al ensayo DCP y CBR lo que indica un resultado aceptable. Finalmente, se diseñó el

espesor del paquete estructural del pavimento con el método AASHTO 93. Obteniendo

espesores de: capeta asfáltica 5 centímetros, base 10 centímetros y sub base 20

centímetros.

Palabras clave: Correlación de suelos, Ingeniería civil, Suelos, Pavimentos, Vías.

xxi

ABSTRACT

In the province of Cotopaxi there are ballasted roads that connect towns and require

paved roads, the existing database referring to index and mechanical properties of the

soil is insufficient. That is why the present experimental work has the objectives of

expanding the soil database of the area and determining the existing correlations of the

soils, the main correlation being the California Bearing Ratio (CBR) test and the

Dynamic Cone Penetration test. (DCP), due to its direct impact on the design of

flexible pavement.

The study area includes 4 roads located in the Angamarca parish of the Pujilí canton,

Cotopaxi province. The roads that were studied are strategically chosen third order.

Test pits were made and proceeded with the extraction of 12 representative soil

samples of the area, each of them weighing 50 kilograms. At the site, the Sand Cone

and DCP tests were carried out. The extracted soil samples were used to determine the

index and mechanical properties of the soil in the laboratory based on the AASHTO,

ASTM and SUCS standards.

The results were 25 correlations with a Poisson correlation index greater than 50

percent, the most important correlation being that of 77 percent corresponding to the

DCP and CBR assay, which indicates an acceptable result. Finally, the thickness of

the structural package of the pavement was designed with the AASHTO 93 method,

obtaining thicknesses of: asphalt cap 5 centimeters, base 10 centimeters and subbase

20 centimeters.

Keywords: Correlation, Civil engineering, Soils, Pavements, Roads.

xxii

CAPÍTULO I

MARCO TEÓRICO

1.1 Antecedentes investigativos

1.1.1 Antecedentes

La investigación que se presenta radica en la importancia del suelo a lo largo de los años en obras civiles, un correcto estudio de características físicas y mecánicas del suelo permitirá determinar la resistencia de un suelo que cambia dependiendo de la zona de estudio, su composición mineralógica y su formación. Al realizarse un estudio de suelos con datos de laboratorio se puede proponer soluciones de manera eficiente abaratando costos y evitando problemas que puedan suscitarse eventualmente.

Según Tala Al-Refeai investigador en la Universidad King Saud (1996), propone que el valor de CBR en laboratorio puede ser predicho mediante el ensayo de campo DCP mediante correlaciones, mediante su investigación realizada en Arabia Saudita, los resultados arrojaron que independientemente de la densidad que tiene el suelo en la zona de estudio y la humedad natural, en efecto se puede encontrar una relación entre DCP Y CBR, para realizar las correlaciones se usó un análisis de regresión, utilizando programas informáticos como SPSS. Según los resultados obtenidos el coeficiente de determinación (R²) oscila entre 0.81 y 0.93 lo que indica según el investigador que existe una concordancia entre el modelo desarrollado y los que se presentan en la literatura referente a suelos. [1]

La caracterización del suelo según Ordoñez Jorge en su investigación realizada en la ciudad de Tuxla Gutiérrez, México (2015). Propone la necesidad de conocer las propiedades índices del suelo en el caso de la zona de estudio se caracterizó por la presencia de las denominadas arcillas expansivas, en su investigación se evaluó el riesgo sísmico, se analizó los riegos de la saturación del agua en las muestras de suelo y como incide en la expansión de las arcillas, además del estudio de CBR ya que gran parte de las carreteras de la zona de estudio se asientan sobre arcillas expansivas. Se estableció que el riesgo geotécnico en el suelo natural ocurre a una profundidad de 0.25 a 3 metros con un riesgo alto, mientras que a los 5 metros ocurre un riesgo bajo.

Recomendando así mediante un estudio de propiedades índice de realizar cimentaciones por lo menos a los 3 metros de profundidad o mejorar el suelo a dicha profundidad evitando así problemas a futuro.[2]

En Sudamérica, la investigación respecto a las correlaciones entre propiedades índice y mecánicas es extensa. En la ciudad de Piura, Perú se llevó a cabo una investigación a cargo de Araujo William (2018), la cual sugiere ecuaciones de correlación de CBR, la investigación que se realizo es extensa ya que se analizaron datos de un laboratorio local en Piura desde el año 2004 hasta 2014. Los resultados a los que se llegó muestran que el contenido de grava presente en los suelos que son objeto de estudio y su contenido de humedad presentan una aceptable correlación línea. Se demostró que la aplicación de la correlación múltiple tiene mayor peso que una correlación simple, los análisis de laboratorio permitieron que el autor llega a la conclusión que ningún parámetro analizado de manera individual es determinante para encontrar el CBR, por lo que es imprescindible el uso de correlaciones al momento de hallar un método distinto al de CBR de laboratorio. [3]

Sandoval Eimar (2019), en su investigación realizada en Colombia sugiere que la correlación del CBR sirve como una alternativa eficiente para encontrar dicho valor sin necesidad de realizar el ensayo en laboratorio, ahorrando así recursos económicos, se estudiaron 38 muestras en suelos que tienen presencia de limo, arcillas de alta y baja plasticidad. Se determinó dos correlaciones en muestras inalteradas esto a partir de una prueba de resistencia a la compresión no confinada, las correlaciones que se obtuvieron son aplicables a cualquier tipo de suelo esto independientemente de su humedad, plasticidad y consistencia. Los factores r² encontrados se consideran en un rango aceptable entre 0.67 y 0.83) para aplicar la determinación del valor de CBR.[4]

Las investigaciones en Colombia respecto a la caracterización del suelo en un trabajo inter institucional con la División de Ingeniería de Materiales del Ministerio de Obras Públicas y Transporte se realizó una serie de experimentos en campo y de laboratorio en vías aleatorias a lo largo del país mencionado, se establecieron una serie de modelos matemáticos que correlacionan los ensayos de California Bearing Ratio (CBR) realizado en laboratorio y el ensayo Penetración Dinámica de Cono (DCP) realizada

in situ, los suelos que se estudiaron comprendieron finos saturados con una correlación de R=0.93, para el modelo aplicado (lineal por mínimo cuadrados) se consideró como una correlación aceptable.[5]

Barreno Juan (2018), en su estudio realizado para la Universidad San Francisco de Quito, determino una correlación analítica entre muestras de suelo pertenecientes a la parroquia Guayllabamba entre los resultados de ensayos CBR y de DCP que permitirán optimizar tiempo e inversión económica respecto a ensayos de CBR realizados en laboratorio, la correlación encontrada en el estudio únicamente deberá ser aplicable para suelos de características granulométricas con capacidad de soporte y plasticidad a la zona de estudio (Guayllabamba).[6]

La Universidad Técnica de Manabí (2020), en su investigación sobre el análisis comparativo del suelo de campo y laboratorio entre el CBR Y DCP postula que las correlaciones entre los mencionados estudios de suelo es una herramienta multifuncional que necesita una buena interpretación con la finalidad de obtener diseños finales confiables y con una optimización de recursos y tiempo. La investigación se la realizo en la ciudad de Portoviejo, provincia de Manabí. Se extrajo muestras de suelo de 12 calicatas a diferente profundidad para demostrar cómo se correlacionan entre si las cotas que fueron analizadas cada 50 centímetros hasta llegar a los 150 centímetros de profundidad, es decir que las calicatas de las que se extrajo las muestras alteradas llegaron a una profundidad de 1.50 metros, una vez ensayadas en laboratorio se llegó a la caracterización del suelo obteniendo valores de limite liquido mayor en la superficie de las calicatas como era de esperarse. El CBR obtenido en el laboratorio para los investigadores es conservador en diferencia al CBR obtenido in situ mediante el ensayo DCP. Además, se postula que las correlaciones no pretenden reemplazar los ensayos de laboratorio, únicamente se recomienda que las ecuaciones encontradas sirvan en una etapa preliminar en la construcción de carreteras. La confiabilidad de la investigación arrojo que es óptima con un 0.9877, según el método de Van Vuuren 1969, considera que un resultado mayor al 0.90 en la confiabilidad es adecuado para correlacionar correctamente el suelo. La humedad optima encontrada en los suelos estudiados varía entre el 33% y el 39.3%. [7]

Según Guato Rosangela (2022), en su investigación respecto a la correlación entre el CBR en suelos granulares de la parroquia Huambaló, provincia de Tungurahua se recolectaron 12 muestras dispersas en la parroquia ya mencionada obteniendo resultados de densidad húmeda entre un rango de 1.516 gr/cm3 y 2.093 gr/cm3. La humedad natural encontrada en un rango de 8.47% y 23.38% correspondiente a suelos friccionante. Las correlaciones aplicadas fueron 22 de las cuales varían su coeficiente R² entre 53.80% y 97% calificándola como buena aplicando fórmulas de tipo polinómicas. [8]

Según Troya Mercedes (2019), en su investigación realizada en los suelos de Ambato, Ecuador. Clasificó 12 muestras de suelo extraídas de la parroquia Cunchibamba y Unamucho según la clasificación SUCS en un tipo de suelo SM SC ML CL, mientras que según la clasificación AASHTO en un suelo o A-2-4, A4. En las correlaciones realizadas entre el valor de DCP in situ y el CBR de laboratorio encontró un coeficiente de correspondencia del 68% que se considera un valor aceptable para la determinación del CBR, mencionando según el autor que esta correlación no sustituye al ensayo CBR de laboratorio, sin embargo, se puede emplear para realizar estudios preliminares de una vía abaratando costo y tiempo de ejecución.[9]

En la investigación realizada por Lozada Tatiana (2022). Relaciona las propiedades índice y mecánicas para encontrar una ecuación la cual permita encontrar de una forma fácil y económica el valor de CBR, la investigación se ejecutó en la parroquia Patate y el Triunfo, Ecuador. Se encontraron 23 correlaciones aplicando los métodos estadísticos de mínimos cuadrados y regresión simple, los coeficientes de determinación están dentro de un rango aceptable de 50% y 99%. El CBR determinado en el laboratorio se encontró en un rango de 11% y 45% además se determinó que la correlación con mayor coeficiente es la presente entre el Límite Liquido y Limite Plástico con un coeficiente de 99.59%. El espesor recomendado para el pavimento flexible con las correlaciones y el CBR determinado en laboratorio es el mismo: carpeta asfáltica= 5cm, base=15 cm y subbase= 15 cm. El análisis de correlación resultó en valores cercanos de CBR para a subrasante, se consideró un CBR del 26.53% para la determinación del paquete estructural de la vía. [10]

1.1.2 **Justificación**

La importancia del correcto estudio de suelos radica en la vida útil que pueda tener una infraestructura, el suelo es donde se construyen las obras civiles, se denomina como una capa de la corteza terrestre que se forma por agentes atmosféricos, es imprescindible conocer las propiedades índice y mecánicas de los suelos para un correcto diseño ajustándose a las características de la zona de ejecución de un proyecto y a las condiciones climatológicas. Uno de los ensayos que es de relevancia para las construcciones viales es el CBR, la obtención del valor de CBR para distintos tramos viales se torna difícil ya sea por accesibilidad negativa o falta de instrumentos para su determinación, es por ello que los investigadores buscan nuevas alternativas, una de ellas es las correlaciones entre propiedades índice y mecánicas de esta manera se puede predecir con cierta certeza un valor de CBR con ecuaciones que relacionen entre si los parámetros ya mencionados, se considera un método factible y económico.[11]

El valor de CBR se lo obtiene mediante pruebas en laboratorio o campo que muchas de las veces terminan teniendo un valor monetario considerable para la ejecución de un anteproyecto, es el parámetro más importante a considerar en la ejecución de obras viales ya que permite conocer el esfuerzo a corte que puede tener una determinada masa de suelo y sobre el cual se asentara el paquete estructural del pavimento ya sea flexible, rígido o semi rígido. Un valor alto de CBR permitirá espesores menores en la base, subbase o carpeta asfáltica, es decir un valor directamente proporcional con el valor monetario que pueda llegar a tener una vía. Es por ello que es imprescindible buscar nuevas herramientas que permitan conocer este valor de una manera más sencilla y económica. [12]

La finalidad del presente trabajo de investigación es tomar muestras representativas aleatorias de suelo en su estado natural de cuatro vías ubicadas en la parroquia Angamarca, cantón Pujilí, provincia Cotopaxi. El propósito de tomar muestras es para posteriormente analizarlas realizando pruebas de densidad de campo in situ, granulometría, límites de Atterberg, Proctor modificado y CBR con el fin de establecer una relación entre el CBR y propiedades índices y mecánicas lo cual permitirá realizar el diseño pavimento flexible aplicando los valores obtenidos en las correlaciones.

1.1.3 Fundamentación teórica

1.1.3.1 Ubicación Geo-referenciada

La ubicación geográfica es una herramienta que permite establecer con precisión el lugar donde se pretende establecer un proyecto. Los datos de ubicación recolectados corresponden a coordenadas UTM (WGS 84 Zona 17 Sur) ubicada en la parroquia de Angamarca, provincia de Cotopaxi. La importancia de establecer un Datum radica en que las coordenadas UTM por si solas pueden producir un error de indeterminación en la geografía del punto buscado.[13]

1.1.3.2 **Suelo**

El suelo es un conjunto de partículas que se encuentra en la naturaleza y proviene de los procesos de meteorización de rocas de gran tamaño presentes en la corteza de la tierra, de acuerdo a su composición mineralógica son clasificados y poseen dísticas características que diferencian un tipo de suelo de otro, sus características brindan resistencia a los agentes externos que meteorizan el suelo o lo erosionan, cada suelo de una zona determinada cuenta con distintas propiedades índice y mecánicas.[14]

1.1.3.3 Clasificación del suelo.

Los métodos de clasificación de suelos se desarrollaron debido a la complejidad y la infinita variedad de tipos de suelo que existe, los métodos de clasificación del suelo pretenden tomar las características de los suelos y ordenarlos de tal forma que cada tipo de suelo tenga una nomenclatura con la cual se los pueda identificar. La clasificación que se toma en cuenta se encuentra en función de la granulometría del suelo, algunos tipos de clasificaciones son la de los suelos S.U.C.S (Sistema Unificado de Clasificación del suelo) y la clasificación de los suelos A.A.S.H.T.O (American Association of State Highway and Transportation Officials). Los suelos se los puede clasificar de acuerdo al tamaño del grano, su plasticidad, presencia de guijarros, sus propiedades índice y mecánicas, sin embargo, la clasificación más común para los suelos se los puede subdividir en suelos finos y suelos granulares esto de acuerdo a su granulometría.[15]

1.1.3.3.1 Sistema Unificado de Clasificación de Suelos (SUCS)

El sistema que clasifica los suelos planteados desde el año 1952 por el investigador Arthur Casagrande plantea inicialmente que los suelos granulares o finos son los que se distribuyen por el tamiz número 3" lo que quiere decir 76.2mm, mientras que el suelo fino sucede cuando el 50% del suelo logra pasar el tamiz N.º. 200 correspondiente a 0.075 mm.

La clasificación del suelo en S.U.C.S se caracteriza por designar símbolos a los suelos, se los identifica con letras mayúsculas, consta de un prefijos y sufijos los cuales permiten dar una nomenclatura a los tipos de suelo.

Tabla 1 Identificación de los suelos método SUCS

Tipo de Suelo			Característica del Suelo
Símbolo	Definición	Sufijo Definición	
G	Grava	P	Mal graduado (partículas uniformes)
S	Arena	W	Bien graduado (partículas distinto tamaño)
М	Limo(oso)	н	Alta plasticidad
С	Arcilla(oso)	L	Baja plasticidad
0	Orgánico		

Fuente: Manual de Laboratorio de Suelos en Ingeniería Civil. J.E Bowles[16]

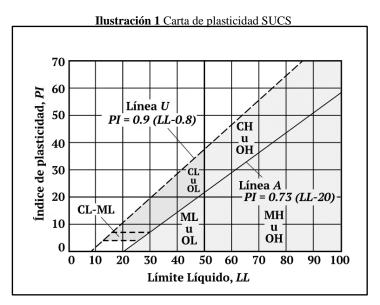

En la **tabla 2**, se observa la clasificación de los suelos según el sistema SUCS el cual principalmente está dividido en gravas, arenas, limos y suelos orgánicos, se estable que son considerados suelos de granos finos los que más del 50% pasa por el tamiz N° 200 clasificándolos en suelos orgánicos, limos y arcillas con un valor de limite liquito mayor y menor a 50. Los suelos considerados de grano grueso en la clasificación SUCS corresponden a los que más de 50% de la fracción gruesa es menor que el tamiz N° 200 clasificándolas en arenas con finos, arenas limpias, grava con finos y gravas limpias. La clasificación corresponde a los tipos de suelo además se presentan suelos de origen orgánicos los cuales tienen una gran cantidad de material orgánico en su composición principal lo que no es recomendable para la ejecución de obras civiles, en el caso de encontrar el tipo de material CH y MH se recomienda realizar un relleno en la zona ante la presencia de dicho material no apto para construcciones civiles.[16]

Tabla 2 Clasificación del suelo según SUCS

	Division	nes mayores	Símbolo	Nomenclatura	Criterios de clasificación parasuelos granulares	
				Gravas bien graduadas, mezcladas	Cu=D60	
e el	icción N° 4)	Gravas Limpias (Pocos o	GW	gravosas, pocos o ningún fino.	Cc=1 <d230 d<="" td=""><td>10*D60<3</td></d230>	10*D60<3
menor qu	id de la fra e el tamiz l	Gravas Limpias (Pocos o ningún fino)	GP	Gravas pobremente graduadas, mezcladas grava-arena, pocos o ningún fino.	No cumplir todos lo gradación p	
ción gruesa es. tamiz Nº 200)	Gravas (más de la mitad de la fracción gruesa es mayor que el tamiz N° 4)	Gravas con finos (Cantidad apreciablede finos)	GM	Gravas limosas, mezcla grava- arena-limo.	Límite de Atterberg por debajo de la línea A ó Ip<4	A los materiales sobre la línea A con 4< <i>Ip</i> <7
Suelos de grano grueso (más del 50% de la fracción gruesa es menor que el tamiz Nº 200)	Gravas (n gruesa	Gravas o (Can apreciabl	GC	Gravas arcillosas, mezcla grava- arena-arcilla.	Límite de Atterberg por encima de la línea A ó Ip>7	se considera de frontera y se les asigna doble símbolo
150		(or		Arenas bien graduadas, arenas	Cu=D60	
s de	g g	P. Co.	SW	gravosas, pocos o ningún fino.	Cc=1 <d230 d<="" td=""><td>10*D60<3</td></d230>	10*D60<3
meso (má	n mitad de s menor q	Arenas Limpias(Poco o ningún fino)	SP	Arenas pobremente graduadas, arenas gravosas, pocos o ningún fino.	No cumplir todos le gradación	•
os de grano g	Arenas (más de la mitad de la fracción gruesa es menor que eltamiz N° 4)	Arenas con finos (Cantidad apreciable de finos)	SM	Arenas limosas, mezclas arena- limo.	Límite de Atterberg por debajo de la línea A ó <i>Ip</i> < 4	Si el material esta con 4 <ip<7 considera="" de<="" se="" td=""></ip<7>
Suel	Are	Arenas (Cz apres f	SC	Arenas arcillosas, mezclas arena- arcilla.	Límite de Atterberg por encima de la línea A ó Ip > 7	frontera y se les asigna doble símbolo.
el tamiz №		rcillas WL <	ML	Limos inorgánicos y arenas muy finas, polvo de roca, arenas finaslimosas o arcillosas con poca plasticidad.	"Determinar el porce gravas de la curva de g Dependiendo del po (fracción menor que e suelos gruesos se clasij	ntaje de arenas y vanulometría. vrcentaje de fino l tamiz N° 200) los fican como sigue:
Suelos de grano fino (más del 50 % del material pasa el tamiz Nº 200)		Limos y arcillas (límite líquido WL < 50)	CL	Arcillas inorgánicas de plasticidad baja a mediana, arcillas gravosas, arcillas arenosas, arcillas limosas, arcillas pobres.	Menos del 5% - GW, G del 12% - GM, GG De 5 a 12% - Caso requieren dobl	C, SM, SC s de frontera que
50 % del 200)	ì	5.8	OL	Limos orgánicos, arcillas limosas orgánicas de baja plasticidad		
ás del 5	' I	arcillas lo WL >	MH	Limos inorgánicos, suelos limosos arenosos finos, suelos elásticos.		
io fino (m:		y liquid	CH	Arcillas inorgánicas de altaplasticidad, arcillas grasas.		
os de gran		Limos (límite) 50)	OH	Arcillas orgánicas de plasticidad media a alta, limos orgánicos.		
Suel		Suelos orgánicos	Pt	Turba y otros suelos altamente orgánicos.		

Fuente: Manual de Laboratorio de Suelos en Ingeniería Civil. J.E Bowles.[16]

La clasificación de la carta de plasticidad según la metodología SUCS es la que se muestra en la ilustración 1, dicha información se obtuvo del Manual de Laboratorio del investigador Joseph E. Bowles.

Fuente: Manual de Laboratorio de Suelos en Ingeniería Civil. J.E Bowles.[16]

1.1.3.3.2 Sistema de clasificación de suelos AASHTO

Desarrollado inicialmente por el departamento de caminos en Estados Unidos en el año de 1929, empleado en un inicio para obras de índole vial por su incidencia directa en la construcción de terraplenes y subrasantes de pavimentos. Se divide la clasificación en 7 grupos desde A-1 hasta A-7 considerando los primeros tipos de suelo como material granular de los cuales el 35% o menos del suelo pasan por el tamiz N° 200 y se identifican como suelo A-1, A-2, A-3. Mientras que el suelo tipo A-4, A-5, A-6 y A-7 se los considera limos y arcillas, el suelo pasa más del 35% por el tamiz N° 200.[16]

Tabla 3 Clasificación de materiales para subrasante AASHTO

Clasificación General	Materiales Granulares (35% o menos del total pasa el tamiz Nº 200)					z Nº 200)	Materiales laminares (más del 35% del total pasa el tamiz Nº 200)				
Clasificación de Grupo		-1 A-2-b	A- 3	A-2-4	A-2-5	-2 A-2-6	A-2-7	A-4	A-5	A-6	A-7 A-7-5 A-7-6
Porcentaje de material que pasa el tamiz Nº 10 Nº 40 Nº 200	50 máx. 30 máx. 15 máx.	50 máx. 25 máx.	50 máx. 10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 min.	36 min.	36 min.	36 min.
Características de la fracción que pasa el tamiz Nº 40 Límite Liquido WI Índice Plástico Ip	6 n	ıáx.	NP	40 máx. 10 máx.	40 máx. 10 máx.	40 máx. 11 min.	40 máx. 11 min.	40 máx. 10 máx.	40 máx. 10 máx.	40 máx. 11 min.	40 máx. 11 min.
Tipos comunes de materiales significativos constituyentes		os de roca, a y arena	Arena Fina		Limo o gra	ava arcillosa	y arena		Suelos L	imosos	Suelos Arcillosos
Clasificación General de la Subrasante		Excelente a Bueno				Regula	ar a Malo				

Fuente: Fundamentos de Ingeniería Geotécnica Braja M.[17]

La carta de plasticidad según AASHTO es la que se muestra en la ilustración 2, la cual establece 3 rangos en los cuales podemos clasificar el suelo. Los datos obtenidos permitirán establecer el tipo de suelo que está siendo objeto de estudio.

60 Indice de plasticidad 00 00 00 00 00 00 A-2-6 A-6 20 A-2-7 A-7-5 A-2-4 A-2-5 A-4 A-5 0 10 20 30 50 60 70 80 100 40 90 Límite líquido

Ilustración 2 Carta plasticidad AASHTO

Fuente: "Fundamentos de Ingeniería Geotécnica Braja M." [17]

A continuación, se presentará en las tablas 4,5 y 6 la clasificación del suelo de acuerdo al tamaño de las partículas según la metodología AASHTO, ASTM y SUCS. Se distribuye el tipo de suelo según el tamaño de los agregados que lo conforman.

Tabla 4 Clasificación de suelo según el tamaño (AASHTO)

Tipo de Suelo	Tamaño mínimo (mm)	Tamaño máximo (mm)
Bloques	75	-
Grava	2	75
Arena	0.075	2
Limo	0.005	0.075
Arcilla	0.001	0.005

Fuente: AASHTO, "American Association of State Highway and Transportation Official.[18]

Tabla 5 Clasificación de suelo según el tamaño (SUCS)

Tipo de Suelo	Tamaño mínimo (mm)	Tamaño máximo (mm)
Bloques	300	
Bolos	75	300
Grava	4.76	75
Arena	0.075	4.76
Limo	0.002	0.075
Arcilla	-	0.002

Fuente: SUCS, "Sistema Unificado de clasificación de Suelos".[19]

Tabla 6 Clasificación de suelo según el tamaño (ASTM)

Tipo de Suelo	Tamaño mínimo (mm)	Tamaño máximo (mm)
Grava	4.76	75
Arena Gruesa	2	4.76
Arena Media	0.042	2
Arena Fina	0.075	0.42
Limo	0.005	0.075
Arcilla	0.001	0.005
Coloides	-	0.001

Fuente: ASTM, "Sociedad Americana de Ensayo de Materiales" [20]

1.1.3.3.3 Tipos de Suelo

De acuerdo a su composición mineralógica son clasificados y poseen dísticas características que diferencian un tipo de suelo de otro, sus características brindan resistencia a los agentes externos que meteorizan el suelo o lo erosionan, cada suelo de una zona determinada cuenta con distintas propiedades índice y mecánicas por lo que se pueden clasificar en dos grandes grupos que son los suelos granulares y cohesivos. [14]

1.1.3.3.3.1 Suelos granulares

Denominado también suelo friccionaste conformado por partículas de un gran tamaño las cuales no tienen que juntarse es decir no deben presentar cohesión. El drenaje de este tipo de suelo es óptimo, sus características se determinan por el módulo de compresibilidad además del ángulo de rozamiento interno, se subdividen en gravas y arenas las cuales tienen características distintas una de la otra.[21]

1.1.3.3.3.1.1 Gravas

Dependiendo de la clasificación el diámetro puede ser superior a 2mm y menor a 75 mm. Las gravas pueden ser encontradas con facilidad en los ríos y lugares donde existía acarreo de los ríos. La grava tiene descaste en su composición, las aristas son desgastados por el acarreo del agua.[21]

1.1.3.3.3.1.2 Arenas

Las arenas es un tipo de material que se puede obtener por trituración de piedras de manera artificial al igual que las gravas es un material que se puede encontrar fácilmente en afluentes de ríos, las arenas no es un material plástico y la compresión es rápida. [21]

1.1.3.3.3.2 Suelos cohesivos

El material que conforma el suelo tiene partículas que se unen es decir que la cohesión es una de las propiedades representativas de este tipo de suelo, además se caracteriza por ser suelos de partículas finas, se subdividen en limos y arcillas, material de características no favorables para la construcción por su carga orgánica y plasticidad elevada, la diferencia principal entre suelo granular y cohesivo es la plasticidad. [21]

1.1.3.3.3.2.1 Limos

El limo contiene materia orgánica con un color característico que se encuentra entre gris y oscuro, material con alta plasticidad con una permeabilidad muy baja lo que no se considera adecuado para obras civiles en el caso de zapatas. No es adecuado para transmitir cargas.[21]

1.1.3.3.3.2.2 Arcillas

Las arcillas tienen una composición en sus agregados cuenta de silicatos hidratados por la degradación de aluminio, según su impureza cuenta con distintos otros tipos de elementos. Las arcillas contienen material orgánico, al contacto con el agua es un material con índices altos de plasticidad, según el tipo de clasificación las arcillas deben tener un diámetro menor a 0.005mm según la norma ASTM y AASHTO.[21]

1.1.3.3.3.2.3 Loess

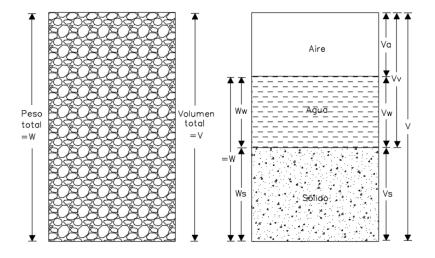
El suelo particularmente es trasportado por la acción eólica que se sedimenta, es decir que se transporta por la acción del viento tiene un tamaño típico entre 20 a 50 micrómetros. Su origen se encuentra por la degradación del de partículas del suelo, el suelo no tiene estratificación, tiene características de color amarillento. El suelo tiene partículas compuestas por el 50% de limo y el complemento de arcilla, particularmente es un suelo que es de partículas muy finas.[21]

1.1.3.3.3.2.4 Rellenos

En un tipo de suelo que es transportado procedentes de demoliciones o de excavaciones, son terrenos que son adecuados para la construcción ya que cuenta con distribuciones granulométricas adecuadas con propiedades que mejoran sus propiedades índice y mecánicas por la mezcla de agregados de distintos tipos. Tiene índice de compresibilidad muy bueno según investigaciones.[21]

1.1.3.4 Propiedades índices del suelo

Se relaciona el de peso y volumen con distintas fases del suelo, principalmente (aire, agua y solido). La nomenclatura para esquematizar las 3 fases que tiene una muestra de suelo es:


 Tabla 7 :Nomenclatura esquema muestra de suelo (3 fases)

Nomenclatura		
Simbología	Definición	
W _m	Peso de masa	
Ws	Peso de sólido	
W_w	Peso de líquido	
Wa	Peso del aire	
V _m	Volumen de masa	
Vs	Volumen de sólido	
Vw	Volumen de líquido	
Va	Volumen de aire	
V _v	Volumen de vacíos	

Fuente: ASTM, "Sociedad Americana de Ensayo de Materiales" [20]

Superficie de suelo que se representa en el cubo unitario, se presenta en la Figura 3.[22]

Figura 1: Fases del suelo, representado en el cubo unitario.

1.1.3.4.1 Contenido de humedad (ω, W%)

Relaciona el peso del agua con el peso de los sólidos, el valor es expresado en

porcentaje. El contenido de humedad es un indicador directo de la cantidad de lluvia

que puede caer en una determinada zona.[23]

Norma: AASHTO T-265-2015

 $\omega(\%) = \frac{W_{\omega}}{W_{s}} * 100$

Dónde:

 $\omega(\%)$ = Contenido de humedad (porcentaje)

 $W_{\omega} = Peso de agua.$

 W_s = Peso de los sólidos.

1.1.3.4.2 Relación de Vacíos (e)

Es la relación entre el volumen de los vacíos en el suelo y su volumen en la fase sólida.

Con esta relación se encuentra el porcentaje de suelo que esta compactado, se aplica

la ecuación a continuación. [24]

 $e = \frac{V_v}{V_s}$

Dónde:

e = Relación de vacíos

 $V_{\nu} = Volumen de vacíos.$

 $V_{\rm s}$ = Volumen de sólidos.

16

1.1.3.4.3 Porosidad (n%)

Relación existente entre el volumen de vacíos y el volumen de la masa del suelo. Un

valor bajo significa que el suelo tiene gran consolidación. [24]

$$n(\%) = \frac{V_v}{V_t} * 100$$

Dónde:

n(%) = Porosidad.

 V_v = Volumen de vacíos.

 $V_{\rm s}$ = Volumen total de masa de suelo.

1.1.3.4.4 Grado de saturación de agua (Gw%)

Se relaciona el volumen del agua con el volumen de vacíos. El valor se expresa en

forma de porcentaje, indica el porcentaje de agua que tiene el suelo. Un suelo con alta

saturación adopta valores cercanos al 100%, mientras que un suelo seco tiene el valor

de Gw% de 0%.[25]

$$Gw = \frac{V_{\omega}}{V_{S}} * 100$$

Dónde:

Gw = Grado saturación del agua.

 V_{ω} = Volumen de agua.

 $V_v = \text{Volumen de vacíos.}$

1.1.3.4.5 Grado de saturación de aire (Ga%)

Relación existente respecto al volumen del aire y el volumen de los vacíos. Un bajo porcentaje en esta propiedad es característica de una alta consolidación en los suelos, por el contrario, si el grado de saturación del aire es alto, el suelo tendrá una baja consolidación. [25]

 $Ga(\%) = \frac{V_a}{V_v} * 100$

Dónde:

Ga(%) = Grado de saturación del aire

 V_a = Volumen del aire.

 V_{v} = Volumen de vacíos.

1.1.3.4.6 Peso específico seco (γd)

Es la relación que existe entre el peso de una muestra seca de la masa del suelo y el volumen de la masa.[25]

$$\gamma d = \frac{W_s}{V_m}$$

Dónde:

γd = Contenido de humedad (porcentaje)

 W_s = Peso suelo seco.

 V_m = Volumen de la masa de suelo.

1.1.3.4.7 Gravedad específica (G_s)

El ensayo de gravedad especifica está en función de la norma AASHTO T-100-2015

consiste en medir el deslizamiento que presenta el agua y compararla con el volumen

del suelo tomado. El rango de valores de gravedad especifica se encuentra dentro de

los siguientes parámetros: [26]

Norma: AASHTO T-100-2015

Tabla 8 : Valor Gs de los suelos

Gravedad específica Tipo de suelo

(Gs) 2.65-2.68

Limo Arcilla inorgánica 2.68-2.72

Arcilla orgánica 2.62-2.66 Arena

2.65-2.68

Grava 2.65-2.68

Fuente: Bowles J, "Propiedad de los suelos" [26]

1.1.3.4.8 Densidad de campo (cono y arena)

Se emplea el método cono y arena de Ottawa, se excava un cilindro de 10 a 15 cm de

altura, el volumen extraído sirve para determinar la densidad seca. Permite determinar

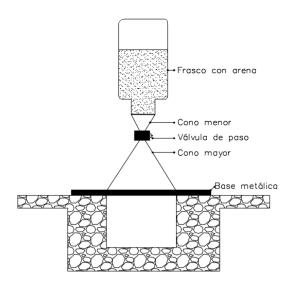
la compactación que tiene un terreno y es aplicado para agregados no mayores a 38

mm. Los materiales para la realización del ensayo son normados y cuenta con 4 partes

principales las cuales son: cono metálico mayor, cono metálico menor, frasco y base

metálica, además cuenta con una válvula la cual permite regular la cantidad de arena

que cae del frasco. El equipo no se asienta directamente sobre el suelo, en ese lugar se


aplica una base metálica con un diámetro ya establecido sobre el cual se excava con

un cincel aproximadamente de 10 a 15 cm.[27]

Norma: AASHTO T-191

19

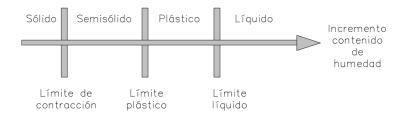
Ilustración 3: Aparato Cono y arena

Autor: Jhimy Gómez

1.1.3.4.9 Límites de Atterberg

Según Atterberg (1900), al relacionar el contenido de humedad de agua y el grado de plasticidad que posee el suelo permite caracterizar los estados de consistencia del suelo con lo cual se establece una identificación rápida del tipo de suelo y la calidad de suelo según la cantidad de agregados finos de la muestra.[23]

Lo importancia de conocer los rangos de limite líquido y plástico radica en su incidencia directa en la capacidad portante y la deformación del suelo que presente a diferentes cantidades de humedad en el suelo, es decir es importante conocer cuando el suelo se comporta de una forma plástica y así anticipar inconvenientes en construcciones El suelo puede ser dividido en 4 estados para su análisis los cuales son:

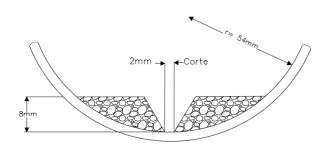

Sólido: volumen de suelo no cambia con el secado de la masa de suelo.

Semisólido: propiedades parecidas al de un fluido.

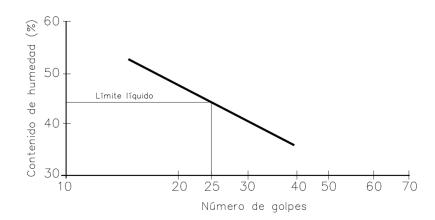
Plástico: comportamiento plástico.

Liquido: propiedades y apariencia de la masa de suelo de una suspensión. [24]

Ilustración 4:Límites de Atterberg en función del (%) de humedad


Autor: Jhimy Gómez

• Limite Liquido (LL%)


El límite liquido es el porcentaje de humedad con el que la masa de suelo puede cambiar su comportamiento físico entre el rango semilíquido y plástico. El método a ser aplicado para la determinación del límite liquido es el propuesto por Arthur Casagrande, quien con su método desarrollado en el año 1932 y con apoyo de una copa de latón y un ranurador se eleva una manivela de se deja caer a la como a una altura de un centímetro. El ensayo consiste en aumentar cierta cantidad de agua en la denominada "Copa de Casagrande" y con la ayuda del ranurador dividir a la mitad la muestra, con cada golpe las partículas se suelo se juntarán en el centro, se tomará una muestra para la determinación del contenido de humedad en cada rango de golpes. [28]

Norma: AASHTO T 89

Ilustración 5: Copa de Casagrande

Los datos recolectados en el ensayo se los grafica en un diagrama en el cual intervienen el número de golpes y el contenido de humedad de la muestra, la humedad que se obtiene a los 25 golpes será determinada como el límite liquido de la muestra. [28]

Ilustración 6: Límite Líquido (#golpes vs W%)

Autor: Jhimy Gómez

• Limite Plástico (LP%)

El límite plástico está relacionado con el contenido de humedad por el que la masa de suelo es moldeable, el estado del suelo pasa de ser semisólido a plástico. El ensayo consiste en agregar agua hasta llegar al contenido de humedad que permita moldear rollos de suelo de aproximadamente 5 cm de largo y 3mm de diámetro, el ensayo se lo repite 5 veces para obtener un promedio de humedades en la muestra de la masa de suelo.[24]

• Índice de Plasticidad (IP)

El índice de plasticidad es la diferencia que existe entre los valores de limite líquido y limite plástico, la fórmula para su obtención se la muestra a continuación:

$$IP = LL - LP$$

Dónde:

IP = Índice plástico.

LL = Límite liquido.

LP = Límite plástico.

El estado plástico del suelo es directamente proporcional a la cantidad de arcillas presente en la muestra de suelo que el objeto de estudio. Cuando el valor de IP es igual a cero, se considera que el suelo es no plástico mientras que si el IP es menor a 7 el suelo presenta una baja plasticidad. Si el suelo presenta un IP entre el rango de 7 a 17 el suelo se considera medianamente plástico. El suelo al superar un IP mayor a 17 será considerado como altamente plástico, en las construcciones civiles esto conllevará problemas al momento de la construcción, se debe analizar correctamente el nivel de índice plástico presente para evitar problemas a futuro. [23]

• Índice de Liquidez (IL)

El índice de liquidez es un valor que da un indicativo de los esfuerzos que ha sido sometido el suelo en el transcurso de tiempo. Una pre-consolidación del suelo ocurre si el valor de IL es cercano a cero, mientras si el valor es cercado a 1 el suelo es considerado como normalmente consolidado[29].

$$\mathbf{IL} = \frac{W_{nat} - LP}{IP}$$

Dónde:

IL = Índice de liquidez.

 W_{nat} = Contenido de humedad natural.

LP = Límite plástico. IP = Índice plástico.

• Límite de contracción.

El límite de contracción es el rango de humedad optima con el que la muestra de suelo tenga una consistencia semisólida. El rango con el que cuentan las partículas de suelo para no cambiar el volumen que ocupa.[23]

1.1.3.4.10 Granulometría

Es importante conocer la distribución granulométrica de las partículas del suelo, para lo cual se han caracterizado tamo de partículas estandarizadas de suelo para identificar correctamente el diámetro de material se compone el suelo. A continuación, se presenta el tamaño de abertura en los tamices por el cual pasa la masa de suelo.[22]

Tabla 9: Tamaño de tamices ASTM

Designación	Tamaño de la abertura
3 pulg	75 mm
2 pulg	50 mm
1 1/2 pulg	37.5 mm
1 pulg	25 mm
3/4 pulg	19 mm
3/8 pulg	9.5 mm
Nº 4	4.75 mm
Nº 8	2.36 mm
Nº 10	2 mm
Nº 16	1.18 mm
Nº 20	850 μm
Nº 30	600 µm
Nº 40	425 μm
Nº 50	300 μm
Nº 60	250 μm
Nº 100	150 μm
Nº 140	106 μm
Nº 200	75 μm

Fuente: Peter L Berry, "Mecánica de Suelos" [22]

La información que presenta la cuantificación granulométrica sirve para determinar los siguientes parámetros que son indicativos que el suelo es bien graduado.

- a) Tamaño Nominal Máximo (TNM) Partículas que alcanzan el 5% del total de la muestra de suelo.[24]
- b) Diámetro Efectivo (**D10**) Partículas de suelo que representan el 10% de la muestra de suelo. [24]
- c) Diámetro equiparable (**D30**) Partículas de suelo que representan el 30% de la muestra de suelo[24]
- d) Diámetro dimensional (**D60**) Partículas de suelo que representan el 30% de la muestra de suelo [24]
- e) Coeficiente de uniformidad (Cu) Si el coeficiente de uniformidad Cu > 3 los suelos se los considerara como bien graduados, mientras que si el Cu < 3se considera que el suelo es mal $Cu = \frac{D_{60}}{D_{10}}$ graduado.[24]
- f) Coeficiente de curvatura (**Cc**)

Los valores de Cc entre un rango de 1 a 3 se consideran bien graduados, mientras que valores menores a 1 y también mayores a 3 se consideran suelos

mal graduados. [24]
$$Cc = \frac{D_{30}^2}{D_{10}*D_{60}}$$

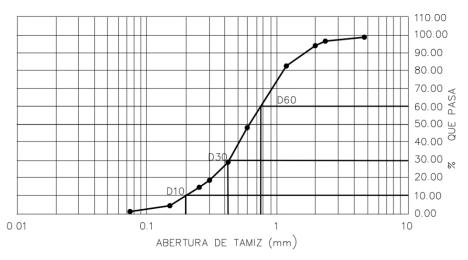


Ilustración 7: Distribución Granulométrica

1.1.3.5 Propiedades mecánicas

1.1.3.5.1 Compactación del suelo

La compactación del suelo se la considera como el aumento en el peso volumétrico seco, esto ocurre por factores mecánicos, los espacios entre la estructura del suelo se reducen logrando así la reducción de vacíos acomodando así de mejor manera las partículas de suelo y eliminando en gran medida el aire que contiene la masa de suelo además del agua que esté presente en la muestra de suelo. [30]

En la construcción de carreteras la compactación en los suelos es un parámetro importante para la colocación de las distintas capas del paquete estructural del pavimento, esto quiere decir que se pueden mejorar las características de un suelo a medida que se aporte con compactación a la masa de suelo. Las cargas que se apliquen en los suelos deben ser estudiadas para evitar los denominados asentamientos diferenciales en la masa de suelo, que puedan llegar a ser perjudiciales en el paquete estructural. [31]

La distribución granulométrica de los suelos es uno de los factores que influye directamente en la compactación de los suelos, así como la cantidad de material limoso o arcilloso. El contenido de humedad también es uno de los fatores predominantes al momento de compactar un suelo, el suelo adquiere una cohesión mejorada a ciertas cantidades de contenido de humedad, lo que facilita en gran medida la compactación[31].

Contenido de humedad.(w)

Ilustración 8: Ejemplo curvas de compactación.

1.1.3.5.2 Resistencia al esfuerzo cortante

El grado de estabilidad de un suelo se expresa con la fórmula de Columb, las consideraciones para la aplicación de la formula son que en el caso de presencia de arcillas y limos plásticos los valores de $c \neq 0$ y $\emptyset = 0$, mientras que para los sueros que son granulares o también denominados friccionaste c = 0 y $\emptyset \neq 0$. La ecuación establece [32]

$$\mathbf{s} = c + \sigma_n + tan\emptyset$$

Dónde:

c = cohesión.

 $\sigma_n = \text{esfuerzo normal.}$

 \emptyset = ángulo de fricción interna.

1.1.3.5.3 Energía de compactación

La energía de compactación es la energía requerida para compactar una masa de suelo. Las pruebas de campo necesarias para conocer la compactación de un suelo es la prueba Proctor, la cual con la ayuda de un molde normado y un pistón se deja caer sobre el suelo en una determinada cantidad de ocasiones la cual permite compactar el suelo, la ecuación empleada para conocer la energía con la que se compacta una muestra de suelo en un molde con la ayuda de un pistón es:[31]

$$\mathbf{E} = \frac{N * n * W * h}{V} = \frac{Kg * cm}{cm^3}$$

Dónde:

E = Energía de compactación.

N = Número de golpes.

n = Número de capas en el molde.

W = Peso del pistón (kg).H = Altura caída pistón.

V = Volumen del molde.

1.1.3.5.4 Prueba Proctor

El ensayo Proctor consiste en la determinación del peso por el volumen de suelo compactado con distintos tipos de contenido de humedad, permite determinar la humedad optima de la muestra de suelo con la que la masa de suelo llega a su máxima compactación, ensayo de suelo imprescindible en la construcción de carreteras. [23]

Los ensayos Proctor estándar o modificado permiten encontrar el contenido de humedad con el que la muestra de suelo llega a su máxima compactación, los resultados de la prueba se los representa en un gráfico en el que interviene el contenido de humedad en las abscisas y la densidad seca en las ordenadas. El punto máximo de la curva corresponde a la humedad optima. [31]

• Prueba de Proctor Estándar

La prueba Proctor Estándar esta normada por las normas AASHTO T99-01 y ASTM D698. La cual describe el procedimiento con el que se determinara la relación existente entre la densidad del suelo compactado en un determinado molde y el contenido de humedad presente en una masa de suelo estudiada. La energía de compactación en el método establece que el pistón es de 2.5 kg que cae de una altura de 305 mm.[33]

Tabla 10: Prueba Proctor Estándar

Proctor Estándar	Método A	Método B	Método C
Diámetro	4"	6"	4"
Volumen	943.3 cm ³	2124 cm²	943.3 cm ³
Peso del martillo	24.4 N	24.4 N	24.4 N
Caída demartillo	304.8 mm	304.8 mm	304.8 mm
Número de golpes	25	56	25
Número de capas de compactación	3	3	3
Energía de compactación	591.3 (KN-m/m³)	591.3 (KN-m/m³)	591.3 (KN-m/m³)
Material que pasa	Tamiz #4	Tamiz #4	Tamiz # ¾"

Fuente: Bragas M. Das, "Fundamentos de Ingeniería Geotécnica Bragas M. Das"[31]

• Prueba de Proctor Modificado

El ensayo Proctor modificado nace a raíz de la necesidad de cambiar las especificaciones para poder realizar en campo con mayor facilidad, dicho ensayo requiere menor cantidad de contenido de humedad para obtener los datos de humedad optima y densidad máxima, la energía de compactación es de 2696 KN-m/m³.[33]

El peso del martillo para la prueba Proctor modificado incrementa en relación al martillo del Proctor estándar, 44.5 N son los encargados de compactar la masa de suelo a ser estudiada, el número de capas con las que se compacta el suelo es distinto, el incremento de 2 capas es establecido en el método Proctor modificado. Debido al incremento en la caída del martillo y al peso del martillo la energía de compactación de que recibe la masa de suelo es mayor. [34]

El ensayo Proctor modificado es el que se aplica en el presente trabajo experimental, el cual permite establecer el porcentaje de humedad optima con el que se llega a la compactación del material de suelo. La tabla 11 presenta los distintos tipos de métodos de aplicación para el Proctor modificado, se establecen 4 tipos. [34]

Tabla 11 Prueba Proctor Modificado.

Proctor M	Métod o A	Método B	Método C	Método D
Diámetro	4"	6"	4"	4"
Peso del martillo	44.5 N	44.5 N	44.5 N	44.5 N
Caída del martillo	457.2 mm	457.2 mm	457.2 mm	457.2 mm
Número de golpes	25	56	25	56
Número de capas de compactación	5	5	5	5
Energía de compactación	2696 KN-m/m ³	2696 KN-m/m³	2696 KN-m/m ³	2696 KN-m/m ³
Material que pasa	Tamiz #4	Tamiz #4	Tamiz # ¾"	Tamiz # ¾"

Fuente: Bragas M. Das, "Fundamentos de Ingeniería Geotécnica Bragas M. Das"[31]

1.1.3.5.5 Ensayo CBR (California Bearing Ratio)

La prueba es un método propuesto en el año de 1929 en el departamento de carreteras de California que permite cuantificar la resistencia de un suelo expresándola en porcentaje, siento el 100% el valor de CBR de un suelo que tiene alta resistencia. Para la realización del ensayo se deben tener condiciones controladas de contenido de humedad y densidad, es por ello que es un ensayo de laboratorio.[35]

Para obtener el valor de CBR se relaciona la carga unitaria que requiere para llegar una penetración de un pistón en la muestra de suelo compactado, el resultado se obtendrá en porcentaje que varía de 0% al 100 %, se aplica la siguiente ecuación: [36]

Norma: AASHTO T 193

$$CBR = \frac{Carga\ Unitaria\ del\ Ensayo}{Carga\ Unitaria\ Patr\'on}x\ 100\%$$

El ensayo de CBR es uno de los más imprescindibles al momento de la construcción de carreteras ya sean de pavimento flexible o rígido. Según el valor de CBR se lo clasificará de acuerdo al uso que tendrá en el paquete estructural de una carretera, como se detalla en la *tabla 12*.[26]

Tabla 12: Clasificación suelo según CBR

CBR	Calificación Uso	
0-3%	Muy Pobre	Subrasante
3-7%	Pobre - Regular	Subrasante
7-20%	Regular	Subrasante
20-50%	Bueno	Base -
		Subbase
>50%	Excelente	Base

Fuente: Manual de laboratorio de Suelos para Ingeniería civil. Bowles J.[26]

1.1.3.5.6 Cono Dinámico de Penetración (DCP)

Norma: ASTM D 6951-03

En ensayo de cono dinámico de penetración se lo realiza en el sitio de estudio, es un ensayo practico no destructivo que permite conocer la resistencia del suelo en función de la penetración de una punta cónica en el suelo, el resultado se expresa en mm/golpe, los resultados de la prueba se expresan en una gráfica donde las abscisas tendrán los valores del número de golpes y las ordenadas la penetración expresada en milímetros. La resistencia de un suelo es inferior o caracterizada como mala cuando la curva de la gráfica muestre una pendiente vertical, mientras que la variación en la curva indicara un cambio en la capa de suelo en la zona que es objeto de estudio, la prueba se detiene cuando en el mismo punto la punta no penetra más o cuando el equipo logro alcanzar su punto máximo en el cual ya no llega a más profundidad lo que indicara que el suelo es fácil de penetrar y representa que el suelo tiene una baja resistencia. [37]

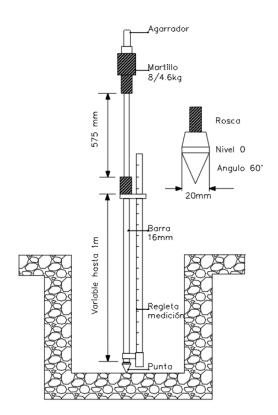


Ilustración 9: Equipo Cono Dinámico de Penetración

1.1.3.6 Diseño de Pavimento

1.1.3.6.1 Pavimento

El pavimento una pieza fundamental en el desarrollo de poblaciones, un eje fundamental de la sociedad es un conjunto de capas que conforman una superficie por la cual pueden transitar peatones y vehículos, es el encargado de absorber las cargas producidas por el tránsito y repartirlo al suelo.[38]

Existen varios tipos de pavimentos, el diseño de pavimento es fundamental y se realiza de acuerdo a la necesidad de las poblaciones que lo requieren, el tránsito de vehículos y el número de personas beneficiarias son factores que influyen en la construcción de carreteras de distinto orden con distinto tipo de pavimento. La vida útil de un pavimento depende de los materiales que son empleados, es imprescindible realizar los ensayos que establece la normativa vigente como es el caso de Nevi-12 y MOP[39].

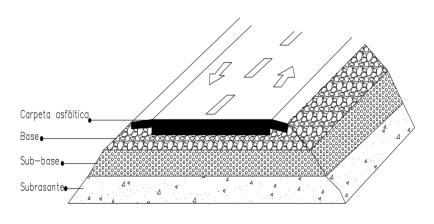


Ilustración 10: Estructura del pavimento

Autor: Jhimy Gómez

Como se establece en la MTOP el pavimento es el nombre que se le da a toda estructura firme sobre la cual transitan cargas ya sean vehiculares o peatonales, el diseño correcto del paquete estructural del pavimento permitirá tener una vida útil larga, se establece que las estructuras de pavimento deben tener un mantenimiento cada 5 años a partir de su construcción esto en el caso de pavimentos flexibles y rígidos, es imprescindible tomar las recomendaciones presentes en la normativa vigente del Ecuador para la construcción de vías. [39]

1.1.3.6.2 Estructura del pavimento

Subrasante

Es la superficie sobre la cual se coloca el resto de paquete de la estructura del pavimento, es la encargada de soportar las cargas que se transmiten desde el pavimento también es considerada como la cimentación de las carreteras, mientras mejor sea la calidad de la subrasante cada una de las capas superiores serán menores. Por ningún motivo la subrasante tendrá que tener un CBR menor que el 5%, es recomendable aplicar un mejoramiento de suelo para no incrementar los costos de construcción de una vía.[40]

Subbase

Es la capa que presenta material seleccionado y puede ser de origen material de origen cribado o triturado, el coeficiente de desgaste máximo de los agregados será del 50%. Se indica en la normativa Nevi 12 que el material que pasa el tamiz N 40 tiene que tener el índice de plasticidad menor que 6 mientras que el límite liquido será máximo de 25. El factor más importante para la elección del material será el CBR que debe tener un valor igual o mayor que 30%. Las funciones principales de la subbase es la de absorber cargas de tráfico sin sufrir deformaciones con el tiempo, son empleadas como drenaje y evitar la capilaridad del agua en la estructura de pavimento.[41]

Base

Dentro del paquete estructural de un pavimento es la más importante ya que sobre ella se asentará la carpeta asfáltica, es imprescindible la colocación de material de calidad que cumplan con los requerimientos de la fracción que pase el tamiz N.40 debe ser menor que el 25%, con un índice de plasticidad menor del 6% y con un valor de CBR igual o mayor del 80%. El tipo de agregado presente tiene que ser resistente y exentó de arcilla o material orgánico.[42]

• Capa de Rodadura

La capa de rodadura del pavimento es sobre el que transitaran vehículos y peatones y está en contacto directo con la intemperie y la acción de agentes climáticos que lo desgastaran constantemente por lo que se debe seleccionar la capa de rodadura de acuerdo con los requerimientos de la zona y de la población beneficiaria. La función principal de la capa de rodadura es brindar resistencia, seguridad, impermeabilidad y textura en la vía.[43]

1.1.3.6.3 Tipos de Pavimento

• Pavimento Flexible

El pavimento flexible es el que es ampliamente utilizado debido a su relación costo beneficio, el pavimento adopta las deformaciones producidas por el tránsito vehicular esto sin que se produzca tensiones que puedan generar daños en la capa de la estructura. Es un recubrimiento asfaltico. El tipo de diseño que se aplica en el presente trabajo experimental es el método AASHTO 1993, uno de los más empleados para la determinación de espesores de la carpeta asfáltica.[44]

Carpeta asfáltica

Base

Sub base

Subrasante

Ilustración 11: Estructura Pavimento Flexible

Pavimento Rígido

El pavimento rígido consta de losas de concreto Portland, se emplea en carreteras con un volumen de tránsito alto, soporta cargas de compresión extremadamente altas, reduce los esfuerzos en el suelo significativamente, uno de los principales problemas por el que no es ampliamente utilizada pese a sus ventajas es su elevado costo de construcción. A diferencia del pavimento flexible el paquete estructural de los pavimentos rígidos se limita de la base granular en vista que por sí sola puede soportar las cargas del tráfico.[45]

Losa de concreto

Subbase

Subrasante

Ilustración 12: Estructura Pavimento Rígido

Autor: Jhimy Gómez

• Pavimento Semirrígido

El pavimento que tiene una gran similitud con el pavimento flexible sin embargo una de las capas generalmente la más próxima a la carpeta asfáltica se la rigidiza con aditivos que mejoren las características mecánicas del suelo. [46]

Superficie asfáltica

Concreto

Concreto

Subrasante

Superficie asfáltica

Concreto

Asfalto agregado

Subrasante

Ilustración 13 Estructura Pavimento semirrígido

• Pavimento Articulado

El pavimento articulado tiene características de estar compuesto por varios bloques que han sido prefabricados y son especiales para su colocación, en ocasiones son adoquines o piedras.[46]

Adoquines
Cama de arena
Base
Sub base
Subrasante

Ilustración 14 Estructura pavimento articulado

Autor: Jhimy Gómez

1.1.3.6.4 Método de diseño AASHTO93 Pavimento flexible.

El método AASHTO 93 para la determinación de espesores de pavimento flexible es desarrollado en Estados Unidos y es ampliamente usado en la actualidad debido a su practicidad y resultados positivos a lo largo de los años se demostró la confiabilidad que tiene el método en su aplicación. A continuación, se presenta la ecuación que da origen al diseño de pavimento flexible. [47]

$$\label{eq:log10} \begin{split} \text{Log10(W18)} = \text{Zr}*\text{So} + \text{log10(SN} + 1) - 0.20 + \frac{\text{log10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32*\text{log10(Mr)} - 0.87 \end{split}$$

Dónde:

W18: Ejes equivalentes de 18 Kips.

Zr: Desviación estándar nominal.

So: Desviación estándar global.

ΔPSI: Pérdida de serviciabilidad.

Mr: Modulo de resiliencia.

• Módulo de resiliencia

El módulo de resiliencia en el método AASHTO 93, corresponde a la capacidad que tiene el suelo de absorber energía sin que se experimente deformaciones permanentes en el tiempo, el módulo de resiliencia se puede estimar de acuerdo al CBR con las siguientes ecuaciones:[48]

•
$$(CBR \le 7) = M_R = 1500 * CBR$$
 (psi)

•
$$(7 < CBR \le 20) = M_R = 3000 * CBR^{0.65}$$
 (psi)

•
$$(CBR > 20) = M_R = 4326 * Ln(CBR) + 241 (psi)$$

Los valores del módulo de resiliencia son estimados con los valores del CBR.

Periodo de diseño

El periodo de diseño del pavimento corresponde a la vida útil que se espera para la vía y depende de factores económicos como sociales, mientras mayor sea el periodo de diseño el costo de construcción será significativamente mayor, la guía de diseño de pavimentos recomienda los siguientes valores de periodo de diseño en función del tipo de carretera que se presente: [48]

Tabla 13: Periodo de diseño en función del tipo de carretera.

Tipo de Carretera	Periodo de Diseño (Años)
Urbana de tránsito elevada	30-50
Interurbana de tránsito elevada	20-50
Pavimentada de baja intensidad de tránsito	15-25
De baja intensidad de tránsito,pavimentación con grava.	10-20

Fuente: AASHTO, Guía de Diseño de Pavimentos.[18]

• Transito Equivalente

Con base en el método AASHTO 93, la carga con la que el pavimento sufre daño es de 8.2 Ton por lo que se establece un porcentaje con el que se calcula de acuerdo al número de carriles que presenta en una dirección de la vía[48].

Tabla 14: Porcentaje (W18)

Número de carriles en una dirección	Porcentaje del W ₁₈ en el	
	carril de diseño	
1	100	
2	80 a 100	
3	60 a 80	
4	50 a 75	

Fuente: AASHTO, Guía de Diseño de Pavimentos[18]

• Índice de Serviciabilidad

El índice de serviciabilidad denominado como "PSI" corresponde a las condiciones que son necesarias para que el usuario tenga un tránsito sin peligros, dicho índice puede ser reducido por el deterioro del pavimento es decir la calidad de la vía. Los valores recomendables para índice de servicio inicial (po) es 4.2 y el índice de serviciabilidad final (pf) se recomienda 2.5 o 3.0 en vías principales y 2.0 en vías secundarias. Se aplica ($\Delta PSI = po - pf$).[48]

Tabla 15: Nivel de serviciabilidad

Índice de Serviciabilidad (PSI)	Calificación	
5-4	Muy Buena	
4-3	Buena	
3-2	Regular	
2-1	Mala	
1-0	Muy mala	

• Nivel de confianza y Desviación Estándar

El nivel de confianza según el método AASHTO relaciona el desempeño que pueda presentar el pavimento, es la probabilidad que tiene el pavimento de funcionar exitosamente bajo las condiciones de la intemperie y desgaste de los agentes climáticos, el valor de confianza "R" está en función del tipo de camino y de la zona en la que se construya la vía. [48]

Tabla 16: Nivel de confianza

Tipo de Camino	Zonas Urbanas	Zonas Rurales
Autopistas	85-99.9	80-99.9
Carreteras de primer orden	80-95	75-95
Carreteras secundarias	80-95	75-95
Caminos vecinales	50-80	50-80

Fuente: AASHTO, Guía de Diseño de Pavimentos[18]

El valor de confiabilidad que se determina se relaciona estadísticamente con un coeficiente de desviación estándar el cual establece la desviación estándar global (So), dependiendo de la predicción del comportamiento del pavimento sin error al tránsito se recomiendan valores de So= 0.44 y So=0.34. Mientras que para comportamientos con errores en la medición del tránsito se recomienda valores de So=0.49 y So=0.39

Tabla 17: Factor de desviación normal

Confiabilidad	$\mathbf{Z}_{\mathbf{R}}$	Confiabilidad	$\mathbf{Z}_{\mathbf{R}}$
50	0	92	-1.405
60	-0.253	94	-1.555
70	-0.524	95	-1.645
75	-0.674	96	-1.751
80	-0.841	97	-1.881
85	-1.037	98	-2.054
90	-1.282	99	-2.327

Fuente: AASHTO, Guía de Diseño de Pavimentos.[18]

• Capacidad de drenaje

El factor de drenaje está en función del tipo de clima en el cual se construye el pavimento y en el tiempo que el pavimento logra evacuar correctamente el agua de su superficie, cuando el agua de un pavimento se demora 2 horas en evacuar se lo caracteriza como un drenaje excelente, mientras que si el agua no se drena en un mes se caracteriza como un drenaje malo.[48]

Tabla 18: Capacidad de drenaje

Calidad de drenaje	Tiempo que tarda el agua en ser evacuada
Excelente	2 horas
Bueno	1 día
Regular	1 semana
Malo	1 mes
Muy malo	Agua no drenada

Fuente: AASHTO, Guía de Diseño de Pavimentos.[18]

El valor "m" correspondiente al coeficiente de drenaje según el método AASHTO establece valores según el porcentaje de tiempo que el pavimento está expuesto a la saturación del agua, dichos valores se presentan en la tabla 19. [48]

Tabla 19: Valores de coeficiente de drenaje "m"

Capacidad de	% de tiempo en el que el pavimento está expuesto a niveles de				
Drenaje	humedad próximos a la saturación				
	Menos del 1% 1 a 5 % 5 a 25 % Mas del 25 %				
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20	
Bueno	1.35 – 1.25	1.25 - 1.15	1.15 - 1.00	1.00	
Regular	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80	
Malo	1.15 – 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
Muy malo	1.05 - 0.95	0.95 - 0.75	0.75 -0.40	0.40	

• Determinación espesor de capa

El espesor de las capas del paquete estructural del pavimento flexible se relaciona con el número estructural "SN", se lo determina con la siguiente ecuación:

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

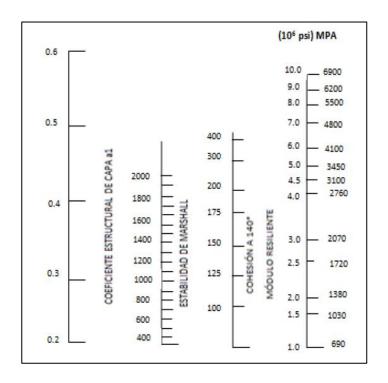
Dónde:

 a_1 , a_2 , a_3 : Coeficientes estructurales de la carpeta asfáltica, base y sub base.

 $D_1D_2D_3$: Espesores de la carpeta asfáltica, base y sub base.

 Zm_2m_3 : Coeficientes de drenajes para la capa base y sub base

Los espesores mínimos en pulgadas recomendados para los valores de s D1 y D2 de acuerdo al tránsito de ejes equivalentes acumulados. En la tabla 20 se presenta los valores de espesores recomendados por el método AASHTO 93.[48]


Tabla 20: Espesor mínimo en pulgadas

Tránsito en ejes equivalentes	Carpetas de concreto asfáltico (D1)	Bases Granulares (D2)
Menos de 50000	1.0 o T.S.	4.0
50000-150000	2.0	4.0
150001-500000	2.5	4.0
500001-2000000	3.0	6.0
2000001-7000000	3.5	6.0
Mayor de 7000000	4.0	6.0

Fuente: AASHTO, Guía de Diseño de Pavimentos. [18]

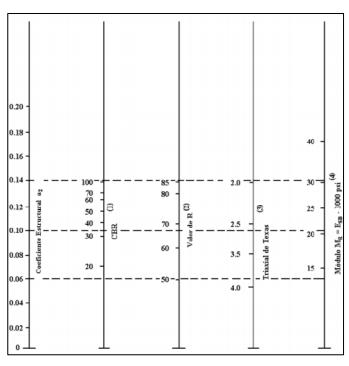

El coeficiente de las capas a1, a2, a3, son valores que están de acuerdo a los ábacos presentes por el método AASHTO 93 con las correlaciones de laboratorio entre las pruebas de: modulo resiliente, CBR y valor R.

Ilustración 15: Ábaco para el coeficiente estructural a_1 .

Fuente: AASHTO, Guía de Diseño de Pavimentos. [18]

Ilustración 16: Ábaco para el coeficiente estructural a_2

- (1) Escala derivada por correlaciones promedios obtenidas de Illinois.
- (2) Escala derivada por correlaciones promedios obtenidas de California,
- (3) Escala derivada por correlaciones promedios obtenidas de Texas.
- (4) Escala derivada del proyecto NCHRP. (3)

Fuente: AASHTO 1993, Guía para el diseño de la estructura del Pavimento. [18]

Ilustración 17 Ábaco para el coeficiente estructural a_3

- (1) Escala derivada por correlaciones promedios obtenidas de Illinois.
- (2) Escala derivada por correlaciones promedios obtenidas de California.
- (3) Escala derivada por correlaciones promedios obtenidas de Texas.
- (4) Escala derivada del proyecto NCHRP. (3)

(5) Fuente: AASHTO 1993, Guía para el diseño de la estructura del Pavimento. [18]

1.1.3.7 Correlaciones

El análisis de correlación y regresión ocurre cuando se pretende encontrar una relación entre variables, dependiendo del valor de asociación o semejanza entre las variables estudiadas se concluye que una correlación es favorable para el estudio o no, se denomina correlación simple cuando solo intervienen dos variables, mientras que si intervienen más de dos variables se estipula que la correlación es múltiple.

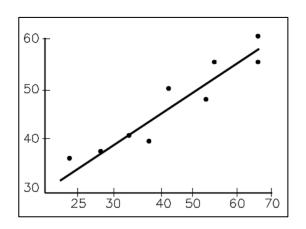
Tabla 21: Funciones matemáticas curvas correlación

Línea de regresión matemática	Ecuación	
Lineal o recta	y=a+bx	
Parabólica de segundo grado	$y = ax^2 + bx + c$	
Exponencial	$Y = ae^{bx}$	
Potencial	$y = ax^b$	

1.1.3.7.1 Correlación lineal

Tipo de correlación más empleada para el análisis de datos en vista que tiene una practicidad para realizar los cálculos matemáticos, la ecuación de una correlación lineal es la ecuación de la recta. [49]

$$y = bx + c$$


Dónde:

y: variable dependiente.

x: variable independiente.

b: pendiente de la recta.

Ilustración 18: Correlación lineal

Autor: Jhimy Gómez

El coeficiente de correlación "r" determinara el nivel de relación que mantengan las variables en la relación lineal de una muestra, denominado también como coeficiente de Pearson, [49]

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{(\sqrt{n}\sum x^2) - (\sum x)^2 \sqrt{n}(\sum y)^2 - (\sum y)^2}$$

Dónde:

r: coeficiente de correlación lineal.

n: número de pares de datos.

 Σ : Suma de elementos ya sea en x, y.

1.1.3.7.2 Método Mínimos Cuadrados

Método empleado para crear una aproximación que ajuste correctamente las variables de estudio, evita la construcción de rectas, parábolas en dichas aproximaciones. El aporte principal es la facilidad para ajustar las variables minimizando en gran medida la suma de cuadrados aplicando la diferencia de los valores que son objeto de estudio, se establece la siguiente ecuación teniendo en cuenta que los valores de " X_i " corresponden a los valores observados, mientras que los valores de " \hat{Y}_i " Son los valores estimados. Él valor de "e" corresponde al error que puede caracterizar una estimación, dicho valor debe ser menor al de otros modelos matemáticos. [50]

$$\sum e_i^2 = \sum (X_i - \hat{Y}_i)^2$$

La recta de regresión de mínimos cuadrados de Y sobre X es:

$$Y = a_0 + a_1 X$$

De las siguientes ecuaciones se obtiene a_0 y a_1 :

$$\sum Y = a_0 N + a_1 \sum X$$

$$\sum XY = a_0 \sum X + a_1 \sum X^2$$

1.1.3.7.3 Coeficiente de determinación

El coeficiente de determinación de las correlaciones define los rangos en el que las variables estudiadas son semejantes y pueden tomar valores aplicables para un estudio de correlación. Es obtenido aplicando una relación de variación el cual está en el rango de 0 a 1, dicho valor también puede ser expresado en forma de porcentaje, el porcentaje de correlación cuando este con valores de 0 se considerara que el ajuste realizado es pobre por lo que no será candidato para la continuación del estudio, mientras que valores de ajuste cercanos al 100% indican que la correlación entre las variables es adecuada para continuar con el estudio de variables, se considera una relación entre

variables. A continuación, se presenta una tabla en la que establece los valores de coeficiente de determinación R² con el cual se clasificara cada uno de los resultados. [50]

Tabla 22: Rango de ajuste R²

Criterio	\mathbb{R}^2
Excelente	≥ 0.90
Buena	0.70 - 0.89
Aceptable	0.40 - 0.69
Pobre	0.20 - 0.39
Muy pobre	≤ 0.19

Fuente: "Investigation of the use of dynamic modulus as an indicator of hot-mix asphalt performance".[50]

1.1.3.7.4 Correlación Multiple

La correlación múltiple se aplica cuando se analizan más de dos variables independientes, los coeficientes de correlación indicaran el grado de semejanza de las variables analizadas, para la resolución de los sistemas de ecuaciones generados por las variables que intervienen se aplica métodos matemáticos para facilitar los cálculos como lo es la algebra de ecuaciones, la representación básica de la correlación múltiple se la expresa mediante la siguiente ecuación:[51]

$$\hat{y} = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + \dots$$

En el estudio de 3 variables, cuando interviene una variable dependiente y 2 variables independientes se lo resuelve con el método de los mínimos cuadrados estableciendo sistemas de ecuaciones que se resuelven mediante la aplicación de algebra y sistemas de ecuaciones, las ecuaciones generadoras del método de mínimo:[52]

$$\sum Z = a_0 N + a_1 \sum X + a_2 \sum Y$$

$$\sum XZ = a_0 \sum X + a_1 \sum X^2 + a_2 \sum XY$$
$$\sum YZ = a_0 \sum Y + a_1 \sum XY + a_2 \sum Y^2$$

1.1.4 Hipótesis

Se puede encontrar una correlación entre el CBR, DCP, las propiedades índices y mecánicas en los suelos de la parroquia Angamarca del cantón Pujilí, provincia de Cotopaxi.

1.2 Objetivos

1.2.1 **Objetivo General**

Analizar las correlaciones entre el CBR de laboratorio, DCP y las propiedades índice y mecánicas en los suelos de la parroquia: Angamarca, cantón Pujilí, provincia de Cotopaxi.

1.2.2 **Objetivo Específico**

- ➤ Reforzar el conocimiento de las propiedades índice mecánicas en los suelos de la parroquia: Angamarca, cantón Pujilí, provincia de Cotopaxi por medio del análisis de campo y laboratorio.
- Ampliar la base de datos existente, referente a estudios de correlación entre el CBR de laboratorio, DCP y las propiedades índice y mecánicas en los suelos de la parroquia Angamarca, cantón Pujilí, provincia de Cotopaxi.
- Aplicar los resultados de la investigación en el diseño de pavimentos para vías rurales, de la parroquia: Angamarca, cantón Pujilí, provincia de Cotopaxi.
- Zonificar las diferentes áreas de las parroquias analizadas en este proyecto, de acuerdo con la clasificación de suelos SUCS y AASHTO y las propiedades físicas y mecánicas obtenidas.

CAPÍTULO II

METODOLOGÍA

2.1 Equipos y Materiales

Para la realización del presente trabajo experimental, se apoyó en las normas que se presentan a continuación, empleando los materiales y equipos los cuales son detallados.

Tabla 23: Equipos y Materiales

ENSAYO	MATERIALES	EQUIPOS	NORMA
Pozo a Cielo Abierto	Muestra In Situ	Pala Pico Barra Flexómetro	AASHTO T 87-70
Densidad de Campo (Método del Cono y Arena de Ottawa)	Muestra In Situ	Clavos Martillo Balanza Placa metálica Chuchara Cincel Cono Flexómetro	AASHTO T191 2014
Cono Dinámico de Penetración DCP	Muestra In Situ	Equipo DCP	ASTM D6951-03

ENSAYO	MATERIALES	EQUIPOS	NORMA
Gravedad Específica de Sólidos	50 g de suelo que pasa el tamiz #4	Tamiz #4 Picnometro Embudo Termometro Recipientes Pipeta	AASHTO T 100 2015
Granulometría	Muestra cuarteada	Tamizadora Juego de Tamices Brocha Recipientes	AASHTO T 88 2013
Límite Líquido (Copa de Casagrande)	150 g de suelo que pasa tamiz #40	Copa de casa grande Espátula Acanalador Recipientes Mortero de porcelana Pistillo de caucho	AASHTO T 89 2013
Límite Plástico	150 g de suelo que pasa tamiz #40	Mortero de porcelana Pistillo de caucho Placa de vidrio	AASHTO T 90 2016

ENSAYO	MATERIALES	EQUIPOS	NORMA
Proctor Modificado "B"	18 kg de suelo que pasa el tamiz #4	Martillo de compactación Molde ø6" con extensión y base. Palustre Regleta Acanalador Calibrador pie de rey Bandeja metálica	AASHTO T 180 2018
California Bearning Ratio (CBR)	18 kg de suelo que pasa el tamiz #4	MULTISPEED34- V1171	AASHTO T 193 2013

2.2 Métodos.

2.2.1 Fases de investigación.

Para la realización del presente trabajo experimental se dividió en cuatro fases de investigación, cada una de ellas relacionada con los objetivos, es por ello que a continuación se detalla el tipo de metodología empleada y como fue aplicada para el cumplimiento de los objetivos planteados.

2.2.1.1 FASE 1: Análisis de campo y laboratorio de las propiedades índice y mecánicas del suelo

En la Fase 1, correspondiente a la exploración de campo aplicando la metodología de investigación exploratoria, se reconoció el lugar donde se recolectó 12 muestras de suelo representativo correspondiente a la parroquia Angamarca cantón Pillaro, provincia de Cotopaxi. Conocer la zona de investigación permitió establecer el tiempo aproximado de toma de muestras, se estableció un tiempo aproximado de 2 horas por calicata lo que significa que el tiempo estimado para la recolección de muestras de suelo es de 3 días con 8 horas de trabajo diarias. Aplicando la metodología de investigación experimental se procedió con los ensayos in situ y de laboratorio, para la obtención de muestras se realiza un pozo a cielo abierto de 1.5x1.5x1 recolectando aproximadamente 50 kg de muestra de suelo representativo. En dicha excavación se procedió con los ensayos in situ DCP y método Cono-Arena de Ottawa.

A continuación, se detallará los ensayos de campo y laboratorio realizados:

2.2.1.1.1 Ensayos de campo

Pozo a cielo abierto

Se procedió con la excavación en el suelo retirando la capa vegetal aproximadamente a 15 centímetros de profundidad y se procede con la excavación con dimensiones estipuladas en la Norma AASHTO T 87-70, con la ayuda de picos y palas se recolecta la muestra de suelo la cual se la colocó en saquillos obteniendo así muestras de suelo alteradas.

Ilustración 19: Pozo a cielo abierto - Angamarca

Fuente: Jhimy Gómez

• Ensayo DCP

Para la realización del ensayo DCP, bajo la norma ASTMD 6951-03. Dentro del pozo a cielo abierto se procedió con el ensayo por 3 ocasiones. El ensayo consiste en dejar caer una masa sobre el suelo con la ayuda de una punta cónica medir los centímetros que penetra el equipo en el suelo.

Ilustración 20: Ensayo DCP Angamarca

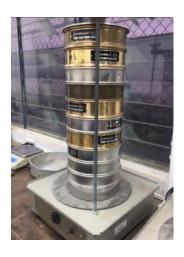
Fuente: Jhimy Gómez

• Densidad de Campo (Cono y Arena de Ottawa)

Para la realización del ensayo Densidad de Campo (Cono y Arena de Ottawa. Dentro del pozo a cielo abierto se procedió con el ensayo el cual consiste en llenar arena de Ottawa en un volumen de suelo excavado con un cincel. El ensayo se lo realiza bajo las indicaciones establecidas en la Norma AASHTO T – 191.

Ilustración 21: Ensayo Cono y Arena - Angamarca

Fuente: Jhimy Gómez


2.2.1.1.2 Ensayos de laboratorio

Se desarrolla en las inmediaciones del laboratorio de la carrera de Ingeniería Civil, se determina propiedades índice y mecánicas con los ensayos: Granulometría, Contenido de humedad, Gravedad especifica, Limites de Atterberg, Proctor Modificado y CBR.

• Ensayo Granulometría

Se coloca mil gramos de muestra de suelo en los moldes de granulometría de mayor a menor, teniendo en cuenta el tamaño de los tamices desde el tamiz #4 hasta el tamiz 200, posteriormente se pesa en una balanza electrónica el suelo retenido en cada tamiz, el ensayo se basa en la norma AASHTO T 88.

Ilustración 22: Ensayo Granulometría - Angamarca

Fuente: Jhimy Gómez

• Contenido de Humedad

Aproximadamente 100 gramos de muestra de suelo alterado se colocan en dos recipientes los cuales se envía al horno por 18 a 24 horas a una temperatura de 105° a 110° C con el objetivo de eliminar el peso del agua. Previamente la masa de suelo es pesada, así como el recipiente en una balanza electrónica. Para finalizar se pesa el suelo seco más el recipiente. Bajo la Normativa ASTM D2216.

Ilustración 23: Ensayo Contenido de humedad - Angamarca

Fuente: Jhimy Gómez

• Gravedad especifica

El ensayo de gravedad especifica con la metodología de suelos menores al tamiz #4, se procede a pesar 50 gramos de suelo que pasen el tamiz #40. Con la ayuda de un picnómetro se lo llena hasta la marca de aforo y se pesa en la balanza electrónica, a continuación, se vacía el agua hasta 1/3 ó 2/3 aproximadamente de agua del picnómetro y se coloca la muestra de suelo empleando un embudo, se coloca el agua nuevamente hasta la marca de aforo pesando este nuevo valor y tomando la temperatura del agua. Se extrae el aire del picnómetro empleando la técnica de baño maría, se pesa nuevamente este valor y posteriormente la muestra de suelo se envía al horno por 18 a 24 horas a una temperatura de 105° a 110° C. Se recomienda seguir los pasos normados por la Norma AASGTO T 100-2015

Ilustración 24 Gravedad especifica - Angamarca

Fuente: Jhimy Gómez

Límites Liquido

El límite líquido consiste en pulverizar una muestra de suelo y colocar una cantidad de muestra de agua mezclándola homogéneamente posteriormente colocar esta muestra de suelo en una espátula y untarla desde el centro hacia los extremos de la Copa Casagrande, se separa la muestra de suelo con el acanalador y activar el interruptor para que la muestra de suelo se vaya juntando, se detiene el ensayo cuando la muestra de suelo se une aproximadamente 1.2 cm. Para finalizar se toma dos muestras de suelo con la que se obtendrá la humedad que tiene el suelo para llegar a la cantidad de golpes

en cada rango establecido según la norma AASHTO T 89, como recomendación se tiene que repetir el ensayo 3 veces en el rango estipulado para proceder a tomar las muestras para el contenido de humedad.

Ilustración 25 Ensayo Limite Liquido - Angamarca

Fuente: Jhimy Gómez

• Limite Plástico

Al igual que el límite líquido en este proceso se pulveriza la muestra de suelo, se añade una muestra de agua y se mezcla homogéneamente. A continuación, para proceder con el ensayo se verifica que la masa de suelo no se adhiera en la palma de la mano. Se busca hacer un rollo de 3mm diámetro y 5 cm de largo. Si la masa de suelo presenta fisuras el ensayo no servirá por lo que se tendrá que incrementar la cantidad de agua o reducirla hasta lograr los rollos de suelo ya mencionados con las dimensiones estipulados por el ensayo. El ensayo se lo repite para obtener 5 muestras con las cuales se obtendrá el contenido de humedad. El límite plástico sigue el proceso de la guía de la Norma AASHTO T – 90.

Ilustración 26. Limite Plástico - Angamarca

Fuente: Jhimy Gómez

• Proctor Modificado

La muestra de suelo para cada punto de la curva Proctor debe ser de 6000 gr. Para un mayor control del contenido de humedad se recomienda tener la muestra de suelo seca, esto facilita el control de agua de la masa de suelo. Se procede con la mezcla del suelo con el palustre en este paso se incorpora 3% de agua lo que servirá para el primer punto de la curva Proctor. Las medidas del molde Proctor se las mide con el calibrador pie de rey para una mayor exactitud de esta manera se conoce el volumen a ser compactado. Con ayuda de la balanza mecánica se pesa el molde sin el collarín. A continuación, se coloca 5 capas de suelo debidamente repartido y se golpea 56 veces en cada capa, una vez finalizado este proceso se quita el collarín y se enraza la muestra de suelo, se pesa el molde más el suelo compactado y se toma dos muestras de suelo para determinar el contenido de humedad real de la muestra compactada, debido a que en este proceso la muestra de suelo pierde agua. Para finalizar se repite este proceso para los 3 puntos restantes y así completar la curva Proctor con porcentajes de agua recomendados de 6,9 y 12%, como recomendación controlar el nivel de humedad de la muestra sin llegar al nivel de compactar lodo. Normado por AASHTO T-180.

Ilustración 27: Ensayo Proctor - Angamarca

Fuente: Jhimy Gómez

• CBR

Para la determinación del CBR se emplea la herramienta MULTISPEED34-V1171, los cilindros ensayados corresponden al número de golpes establecido de 11,27 y 56 tal y como se establece en la guía de la Norma AASHTO T-193, el ensayo de CBR del laboratorio es la propiedad más importante a determinar en el presente trabajo experimental porque con él se procede con las correlaciones y la determinación del espesor de las capas del pavimento.

Ilustración 28: Ensayo CBR

Fuente: Jhimy Gómez

2.2.1.2 FASE 2 Ampliación de base de datos referente a correlaciones

Para hallar las correlaciones entre las propiedades del suelo se empleó el método de investigación analítica, con datos de ensayos realizados se correlaciona aplicando métodos de correlación lineal, correlación potencial y correlación exponencial.

• Correlación lineal múltiple

Para la aplicación de esta correlación se colocan tres propiedades del suelo y multiplicándolas tal como se indica en la *tabla 24*, se obtiene nuevos valores. El sistema de ecuaciones que resulta se lo puede obtener mediante la aplicación de mínimos cuadrados:

$$a * n + b_1 \Sigma X_1 + b_2 \Sigma X_2 = \Sigma Y$$

$$a \Sigma X_1 + b_1 \Sigma X_1^2 + b_2 \Sigma (X_1 * X_2) = \Sigma (X_1 * Y)$$

$$a \Sigma X_2 + b_1 \Sigma (X_1 * X_2) + b_2 \Sigma (X_2)^2 = \Sigma (X_2 * Y)$$

Tabla 24 : Correlación lineal múltiple

Variable Dep.	Variable Dep.	Variable In.	$Y = a + b_1 * X_1 + b_2 * X_2$							
<i>X</i> ₁	<i>X</i> ₂	Y	$X_1 * Y$	$X_2 * Y$	$X_1 * X_2$	X_1^2	X_2^2	<i>Y</i> ²		
$\sum X_1$	$\sum X_2$	$\sum \mathbf{Y}$	$\sum (X_1 * Y)$	$\sum (X_2 * Y)$	$\sum (X_1 * X_2)$	$\sum (X_1^2)$	$\sum (X_2^2)$	$\sum (Y^2)$		

Autor: Jhimy Gómez

Empleando el método de matriz inversa se encuentra variables y se genera una ecuación de correlación, de acuerdo a la *tabla 25*.

Tabla 25: Sistema de ecuaciones para correlación lineal múltiple

A	b_1	b ₂	=
N	ΣX_1	ΣX_2	ΣΥ
ΣX_1	$\Sigma(X_1^2)$	$\Sigma (X_1 * X_2)$	$\Sigma (X_1 * Y)$
ΣX_2	$\Sigma (X_1 * X_2)$	$\Sigma(X_2^2)$	$\Sigma (X_2 * Y)$

Autor: Jhimy Gómez

$$Y = a + b_1 * X_1 + b_2 * X_2$$

El factor de correlación se la calcula con la siguiente expresión:

$$r^{2} = \frac{a\Sigma Y + b_{1} * \Sigma (X_{1} * Y) + b_{2} * \Sigma (X_{2} * Y) - n * (Y_{med})^{2}}{\Sigma Y^{2} - n * (Y_{med})^{2}}$$

• Correlación potencial

Para la aplicación de las correlaciones potencial múltiple se aplica la *tabla 26*, donde se ingresas dos variables dependientes y una variable independiente.

Tabla 26: Correlación lineal múltiple

Variable Dep.	Variable Dæp	Variable Indp.	Ecuación Múltiple TipoPotencial			$log(Y) = log(a) + b_1 * log(X_1) + b_2 * log(X_2)$					
<i>X</i> ₁	X_2	Y	X_1' $= log(X_1)$	X_2' =		$X_1' * Y'$	$X_2' * Y'$	$X_1' * X_2'$	$X_1'^2$	$X_2'^2$	Y'2
			109(111)	log (X ₂)	log (Y)						
$\sum X_1$	$\sum X_2$	Σ Υ	$\Sigma X_1'$	$\sum X_2'$	ΣΥ,	Σ (X ₁ ' * Y')	$\Sigma (X_2' * Y')$	$\sum_{\substack{(X_1')\\ *\\ X2')}}$	$\sum (X_1'^2)$	$\sum (X_2'^2)$	$\sum (Y^{'2})$

Autor: Jhimy Gómez

El sistema de ecuaciones de igual manera se aplica el método de mínimos cuadrados que se muestra a continuación:

$$a * n + b_1 \Sigma X_1' + b_2 \Sigma X_2' = \Sigma Y'$$

$$a \Sigma X_1' + b_1 \Sigma X_1'^2 + b_2 \Sigma (X_1' * X_2') = \Sigma (X_1' * Y')$$

$$a \Sigma X_2' + b_1 \Sigma (X_1' * X_2') + b_2 \Sigma (X_2')^2 = \Sigma (X_2' * Y')$$

La solución al sistema de ecuaciones se presenta en la *tabla 27*, aplicando el método de matriz inversa de esta manera se encuentra las variables y se genera una ecuación de correlaciones las cuales servirá para encontrar el factor de la correlación y determinar si es una correlación aceptable.

Tabla 27: Sistema de ecuaciones correlación potencial múltiple

a	b_1	b_2	Ш
n	ΣX_1 '	ΣX_2 '	ΣY
$\Sigma X_1'$	$\Sigma(X_1'^2)$	$\Sigma (X_1' * X_2')$	$\Sigma (X_1' * Y')$
$\Sigma X_2'$	$\Sigma \left(X_{1}^{\prime }\ast X_{2}^{\prime }\right)$	$\Sigma(X_2'^2)$	$\Sigma (X_{2'} * Y')$

Autor: Jhimy Gómez

El factor de correlación es:

$$r^{2} = \frac{a\Sigma Y' + b_{1} * \Sigma(X_{1}' * Y') + b_{2} * \Sigma(X_{2}' * Y') - n * (Y'_{med})^{2}}{\Sigma Y'^{2} - n * (Y'_{med})^{2}}$$

• Correlación exponencial

La correlación exponencial múltiple aplica variables dependientes y variables independientes las cuales al momento de ingresar valores en la tabla 21, se obtiene un sistema de ecuaciones que se puede resolver para obtener variables que generen correlaciones.

Tabla 28 : Sistema de ecuaciones correlación potencial múltiple

Variable Dep.	Variable Dep.	Variable Ind.	Ecuación Múltiple Tipo Exponencial			<i>ln(Y)</i> =	= ln(a) +	$b_1 * X_1 +$	$b_2 * X_2$
<i>X</i> ₁	<i>X</i> ₂	Y	Y' = LOG(Y)	$X_1 * Y'$	$X_2 * Y'$	$X_1 * X_2$	X_1^2	X_2^2	Y'2
$\sum X_1$	$\sum X_2$	ΣΥ	ΣΥ'	$\sum (X_1 * Y')$	Σ (X ₂ * Y')	$\sum (X_1 * X_2)$	$\sum (X_1^2)$	$\sum (X_2^2)$	$\sum (Y^2)$

Autor: Jhimy Gómez

El sistema de ecuaciones se resuelve por mínimos cuadrados:

$$a * n + b_1 \Sigma X_1 + b_2 \Sigma X_2 = \Sigma Y'$$

$$a \Sigma X_1 + b_1 \Sigma X_1^2 + b_2 \Sigma (X_1 * X_2) = \Sigma (X_1 * Y')$$

$$a \Sigma X_2 + b_1 \Sigma (X_1 * X_2) + b_2 \Sigma (X_2)^2 = \Sigma (X_2 * Y')$$

La solución al sistema de ecuaciones se aplica el método de matriz inversa. Presentada en la *tabla 29* que se muestra a continuación.

Tabla 29: Sistema de ecuaciones correlación exponencial múltiple

a	b_1	b_2	=
n	ΣX_1	ΣX_2	ΣΥ'
ΣX_1	$\Sigma({X_1}^2)$	$\Sigma (X_1 * X_2)$	$\Sigma (X_1 * Y')$
ΣX_2	$\Sigma (X_1 * X_2)$	$\Sigma(X_2^2)$	$\Sigma (X_2 * Y')$

Autor: Jhimy Gómez

El factor de correlación es:

$$r^{2} = \frac{a\Sigma Y' + b_{1} * \Sigma (X_{1} * Y') + b_{2} * \Sigma (X_{2} * Y') - n * (Y'_{med})^{2}}{\Sigma {Y'}^{2} - n * (Y'_{med})^{2}}$$

2.2.1.3 FASE 3 Diseño de pavimento

Se emplea el método de investigación analítico, una vez obtenidas las correlaciones entre el DCP y el CBR aceptables con coeficientes r2 mayores al 50%. Se procede a calcular los espesores del paquete estructural del pavimento flexible. Para el diseño del pavimento flexible se aplicó el método AASHTO 1993.

Para la comprobación del cálculo del número estructural se apoyó en el Software libre Ecuación AASHTO 93 el cual permite calcular rápidamente el numero estructural para posteriormente realizar el cálculo manual del espesor del paquete estructural del pavimento flexible.

📒 Ecuación AASHTO 93 CÁLCULO DE LAS ECUACIONES AASHTO 1993 (2.0) Desarrollado por: Luis Ricardo Vásquez Varela. Ingeniero Civil. Manizales, 2004. Confiabilidad (R) y Desviación estándar (So) C Pavimento rígido Reliability (R) Módulo resiliente de la subrasante PSI final Información adicional para pavimentos rígidos Módulo de elasticidad del Coeficiente de transmisión concreto - Ec (psi) de carga - (J) Coeficiente de drenaje -Módulo de rotura del concreto - Sc (psi) Tipo de Análisis Número Estructural Calcular SN SN = W18 = [C Calcular W18 Calcular

Ilustración 29: Programa ecuación 1993 para pavimento flexible

Autor: AASHTO [18]

2.2.1.4 FASE 4 Zonificación de acuerdo a la clasificación de suelos SUCS y AASHTO

Para la realización de la zonificación de las muestras de suelo extraída se apoya en programas como ArcGIS, el cual permite la creación de mapas en los cuales se coloca información como nombre de la vía analizada y características de suelo encontrado.

2.3 Población y muestra

2.3.1 Población

El área de estudio del presente trabajo experimental está ubicada en la parroquia Angamarca, perteneciente al cantón Pujilí provincia de Cotopaxi.

La parroquia Angamarca ubicada en la zona 17 sur, al sur occidente de la ciudad de Latacunga, se halla ubicada a una altitud media de 2996 m.s.n.m., cuenta con una población de 6500 habitantes en su mayoría se dedica a la agricultura y ganadería.[53]

Las vías que unen las poblaciones pertenecientes a la parroquia Angamarca y las comunidades aledañas cuenta con 283 Km de vías las cuales en su mayoría son de tercer orden conocidos también como caminos de herradura y chaquiñanes que unen principalmente sectores con poblaciones agrícolas y ganaderas dependientes del estado vial para el transporte de sus productos.[53]

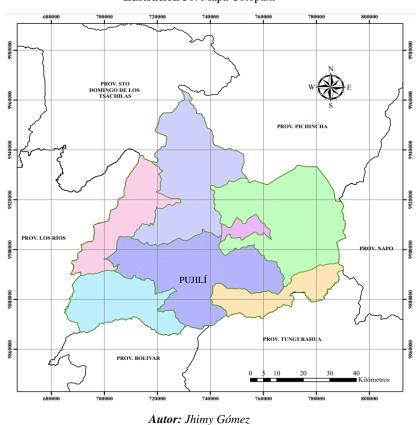


Ilustración 30: Mapa Cotopaxi

2.3.2 Muestra

Las muestras de suelo representativo para el trabajo experimental son extraídas de 4 vías que conectan con la parroquia Angamarca, elegidas estratégicamente para abarcar una gran porción del territorio de la zona de estudio. Se realizaron 12 calicatas de donde se recolectaron aproximadamente 50 kg de suelo para realizar los ensayos respectivos.

Tabla 30: Ubicación de calicatas - Angamarca

UBICACIÓN				
Vía- Parroquia-Cantón	N.º Calicata	Norte	Este	Longitud vía
Dingue Ovindiave / Lanchachi Angerra	1	9882429	734127	
Pingua Quindigua/Llanchachi-Angamarca- Pujilí	2	9882052	734794	4.9 km
rujiii	3	9881614	735210	
	4	9877198	731977	
Singua/Yallivi-Angamarca-Pujilí	5	9877934	733072	5.1 km
	6	9878531	733631	
	7	9877233	731027	
Teodasin/Angamarca -Angamarca-Pujilí	8	9876399	731164	4.87 km
	9	9877155	730830	
Character Data Assessment	10	9875543	731388	
Shuyo Grande/Arrayan Pata-Angamarca- Pujilí	11	9874614	731112	4.7 km
Fujiii	12	9874312	730541	

CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1 Análisis y discusión de los resultados

A continuación, se presenta los resultados obtenidos en ensayos de laboratorio y campo, correspondiente a 12 muestras de suelo representativo de la parroquia Angamarca, cantón Pujilí provincia de Cotopaxi. Se dividió en fases de estudio las cuales se presentan ordenadamente para el cumplimiento de los objetivos planteados.

3.1.1 FASE 1: Análisis de campo y laboratorio de las propiedades índice y mecánicas del suelo.

La nomenclatura empleada para la identificación de las propiedades indicé y mecánica

Tabla 31: Nomenclatura propiedades índice y mecánicas

NOMENCLATURA	DESCRIPCIÓN	UNIDAD
Wnat.	Contenido de humedad natural	%
%G	Porcentaje de grava en la muestra	%
%S	Porcentaje de arena en la muestra	%
%F	Porcentaje de finos en la muestra	%
Cu	Coeficiente de uniformidad	-
Сс	Coeficiente de curvatura	-
TNM	Tamaño nominal máximo	mm
LL	Límite líquido	%
LP	Límite plástico	%
IP	Índice plástico	%
Gs	Gravedad específica de sólidos	-
e	Relación de vacíos	-
n	Porosidad	%
Gw	Grado de saturación del agua	%
Ga	Grado de saturación del aire	%
γm	Densidad húmeda In Situ	g/cm3
γd	Densidad seca In Situ	g/cm3
Wopt.	Contenido de humedad óptimo	%
γd	Peso volumétrico seco	g/cm3
Ge	Grado de compactación	%
0.1 in	CBR para 0.1 pulgadas de penetración	%
0.2 in	CBR para 0.2 pulgadas de penetración	%
CBR mayor	CBR mayor entre 0.1 y 0.2 in	%
DN	Índice de penetración	mm/golpe
SUCS	Sistema Unificado de Clasificación de	
3003	Suelos	_
AASHTO	Asociación Americana de Carreteras	
AASHIU	Estatales y Transporte Oficial	

3.1.1.1.1 Propiedades índices

Los resultados obtenidos en las propiedades índice mediante los ensayos de granulometría, límites de Atterberg, gravedad especifica, y densidad de campo se muestran en la *tabla 32*, los valores obtenidos se emplearon en la realización de correlaciones lineales y múltiples.

Tabla 32: Resultados propiedades índice.

						GRANULON	METRÍA								DENSIDAI	DE CAMPO	
N° PUNTO	UBICACIÓN	POZO	%w Natural	% G grava	% S arena	% F fino	Cu	Cc	TNM (mm)	LÍMITE LÍQUIDO (%)	LÍMITE PLÁSTICO (%)	ÍNDICE PLÁSTICO (%)	GRAVEDAD ESPECÍFICA	RELACIÓN DE VACÍOS e	POROSIDAD n (%)	GRADO DE SATURACIÓN DEL AGUA Gw (%)	GRADO DE SATURACIÓN DEL AIRE Ga (%)
	Pingua	1	14.46%	0.00	87.00	13.00	13.89	0.80	2.00	29.31	27.13	2.18	2.652	0.81	44.82	46.92	53.08
1	Quindigua/Llancha chi-Angamarca-	2	19.60%	0.00	94.00	6.00	3.75	1.35	1.18	25.23	22.79	2.44	2.656	0.78	43.87	51.57	48.43
	Pujilí	3	8.79%	0.00	75.00	25.00	6.75	0.75	1.18	24.34	21.76	2.58	2.651	0.78	43.79	40.05	59.95
2		4	29.50%	0.00	75.00	25.00	15.00	0.42	2.36	28.30	26.22	2.08	2.651	0.75	42.79	78.37	21.63
3	Singua/Yallivi- Angamarca-Pujilí	5	25.93%	0.00	85.00	15.00	12.00	0.48	4.76	26.77	24.86	1.91	2.659	0.76	43.12	73.80	26.20
'		6	10.57%	0.00	91.00	9.00	7.50	1.88	2.00	21.17	19.24	1.93	2.668	0.48	32.28	55.64	44.36
4		7	20.87%	0.00	94.00	6.00	7.37	0.73	2.36	22.18	20.51	1.67	2.885	0.87	46.40	71.43	28.57
4	Teodasin/Angamar ca -Angamarca- Pujilí	8	16.56%	0.00	98.00	2.00	3.06	0.63	2.00	30.52	26.91	3.61	2.680	0.87	46.59	62.72	37.28
_	rujii	9	19.71%	0.75	91.25	8.00	4.38	1.29	1.18	22.92	19.79	3.13	2.660	0.84	45.59	61.64	38.36
5	Shuvo	10	19.90%	0.00	83.00	17.00	2.55	1.87	2.00	23.85	20.79	3.06	2.658	0.73	42.21	70.42	29.58
	Shuyo Grande/Arrayan Pata-Angamarca-	11	20.40%	0.00	97.00	3.00	3.67	1.09	1.18	27.67	24.59	3.08	2.666	0.81	44.89	64.61	35.39
6	Pujilí	12	9.36%	0.00	95.00	5.00	3.67	1.09	1.18	26.72	24.14	2.58	2.663	0.67	40.23	34.29	65.71

• Contenido de humedad natural (ωnat, W%nat)

Se analizaron 12 muestras de suelo encontrando un porcentaje de humedad natural in situ en el rango de 8.79% a 25.93%, siendo un indicativo del porcentaje de agua que contiene la masa de suelo en su estado natural, teniendo en cuenta dichos valores se podrá estimar la cantidad de agua necesaria para llegar al contenido de humedad optimo en el cual la masa de suelo se puede compactar adecuadamente para extender una estructura de pavimento.

Según la investigación Ordoñez Jorge en la ciudad de Tuxla Gutiérrez, México (2015). Propone la necesidad de conocer las propiedades índices del suelo en el caso de la zona de estudio se caracterizó por la presencia de las denominadas arcillas expansivas, el contenido de humedad que pueden almacenar dicha masa de suelo en comparación al presente trabajo experimental es mayor, en vista que en la parroquia Angamarca que es zona de estudio se encontró la presencia principalmente de arenas bien y mal graduadas las mismas que no almacenan porcentajes de humedad altos en comparación a las establecidas en el estudio de Ordoñez Jorge. [2]

• Granulometría

De acuerdo a la granulometría se encontró que la masa de suelo estudiada en las 12 muestras presenta características de ser una arena, teniendo porcentajes que van desde el 75% de contenido de arena hasta un 98% según la clasificación SUCS.

Según lo propuesto por Juárez Badillo (1993), en su libro menciona que los coeficientes de curvatura entre el rango de 1 a 3 es para suelos bien graduados, mientras que valores menores a 1 y mayores a 3 como suelos mal graduados, haciendo una comparativa con las muestras de suelo analizadas se encontró que el 50% de las muestras tienen una buena graduación lo que indica valores de resistencia y densidad factibles para obtener un valor de resistencia al corte alto. [2]

• Limite Liquido

Los valores de limite liquido obtenido en las 12 muestras de suelo tienen un valor que se encuentra en el rango de 21.17% - 30.52%. Los valores de limite liquido es un indicativo del porcentaje de humedad que necesita una masa de suelo para cambiar de un rango plástico a uno líquido.

• Limite Plástico

Los valores de limite plástico de las muestras analizadas se encuentra en el rango de 19.24% - 27.13%. Los valores de limite plástico es un indicativo del porcentaje de humedad que necesita una masa de suelo para cambiar de un rango semisólido a uno plástico.

Gravedad especifica

Los valores de limite plástico de las muestras analizadas se encuentra en el rango estipulado para una arena con presencia de limo y arcilla. Dichos valores están en el rango de 2.651-2.885

• Densidad de campo

Los resultados en el ensayo de campo arrojaron los siguientes valores los cuales son parte de las propiedades índice que definen las características de las distintas masas de suelo que fueron objeto de estudio

Tabla 33: Propiedades obtenidas a partir de ensayo densidad de campo.

	DENSIDAD DE CAMPO										
RELACIÓN DE VACÍOS e	POROSIDAD n (%)	GRADO DE SATURACIÓN DEL AGUA Gw (%)	GRADO DE SATURACIÓN DEL AIRE Ga (%)								
0.81	44.82	46.92	53.08								
0.78	43.87	51.57	48.43								
0.78	43.79	40.05	59.95								
0.75	42.79	78.37	21.63								
0.76	43.12	73.80	26.20								
0.48	32.28	55.64	44.36								
0.87	46.40	71.43	28.57								
0.87	46.59	62.72	37.28								
0.84	45.59	61.64	38.36								
0.73	42.21	70.42	29.58								
0.81	44.89	64.61	35.39								
0.67	40.23	34.29	65.71								

3.1.1.1.2 Propiedades mecánicas

Resumen de las propiedades mecánicas a 12 muestras de suelo obtenidas en la parroquia Angamarca, cantón Pujilí provincia de Cotopaxi. En la que se puede apreciar que la densidad húmeda

Tabla 34: Resumen propiedades mecánicas

		DENSIDA DE	CAMPO		COMPACTAC	IÓN			CBR %	,		DCP
UBICACIÓN	POZO	DENSIDAD	DENSIDAD		PESO	GRADO DE	90 % ₇	d máx.		95 % γd máx		
ebic.icio.	1020	HÚMEDA IN SITU ym (g/cm3)	SECA IN SITU yd (g/cm3)	w% ÓPTIMO	VOLUMÉTRI CO SECO γd (g/cm3)	COMPACTAC IÓN Gc (%)	0.1 in	0.2 in	0.1 in	0.2 in	MÁXIMO	DN mm/golpe
Pingua Quindigua/Llancha chi-Angamarca-	1	1.673	1.452	17.50	1.770	82.05%	20	22	33	35	35	12.06
	2	1.714	1.448	13.30	1.755	82.52%	10	9	13	12	13	22.80
Pujilí	3	1.665	1.518	17.10	1.765	85.99%	13.5	13	24	20.5	24	21.13
	4	1.852	1.460	21.00	1.675	87.14%	12.5	13.5	15.5	18.5	18.5	22.25
Singua/Yallivi- Angamarca-Pujilí	5	1.826	1.498	18.00	1.680	89.19%	18	14	24	20	24	14.85
	6	1.974	1.789	11.90	1.700	105.23%	21	16	23	18.2	23	14.33
T. 1. (4)	7	1.752	1.460	20.50	1.650	88.50%	23.2	22	26	25	26	17.58
Teodasin/Angamar ca -Angamarca- Pujilí	8	1.708	1.478	18.70	1.670	88.53%	12.5	11	13.4	11.5	13.4	26.34
	9	1.723	1.435	18.00	1.592	90.13%	18	19	19.8	20.1	20.1	20.31
Shuyo	10	1.829	1.601	12.70	1.730	92.56%	11.2	12.2	17.4	16.8	17.4	22.55
Grande/Arrayan Pata-Angamarca-	11	1.751	1.456	21.00	1.620	89.89%	10	9	13	12	13	39.49
Pujilí	12	1.722	1.570	15.10	1.817	86.42%	12	11	18.5	17.2	18.5	22.84

3.1.1.2 FASE 2: Ampliación de base de datos referente a correlaciones.

Las correlaciones encontradas en el presente trabajo experimental son las que se encuentran en la tabla 35, en las que se detalla un resumen de correlaciones lineales, exponenciales, logarítmica y polinómicas, se detalla el coeficiente de correlación ${\bf r}^2$

Tabla 35: Resumen correlaciones

Nº	Ecuación	Coeficiente de Correlación (R ² %)	Tipo de Función	Nº Muestras	Figura
	CORRELACIONES ENTRE			ı	
1	LP= 8,1366 e ^0,0405 LL	95	Exponencial	12	
2	Gw = 31,529 In (Wnat) + 115,49	77	Logarítmica	12	
3	$Ga = 302,41 \text{ (Want)}^2 -302,17 \text{ (Want)} + 84,065$	78	Polinomica	12	
4	LL= -123,49 e^2+170,17e-31,961	55	Polinomica	10	
5	Yd in situ = $0.0078 \text{ (LP)}^2 - 0.394 \text{LP} + 6.4587$	80	Polinomica	10	
6	$\Upsilon d \text{ in situ} = 2,479 \text{ e}^{-0,018LL}$	63	Exponencial	10	
7	$\Upsilon d \text{ in situ} = -0.0247 \text{ n} + 2.5756$	85	Lineal	10	
8	$\Upsilon d \text{ in situ} = 16,31 \text{ Want } ^2-7,6568 \text{ Wnat} + 2,3419$	56	Polinomica	10	
	CORRELACIONES ENTRE PROPIE	EDADES MECA	ÁNICAS E ÍNI	DICE	
9	$\Upsilon d \text{ in situ} = -0.553 \text{ In (W opt)} + 3.1006$	82	Logarítmica	10	
10	$\Upsilon d \max = -0.005 \text{ Wopt}^2 + 0.1539 \text{Wopt} + 0.5948$	76	Polinomica	10	
11	W opt = $10,752$ in (LL) - $3,6428$	61	Logarítmica	10	
12	Yd max= 1,569-0,056LL+0,068 LP	67	Lineal	10	
13	W opt= 30,072 +0,397 LL-1,043 LP	52	Lineal	10	
14	Yd max = 1,554-0,589 Want+0,011 LP	51	Lineal	10	
15	Yd in situ = 2,582-0,368 Yd max -0,026 Wopt	50	Lineal	10	
16	Wopt= 37,258+0,254LL-17,741 PVS	50	Lineal	10	
	CORRELACIONES ENTRE DN	y PROPIEDA	DES ÍNDICE		
17	DN= -0,2323 LL^2+13,411LL -165,77	50	Polinomica	10	
18	$DN = 1457,9 \text{ Yd max }^2 - 5059,3 \text{ Yd max } +4404,5$	54	Polinomica	10	
19	Yd in situ= 1,824 -0,778 WANT-0,007 DN	50	Lineal	10	
20	Yd in situ= 1,999 -0,005DN -0,023 Wopt	53	Lineal	10	
21	DN= 0,85+5,316 IP+0,089 Gw	55	Lineal	10	
	CORRELACIONES ENTRE CB	R y PROPIEDA	ADES ÍNDICE		
22	CBR= 2778,4 LL^-1,56	52	Potencial	10	
23	CBR= -0,0752 %Finos^2+2,25574 %Finos+7,0524	60	Polinomica	10	
24	CBR= 247,18 *DN^-0,84	77	Potencial	12	
25	CBR = 36,604-1,270 DN+0,563 WOPT	81	Lineal	10	

3.1.1.2.1 Correlaciones analizadas

• Límite Plástico vs Límite Líquido

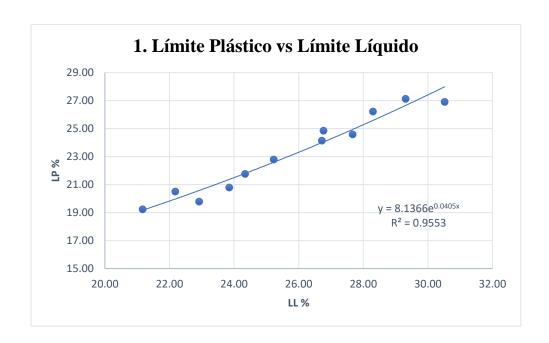


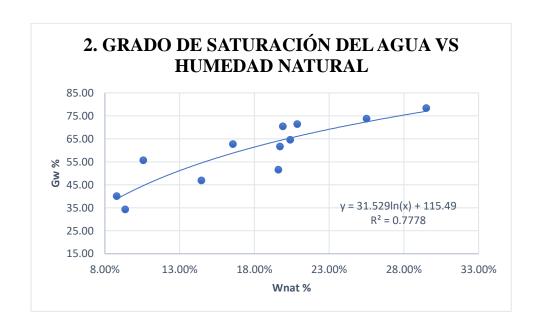
Ilustración 31: Correlación LP% vs LL%

Ecuación:

Autor: Jhimy Gómez

$$LP = 8,1366 e^{0,0405 LL}$$

Coeficiente de correlación


$$R^2 = 95,53 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al Límite Líquido y Límite Plástico, se obtuvo un coeficiente de correlación de 95,53% mediante el análisis de una función exponencial utilizando las 12 muestras representativas de suelo. En la gráfica se puede notar que la relación entre el límite líquido y límite plástico es directamente proporcional.

Debido a que el límite líquido y límite plástico están en función del porcentaje de contenido de agua con que un suelo cambia su consistencia se puede apreciar que a medida que aumenta el contenido de humedad, el límite plástico también aumentara ya que pasa de un estado líquido a plástico.

• Grado de saturación del agua vs Humedad natural

Ilustración 32: Correlación Gw% vs Wnat% **Autor:** Jhimy Gómez

Ecuación:

$$Gw = 31,529 In (Wnat) + 115,49$$

Coeficiente de correlación

$$R^2 = 77,78 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al contenido de humedad del suelo y el grado de saturación del agua, se obtuvo un coeficiente de correlación de 77,78% mediante el análisis de una función logarítmica en la cual se utilizaron las 12 muestras representativas de suelo. En la gráfica se puede notar que la relación entre el contenido de agua y el grado de saturación del agua es directamente proporcional.

Debido a que el grado de saturación del agua tiene una relación directa con el contenido de humedad que tiene una muestra de suelo, se puede traducir como: a mayor contenido de agua, mayor grado de saturación del agua.

• Grado de saturación del aire vs Humedad natural

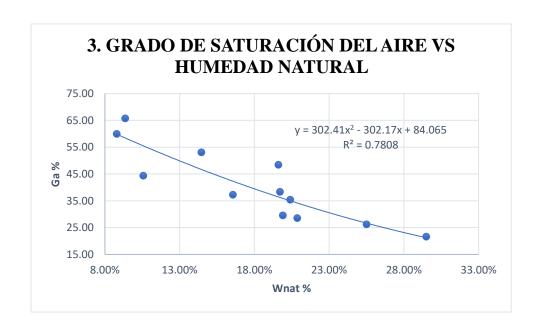
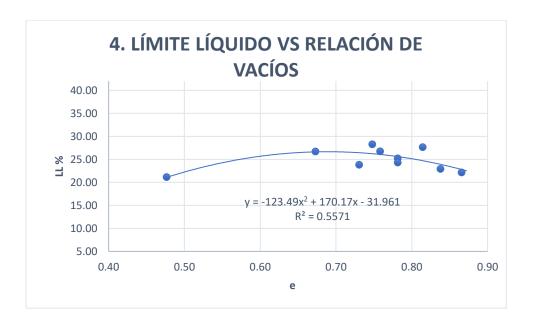


Ilustración 33: Correlación Ga% vs Wnat %

Ecuación:

$$Ga = 302,41 Wnat^2 - 302,17 Wnat + 84,065$$

Coeficiente de correlación


$$R^2 = 78,08 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al contenido de humedad del suelo y el grado de saturación del aire, se obtuvo un coeficiente de correlación de 78,08% mediante el análisis de una función polinómica de grado dos, en la cual se utilizaron las 12 muestras representativas de suelo. En la gráfica se puede notar que la relación entre el contenido de agua y el grado de saturación del agua es inversamente proporcional.

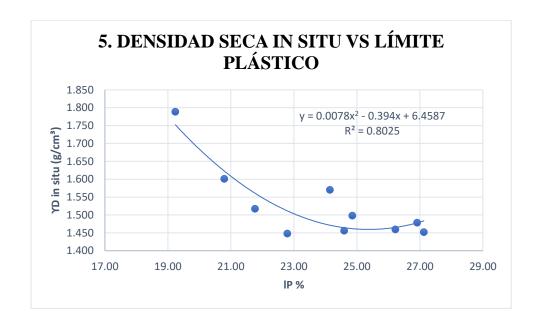
El grado de saturación del aire tiende a disminuir cuando existe una cantidad de humedad alta en la muestra de suelo, esto no significa que el suelo este compacto ya que dichos espacios pueden estar ocupados por agua.

Límite Líquido vs Relación de vacíos

Ilustración 34: Correlación LL% vs e **Autor:** Jhimy Gómez

Ecuación:

$$LL = -123,49 e^2 + 170,17 e - 31,961$$


Coeficiente de correlación

$$R^2 = 55,71 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al límite líquido y la relación de vacíos, se obtuvo un coeficiente de correlación de 55,71% mediante el análisis de una función polinómica de grado dos, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el límite líquido y la relación de vacíos es inversamente proporcional. Debido a que el límite líquido aumenta, la relación de vacíos de igual forma incrementara su valor ya que se entiende que los suelos están sueltos.

• Densidad seca in situ vs Límite Plástico

Ilustración 35: Correlación Yd in situ vs LP % **Autor:** Jhimy Gómez

Ecuación:

$$\gamma d \text{ in situ} = 0.0078 LP^2 - 0.394 LP + 6.4587$$

Coeficiente de correlación

$$R^2 = 80,25 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al límite plástico y la densidad seca in situ, se obtuvo un coeficiente de correlación de 80,25% mediante el análisis de una función polinómica de grado dos, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el límite plástico y la densidad seca in situ es inversamente proporcional. Debido a que el límite plástico está relacionado con el porcentaje de agua que tiene una muestra de suelo, significa que a medida que aumente el porcentaje de agua, la densidad el suelo disminuirá ya que el suelo se vuelve menos denso y pierde su resistencia.

• Densidad seca in situ vs Límite Líquido

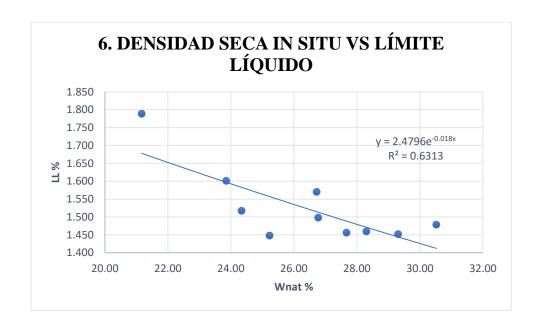


Ilustración 36: Correlación Yd in situ vs LL %

Autor: Jhimy Gómez

Ecuación:

$$\gamma d \ in \ situ = 2,4796 \ e^{-0,018 LL}$$

Coeficiente de correlación

$$R^2 = 63,13 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes al Límite Líquido y la densidad seca in situ, se obtuvo un coeficiente de correlación de 63,13% mediante el análisis de una función exponencial, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el contenido de agua y la densidad seca in situ es inversamente proporcional. Debido a que el límite líquido está relacionado al porcentaje de agua que tiene una muestra de suelo, significa que a medida que aumente el porcentaje de agua, la densidad el suelo disminuirá ya que el suelo se vuelve menos denso y pierde su resistencia.

• Densidad seca in situ vs Porosidad

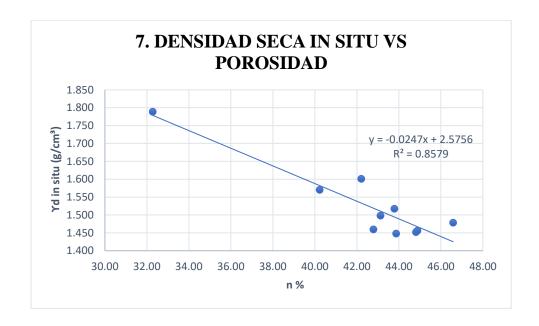


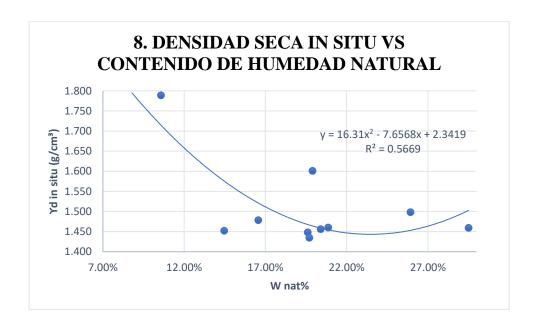
Ilustración 37: Correlación Yd in situ vs n %

Autor: Jhimy Gómez

Ecuación:

$$\gamma d \text{ in situ} = -0.0247 \text{ n} + 2.5756$$

Coeficiente de correlación


$$R^2 = 85,79 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes a la porosidad y la densidad seca in situ, se obtuvo un coeficiente de correlación de 85,79% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la porosidad y la densidad seca in situ es inversamente proporcional.

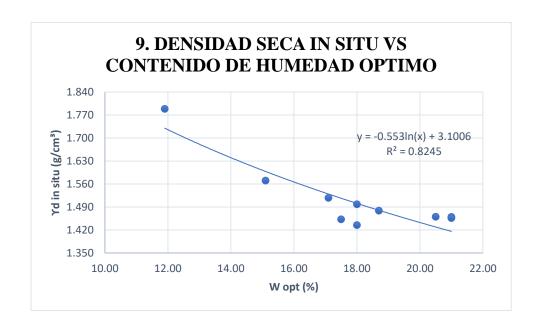
Ya que la porosidad corresponde al volumen de la masa de suelo que no está ocupado por partículas sólidas, a medida que aumenta su porosidad, disminuye la densidad de suelo ya que se va perdiendo resistencia.

Densidad seca in situ vs Contenido de humedad natural

Ilustración 38: Correlación Yd in situ vs W nat **Autor:** Jhimy Gómez

Ecuación:

$$\Upsilon d \ in \ situ = 16,31 \ Wnat^2 - 7,6568 \ Wnat + 2,3419$$


Coeficiente de correlación

$$R^2 = 56,69 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca in situ con respecto al contenido de humedad natural, se obtuvo un coeficiente de correlación de 56,69% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca in situ y el contenido de humedad natural es inversamente proporcional, es decir, a medida que aumenta el porcentaje de agua, disminuye la densidad del suelo, se vuelve menos denso.

Densidad seca in situ vs Contenido de humedad optimo

Ilustración 39:Correlación Yd in situ vs W opt **Autor:** Jhimy Gómez

Ecuación:

$$\Upsilon d \ in \ situ = -0.553 \ In \ (W \ opt) + 3.1006$$

Coeficiente de correlación

$$R^2 = 82,45 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca in situ con respecto al contenido de humedad optimo, se obtuvo un coeficiente de correlación de 80,82% mediante el análisis de una función logarítmica, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca in situ y el contenido de humedad optimo es inversamente proporcional ya que a medida que aumenta el contenido de agua, el suelo se vuelve menos denso.

Densidad seca máxima vs Contenido de humedad optima

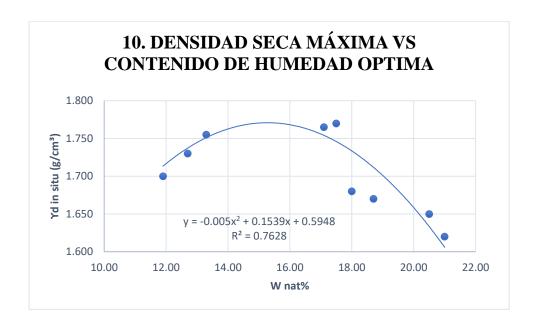


Ilustración 40:Correlación Yd in situ vs W opt Autor: Jhimy Gómez

Ecuación:

$$\Upsilon d \text{ in } situ = -0.005 W nat^2 + 0.1539 W nat + 0.5948$$

Coeficiente de correlación

$$R^2 = 76,28 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca máxima con respecto al contenido de humedad óptimo, se obtuvo un coeficiente de correlación de 76,28% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca máxima y el contenido de humedad optimo es directamente proporcional hasta que se alcanza la densidad máxima de 1,770 g/cm³, a partir de ese punto mientras la densidad máxima aumenta, el contenido de humedad disminuye.

Contenido de humedad optimo vs Límite Líquido

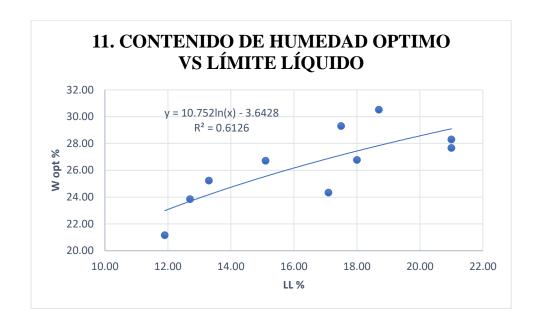
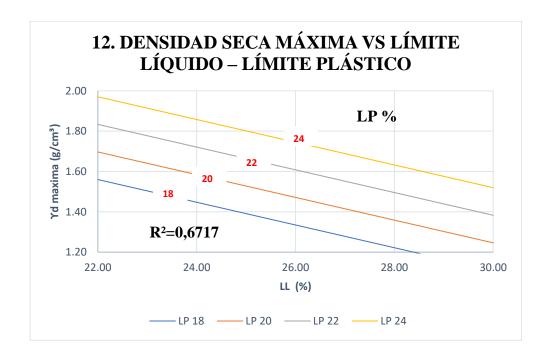


Ilustración 41:Correlación Yd in situ vs W opt Autor: Jhimy Gómez

Ecuación:

$$Yd in situ = -0.553 In (W opt) + 3.1006$$


Coeficiente de correlación

$$R^2 = 61,26 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: límite líquido con respecto al contenido de humedad optimo, se obtuvo un coeficiente de correlación de 61,26% mediante el análisis de una función logarítmica, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el límite líquido y el contenido de humedad optimo es directamente proporcional ya que a medida que existe mayor cantidad de agua en una muestra de suelo, la consistencia del suelo tiende a pasar de sólido a líquido.

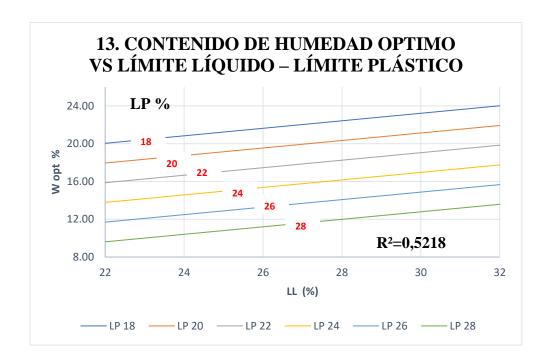
• Densidad seca máxima vs Límite Líquido – Límite Plástico

Ilustración 42:Correlación Yd seca máxima vs LL % - LP % **Autor:** Jhimy Gómez

Ecuación:

 $\Upsilon d \ seca \ maxima = 1,569 - 0,056 \ LL + 0,068 \ LP$

Coeficiente de correlación


$$R^2 = 67,17 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes a: densidad seca máxima con respecto al límite líquido y límite plástico, se obtuvo un coeficiente de correlación de 67,17% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca máxima y el límite líquido es inversamente proporcional, es decir, a medida que aumenta el límite líquido, disminuye la densidad ya que necesita un contenido de humedad óptimo para alcanzar su estado líquido. La densidad seca

máxima y el límite plástico mantienen una relación directamente proporcional, si el uno aumenta, el otro también aumentara su valor.

• Contenido de humedad optimo vs Límite Líquido - Límite Plástico

Ilustración 43:Correlación Wopt vs LL - LP *Autor: Jhimy Gómez*

Ecuación:

$$W \ opt = 30,072 + 0,397 \ LL - 1,043 \ LP$$

Coeficiente de correlación

$$R^2 = 52,18 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice correspondientes a: contenido de humedad optima con respecto al límite líquido y al límite plástico, se obtuvo un coeficiente de correlación de 52,18% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. De la gráfica se puede deducir que la relación existente entre el contenido de humedad optimo y el límite

líquido es directamente proporcional, mientras que con el límite plástico es inversamente proporcional.

• Densidad seca máxima vs Contenido de humedad natural – Límite Plástico

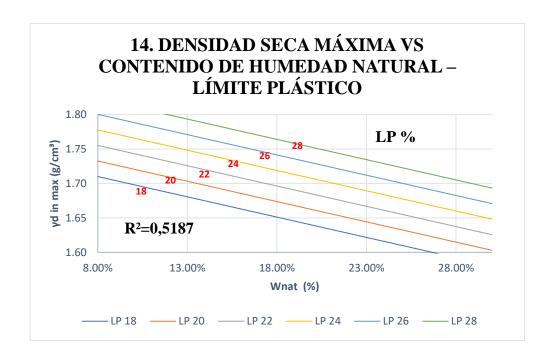


Ilustración 44: Correlación Yd max vs Wnat % – LP%

Ecuación:

 $Yd \ max = 1,554 - 0,589 \ Wnat + 0,011 \ LP$

Coeficiente de correlación

$$R^2 = 51,87 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca máxima con respecto al contenido de humedad natural y límite plástico, se obtuvo un coeficiente de correlación de 51,87% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca máxima y el contenido de

humedad natural es inversamente proporcional ya que el suelo va perdiendo su resistencia a medida que incrementa el grado de agua en una muestra de suelo. Con respecto a la densidad seca máxima y el límite plástico la relación es directamente proporcional.

Densidad seca in situ vs Densidad seca máxima – Contenido de humedad optimo

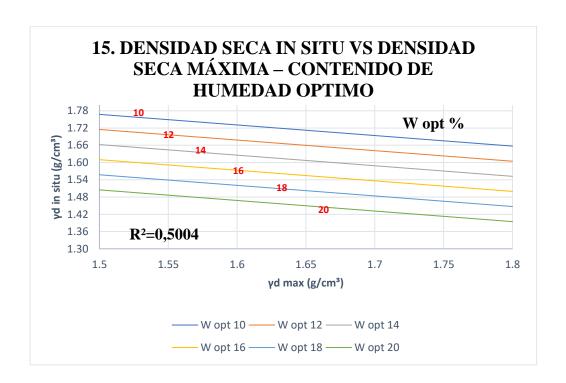


Ilustración 45:Correlación Yd in situ vs Yd max − W opt %

Autor: Jhimy Gómez

Ecuación:

$$Yd in situ = 2,582 - 0,368 Yd max - 0,026 W opt$$

Coeficiente de correlación

 $R^2 = 50,04 \%$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca in situ con respecto a la densidad seca máxima y al contenido de humedad optimo, se obtuvo un coeficiente de correlación de 50,04% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca máxima y la densidad seca in situ es inversamente proporcional ya que a medida que disminuye la densidad in situ, aumenta la densidad seca máxima. Con respecto al contenido de humedad optimo y a la densidad seca in situ la relación es inversamente proporcional, a medida que aumenta el grado de agua de la muestra de suelo, la densidad tiende a bajar ya que va perdiendo resistencia.

• Contenido de humedad optimo vs Densidad seca in situ – Límite Líquido

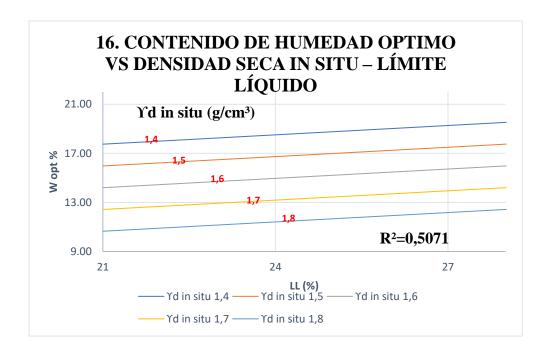
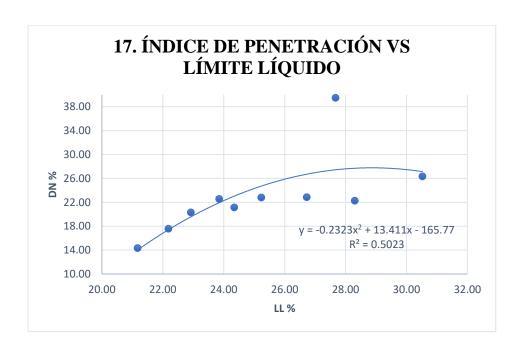


Ilustración 46:Correlación W opt % vs Yd in situ -LL %

$$W \ opt = 37,258 + 0,254 \ LL - 17,741 \ \Upsilon d \ in \ situ$$


Coeficiente de correlación

$$R^2 = 50,71 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: contenido de humedad optimo con respecto a la densidad seca in situ y al límite líquido, se obtuvo un coeficiente de correlación de 50,71% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el contenido de humedad optimo y el límite líquido es directamente proporcional, mientras que con la densidad in situ es inversamente proporcional, a medida que aumenta la humedad optima, disminuye la densidad.

• Índice de penetración vs límite líquido

Ilustración 47:Correlación DN % vs LL% **Autor:** Jhimy Gómez

$$DN = -0.2323 LL^2 + 13.411LL - 165.77$$

Coeficiente de correlación

$$R^2 = 50,23\%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: límite líquido con respecto índice de penetración, se obtuvo un coeficiente de correlación de 50,23% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el límite líquido y el índice de penetración es inversamente proporcional ya que a medida que aumenta el contenido de agua del suelo, esta pierde su resistencia y se vuelve menos compacta.

• Índice de penetración vs Densidad seca máxima

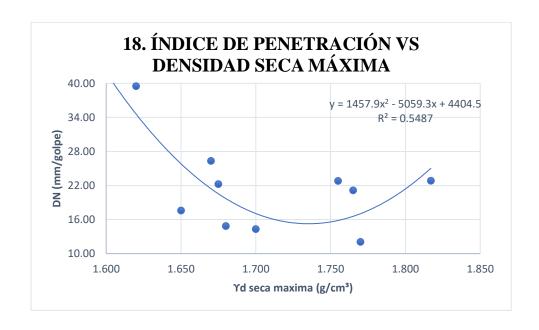


Ilustración 48: Correlación DN vs Yd max

$$DN = 1457.9 \, \text{Yd} \, max^2 - 5059.3 \, \text{Yd} \, max + 4404.5$$

Coeficiente de correlación

$$R^2 = 54,87 \%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca máxima con respecto índice de penetración, se obtuvo un coeficiente de correlación de 54,87% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca máxima y el índice de penetración es inversamente proporcional ya que mientras menor sea la resistencia del suelo, el índice de penetración será mayor.

• Índice de penetración vs Densidad seca in situ – Contenido de humedad natural

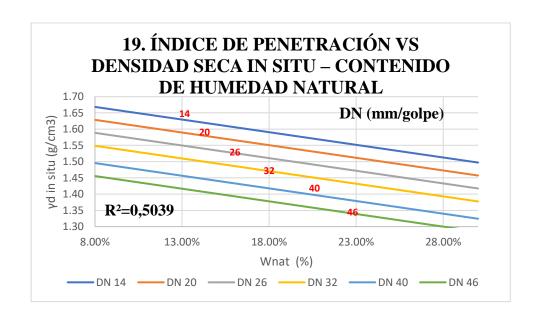
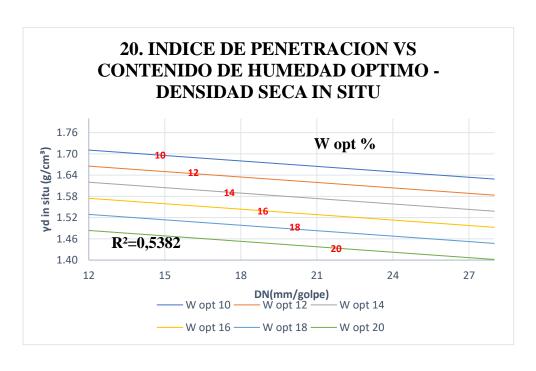


Ilustración 49: Correlación DN vs Yd in situ- Wnat%

$$\Upsilon d \text{ in situ} = 1,824 - 0,778 W nat - 0,007 DN$$


Coeficiente de correlación

$$R^2 = 50,39 \%$$

Análisis e interpretación:

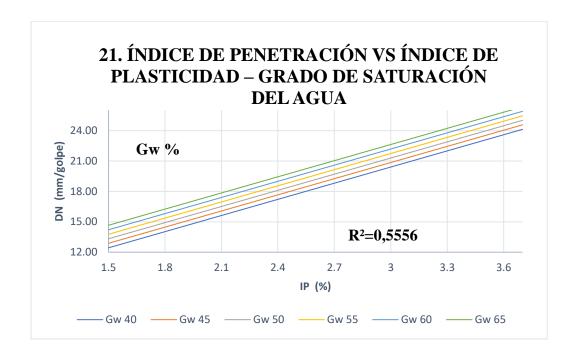
Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca in situ con respecto índice de penetración y al contenido de humedad natural, se obtuvo un coeficiente de correlación de 50,39% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca in situ y el índice de penetración es inversamente proporcional ya que mientras menor sea la resistencia del suelo, el índice de penetración será mayor, mientras que la relación existente entre la densidad seca in situ y el contenido de humedad es inversamente proporcional ya que está relacionada con el porcentaje de agua del suelo.

• Índice de penetración vs Densidad seca in situ – Contenido de humedad optimo

Ilustración 50:Correlación DN vs Yd in situ- W opt% Autor: Jhimy Gómez

Ecuación:

$$Yd in situ = 1,999 - 0,005 DN - 0,023 W opt$$


Coeficiente de correlación

$$R^2 = 53.82 \%$$

Análisis e interpretación:

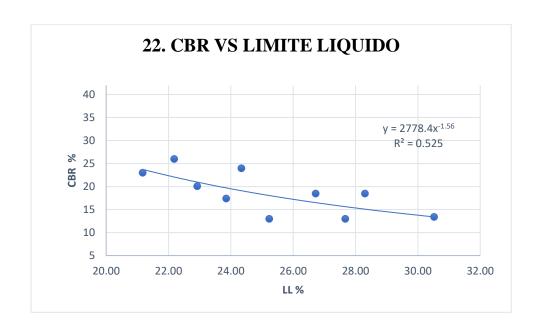
Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: densidad seca in situ con respecto índice de penetración y al contenido de humedad optimo, se obtuvo un coeficiente de correlación de 53,82% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre la densidad seca in situ y el índice de penetración es inversamente proporcional ya que mientras menor sea la resistencia del suelo, el índice de penetración será alto, mientras que la relación existente entre la densidad seca in situ y el contenido de humedad optimo es inversamente proporcional, el suelo va perdiendo su resistencia bajo la presencia de agua.

• Índice de penetración vs índice de plasticidad – grado de saturación del agua

Ilustración 51:Correlación DN vs IP % - Gw % **Autor:** Jhimy Gómez

Ecuación:

$$DN = 0.895 + 5.316 IP + 0.089 Gw$$


Coeficiente de correlación

$$R^2 = 55,56 \%$$

Análisis e interpretación:

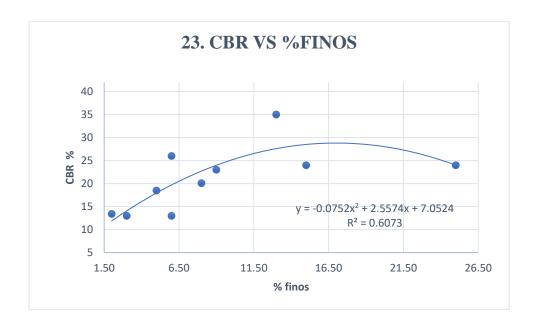
Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: índice de penetración con respecto al índice de plasticidad y grado de saturación del agua, se obtuvo un coeficiente de correlación de 55,56% mediante el análisis de una función lineal, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el índice de penetración y el índice de plasticidad es directamente proporcional, es decir, mientras aumenta el índice de penetración, el índice de plasticidad y el grado de saturación del agua también aumentara.

• CBR vs Límite Líquido

Ilustración 52: Correlación CBR vs LL % *Autor: Jhimy Gómez*

Ecuación:

$$CBR = 2778,4 LL^{-1,56}$$


Coeficiente de correlación

$$R^2 = 52,50 \%$$

Análisis e interpretación:

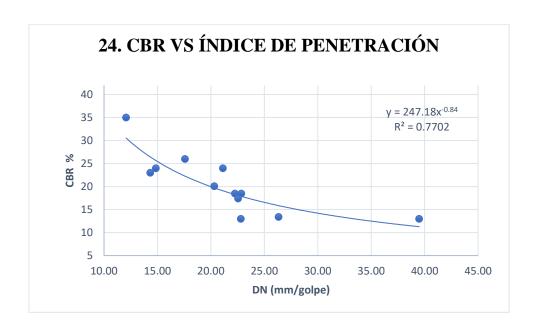
Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a:CBR con respecto al límite líquido, se obtuvo un coeficiente de correlación de 52,50% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el CBR y el límite líquido es inversamente proporcional, esto se traduce como, a menor límite líquido, mayor CBR ya que esta correlación depende netamente del contenido de gruesos y finos.

• CBR vs % Finos

Ilustración 53: Correlación CBR vs %Finos *Autor: Jhimy Gómez*

Ecuación:

$$CBR = -0.0752 \% Finos^2 + 2.5574 \% Finos 7.0524$$


Coeficiente de correlación

$$R^2 = 60,73\%$$

Análisis e interpretación:

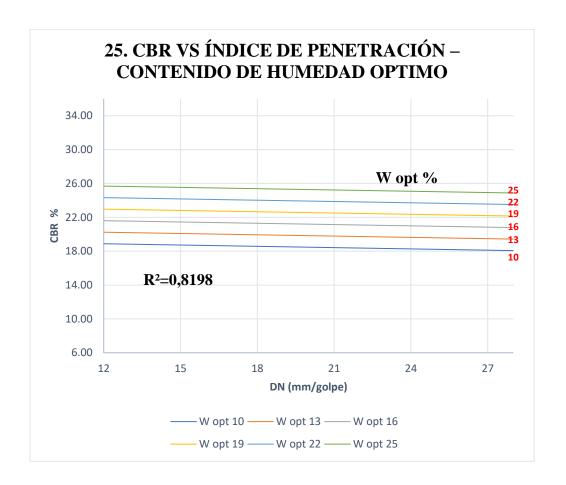
Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a:CBR con respecto porcentaje de finos, se obtuvo un coeficiente de correlación de 60,73% mediante el análisis de una función polinómica de grado 2, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el CBR y el porcentaje de finos es inversamente proporcional, es decir, l disminuir el CBR, aumenta la cantidad de finos, este comportamiento se puede dar pr el contenido de grava que contiene el suelo ya que el contenido de finos no discrimina si el suelo tiene alta o baja plasticidad.

• CBR vs Índice de penetración

Ilustración 54: Correlación CBR vs DN **Autor:** Jhimy Gómez

Ecuación:

$$CBR = 247,18 \, DN^{-0.84}$$


Coeficiente de correlación

$$R^2 = 77,02\%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: CBR con respecto al índice de penetración, se obtuvo un coeficiente de correlación de 77,02% mediante el análisis de una función potencial, en la cual se utilizaron las 12 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el CBR y el índice de penetración es inversamente proporcional. A medida que aumenta el valor de CBR, el índice de penetración disminuirá ya que el suelo va perdiendo resistencia.

• CBR vs Índice de penetración - Contenido de humedad optimo

Ilustración 55:Correlación CBR vs DN - W opt % **Autor:** Jhimy Gómez

Ecuación:

$$CBR = 36,604 - 1,270 DN + 0,563 W opt$$

Coeficiente de correlación

$$R^2 = 81,98\%$$

Análisis e interpretación:

Se realizó la correlación entre las propiedades índice y mecánicas correspondientes a: CBR con respecto al índice de penetración y al contenido de humedad optimo, se obtuvo un coeficiente de correlación de 81,98% mediante el análisis de una función logarítmica, en la cual se utilizaron las 10 muestras representativas de suelo. En la gráfica se puede apreciar que la relación entre el CBR y el índice de penetración es inversamente proporcional, debido a que mientras el índice de penetración sea mayor, la resistencia del suelo será menor. Por otro lado, la relación entre el CBR y el contenido de humedad optimo es directamente proporcional.

3.1.1.2.2 Comparación de resultados.

Los resultados de la correlación entre CBR y DN se muestran en una comparativa con distintos autores los cuales proponen ecuaciones que se muestran en la tabla 36.

Tabla 36 : Ecuación de CBR según varios autores

Autor	Correlación
Kleyn y Van Heerden	428.5*(DN ^{-1.28})
TRL Overseas Road Note	302*(DN ^{-1.057})
USA Cuerpo Ingenieros	292*(DN ^{-1.12})
MTOP Colombia	567*(DN ^{-1.14})
F. Portila	425.21*(DN ^{-1.017})
TRRL 1986	208*(DN ^{-0.86})
Mercedes Troya /Cunchibamba	269.27*(DN ^{-0.892})

Autor: Jhimy Gómez

La ecuación planteada por Kleyn y Van Heerden en su estudio comparativo entre las correlaciones existentes entre el DCP y CBR en comparación a la ecuación generada presente en la ilustración 54, presenta un error del 53.6 %.[54]

La ecuación que plantea TRL realizando un contraste con la ecuación generada en el presente trabajo experimental presenta un error del 36.4%. Esto puede suceder por ser distintas zonas de estudio, el lugar incide directamente en los resultados obtenidos.[55]

La norma para el diseño de vías en Colombia con su ecuación que correlaciona el CBR y el DCP, se realizó en suelos costeros por lo que influyo directamente en los resultados al momento de compararla con la ecuación presente en la ilustración 54, el error generado al comparar las ecuaciones es del 57.1%.[56]

Los resultados obtenidos en el presente trabajo experimental muestran que el menor porcentaje de error existe entre ensayos que se realizaron con muestras de suelo aledañas a la zona de estudio, artículos científicos como el de Favio Portilla demostraron un error del 5% en la obtención del CBR, cabe destacar que las muestras de suelo de dicho artículo corresponden a las extraídas en la zona norte en la sierra ecuatoriana, lo que corresponde con la zona de estudio, a medida que se analizan los valores de CBR vs DCP se encontró que existe un mayor error en ecuaciones que fueron planteadas por países extranjeros como los de Estados Unidos.[57]

Sin embargo, se logró identificar que la ecuación TRRL de 1986 con su ecuación 208*(DN-0.86), con muestra de suelo realizadas en Gran Bretaña se logró determinar un error del 20% siendo valores aceptables para el cálculo de una correlación, sin embargo, a comparación de los valores establecidos para CBR de zonas aledañas el error disminuye considerablemente encajándolos entre un 4% y un 7%.[58]

En la tabla 37, se muestran los valores de CBR y el respectivo valor de error para las ecuaciones planteadas en la tabla36, dichos valores son considerados para el análisis del presente trabajo experimental.

Tabla 37: Resultados errores en comparación a distintas ecuaciones de CBR vs DN- Parte 1

CBR LAB	DN	CBR CORRELACION		Kleyn y Van Heerden	% ERROR	TRL Overseas Road Note	% ERROR	USA Cuerpo Ingenieros	% ERROR
35.0	12.1	30.5	12.8	17.7	42.0	21.7	28.8	18.0	41.2
13.0	22.8	17.9	37.5	7.8	56.2	11.1	38.0	8.8	50.8
24.0	21.1	19.1	20.6	8.6	54.7	12.0	37.0	9.6	49.7
18.5	22.3	18.2	1.4	8.1	55.7	11.4	37.7	9.0	50.4
24.0	14.9	25.6	6.8	13.6	47.1	17.4	32.0	14.2	44.5
23.0	14.3	26.4	14.8	14.2	46.3	18.1	31.4	14.8	43.9
26.0	17.6	22.2	14.4	10.9	50.9	14.6	34.4	11.8	47.1
13.4	26.3	15.8	18.2	6.5	58.9	9.5	39.9	7.5	52.7
20.1	20.3	19.7	2.0	9.1	53.9	12.5	36.4	10.0	49.2
17.4	22.6	18.0	3.7	7.9	56.0	11.2	37.9	8.9	50.6
13.0	39.5	11.3	13.3	3.9	65.6	6.2	45.0	4.8	57.8
18.5	22.8	17.9	3.5	7.8	56.2	11.1	38.0	8.8	50.8
		Error promedio			53.6		36.4		49.1

Autor: Jhimy Gómez

Se continúan analizando los errores en la tabla 38, en los que se identifican los valores que menos porcentaje de error tienen al realizar una comparación con los valores obtenidos en el presente trabajo experimental y los propuestos por otros autores.

Tabla 38 Resultados errores en comparación a distintas ecuaciones de CBR vs DN- Parte 2

MTOP Colombia	% ERROR	Portila	% ERROR	TRRL 1986	% ERROR	MERCEDES TROYA /CUNCHIBAMBA	% ERROR
17.4	43.1	33.8	10.7	24.4	19.9	29.2	4.3
7.1	60.2	17.7	1.1	14.1	21.0	16.6	7.4
7.9	58.4	19.1	0.2	15.1	20.8	17.7	7.0
7.4	59.6	18.1	0.7	14.4	20.9	16.9	7.3
13.0	49.4	27.4	6.7	20.4	20.3	24.3	5.3
13.6	48.3	28.4	7.4	21.1	20.2	25.1	5.1
10.2	53.9	23.0	3.6	17.7	20.5	20.9	6.2
5.8	63.3	15.3	3.6	12.5	21.2	14.6	8.1
8.4	57.5	19.9	1.0	15.6	20.8	18.4	6.9
7.2	59.9	17.9	0.9	14.3	20.9	16.7	7.4
3.3	70.7	10.1	10.3	8.8	21.8	10.1	10.0
7.1	60.2	17.7	1.1	14.1	21.0	16.5	7.4
	57.1	·	3.9		20.8		6.9

En la ilustración 56, se observan curvas las cuales demuestran que existe un menor en error en la comparación de datos con los autores Portilla, Mercedes Troya y TRRL 1986 los cuales están por debajo del 25% de error en la comparativa con el valor de CBR obtenido con las correlaciones entre CBR y DN.

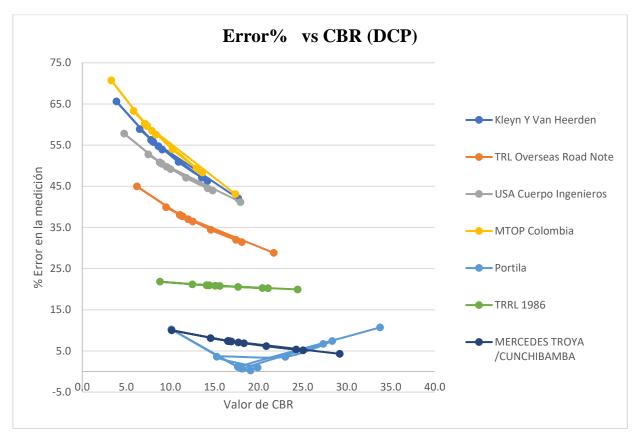


Ilustración 56: % Error vs CBR obtenido con DCP

3.1.1.3 FASE 3: Diseño de pavimento.

3.1.1.3.1 Diseño del pavimente flexible AASHTO 93

• Trafico promedio diario anual

Se realizo el conteo vehicular con una estación manual la cual recolecta un total de 1827 vehículos en una semana los cuales en su mayoría son vehículos livianos.

Tabla 39: Conteo vehicular.

	RESUMEN DE VEHÍCULOS							
				Camiones				
Día	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	
Lunes	275	6	81	0	0	0	362	
Martes	265	4	71	0	0	0	340	
Miércoles	272	4	40	0	0	0	316	
Jueves	218	4	68	0	0	0	289	
Viernes	260	4	71	0	0	0	335	
Sábado	265	4	62	0	0	0	331	
Domingo	273	3	63	0	0	0	339	
Total	1827	29	456	0	0	0	2311	

Autor: Jhimy Gómez

En la tabla 40, se muestra el día con un mayor número de vehículos es el lunes con un valor de 362 vehículos.

Comportamiento Diario del Tránsito

N° Vehículos

362

340

316

289

Operation del Tránsito

Separation del Tránsito

Se

Tabla 40: Comportamiento diario del tránsito

Se muestra el comportamiento del tránsito del día con más incidencia de vehículo que es el día Lunes.

Ilustración 57: Comportamiento de tránsito el día lunes

Autor: Jhimy Gómez

Tráfico en la hora de mayor presencia de vehículos:

Tabla 41: Vehículos hora pico

	VEHÍCULOS HORA PICO							
				Camiones				ACUMULAD
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	O
00 - 6:145	7	0	2	0	0	0	9	
14 – 6 :30	6	1	1	0	0	0	8	34
:30 - 6:45	7	0	2	0	0	0	9	34
:45 - 7:00	7	0	1	0	0	0	8	
Total	27	1	6	0	0	0	34	
Total %	79%	3%	18%	0%	0%	0%	100%	

Autor: Jhimy Gómez

La distribución del tráfico se muestra en la ilustración 58, en la cual se determina que el 18% de los vehículos que transitan por la vía corresponden a vehículos con dos ejes, mientras que los buses o camiones son el 3%

Ilustración 58: Distribución de tráfico día lunes

Autor: Jhimy Gómez

• Factor de hora pico

$$FHP = \frac{VHMD}{N * Q_{15 max}}$$

Donde:

VHMD: Volúmen horario de máxima demanda.

Q_{15 máx}: Flujo máximo durante 15 minutos.

N: Numero de periodos durante la hora de máxima demanda.

$$\mathbf{FHP} = \frac{34}{4*9}$$

$$FHP = 0.944$$

Nota: si FHP es inferior a 1, se considera 1.

$$FHP = 1$$

• Tráfico Promedio Diario Anual (TPDA)

$$TPDA = \frac{VHP * FHP}{k}$$

Donde:

VHP: Volúmen de vehículos durante la hora pico.

FHP: Factor de hora pico.

k: Porcentaje de la 30va hora de diseño, dependiendo de la zona.

Tabla 42: Valor de "k" para poblaciones.

Zona	k
Urbana	8 - 12 %
Rural	12 - 18 %

Autor: Jhimy Gómez

Valor de k para vías rurales = 15%.

Livianos:

$$TPDA_{livianos} = \frac{27 * 1}{0.15}$$

 $TPDA_{livianos} = 180 \ vehículos/día$

Buses:

$$TPDA_{Buses} = \frac{1*1}{0.15}$$

 $TPDA_{Buses} = 7 \ vehículos/día$

Camiones:

$$TPDA_{Camiones} = \frac{6*1}{0.15}$$

 $TPDA_{Camiones} = 40 \ vehículos/día$

• TPDA actual

$$TPDA_{actual} = TPDA_{livianos} + TPDA_{buses} + TPDA_{camiones}$$

$$TPDA_{actual} = 180 + 7 + 40$$

$$TPDA_{actual} = 227 \ vehículos/día$$

Tipo de	Hora	TPDA
vehículo	Pico	Actual
Liviano	27	180
Buses	1	7
Camiones	40	
Total:	227	

Fuente: Jimmy Gómez

• Tráfico Atraído (Ta)

$$Ta = 10\% TPDA$$

Livianos:

$$TPDA_{livianos} = 0.10 * 180$$

$$TPDA_{livianos} = 18 \ vehículos/día$$

Buses:

$$TPDA_{Buses} = 0.10 * 7$$

 $TPDA_{Buses} = 1 \ vehículos/día$

Camiones:

$$TPDA_{Camiones} = 0.10 * 40$$

 $TPDA_{Camiones} = 4 \ vehículos/día$

Tráfico Generado (Tg)

$$Tg = 20\% TPDA$$

Livianos:

$$TPDA_{livianos} = 0.20 * 180$$

 $TPDA_{livianos} = 36 \ vehículos/día$

Buses:

$$TPDA_{buses} = 0.20 * 7$$

 $TPDA_{buses} = 1 \ vehículos/día$

Camiones:

$$TPDA_{Camiones} = 0.20 * 40$$

 $TPDA_{Camiones} = 8 \ vehículos/día$

• Tráfico Desarrollado (Td)

$$Td = 5\% TPDA$$

Livianos:

$$TPDA_{livianos} = 0.05 * 180$$

$$TPDA_{livianos} = 9 \ vehículos/día$$

Buses:

$$TPDA_{buses} = 0.05 * 7$$

$$TPDA_{buses} = 0 \ vehículos/día$$

Camiones:

$$TPDA_{Camiones} = 0.05 * 40$$

$$TPDA_{Camiones} = 2 \ vehículos/día$$

$$TPDA_{Total} = TPDA_{actual} + Ta + Tg + Td$$

$$TPDA_{Total} = 227 + 45 + 23 + 11$$

$$TPDA_{Total} = 306 \ vehículos/día$$

Tabla 43: Tráfico actual del proyecto

Tráfico actual del proyecto						
Tipo de	TPDA	Tráfico	Tráfico	Tráfico	TPDA	
Vehiculo	Actual	generado	atraido	desarrollado	Total	
Liviano	180	36	18	9	243	
Bus	7	1	1	0	9	
Camion	40	8	4	2	54	
Total	227	45	23	11	306	

• Tráfico Futuro

Tabla 44: Periodo de diseño para distintos tipos de carreteras

Tipo de Carretera	Periodo de Diseño
Urbana con altos volúmenes de tránsito	30 - 50
Interurbana con altos volúmenes de tránsito	20 - 50
Pavimentada con bajos volúmenes de tránsito	15 - 25
Revestidas con bajos volúmenes de tránsito	10

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

El periodo de diseño para esta vía será de 20 años.

$$Tf = TPDA_{Total} * (1+i)^n$$

Donde:

Tf: Tráfico futuro.

TPDA_{Total}: Tráfico promedio diario anual del año de estudio.

i: Tasa de crecimiento del tránsito, o índice de crecimiento.

n: Periodo de diseño.

• Tasa de crecimiento del tránsito:

Tabla 45: Tasa de crecimiento anual de tráfico.

Tasa de crecimiento anual del tráfico (%)						
Periodo	Livianos	Buses	Camiones			
2015 - 2020	3.97	1.97	1.94			
2020 - 2025	3.57	1.78	1.74			
2025 - 2030	3.25	1.62	1.58			
2030- 2035	3.25	1.62	1.58			
2035 - 2040	3.25	1.62	1.58			
2040- 2045	3.25	1.62	1.58			

Fuente: MTOP-2016, Norma de Diseño Geométrico de Carreteras.[59]

• Determinación del Tráfico Futuro

Tráfico 2043

Livianos

$$Tf = 243 * \left(1 + \frac{3.25}{100}\right)^{20}$$

$$Tf = 461 \ vehículos/día$$

Buses

$$Tf = 9 * \left(1 + \frac{1.62}{100}\right)^{20}$$

$$Tf = 12 \ vehículos/día$$

Camiones

$$Tf = 54 * \left(1 + \frac{1.58}{100}\right)^{20}$$

$$Tf = 74 \ vehículos/día$$

Tráfico Futuro Total 2043

$$Tf_{Total} = Tf \ livianos + Tf \ buses + Tf \ camiones$$

$$Tf_{Total} = 461 + 12 + 74$$

$$Tf_{Total} = 547 \ vehículos/día$$

Tabla 46 : Tabla de % de crecimiento y transito promedio diario vehicular.

	%CR	ECIEMIE	NTO	TRÁNSITO PROMEDIO DIARIO			
AÑO	LIVIANO	BUS	CAMION	LIVIANO	BUS	CAMION	TPDA Total
2023	3.57	1.78	1.74	243	9	54	306
2024	3.57	1.78	1.74	252	9	55	316
2025	3.57	1.78	1.74	261	9	56	326
2026	3.57	1.78	1.74	270	9	57	336
2027	3.25	1.62	1.58	276	10	57	343
2028	3.25	1.62	1.58	285	10	58	353
2029	3.25	1.62	1.58	294	10	59	364
2030	3.25	1.62	1.58	304	10	60	374
2031	3.25	1.62	1.58	314	10	61	385
2032	3.25	1.62	1.58	324	10	62	397
2033	3.25	1.62	1.58	335	11	63	408
2034	3.25	1.62	1.58	345	11	64	420
2035	3.25	1.62	1.58	357	11	65	433
2036	3.25	1.62	1.58	368	11	66	446
2037	3.25	1.62	1.58	380	11	67	459
2038	3.25	1.62	1.58	393	11	68	472
2039	3.25	1.62	1.58	405	12	69	486
2040	3.25	1.62	1.58	419	12	70	501
2041	3.25	1.62	1.58	432	12	72	516
2042	3.25	1.62	1.58	446	12	73	531
2043	3.25	1.62	1.58	461	12	74	547

Autor: Jhimy Gómez

En base a la clasificación que realiza la MTOP el proyecto corresponde a una vía colectora de tercer grado.

Tabla 47: Tipo de carretera del proyecto.

Función	Clase de Carretera	TPDA
Corredor arterial	RI ó RII	Más de 8000
	I	De 3000 a 8000
Colectora	II	De 1000 a 3000
Colectora	III	De 300 a 1000
Vecinal	IV	De 100 a 300
	V	Menos de 100

Fuente: Norma de Diseño Geométrico de Carreteras, MTOP-2003.[59]

• Número de ejes equivalentes

El fator de daño se determina en base al peso de los ejes que conforman el vehículo, para lo cual el método AASHTO nos proporciona fórmulas para determinar el factor de daño.

• Factor de daño (FD)

El vehículo de diseño que más incidencia tiene en el diseño del pavimento es el vehículo 2 DA, posee 2 ejes medianos

Tabla 48: Tipo de vehículo, numero de ejes y peso.

	CUADRO DEMOSTRATIVOS DE TPO DE VEHICULOS MOTORIZADOS REMOLQUES Y SEMIREMOLQUES									
тіго	DISTRIBUCIÓN MÁXIMA DE CARGA POR EIE	DESCRIPCIÓN			PESO MÁXIMO PERMITIDO (Tor.)	LONGITUDES MÁXIMAS PERMITIDAS (metros)				
							Ancho	Иtь		
2 D	2D		I I	CAMIÓN DE 2 EJES DE CIJEÑO	7	5,00	2,60	3,00		
	3 4									
2DA	2 DA	(*** -0**	ΙĪ	CAMIÓN DE 2 EJES MEDIANOS	10	7,50	2,60	3,50		
	3 7									
2DB	2 DB		I I	CAMIÓN DE 2 EJES GRANDES	18	12,20	2,60	4,10		
3-A	5A 7 20	8	I II	CAMIÓN DE 3 EJES	27	12,20	2,60	4,10		
4-C	4C		I III	CAMIÓN DE 4 EIES	31	12,20	2,60	4,10		

Fuente: NEVI-12, Norma para estudios y diseños viales.[60]

En la tabla 49, se encuentra el factor de daño que se puede realizar según los tipos de vehículos.

Tabla 49: Factor de daño según vehículo.

FACTOR DE DAÑO SEGÚN EL TIPO DE VEHÍCULO									
TIDO	SIMPLE		SIMPLE DOBLE		TANDEM		TRIDEM		FACTOR
TIPO	P(Ton)	(P/6.6) ⁴	P(Ton)	$(P/8.2)^4$	P(Ton)	$(P/15)^4$	P(Ton)	$(P/23)^4$	DE DAÑO
BUS	4	0.135	8	0.906	-	-	-	-	1.041
2DA	3	0.043	-	-	-	-	-	-	1.308
ZDA	7	1.265	-	-	-	-	-	-	
2DB	7	1.265	11	3.238	-	-	-	-	4.504
3 - A	7	1.265	-	-	20	3.160	-	-	4.426
4 - C	7	1.265	-	-	-	-	24	1.186	2.451

Fuente: MTOP-2016, Norma de Diseño Geométrico de Carreteras.[59]

• Número de ejes equivalentes acumulados W18

La siguiente ecuación nos permitirá obtener el valor para el número de ejes equivalentes al finalizar el periodo de diseño, calculado para cada carril.

$$W_{18} = TPDA_{final} * 365 * FD * fd$$

Donde:

W₁₈: Ejes equivalentes.

FD: Factor de daño.

TPDA_{final}: Tráfico promedio diario anual.

fd: Factor direccional.

Nota: Los vehículos cuyo peso acumulado de sus ejes resulte inferior a 8.2 toneladas, no se toman en cuenta para el cálculo.

$$W_{18} = (FD * TPDA_{buses} * 365) + (FD * TPDA_{pesados} * 365)$$

$$W_{18} = (1.041 * 12 * 365) + (1.308 * 74 * 365)$$

$$W_{18} = 4.00E + 04$$

$$W_{18}Acum = (4.00E + 04) + (6.81E + 05)$$

$$W_{18}Acum = 7.21 + 05$$

Por dirección

$$W_{18} Total = W_{18} Acumulado * fd$$

$$W_{18} Total = (7.21E + 05) * 0.5 \rightarrow 3.61E + 05$$

El numero W18 para el diseño se muestra en la tabla 50.

Tabla 50: W18 para el diseño.

	%CRECIEMIENTO			TRÁNSITO PROMEDIO DIARIO				11/10	*****	11/10 D
AÑO	LIVIANO	BUS	CAMION	LIVIANO	BUS	CAMION	TPDA Total	W18 parcial	W18 Acumulado	W18 Por dirección
2023	3.57	1.78	1.74	243	9	54	306	2.92E+04	2.92E+04	1.46E+04
2024	3.57	1.78	1.74	252	9	55	316	2.97E+04	5.89E+04	2.95E+04
2025	3.57	1.78	1.74	261	9	56	326	3.02E+04	8.91E+04	4.46E+04
2026	3.57	1.78	1.74	270	9	57	336	3.08E+04	1.20E+05	5.99E+04
2027	3.25	1.62	1.58	276	10	57	343	3.11E+04	1.51E+05	7.55E+04
2028	3.25	1.62	1.58	285	10	58	353	3.16E+04	1.83E+05	9.13E+04
2029	3.25	1.62	1.58	294	10	59	364	3.21E+04	2.15E+05	1.07E+05
2030	3.25	1.62	1.58	304	10	60	374	3.26E+04	2.47E+05	1.24E+05
2031	3.25	1.62	1.58	314	10	61	385	3.31E+04	2.80E+05	1.40E+05
2032	3.25	1.62	1.58	324	10	62	397	3.36E+04	3.14E+05	1.57E+05
2033	3.25	1.62	1.58	335	11	63	408	3.42E+04	3.48E+05	1.74E+05
2034	3.25	1.62	1.58	345	11	64	420	3.47E+04	3.83E+05	1.91E+05
2035	3.25	1.62	1.58	357	11	65	433	3.53E+04	4.18E+05	2.09E+05
2036	3.25	1.62	1.58	368	11	66	446	3.58E+04	4.54E+05	2.27E+05
2037	3.25	1.62	1.58	380	11	67	459	3.64E+04	4.90E+05	2.45E+05
2038	3.25	1.62	1.58	393	11	68	472	3.70E+04	5.27E+05	2.64E+05
2039	3.25	1.62	1.58	405	12	69	486	3.76E+04	5.65E+05	2.82E+05
2040	3.25	1.62	1.58	419	12	70	501	3.81E+04	6.03E+05	3.02E+05
2041	3.25	1.62	1.58	432	12	72	516	3.88E+04	6.42E+05	3.21E+05
2042	3.25	1.62	1.58	446	12	73	531	3.94E+04	6.81E+05	3.41E+05
2043	3.25	1.62	1.58	461	12	74	547	4.00E+04	7.21E+05	3.61E+05

Autor: Jhimy Gómez

• Confiabilidad (R)

Se conoce a la confiabilidad (R) como la probabilidad de que la vía se comporte de una manera igual o mejor a la prevista durante el periodo de diseño adoptado.

La vía de estudio pertenece a una zona rural y en base a la MTOP se define que es una vía colectora de clase III, por lo tanto, se asume un nivel de confianza del 85% para calles colectoras, en base a la Guía AASHTO.

Tabla 51: Nivel de confianza del proyecto.

Clasificación	Nivel de Confianza Recomendado				
Clashicación	Urbano	Rural			
Interestatal y Autopista	85-99.9	80-99.9			
Arterias principales	80-99	75-95			
Calles colectoras	80-95	75-95			
Calles locales	50-80	50-80			

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

• Desviación estándar normal (Zr)

El valor de la desviación estándar Zr está en función del nivel de confianza, para lo cual, para una confiabilidad del 85%, se considera Zr= -1.037.

Tabla 52: Confiabilidad (R) y la desviación estándar.

Confiabilidad (R)	Desviación Estandar Zr
50	0
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.34
92	-1.405
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
98	-2.054
99	-2.327
99.9	-3.09
99.99	-3.75

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

• Desviación estándar global (So)

La Guía AASHTO nos proporciona valores de desviación estándar global en base a los siguientes intervalos:

- Pavimentos rígidos de 0.30 a 0.40.
- Pavimentos flexibles de 0.40 a 0.50.

Se recomienda un valor de So= 0.45.

• Índice de Serviciabilidad

$$\Delta PSI = PSI_{inicial} - PSI_{final}$$

Donde:

 Δ **PSI** = Perdida de serviciabilidad.

PSI_{inicial}: serviciabilidad inicial.

PSI_{final}: serviciabilidad final.

La guía AASHTO 93 brinda los siguientes valores:

Para pavimentos flexibles PSI inicial= 4.2.

Para caminos secundarios de tránsito menor PSI = 2.0.

$$\Delta PSI = 4.2 - 2.0$$

$$\Delta PSI = 2.20$$

• Módulo de resiliencia de la subrasante (Mr.)

CBR de laboratorio = 13 %, perteneciente a la muestra 11, Shuyo Grande/Arrayan Pata

$$Mr(PSI) = 3000 CBR^{0.65} (10\% < CBR < 20\%)$$

$$Mr(PSI) = 3000(13)^{0.65}$$

$$Mr(PSI) = 15892.22 \ psi \rightarrow 15.89 \ ksi$$

• Determinación de los coeficientes estructurales de cada capa que conforma el paquete estructural

Para determinar los coeficientes estructurales, es necesario conocer los valores de CBR para base y subbase, al igual que la estabilidad Marshal para la carpeta asfáltica.

El valor de CBR mínimo para capa base es de 80% mientras que para capa subbase es de 30%, esto en base a las especificaciones técnicas del MTOP.

Coeficiente estructural de la carpeta asfáltica (a₁)

El método AASHTO proporciona un valor mínimo de 1800 lb para la estabilidad Marshal en vías diseñadas para vehículos pesados.

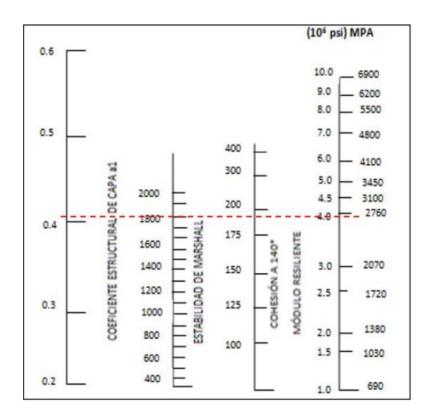


Ilustración 59: Coeficiente estructural a1

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

El valor de a1 de acuerdo la modulo elástico se muestra a continuación.

Tabla 53: Valores de "a1" para el diseño de pavimento

Módulos Ela	Valores a1	
Psi	Mpa	valores ar
175000	1225	0.28
200000	1400	0.295
225000	1575	0.32
250000	1750	0.33
275000	1925	0.35
300000	2100	0.36
325000	2275	0.375
350000	2450	0.385
375000	2625	0.405
400000	2800	0.42
425000	2975	0.435
450000	3150	0.44

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

Al tener en cuenta un error de apreciación, se utiliza la siguiente tabla para determinar el valor del coeficiente estructural a1 mediante interpolación.

Para una estabilidad Marshal de 1800 lb:

- Mr. = 395000 psi
- a1 = 0.417

Coeficiente estructural de la base (a_2)

El método AASHTO proporciona un valor mínimo de 1800 lb para la estabilidad Marshal en vías diseñadas para vehículos pesados a2.

0.20 0 18 40 0 16 0.74 20 Modulus - 1000 psi 70 60 80 25 0 12 50 40 70 25 0.10 Fexas Triaxia 30 **6**9 0.08 35 2D 15 0.05 50 40 0.040 02 0

Ilustración 60: Coeficiente estructural a2

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

En la tabla 54, se observa el coeficiente de base "a2" según el CBR

Tabla 54 Valores de "a2" para el diseño de pavimento

Base de agregados				
CBR	a2			
45	0.112			
50	0.115			
55	0.12			
60	0.125			
70	0.13			
80	0.133			
90	0.137			
100	0.14			

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

Para un CBR mínimo del 80%

- $Mr = 28\ 000\ psi$
- a2 = 0.133

Coeficiente estructural de la subbase (a_3)

El coeficiente estructural "a3" se observa en la ilustración 61.

0.20 $\overline{\mathbb{S}}$ ₹ 70 Modulus - 1000 ps 70 50 40 ЕØ 70 **3**0 60 20 50 6 G8 10 40 0.06 30 5 5. 25

Ilustración 61: Coeficiente estructural "a3"

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

El coeficiente "a3" se muestra también en la tabla 55.

Tabla 55: Valores de "a3" para el diseño de pavimento

Sub - base Granular					
CBR	a3				
10	0.08				
15	0.09				
20	0.093				
25	0.102				
30	0.108				
35	0.115				
40	0.12				
50	0.125				
60	0.128				
70	0.13				
80	0.135				
90	0.138				
100	0.14				

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

- Para un CBR mínimo del 30%
- Mr = 14 900 psi
- a3 = 0.108
- Coeficiente de drenaje (m2, m3)

Los datos para determinar los coeficientes de drenaje son tomados de los anuarios meteorológicos del INAMI, la estación meteorológica más cercana a la parroquia Angamarca es la estación meteorológica M004.

DISTRIBUCION TEMPORAL DE PRECIPITACION
2013

Suma Mensual D Media Multianual A Días con Precipitación

120

A

A

A

A

A

A

A

A

A

B

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

120

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Precipitación

Suma Mensual D Media Multianual A Días con Pr

Ilustración 62: Precipitación según INAMHI

Fuente: INAMHI 2013, Anuario Meteorológico. [61]

En base a datos del INAMI se observa que existen más días secos que días con presencia de precipitaciones, además de que existe presencia de precipitaciones durante todo el año.

Se estima que el tiempo en que el agua será eliminada será de un día, por lo cual la calidad del drenaje es buena.

Tabla 56: Calidad de drenaje para el diseño.

Calidad del drenaje	Agua eliminada en:
Excelente	2 horas
Buena	1 día
Regular	1 semana
Pobre	1 mes
Deficiente	Agua no drenada

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

El porcentaje de drenaje es bueno y la cantidad de lluvia es mayor al 25% por lo que el coeficiente de drenaje es 1.

Tabla 57: Coeficiente de drenaje

Calidad de drenaje	% de tiempo en que el pavimento está expuesto a niveles de humedad					
Candad de di enaje	< 1%	1 - 5 %	5 - 25 %	> 25%		
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.2		
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1		
Regular	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.8		
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.6		
Muy pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.4		

Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

• Espesores mínimos

La Guía AASHTO establece espesores mínimos en función de número de ejes equivalentes, para la vía en estudio, los espesores mínimos serán los siguientes:

Tabla 58: Valores de espesores mínimos

Eje W 8.2 Ton	Caspeta asfáltica D1 (cm)	Capa base D2 (cm)
Menos de 50 000	3.0	10.0
50 001 a 150 000	5.0	10.0
150 001 a 500 000	6.5	10.0
500 001 a 200 0000	7.5	15.0
2 000 001 a 7 000 000	9.0	15.0
>7 000 000	10.0	15.0

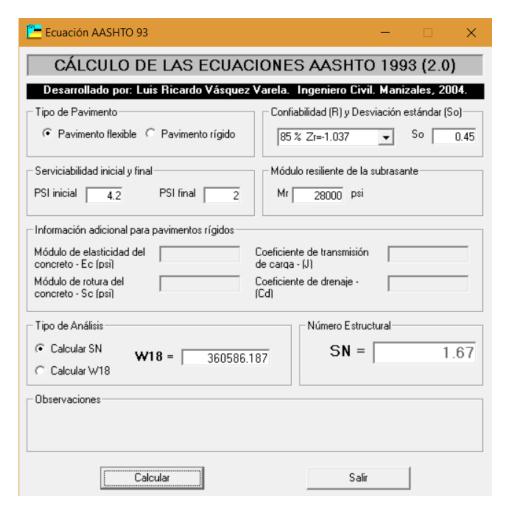
Fuente: Manual para el diseño del Pavimento AASHTO 1993.[18]

Para la vía del proyecto, el número de ejes equivalentes es igual a 360586.187.

- Espesor mínimo para carpeta asfáltica = 6.50 cm
- Espesor mínimo para capa base = 10 cm
- Datos para determinar el número estructural SN

Tabla 59: Datos para diseño de pavimento

Datos para el diseño de pavimento				
Tipo de pavimento	Flexible			
Clasificación de la vía		Vía Clase III		
Tráfico promedio diario anual para 2043		547		
Perioro de diseño		20 años		
Descripción	Símbolo	Valores		
W18 Diseño	W18	360586.187		
CBR Laboratorio	CBR [%]	13		
Confiabilidad	R [%]	85		
Desviación estandar normal	Zr	-1.037		
Descviación estandar global	So	0.45		
Índice de serviciabilidad	PSI	2.2		
Módulo de resiliencia de la subrasante	Mr [Psi]	15892.22		
Módulo de resiliencia de la carpeta asfáltica	Mr CA [Psi]	395000		
Módulo de resiliencia de la base	Mr B [Psi]	28000		
Módulo de resiliencia de la sub-base	Mr SB [Psi]	14900		
Coeficiente estructural de la carpeta afáltica	Coeficiente estructural de la carpeta afáltica a1			
Coeficiente estructural de la base a2		0.133		
Coeficiente estructural de la sub-base a3		0.108		
Confiniento de drancia	m2	1.00		
Coeficiente de drenaje	m3	1.00		


Autor: Jhimy Gómez

• Diseño de la estructura

SN1 Carpeta Asfáltica

El numero estructural se lo calcula con el software libre Ecuación AASHTO 93, para evitar los ábacos que proponen la metodología AASHTO 1993.

Tabla 60: Numero estructural carpera Asfáltica

Fuente: AASHTO 93.[18]

$$D_1 \geq SN_1/a_1$$

$$D_1 \ge 1.67/(0.417/2.54)$$

$$D_1 \ge 10.47$$

Asumo el espesor $D_1 = 5.0 cm$

$$SN_1 = a_1 * D_1$$

$$SN_1 = 5.0 * (0.417/2.54)$$

$$SN_1 = 0.82$$

El número estructural SN2 se lo calcula con el software libre Ecuación AASHTO 93, para evitar los ábacos que proponen la metodología AASHTO 1993.

Ecuación AASHTO 93 CÁLCULO DE LAS ECUACIONES AASHTO 1993 (2.0) Desarrollado por: Luis Ricardo Vásquez Varela. Ingeniero Civil. Manizales, 2004. Tipo de Pavimento Confiabilidad (R) y Desviación estándar (So) Pavimento flexible Pavimento rígido ▼ So 85 % Zr=-1.037 Serviciabilidad inicial y final Módulo resiliente de la subrasante PSI inicial 14900 psi 4.2 Información adicional para pavimentos rígidos Módulo de elasticidad del Coeficiente de transmisión concreto - Ec (psi) de carga - (J) Módulo de rotura del concreto - Sc (psi) Coeficiente de drenaje Tipo de Análisis Número Estructural Calcular SN SN = 2.14 W18 = [360586.187 Calcular W18 Observaciones Calcular Salir

Ilustración 63: Número estructural SN2

Fuente: AASHTO 93.[18]

$$D_2 = \frac{SN_2 - SN_1}{a_2 * m_2}$$

$$\mathbf{D_2} = \frac{2.14 - 0.82}{(0.133/2.54) * 1.00}$$

$$D_2 = 25.19 \ cm$$

Asumo el espesor $D_2 = 10 cm$

$$SN_2 = a_2 * D_2 * m_2$$

$$SN_2 = 10 * (0.133/2.54) * 1.00$$

$$SN_2 = 0.52$$

El número estructural SN3 se lo calcula con el software libre Ecuación AASHTO 93, para evitar los ábacos que proponen la metodología AASHTO 1993.

Ecuación AASHTO 93 CÁLCULO DE LAS ECUACIONES AASHTO 1993 (2.0) Desarrollado por: Luis Ricardo Vásquez Varela. Ingeniero Civil. Manizales, 2004. Tipo de Pavimento Confiabilidad (R) y Desviación estándar (So) Pavimento flexible ○ Pavimento rígido 85 % Zr=-1.037 So [Serviciabilidad inicial y final Módulo resiliente de la subrasante Mr 15892.22 psi Información adicional para pavimentos rígidos Módulo de elasticidad del Coeficiente de transmisión concreto - Ec (psi) de carga - (J) Módulo de rotura del concreto - Sc (psi) Coeficiente de drenaje (Cd) Tipo de Análisis Número Estructural Calcular SN SN = 2.08 W18 = [360586.187 C Calcular W18 Observaciones

Ilustración 64: Número estructural SN3

Fuente: AASHTO 93.[18]

Salir

Calcular

$$D_3 \geq \frac{SN_3 - SN_2 - SN_1}{a_3 * m_3}$$

$$\mathbf{D}_3 \ge \frac{2.08 - 0.52 - 0.82}{(0.108/2.54) * 1.00}$$

$$D_3 \ge 17.30 \ cm$$

Asumo un espesor $D_3 = 17.40 cm$

$$SN_3 = a_3 * D_3 * m_3$$

$$SN_3 = 17.40 * (0.108/2.54) * 1.00$$

$$SN_3 = 0.74$$

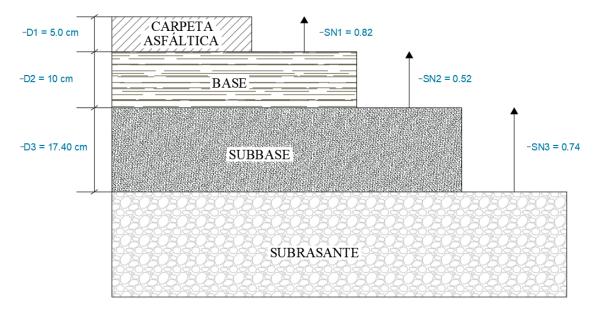
Comprobación

$$\sum SN$$
 (calculado) $\geq SN3$ Programa

$$0.82 + 0.52 + 0.74 \ge 2.08$$

$2.08 \ge 2.08 \, Si \, Cumple!$

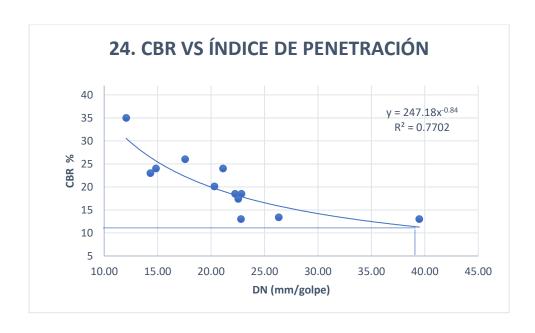
Los espesores de cada capa con CBR de laboratorio son:


Tabla 61: Espesores del paquete estructural con CBR de laboratorio.

Estructura del pavimento	Espesor (cm)
Carpeta Asfáltica	5
Base	10
Subbase	17.4

Autor: Jhimy Gómez

Los resultados del paquete estructural son los siguientes para el valor del CBR de laboratorio.


Ilustración 65: Espesores de paquete estructural con CBR de laboratorio.

0
Autor: Jhimy Gómez

Con CBR de la correlación

Vía Shuyo Grande/Arrayan Pata (DN=)39.49

 $CBR = 247,18 \, DN^{-0.84}$

CBR correlación = 11.27 %

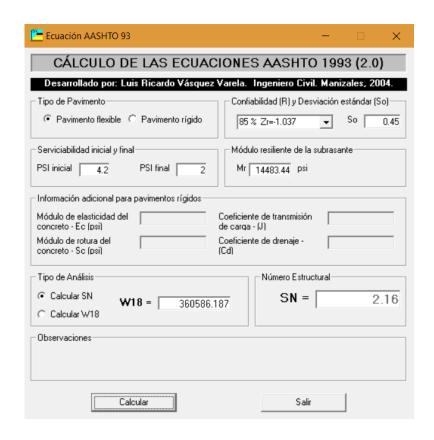
$$Mr(PSI) = 3000 CBR^{0.65} (10\% < CBR < 20\%)$$

$$Mr(PSI) = 3000(11.27)^{0.65}$$

$$Mr(PSI) = 14483.44 \ psi \rightarrow 14.48 \ ksi$$

- SN1=0.82
- SN2 = 0.52

Para el diseño del pavimento flexible con el CBR de las correlaciones es el siguiente:


Tabla 62: Datos de diseño para pavimento con las correlaciones.

Datos para el diseño de pavimento				
Tipo de pavimento		Flexible		
Clasificación de la vía		Vía Clase III		
Tráfico promedio diario anual para 2043		547		
Perioro de diseño		20 años		
Descripción	Símbolo	Valores		
W18 Diseño	W18	360586.187		
CBR Laboratorio	CBR [%]	11.27		
Confiabilidad	R [%]	85		
Desviación estandar normal	Zr	-1.037		
Descviación estandar global	So	0.45		
Índice de serviciabilidad	PSI	2.2		
Módulo de resiliencia de la subrasante	Mr [Psi]	14483.44		
Módulo de resiliencia de la carpeta asfáltica	Mr CA [Psi]	395000		
Módulo de resiliencia de la base	Mr B [Psi]	28000		
Módulo de resiliencia de la sub-base	Mr SB [Psi]	14900		
Coeficiente estructural de la carpeta afáltica	a1	0.417		
Coeficiente estructural de la base	a2	0.133		
Coeficiente estructural de la sub-base	a3	0.108		
Confiniento de duencia	m2	1.00		
Coeficiente de drenaje	m3	1.00		

Autor: Jhimy Gómez

El valor de SN3 para el CBR de las correlaciones se muestra en la ilustración 66.

Ilustración 66: SN3 para correlaciones.

Fuente: AASHTO 93.[18]

$$D_3 \ge \frac{SN_3 - SN_2 - SN_1}{a_3 * m_3}$$

$$D_3 \ge \frac{2.16 - 0.52 - 0.82}{(0.108/2.54) * 1.00}$$

$$D_3 \ge 19.18 \ cm$$

Asumo un espesor $D_3 = 19.20 cm$

$$SN_3 = a_3 * D_3 * m_3$$

$$SN_3 = 19.20 * (0.108/2.54) * 1.00$$

$$SN_3 = 0.82$$

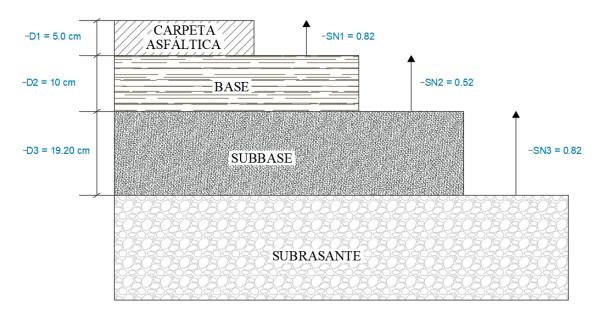
Comprobación

$$\sum SN$$
 (calculado) $\geq SN3$ Programa

$$0.82 + 0.52 + 0.82 \ge 2.16$$

$2.16 \ge 2.16 Si Cumple!$

Los espesores de cada capa con CBR de la correlación son:


Tabla 63: Espesores del paquete estructural con CBR de correlaciones.

Estructura del pavimento	Espesor (cm)
Carpeta Asfáltica	5
Base	10
Subbase	19.2

Autor: Jhimy Gómez

Los resultados del paquete estructural se muestran a continuación.

Ilustración 67: Espesores de paquete estructural con CBR de correlaciones.

3.1.1.3.2 Resumen diseño de pavimento

Los resultados obtenidos en el análisis de pavimentos con el CBR de laboratorio y el CBR obtenido en las correlaciones se muestran a continuación en la tabla 64.

Tabla 64: Resumen diseño de pavimento.

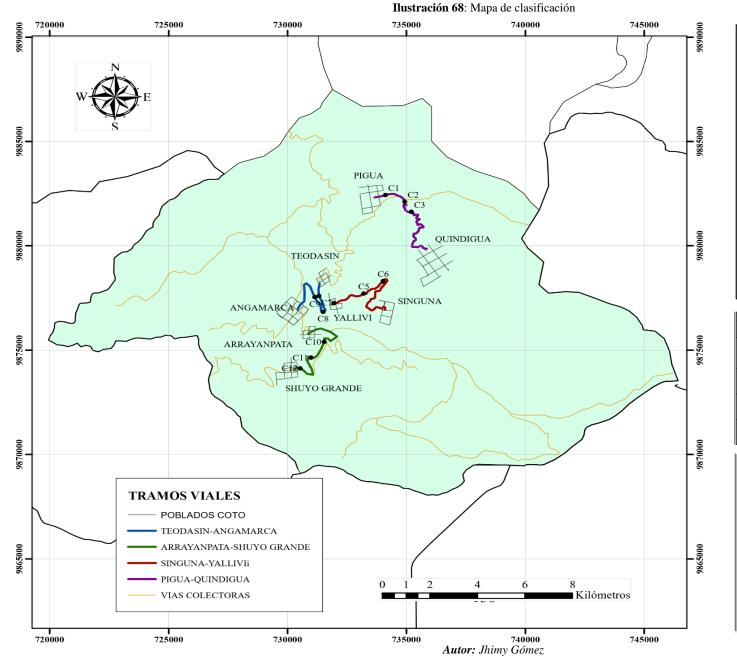
	CBR= 13% 11.3	
Estructura del pavimento	Espesor CBR laboratorio (cm)	Espesor CBR correlación (cm)
Carpeta Asfáltica	5	5
Base	10	10
Subbase	17.4	19.2

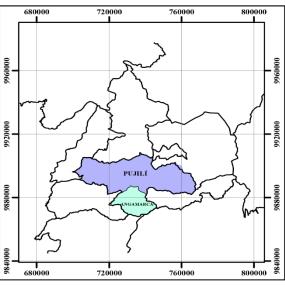
A continuación, en la tabla 65, se encuentra el resumen grafico de espesores de pavimento.

Tabla 65: Resumen espesores pavimento. **CBR=13%** CARPETA ASFÁLTICA -SN1 = 0.82 -D1 = 5.0 cm-SN2 = 0.52 -D2 = 10 cm BASE -D3 = 17.40 cm -SN3 = 0.74 SUBBASE SUBRASANTE **CBR**= 11.3% CÁŖPÉTÁ -D1 = 5.0 cm ASFÁLTICA -SN2 = 0.52 -D2 = 10 cm BASE -D3 = 19.20 cm -SN3 = 0.82 SUBBASE **SUBRASANTE**

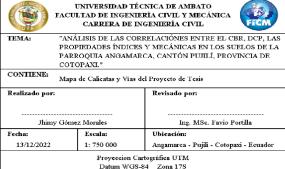
3.1.1.4 FASE 4: Zonificación de acuerdo a la clasificación de suelos SUCS y ASHTO.

En base a los datos de campo y laboratorio obtenidos, se realizó un mapa con el que se establece los datos obtenidos en el programa ArcGIS. La zonificación de datos forma parte de los objetivos planteados en el presente trabajo experimental.


Se obtuvo las propiedades índices y mecánicas de las 12 muestras de suelo de la parroquia Angamarca del cantón Pujilí. A continuación, se mostrará la clasificación según SUCS y AASHTO.


Tabla 66: Clasificación del suelo

UBICACIÓN				CLASIFICACIÓN		
Vía- Parroquia- Cantón	N.º Calicata	Norte	Este	SUCS	AASHTO	Longitud vía
Pingua	1	9882429	734127	SM	A-2-4	
Quindigua/Llanchachi-	2	9882052	734794	SP-SM	A-2-4	4.9 km
Angamarca-Pujilí	3	9881614	735210	SM	A-2-4	
	4	9877198	731977	SM	A-2-4	5.1 km
Singua/Yallivi-	5	9877934	733072	SM	A-2-4	
Angamarca-Pujilí	6	9878531	733631	SW-SM- SC	A-2-4	
. ,	7	9877233	731027	SP-SM-SC	A-2-4	
Teodasin/Angamarca - Angamarca-Pujilí	8	9876399	731164	SP-SM	A-2-4	4.87 km
Angumarea i ajin	9	9877155	730830	SP-SM-SC	A-2-4	
	10	9875543	731388	SM-SC	A-2-4	
Shuyo Grande/Arrayan Pata-Angamarca-Pujilí	11	9874614	731112	SP-SM	A-2-4	4.7 km
r ata / ingamarca r ajiii	12	9874312	730541	SP-SM	A-2-4	


Autor: Jhimy Gómez

Se ha realizado la zonificación de las vías con su correspondiente clasificación según la normativa SUCS y AASHTO

UBICACIÓN	Nº			CLASIFI	CLASIFICACIÓN	
Viu-Purroquiu- Cantón	Calicata	Norte	Este	SUCS	AASHTO	Longitud vía
Pingua	1	9882429	734127	SM	A-2-4	
Quindigua/Llanchachi-	2	9882052	734794	SP-SM	A-2-4	4.9 km
Angamarca-Pujilí	3	9881614	735210	SM	A-2-4	
n: (n: 11: 1	4	9877198	731977	SM	A-2-4	
Singua/Yallivi- Angamarca-Pujili	5	9877934	733072	SM	A-2-4	5.1 km
Angamarca-Pujili	6	9878531	733631	SW-SM-SC	A-2-4	
Teodasin/Angamarca -	7	9877233	731027	SP-SM-SC	A-2-4	
Angamarca-Pujili	8	9876399	731164	SP-SM	A-2-4	4.87 km
Angamarca-Pujin	9	9877155	730830	SP-SM-SC	A-2-4	
Shuyo	10	9875543	731388	SM-SC	A-2-4	
Grande/Arrayan Pata-	11	9874614	731112	SP-SM	A-2-4	4.7 km
Angamarca-Pujili	12	9874312	730541	SP-SM	A-2-4	

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Se determinó las propiedades índice y mecánicas que existe en la parroquia Angamarca, cantón Pujilí provincia de Cotopaxi descritas en la Tabla 64, clasificando el suelo según la norma SUCS en arenas (SM, SP-SM, SW-SM-SC, SP-SP-SM-SC, SM-SC), Mientras que la clasificación según la norma AASHTO es Arenas A-2-4.
- Se determinó 25 correlaciones con coeficientes de correlación aceptables con coeficientes r² que varían entre el 50% a 95% considerando como valores acéptales para la determinación de correlaciones siendo la correlación entre CBR y DCP la más importante por su incidencia directa en el diseño de pavimento, el coeficiente de correlación de dichas variables fue de 77%, valor favorable para una correlación de dos variables.
- Se estableció mediante la discusión de resultados los valores de CBR obtenidos con la ecuación CBR=247.18*(DN) -0.84, al ser comparados con ecuaciones propuestas por distintos autores presentaron errores que están en el rango de 20.8% a 57.1% en el caso de normativa e investigaciones de otros países, sin embargo, para investigaciones aledañas a la zona de estudio del presente trabajo experimental se encontró errores comparativos que varían entre el 3.9% y 6.9%. Siendo el valor de 3.9% de error en la ecuación propuesta por el Ing. Favio Portilla en su investigación analizada a 30 muestras de suelo en la zona norte del país, lugar aledaño a la zona de estudio Angamarca.
- Se diseñó las dimensiones del paquete estructural de pavimento flexible a emplearse en la vía que conecta el caserío Shuyo Grade con el caserío Arrayan Pata, los espesores calculados para el CBR de laboratorio y el de correlaciones no vario siendo 6.5cm para la carpeta asfáltica, 10 cm para base y 15 cm para subbase.
- Se zonificó en área de estudio que comprende la parroquia Angamarca, mediante la herramienta ArcGIS se colocaron los puntos de los cuales se extrajo las muestras de suelo representativo, en la ilustración 68, se aprecia las vías objeto de estudio y la respectiva clasificación de suelo según las normas SUCS y AASHTO.

- Se determinó mediante las correlaciones presentes entre el DCP Y CBR de laboratorio la ecuación de CBR=247.18*(DN) -0.84, en donde a valores altos de DN los resultados de CBR serán menores, mientras que a valores menores de DN el valor de CBR incrementara.
- Se identificó al realizar el diseño del paquete estructural del pavimento flexible que los valores de espesores no varían con el CBR de laboratorio versus el CBR obtenido de las correlaciones.
- Se determinó que las correlaciones resultantes del presente trabajo experimental únicamente podrán ser empleados para suelos que presenten las mismas características, a fin de evitar errores que puedan desencadenar en un diseño de pavimento erróneo.
- Se amplió la base de datos referente a correlaciones entre propiedades mecánicas e
 índices, sumando así 25 correlaciones a la base de datos en la provincia de
 Cotopaxi, aplicando el método de mínimos cuadrados se presentaron alternativas
 de correlacione lineales, polinómicas, exponenciales y logarítmicas.
- Se analizó 12 muestras de suelo representativo de los cuales mediante ensayos de laboratorio y campo se encontró valores de CBR de laboratorio en el rango de 13% a 35% mientras que los valores de DN están en el rango de 12.06 a 39.49 mm/golpe. Según la normativa MOP 2003 los valores están en un rango óptimo para ser parte de la subrasante, ya que no requiere material clasificado.

4.2 Recomendaciones

- Se recomienda ampliar la base de datos para el estudio estadístico a fin de disminuir la brecha de errores que pueda surgir al momento de realizar correlaciones entre propiedades índice y mecánicas, una mayor muestra permitirá determinar estadísticamente un valor que mejor represente la correlación entre DCP y CBR.
- Se recomienda emplear la ecuación CBR=247.18*(DN) -0.84 a únicamente en suelos que presenten características parecidas en propiedades índice y mecánicas para la determinación del CBR.
- Se recomienda a la Universidad Técnica de Ambato la realización de macroproyectos que permitan ampliar la base de datos referente a correlaciones y características de suelo en poblaciones rurales que pueden ser beneficiadas con estudios preliminares diseñados por estudiantes de los últimos niveles de la carrera de Ingeniería Civil.
- Se recomienda comparar los resultados de correlaciones con normativa y artículos de investigación los cuales permitan saber si la investigación está cumpliendo los objetivos planteados.
- Se recomienda a los laboratorios de la Universidad Técnica de Ambato realizar mantenimiento a los instrumentos, a fin de evitar errores en la realización de ensayos de suelo.
- Se recomienda para futuros trabajos experimentales relacionados con el tema de correlaciones entre propiedades índice y mecánicas de los suelos, extraer y realizar los ensayos in situ el mismo día, a fin de no variar los resultados experimentales debido a condiciones climáticas que afecten el estado del suelo en la zona de estudio.
- Se recomienda que las muestras alteradas de suelo se mantengan en un lugar aislado, esto para ensayos de contenido de humedad, además para el ensayo de Proctor modificado secar la muestra para tener un mejor control de humedad, una alternativa para ahorrar tiempo es realizar el ensayo con la humedad natural y agregar cantidades de agua apropiadas que permita la trabajabilidad en el ensayo.

BIBLIOGRAFÍA

- [1] T. Al-Refeai y A. Al-Suhaibani, «Prediction of CBR using dynamic cone penetrometer», *Journal of King Saud University-Engineering Sciences*, vol. 9, n.° 2, pp. 191-203, 1997.
- [2] J. Ordóñez-Ruiz, G. Auvinet-Guichard, y M. Juárez-Camarena, «Caracterización del subsuelo y análisis de riesgos geotécnicos asociados a las arcillas expansivas de la ciudad de Tuxtla Gutiérrez», *Ingeniería, investigación y tecnología*, vol. 16, n.º 3, pp. 453-470, 2015.
- [3] W. S. Araujo Navarro, «Ecuaciones de correlación de CBR con propiedades índice de suelos para la ciudad de Piura», 2015.
- [4] E. A. Sandoval Vallejo y W. A. Rivera Mena, «Correlación del CBR con la resistencia a la compresión inconfnada», *Ciencia e Ingeniería Neogranadina*, vol. 29, n.º 1, pp. 135-152, ago. 2019, doi: 10.18359/rcin.3478.
- [5] C. Florez, C. Torres, P. Torres, y S. Peña, «ESTIMACION DEL VALOR DE CBR USANDO PENETROMETRO DE CONO DINAMICO», California: Publication, 2010.
- [6] J. D. Barreno Proaño y others, «Estudio de la correlación entre los ensayos (DCP) penetrómetro dinámico de cono y (CBR) relación de soporte de california en vías rurales de bajo volumen de tránsito», Quito, 2021.
- [7] C. A. M. Vera, J. R. G. Delgado, E. H. O. Hernández, y J. J. G. V\'\inces, «Análisis comparativo de suelo de campo y laboratorio para la medición de su capacidad portante con ensayos de Valor de Soporte de California (CBR) y Cono Dinámico de Penetración (DCP) en la Universidad Técnica de Manabí.», Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, vol. 4, n.º 2, pp. 79-82, 2019.

- [8] Guato Recalde J., «"CORRELACIÓN ENTRE EL CBR Y LAS PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS GRANULARES, DE LA PARROQUIA HUAMBALÓ DEL CANTÓN SAN PEDRO DE PELILEO, PROVINCIA DE TUNGURAHUA», Universidad Técnica de Ambato, Ambato, 2022.
- [9] Troya Jurado M, «CORRELACIÓN ENTRE EL CBR Y LAS PROPIEDADES ÍNDICE Y MECÁNICAS EN LOS SUELOS GRANULARES, DE LAS PARROQUIAS CUNCHIBAMBA Y UNAMUNCHO, CANTÓN AMBATO. PROVINCIA DE TUNGURAHUA», Universidad Técnica de Ambato, Ambato, 2019.
- [10] Lozada Sánchez T., «CORRELACIÓN ENTRE EL CBR, DCP Y LAS PROPIEDADES ÍNDICE Y MECÁNICAS EN LOS SUELOS DE LAS PARROQUIAS: PATATE (LA MATRIZ) Y EL TRIUNFO DEL CANTÓN PATATE, PROVINCIA DE TUNGURAHUA», Universidad Técnica de Ambato, Ambato, 2022.
- [11] W. S. Araujo Navarro, «Ecuaciones de correlación de CBR con propiedades índice de suelos para la ciudad de Piura», 2015.
- [12] A. Solano y A. Andres, «Determinación del CBR de Laboratorio y natural en suelos finos y su correlación con el DCP para la determinación de la capacidad portante de la sub-rasante, en el diseño de pavimentos flexibles de la Ciudad de Quito.», 2013.
- [13] I. A. Fernández-Coppel, «El Datum», Notas de cartografía. Universidad de Valladolid, Valencia. España. 25pp, 2001.
- [14] J. Chacón Montero, C. Irigaray Fernandez, F. Lamas Fernandez, y R. el Hamdouni Jenoui, «Mecanica de suelos y rocas: practicas y ensayos.», 2004.
- [15] G. Duque y C. Escobar, «Mecánica de los suelos», *Notas del curso Suelos I. Universidad Nacional de Colombia Sede Manizales*, 2002.

- [16] J. E. Bowles, Manual de laboratorio de suelos en ingeniería civil. McGraw-Hill, 1981.
- [17] M. das Braja, «Fundamentos de ingeniería geotécnica», *Thomson y Learning*, vol. 580, 2001.
- [18] T. Officials, AASHTO Guide for Design of Pavement Structures, AASHTO., vol. 1. 1993.
- [19] SUCS, Sistema Unificado de clasificación de Suelos, vol. 2. 2001.
- [20] ASTM, Sociedad Americana de Ensayo de Materiales, vol. 3. 2006.
- [21] C. C. Villalaz, Mecanica de suelos y cimetaciones/Mechanics of Grounds and Laying of Foundations. Editorial Limusa, 2005.
- [22] P. L. Berry y D. Reid, *Mecánica de suelos*. McGraw-Hill Colombia, 1993.
- [23] C. C. Villalaz, Mecanica de suelos y cimetaciones/Mechanics of Grounds and Laying of Foundations. Editorial Limusa, 2005.
- [24] E. J. Badillo, Mecanica De Suelos I/Ground Mechanics I: Fundamentos de la Mecanica de Suelos/Fundamentals of Ground Mechanics, vol. 1. Editorial Limusa, 1974.
- [25] G. Duque Escobar y C. E. Escobar Potes, «Mecánica de los suelos», *Ingeniería Civil*, 2002.
- [26] J. E. Bowles, Manual de laboratorio de suelos en ingeniería civil. McGraw-Hill, 1981.
- [27] D. G. Zeta Eche, «Análisis comparativo de la utilización del método de cono de arena y dens\'\imetro nuclear para determinar densidades de campo en suelos

- cohesivos para terraplenes procedente de la cantera Ram\'\irez ubicada en el km 7+ 000 de la carretera Piura-Paita. Perú. 2019», 2019.
- [28] G. Aguilar, «Manual practico de Mecanica de Suelos», *Obtenido de: https://issuu. com/itseebabahoyo/docs/manual_pr__ctico_de_mec__nica_d e_su*, 2012.
- [29] G. Duque y C. Escobar, «Mecánica de los suelos», *Notas del curso Suelos I. Universidad Nacional de Colombia Sede Manizales*, 2002.
- [30] S. LAZCANO, «Suelos compactados: suelos no-convencionales».
- [31] M. das Braja, «Fundamentos de ingeniería geotécnica», *Thomson y Learning*, vol. 580, 2001.
- [32] Guato J, «"CORRELACIÓN ENTRE EL CBR Y LAS PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS GRANULARES, DE LA PARROQUIA HUAMBALÓ DEL CANTÓN SAN PEDRO DE PELILEO, PROVINCIA DE TUNGURAHUA», Universidad Técnica de Ambato, Ambato, 2022.
- [33] R. C. Rosetti y H. F. Begliardo, «Generalidades sobre compactación de suelos», Ingenieria Civil Laboratorio. Rafaela: Universidad Tecnologica Nacional. Facultad Regional Rafaela, 2005.
- [34] G. López Maldonado, «Ensayos de compactación en carreteras: Proctor Normal y Modificado», 2020.
- [35] J. S. Puentes Morales y others, «Correlación entre los resultados obtenidos del ensayo de CBR de campo y el ensayo de resistencia a la penetración estándar SPT en condiciones normales, en suelos cohesivos localidad de suba ciudad de Bogotá DC», 2018.
- [36] L. C. Chang, «CBR».

- [37] A. H. Llanos Sanchez y S. K. Reyes Perez, «Estudio comparativo de los ensayos California Bearing Ratio (CBR) de laboratorio y penetración dinámica de cono (pdc) en la localidad de picsi», 2017.
- [38] J. A. Z. Duque y G. J. C. Londoño, «Aplicación de los sistemas de información geográfica para la gestión de la malla vial de la ciudad de Medell\'\in», *Ingenier\'\ias USBMed*, vol. 3, n.º 2, pp. 70-84, 2012.
- [39] P. Haro y R. Soraya, «Estudio y Diseño de la v\'\ia que comunica el sector Cuatro Esquinas de la Parroquia Matus con la comunidad Santa Vela de la Parroquia San Antonio de Bayushig, del Cantón Penipe (L= 4.7 km).», Riobamba: Universidad Nacional de Chimborazo, 2016, 2016.
- [40] B. Castillo, «Estabilización de Suelos Arcillosos de Macas con Valores de CBR menores al 5% y L\'\imites L\'\iquidos superiores al 100%, para utilizarlos como Subrasantes en Carreteras», *Cuenca, Ecuador*, 2017.
- [41] D. R. Farinango Bilbao, «Análisis comparativo de costos entre el pavimento r\'\igido y pavimento flexible.», 2014.
- [42] M. I. Z. Meza y E. T. Piusseaut, «Materiales granulares tratados con emulsión asfáltica para su empleo en bases o subbases de pavimentos flexibles.», *Revista de Arquitectura e Ingenier*\'\ia, vol. 13, n.º 3, pp. 1-11, 2019.
- [43] G. Villanueva y J. Jair, «Deflexión y la capa de rodadura del pavimento flexible, en la avenida Santa Rosa-San Juan de Lurigancho-Lima. 2016», 2017.
- [44] D. I. Batalla, «Caracterización estructural de materiales con ligantes hidráulicos en pavimentos flexibles», 2022.
- [45] B. J. Tiznado Aguilar y J. van Zavaleta Pejerrey, «Diseño de pavimento r\'\igido aplicando los métodos AASHTO 93 y PCA en la carretera Matacoto, Yungay–Ancash-2020», 2021.

- [46] E. P. Luisa Llundo, «Caracter\'\isticas de la capa de rodadura del sector de Quillán Loma de la parroquia Izamba del cantón Ambato, provincia de Tungurahua y su incidencia en el desarrollo socio económico», Universidad Técnica de Ambato. Facultad de Ingenier\'\ia Civil y Mecánica~..., 2016.
- [47] J. Casia Boza, «Evaluación estructural de pavimentos flexibles usando el deflectómetro de impacto en la carretera Tarma-La Merced», 2015.
- [48] W. A. Arregui Romero, «Diseño de pavimento flexible utilizando el método AASHTO 93 en la v\'\ia del Cantón Montalvo-intersección Tres Bocas Provincia de los R\'\ios.», Universidad de Guayaquil. Facultad de Ciencias Matemáticas y F\'\isicas~..., 2016.
- [49] M. F. Triola, *Probabilidad y estad\`\istica*. Pearson educación, 2004.
- [50] M. R. Spiegel, J. J. Schiller, R. A. Srinivasan, y A. V. E. de los Monteros, *Probabilidad y estad*\'\istica, n.\'\ QA39. 2. S644 1999. McGraw-Hill New York, US, 2013.
- [51] L. E. Rossi Casé, «Estad\'\istica», 2004.
- [52] I. M. Peláez, «Modelos de regresión: lineal simple y regresión log\'\istica», *Revista Seden*, vol. 14, pp. 195-214, 2016.
- [53] GADPR Angamarca, *Plan de desarrollo y ordenamiento territorial de la parroquia rural Angamarca*. GADPR Angamarca, 2015.
- [54] V. H. Kleyn, «Correlation equation between DCP and CBR», 1986.
- [55] TRL, Overseas Road Note, vol. 1. 2004.
- [56] MTOP Colombia, Norma para el diseño de vías. 2008.

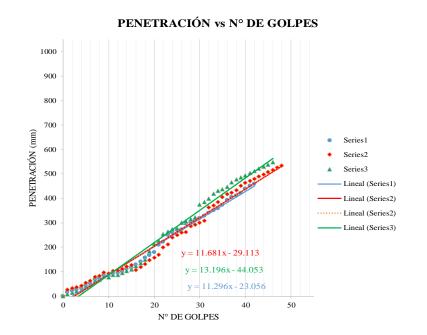
- [57] F. P. Portilla Yandún, «Correlación entre el CBR de laboratorio, el índice DCP y propiedades físicas y mecánicas de suelos granulares», *ConcienciaDigital*, vol. 5, n.º 4.1, pp. 45-59, nov. 2022, doi: 10.33262/concienciadigital.v5i4.1.2396.
- [58] Transport Road Research 1986, «Application of Dynamic Cone Penetration Test in evaluation», 1986.
- [59] MTOP-2003, Norma de Diseño Geométrico de Carreteras. 2003.
- [60] NEVI-12, Norma para estudios y diseños viales., vol. 1. 2012.
- [61] INAMHI 2013, Anuario Meteorológico. 2013.

ANEXOS

ENSAYO DCP

Tabla 67: Ensayo DCP – Muestra 1

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm
ID Muestra:	1	Profundidad:	80	cm

Norma: ASTM D6951 Coordenadas: 17- Sur 9882429 N 734127 E.

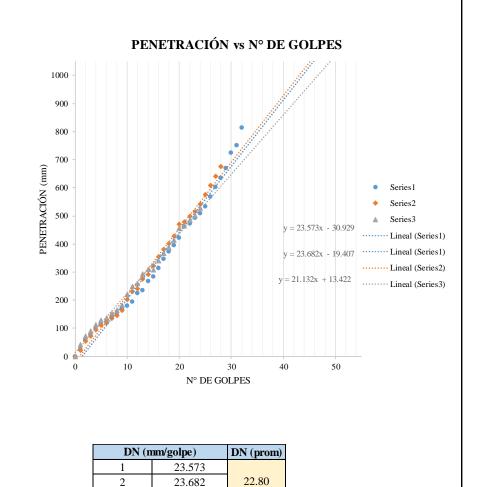
Mornia.			2 11		
ENICA	VO DI	z DCI	•		
ENSAYO DE DCP Penetración (mm)					
Golpes					
	1	2	3		
0	0	0	0		
1	15	25	8		
2	21	31	14		
3	26	36	19		
4	31	41	24		
5	44	54	37		
6	52	62	45		
7	69	79	62		
8	73	83	66		
9	87	97	80		
10	83	93	76		
11	93	103	86		
12	94	104	87		
13	101	111	94		
14	110	120	103		
15	116	126	109		
16	129	106	122		
17	141	119	134		
18	156	131	149		
19	166	146	182		
20	178	156	213		
21	209	168	225		
22	221	199	253		
23	249	211	264		
24	260	239	273		
25	269	250	275		
26	271	259	299		
27	295	261	306		
28	302	285	313		
29	309	292	321		
30	317	299	375		
31	328	307	384		
32	339	361	398		
33	349	370	418		
34	358	384	430		
35	372	404	436		
36	392	416	447		
37	404	422	465		
38	410	433	477		
39	421	451	485		
40	439	463	493		
41	451	471	502		
42	459	479	511		
43		488	520		
44		497	529		
45		506	538		
46		515	547		
47		524	J . ,		
— - '		224			

533

48

DN (n	DN (prom)	
1	11.681	
2	13.196	12.06
3	11.296	

Tabla 68: Ensayo DCP – Muestra 2



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Pingua Quindigua/LlanchachiCapa Vegetal:5cmID Muestra:2Profundidad:100cm

Norma: ASTM D6951 Coordenadas: 17- Sur 9882052 734794

ENSAYO DE DCP Penetración (mm) Golpes

Autor: Jhimy Gómez

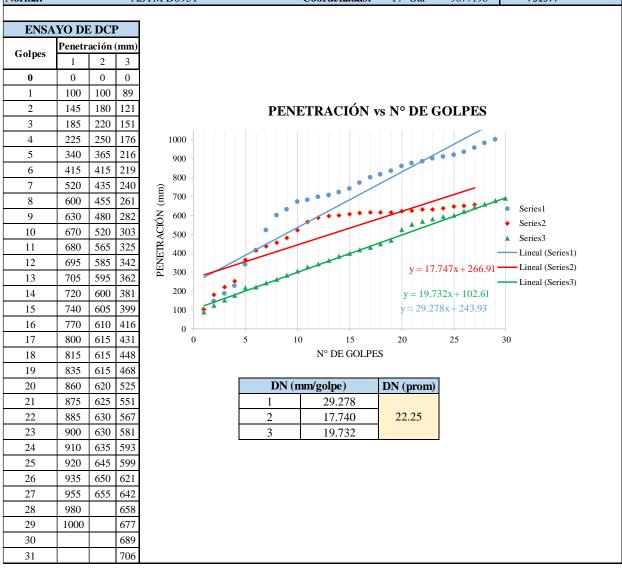
21.132

Tabla 69: Ensayo DCP – Muestra 3

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Tioyecto.		S	UELOS E	DE LA PARROQU	IA ANGAMAR	CA, CANTÓN P	UJILÍ, PRO	VINCIA DE C	COTOPAXI."
Vía:		Pir	ngua Quino	digua/Llanchachi		Capa Vegetal:	5	cm	
ID Muestr	a:			1		Profundidad:	80	cm	
Norma:		ASTM D6951 Coordenadas: 17- Sur 9881				9881614	735210		
TO N.	CANO	DE DC	TD .						
EN									
Golpes	Pen 1	etración 2	3 (mm)						
0	0	0	0						
1	42	16	34.7						
2	74	48	66.7		PENI	ETRACIÓN v	s N° DE G	COLPES	
3	104	127	96.7						
4	129	146	121.7	1000 -					
5	169	158	161.7						
6	172	297	164.7	900 -					
7	193	301	185.7	000					
8	214	302	206.7	800 -					
9	235	315	227.7	700 -		≜ _,			
10	256	329	248.7			∳			
11	278	376	270.7	Ē 600		**			 Series1
12	295	426	287.7	PENETRACIÓN (mm) - 000		AAAA .			♦ Series2
13	315	472	307.7	500 -					▲ Series3
14	334	492	326.7	ETIR	•				····· Lineal (Series1)
15	352	501	344.7	Z 400 -					······ Lineal (Series1)
16	369	506	361.7	Д	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Lineal (Series2)
17	384	507	376.7	300 -	***** <u>**</u>	y = 19.988x	+ 117.72		
18	401	508	393.7		, *** ***				····· Lineal (Series3)
19	419	512	411.7	200 -	2. T	y = 24.51x -			
20	434	522	426.7		7	y = 18.88x	x + 57.675		
21	452	526	444.7	100 -					
22	469	527	566						
23	486	531	569	0	10	20 30	40	50	
24	509	548	570	Ŭ	•	N° DE GOLPES		50	
25	521	604	571						
26	536	623	612						
27	552	635	672					-	
28		641	729		DN (r	nm/golpe)	DN (prom)		
29		664	762		1	19.988			
30		679	875		2	24.510	21.13		
31		724			3	18.880			

Tabla 70: Ensayo DCP - Muestra 4



ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS Proyecto: EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Singua/Yallivi	Capa Vegetal:	5	cm		
ID Muestra:	4	Profundidad:	80	cm		
Norma:	ASTM D6951	Coordenadas:	17- Sur	9877198	731977	

733072

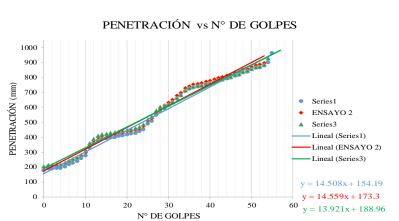
Series1 • ENSAYO 2 Series3 -Lineal (Series1) Lineal (ENSAYO 2) Lineal (Series3)

ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN Proyecto: LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Singua/Yallivi	Capa Vegetal:	5	cm
ID Muestra:	5	Profundidad:	80	cm
Norma:	ASTM D6951	Coordenadas:	17- Sur	987793

ENS/	AYO D	E DC	P	1
	1	ración		1
Golpes	1	2	3	1
0	19	21	72	-
1	33	34	98	PENETRACIÓN vs Nº DE GOLPES
2	46	47	115	<u> </u>
3	59	60	129	- 1000
4	72	86	148	H 900 -
5	98	103	160	800 -
6	115	117	174	700 -
7	129	136	186	Z 600 -
8	148	148	198	
9	160	162	204	- S 500 -
10	174	174	216	岁 400 -
11	186	186	226	y = 15.149x + 12.904
12	198	192	237	
13	207	204	213	y=14.463X + 15.596
14	219	214	234	y = 14.931x + 61.363
15	229	225	245	0 10 20 30 40 50
16	240	232	258	-1 0 10 20 30 40 30
17	247	253	275	
18	268	264	314	
19	279	277	322	DN (mm/golpe) DN (prom)
20	292	294	352	
21	309	333	373	2 14.483 14.85
22	321	341	394	3 14.931
23	329	362	415	
24	350	383	431]
25	371	404	442	
26	392	420	452	
27	408	431	463	
28	419	441	475	
29	429	452	490	
30	440	464	505	
31	452	479	516	
32	467	494	525	
33	482	505	536	
34	493	514	552	
35	502	525	557	
36	513	541	592	-
37	529	546	601	
38	534	581	625	
39	569	590	657	
40	578	614	672	
41	602	646	680	
42	634	661	691	
43	649	669	705	-1
44	657	680	727	
45	668	694	739	
46	682	716	747	
47	704	728	777	-1
48	716	736	792	-1
49	724	766	807	
50	754	781	820	-
51	769	796	855	-
52	784	809		-
53	797	844		-
54	832			Autor: Jhimy Gómez



Proyecto:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Singua/Yallivi	Capa Veget	5	cm		
ID Muestra:	6	Profundidad	80	cm		
Norma:	ASTM D6951	Coordenada	17- Sur	9877934	733072	

Norma:		1	ASTM D6951
		DE DCP	
Golpes		enetración (mi	
•	1	2	3
0	178	198	203.7
1	188	208	213.7
2	190	210	215.7
3	192	212	217.7
4	193	213	218.7
5	203	223	228.7
6	218	238	243.7
8	228	248	253.7
9	238	258	263.7
10	258 278	278 298	283.7 310
11	328	348	360
12	358	378	390
13	378	398	410
14	388	408	420
15	393	413	425
16	398	418	430
17	400	420	432
18	408	428	440
19	410	430	442
20	418	438	450
21	423	443	455
22	428	448	460
23	438	458	470
24	453	473	485
25	488	508	520
26	508	528	540
27	548	568	580
28	573	593	605
29	593	613	610
30	613	633	619
31	630	650	636
32	658	678	664
33	678	698	684
34	708	728	714
35	723	743	729
36	733	753	739
37	738	758	744
38	743	763	749
39	753	773	759
40	758	778	764
41	768	788	774
42	778	798	784
43	783	803	789
44	793	813	799
45	798	818	804
46	811	831	817
47	818	838	824
48	833	853 858	839 844
50	838 853	858 873	844 859
51	863	883	869
52	868	888	874
53	878	898	884
54	902	922	927.7
55	963	983	741.1
56	703	990	
57		990	
31		フプラ	

DN (mm/golpe)			
14.508			
14.559	14.33		
13.921			
	14.508 14.559		

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Teodasin/Angamarca
 Capa Veget
 5 cm

 ID Muestra:
 7
 Profundidad
 80 cm

 Norma:
 ASTM D6951
 Coordenada
 17- Sur
 9877233
 731027

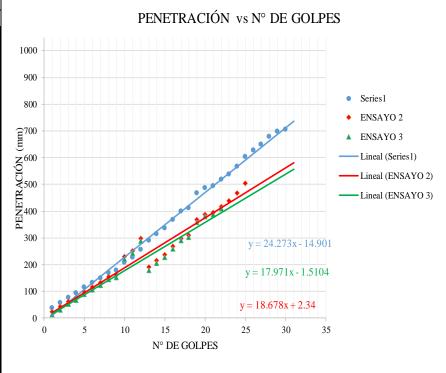
Norma:		-	ASTM D0931			Coordenada	1 /- Sur	9811233)	/3102/	
	ENGLES	DE DOR									
	ENSAYO										
Golpes		enetración (mi									
	1	2	3		р	ENETRAC	TÁN ve N	o DE GO) LPFS		
0	25	50	57		•	ENETRAC	21011 15 11	DE GC	LI ES		
1	37	62	69	1000							
2	55	80	87	1000							
3	70	95	102	000							
4	84	109	116	900							
5	99	124	131	800				100			
6	125	150	157	800				1			
7	145	170	177	700							
8	165	190	197								
9	177	202	209	€ 600			1			Series1	
10	194	219	226	Ý.			44.55			 Series2 	
11	213	238	245	D 500		A4	7 /			▲ Series3	
12	230	255	262	EIR.			Y				
13	252	277	284	PENETRACIÓN (mm) 80 80 80					-	Lineal (Series	s1)
14	270	295	302	Ā		/ /			-	Lineal (Series	:s2)
15	285	310	317	300					$ _{\perp}$	Lineal (Series	·s3)
16	299	324	331			6				— Elitear (Series	33)
17	317	342	349	200	- /		v = 17 600	2x + 23.234			
18	350	380	387		E Comment						
19	375	400	407	100	- 67			5x + 50.194			
20	400	425	432				y = 17.49	x + 58.323			
21	405	430	437	0		20	20	10	50		
22	430	455	462		0 10	20 No Di	30	40	50		
23	440	465	472			N° Di	E GOLPES				
24	465	490	497								
25	475	500	507								
26	500	525	532								
27	515	540	547								
28	530	555	562		DN (m	n/golpe)	DN (prom)				
29	552	577	584		1	17.690					
30	562	587	594		2	17.570	17.58				
31	575	600	607		3	17.490					
32	600	625	632	'				_			
33	609	634	641								
34	618	643	650								
35	635	660	667								
36	652	677	684								
37	674	699	706								
38	677	702	709								
39	690	715	722								
40	700	725	732								
41	714	739	746								
42	725		766								
43	782		792								
44	821		848								
						_					
45	843										

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Teodasin/AngamarcaCapa Vegetal:5cmID Muestra:8Profundidad:80cm

Norma: ASTM D6951 Coordenadas: 17- Sur 9876399 731164

ENSAYO DE DCP Penetración (mm) Golpes PENETRACIÓN vs N° DE GOLPES PENETRACIÓN (mm) Series1 Series2 y = 26.397x + 78.154Series3 Lineal (Series1) y = 24.995x + 98.872Lineal (Series2) Lineal (Series3) y = 27.654x + 108.99N° DE GOLPES DN (mm/golpe) DN (prom) 26.397 24.995 26.34 27.634


ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN Proyecto: LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Teodasin/Angamarca Capa Vegetal: cm ID Muestra: Profundidad: cm

Norma: ASTM D6951 Coordenadas: 17- Sur

ENSAYO DE DCP Penetración (mm) Golpes

DN (n	DN (prom)	
1	24.273	
2	17.971	20.31
3	18.678	

ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

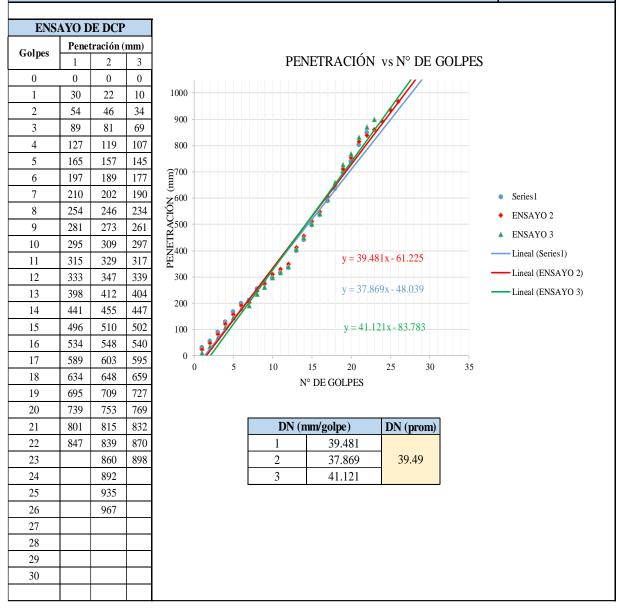
Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Shuyo Grande/Arrayan Pata
 Capa Vegetal:
 5 cm

 ID Muestra:
 10
 Profundidad:
 80 cm

 Norma:
 ASTM D6951
 Coordenadas:
 17- Sur
 9875543
 731388

				_,						
EN	SAYO	DE DC	P							
Golpes	Per	etración	n (mm)							
Gorpes	1	2	3			PE	NETRACIÓN	V vs N° DE	GOLPES	
0	48	33	41							
1	128	76	121	1000						
2	168	118	161	900						
3	199	155	192	, , , ,						- 0 : 1
4	312	273	305	800				• 2		 Series 1
5	364	299	356	○700				A .		◆ Series2
6	381	302	376	m 700				100		▲ Series3
7	400	302	399	Z ₆₀₀		/	22202			——Lineal (Series1)
8	425	316	421	CG (C)		0222		† ↑		Lineal (Series2)
9	467	330	463	DENETRACIÓN (mm) PENETRACIÓN (mm) PENETR		12 1				Lineal (Series3)
10	513	377	504	E 400	/.	2/11				
11	533	425	524		/ 3×			21.567 2	15.54	
12	544	428	536	300	<i>*</i> >	•		y = 21.567x + 2	15.54	
13	548	477	541	200			y:	= 27.588x + 263	.97	
14	553	493	545		i 🖡					
15	558	502	551	100			y	= 18.479x + 167	.37	
16	563	506	556	0						
17	563	506	556	0	5	10	15 20	25 30	35	
18	563	506	555]	N° DE GOLPES			
19	563	513	5556							
20	577	523	564	ļ			/ 1 >	DN	1	
21	599	527	564				mm/golpe)	DN (prom)		
22	612	532	567	ŀ		1	21.567	22.55		
23	689	549	569			2	27.588	22.55		
24	722	605	571			3	18.497			
25	777	624	612	-						
26	810	636	677							
27	841	643	729	-						
28		665	764							
29		681	821							
30		725								



ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm		
ID Muestra:	11	Profundidad:	80	cm		
Norma:	ASTM D6951	Coordenadas:	17- Sur	9875543	731388	

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

DE INGENII "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Shuyo Grande/Arrayan Pata	Capa Veget	5	cm		
ID Muestra:	12	Profundidad	100	cm		
Norma:	ASTM D6951	Coordenada	17- Sur	9874312	730541	

Norma:			ASTM D6951			Coordenada	17- Sur	9874312	730541
	FNSAVO	DE DCP							
		enetración (m	um)						
Golpes	1	2	3		j	PENETRACI	ÓN vs N°	DE GOLI	PES
0	0	0	0						_~
1	26	22	41	1000					
2	58	54	73						
3	76	72	91	900					
4	99	95	114	800				•	• Series1
5	115	111	130						♦ ENSAYO 2
6	123	119	138	PENETRACIÓN (mm)			•		▲ ENSAYO 3
7	139	135	154	26 00			- ×	//	Lineal (Series1)
8	149	145	164	ĮĮ.				_	Lineal (ENSAYO 2)
9	168	164	183	₹00					Lineal (ENSAYO 3)
10	181	202	221	<u> </u>		A			Linear (ENSATO 3)
11	195	231	250	<u>a</u>					
12	224	241	260	300					
13	234	275	294	•••		f.			y = 20.986x + 15.804
14	268	291	310	200		ş•			y = 23.836x - 22.333 y = 23.76x - 34.982
15	284	322	308	100	A STATE OF THE PARTY OF THE PAR				y = 23.70x 31.702
16	315	354	340						
17	347	381	367	0 +2	5	10 15 20	0 25	30 35	
18	374	402	388	U	3	N° DE GOLF		30 33	
19	395	428	414			11 22 0021	20		
20	421	470	456						
21	463	479	465		DN (mm/golpe)	DN (prom)		
22	472	499	485		1	20.980			
23	492	516	502		2	23.840	22.84		
24	509	541	527		3	23.700			
25	534	576			·			_	
26	569	609							
27	602	642							
28	635	676							
29	669								
30	724								
31	752								
32	814								

ENSAYO CONTENIDO DE HUMEDAD

Tabla 79 : Ensayo Contenido de humedad – Muestra 1

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE						
		COTOPAXI."					
Parroquia:	Angamarca	Normas:	AASHTO T 19	AASHTO T 191 2014			
Vía:	Pingua Quindigua/Llanchachi	Ensayado por:	Gomez	z Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla			
Muestra:	1	Coordenadas:	9882	2429			
			734127				
	ENSAYO CONTENIDO DE HUMEDAD						
N. Recipiente		A	В	C			
Peso Recipier	nte (gr)	40.17	48.74	36.12			
Peso suelo hú	medo + recipiente (gr)	151.06	146.87	122.65			
Peso suelo seo	co + recipiente (gr)	136.79	134.87	111.57			
Peso de agua V	Peso de agua Ww (gr)		12	11.08			
Peso suelo seco Ws (gr)		96.62	86.13	75.45			
Contenido de humedad (W%)		14.77%	13.93%	14.69%			
W Promedio ((%)	14.46%					

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	COTOPAXI."				
Parroquia:	Angamarca	Normas:	AASHTO T 191 2014		
Vía:	Pingua Quindigua/Llanchachi	Ensayado por:	Gomez	z Jhimy	
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla	
Muestra:	2	Coordenadas:	N: 989	99355	
			E: 75	8917	
	ENSAYO CONTEN	NIDO DE HUMEI	OAD		
N. Recipiente		A	В	C	
Peso Recipient	e (gr)	23.07	27.15	29.78	
Peso suelo hún	nedo + recipiente (gr)	149	138	128.7	
Peso suelo sec	o + recipiente (gr)	128.96	119.81	112.04	
Peso de agua V	Vw (gr)	20.04	18.19	16.66	
Peso suelo seco Ws (gr)		105.89	92.66	82.26	
Contenido de h	Contenido de humedad (W%)		19.63%	20.25%	
W Promedio (%)			19.60%		

Tabla 81: Ensayo Contenido de humedad – Muestra 3

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE						
	COTOPAXI."						
Parroquia:	Angamarca	Normas: AASHTO T 191 2014					
Vía:	Pingua Quindigua/Llanchachi	Ensayado por:	Gomez	Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	Portilla			
Muestra:	3	Coordenadas:	N: 989	99355			
			E: 758917				
	ENSAYO CONTENIDO DE HUMEDAD						
N. Recipiente		A	В	C			
Peso Recipiente	e (gr)	31.79	33.13	31.42			
Peso suelo húmo	edo + recipiente (gr)	149	138	128.7			
Peso suelo seco	+ recipiente (gr)	139.58	129.78	120.57			
Peso de agua W	Peso de agua Ww (gr)		8.22	8.13			
Peso suelo seco Ws (gr)		107.79	96.65	89.15			
Contenido de humedad (W%)		8.74%	8.50%	9.12%			
W Promedio (%)	8.79%					

Tabla 82: Ensayo Contenido de humedad – Muestra 4

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

TROTECTO.	PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."					
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014		
Vía:	Singua/Yallivi	Ensayado por:	Gome	z Jhimy		
Fecha:	12/11/2022	Revisado por:	Ing. Favi	o Portilla		
Muestra:	4	Coordenadas:	987	7198		
			731977			
	ENSAYO CON	TENIDO DE HUMED	OAD			
N. Recipiente		A	В	C		
Peso Recipiente (gr)	33.18	30.93	32.48		
Peso suelo húmed	lo + recipiente (gr)	166.14	120.18	135.57		
Peso suelo seco +	recipiente (gr)	135.72	99.97	112.04		
Peso de agua Ww	(gr)	30.42	20.21	23.53		
Peso suelo seco V	Vs (gr)	102.54	69.04	79.56		
Contenido de hum	nedad (W%)	29.67%	29.27%	29.58%		
W Promedio (%)			29.50%	·		

Tabla 83: Ensayo Contenido de humedad – Muestra 5

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

110120101	PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE						
	COTOPAXI."						
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014			
Vía:	Singua/Yallivi	Ensayado por:	Gomez	z Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla			
Muestra:	5	Coordenadas:	987	7934			
			733072				
	ENSAYO CONTENIDO DE HUMEDAD						
N. Recipiente		A	В	C			
Peso Recipiente	(gr)	19.87	18.77	24.57			
Peso suelo húme	edo + recipiente (gr)	134.25	119.57	135.14			
Peso suelo seco	+ recipiente (gr)	111.46	98.46	112.04			
Peso de agua Ww (gr)		22.79	21.11	23.1			
Peso suelo seco Ws (gr)		91.59	79.69	87.47			
Contenido de humedad (W%)		24.88%	26.49%	26.41%			
W Promedio (%))		25.93%				

Tabla 84: Ensayo Contenido de humedad – Muestra 6

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."					
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014	
Vía:	Singua/Yallivi	Ensayado por:	Gome	z Jhimy	
Fecha:	12/11/2022	Revisado por:	Ing. Favi	o Portilla	
Muestra:	6	Coordenadas:	9878	8531	
			733	8631	
	ENSAYO CON'	TENIDO DE HUMEI	OAD		
N. Recipiente		A	В	C	
Peso Recipiente (g	gr)	36.87	31.68	33.77	
Peso suelo húmed	o + recipiente (gr)	130.87	111.08	144.14	
Peso suelo seco +	recipiente (gr)	121.57	103.39	134.10	
Peso de agua Ww (gr)		9.3	7.69	10.04	
Peso suelo seco Ws (gr)		84.7	71.71	100.33	
Contenido de humedad (W%)		10.98%	10.72%	10.01%	
W Promedio (%)			10.57%		

Tabla 85: Ensayo Contenido de humedad – Muestra 7

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE					
	COTOPAXI."					
Parroquia:	Angamarca	Normas:	AASHTO T 19	AASHTO T 191 2014		
Vía:	Teodasin/Angamarca	Ensayado por:	Gomez	z Jhimy		
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla		
Muestra:	7	Coordenadas:	9877	7233		
			731	027		
	ENSAYO CONTENIDO DE HUMEDAD					
N. Recipiente		A	В	C		
Peso Recipiente	(gr)	62.74	30.71	30.15		
Peso suelo húme	edo + recipiente (gr)	134.87	184.87	164.00		
Peso suelo seco	+ recipiente (gr)	121.57	158.74	142.14		
Peso de agua W	w (gr)	13.34	26.13	21.86		
Peso suelo seco Ws (gr)		58.83	128.03	111.99		
Contenido de humedad (W%)		22.68%	20.41%	19.52%		
W Promedio (%)		20.87%			

Tabla 86: Ensayo Contenido de humedad – Muestra 8

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE						
	COTOPAXI."						
Parroquia:	Angamarca	Normas:	AASHTO T 191 2014				
Vía:	Teodasin/Angamarca	Ensayado por:	Gomez	z Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla			
Muestra:	8	Coordenadas:	9870	5399			
			731	164			
	ENSAYO CONTENIDO DE HUMEDAD						
N. Recipiente		A	В	C			
Peso Recipiente	(gr)	50.12	31.20	30.20			
Peso suelo húme	edo + recipiente (gr)	134.87	169.47	141.98			
Peso suelo seco	+ recipiente (gr)	121.57	149.20	128.40			
Peso de agua W	w (gr)	13.34	20.27	13.58			
Peso suelo seco Ws (gr)		71.45	118	98.2			
Contenido de humedad (W%)		18.67%	17.18%	13.83%			
W Promedio (%)	16.56%					

Tabla 87: Ensayo Contenido de humedad – Muestra 9

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE						
	COTOPAXI."						
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014			
Vía:	Teodasin/Angamarca	Ensayado por:	Gomez	z Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla			
Muestra:	9	Coordenadas:	987	7155			
	731388			388			
	ENSAYO CONTENIDO DE HUMEDAD						
N. Recipiente		A	В	C			
Peso Recipiente	e (gr)	51.7	30.20	30.50			
Peso suelo húme	edo + recipiente (gr)	134.87	197.84	201.50			
Peso suelo seco	+ recipiente (gr)	121.57	170.50	172.40			
Peso de agua W	w (gr)	13.37	27.34	29.1			
Peso suelo seco Ws (gr)		69.87	140.3	141.9			
Contenido de humedad (W%)		19.14%	19.49%	20.51%			
W Promedio (%)	19.71%					

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE					
	COTOPAXI."					
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014		
Vía:	Shuyo Grande/Arrayan Pata	Ensayado por:	Gomez	z Jhimy		
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla		
Muestra:	10	Coordenadas:	9875	5543		
			731388			
	ENSAYO CONTENIDO DE HUMEDAD					
N. Recipiente		A	В	C		
Peso Recipiente	e (gr)	52.4	33.00	32.10		
Peso suelo húm	edo + recipiente (gr)	135.47	154.80	154.98		
Peso suelo seco	+ recipiente (gr)	121.57	135.00	134.70		
Peso de agua W	Peso de agua Ww (gr)		19.8	20.28		
Peso suelo seco Ws (gr)		69.17	102	102.6		
Contenido de humedad (W%)		20.53%	19.41%	19.77%		
W Promedio (%	5)	19.90%				

Tabla 89: Ensayo Contenido de humedad – Muestra 11

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

	PARROQUIA ANGAMARCA, CANTON PUJILI, PROVINCIA DE						
	COTOPAXI."						
Parroquia:	Angamarca	Normas:	AASHTO T 19	AASHTO T 191 2014			
Vía:	Shuyo Grande/Arrayan Pata	Ensayado por:	Gomez	Jhimy			
Fecha:	12/11/2022	Revisado por:	Ing. Favio	Ing. Favio Portilla			
Muestra:	11	Coordenadas:	9874614				
731112							
ENSAYO CONTENIDO DE HUMEDAD							
N. Recipiente		A	В	C			
Peso Recipiente	e (gr)	53.1	33.20 33.50				
Peso suelo húmo	edo + recipiente (gr)	136.01	201.87	207.65			
Peso suelo seco	+ recipiente (gr)	121.4	173.10	178.80			
Peso de agua W	w (gr)	14.2	28.77	28.85			
Peso suelo seco Ws (gr)		68.3	139.9	145.3			
Contenido de humedad (W%)		20.79%	20.56%	19.86%			
W Promedio (%) 20.40%							

Tabla 90: Ensayo Contenido de humedad – Muestra 12

PROYECTO:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE

TROIDETO!	PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE				
		COTOPAXI."			
Parroquia:	Angamarca	Normas:	AASHTO T 19	1 2014	
Vía:	Shuyo Grande/Arrayan Pata	Ensayado por:	Gomez	z Jhimy	
Fecha:	12/11/2022	Revisado por:	Ing. Favio	o Portilla	
Muestra:	12	Coordenadas:	9874312		
			730	541	
	ENSAYO CONTEN	NIDO DE HUMED	AD		
N. Recipiente		A	В	C	
Peso Recipiente	(gr)	53.1	32.40 33.50		
Peso suelo húme	eso suelo húmedo + recipiente (gr) 127.4 183.70 187.			187.54	
Peso suelo seco	+ recipiente (gr)	121.4	169.20	175.20	
Peso de agua W	w (gr)	6	14.5	12.34	
Peso suelo seco Ws (gr)		68.3	136.8	141.7	
Contenido de hu	medad (W%)	8.78%	10.60%	8.71%	
W Promedio (%)		9.36%		

ENSAYO DENSIDAD DE CAMPO

Tabla 91 : Ensayo Contenido de humedad – Muestra 1

ENSAYO DE DETERMINACIÓN DE CAMPO
"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA **Proyecto:** DE COTOPAXI."

Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm
ID Muestra:	1	Profundidad:	80	cm
Norma:	AASHTO T191 2014	Coordenadas:	17- Sur	9882429 N 734127 E.

DETERMINACIÓN DEL SUELO EXTRAÍDO				
Peso de la masa del suelo + recipiente	1024	g		
Peso de recipiente (funda plastica)	3	g		
Peso de la masa del suelo (Wm)	1021	g		

DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO				
Peso inicial frasco + cono + arena	6134.87	g		
Peso final frasco + cono + arena	4812.94	g		
Peso de la arena en el hueco	969.93	g		
Calibraciòn de la arena de Ottawa γsand	1.589	g/cm³		
Volumen del hueco de la masa Vm	610.40	cm³		

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD					
Recipiente Número	3	4	-		
Peso muestra húmeda + recipiente (Wm + Wr)	320.47	315.47	g		
Peso muestra seca + recipiente (Ws + Wr)	281.57	289.47	g		
Peso del agua (Ww)	39.14	42.14	g		
Peso del recipiente (Wr)	18.54	17.27	g		
Peso de la muestra seca (Ws)	263.03	272.20	g		
Contenido de humedad (ω)	14.88	15.48	%		
Promedio contenido de humedad (ω)	15.18 %		%		

DETERMINACIÓN DE LAS FASES DEL SUELO							
		Volúm	enes	Ma	asas		
cm ³	g	Vv =	83.42				
Vy Va Aire W	Va	Va =	44.28	Wa =	0.00		
Vm Vw Agua W	Vw Wm	Vw =	39.14	Ww =	39.14		
Vs Sólidos W	Vs	Vs =	102.72	Ws =	272.20		
-	-	Vm=	186.14	Wm=	311.34		

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1.673	g/cm³		
Densidad seca (γd)	1.452	g/cm³		
Contenido de humedad (ω)	15.18	%		
Relación de vacíos (e = Vv / Vs)	0.81	-		
Porosidad ($n = Vv/Vm$)	44.82	%		
Grado de saturación de agua (Gw = Vw/Vv)	46.92	%		
Grado de saturación de aire (Ga = Va/Vv)	53.08	%		

Tabla 92: Ensayo Contenido de humedad – Muestra 2

CARRERA DE INGENIERIA CIVIL ENSAYO DE DETERMINACIÓN DE CAMPO						
	"ANÁLISIS DE LAS CORREL					
Proyecto:	MECÁNICAS EN LOS SUELOS			RCA, CANTO	ÓN PUJILÍ, I	PROVINCIA
¥7/	Diagram Only I'm I'm /I I and I		OTOPAXI."	5		
Vía: ID Muestra:	Pingua Quindigua/Llanchad 2.	chi	Capa Vegetal:	-	cm	
Norma:	AASHTO T191 2014		Profundidad: Coordenadas:	100 17- Sur	cm 9882052	734794
Norma.	AASII10 1191 2014		Coordenadas.	17- Sui	9002032	734734
	DETERMIN	ACIÓN DEL S	UELO EXTRAÍI	00		
Peso de la	Peso de la masa del suelo + recipiente 1061					g
Peso de r	recipiente (funda plastica)			9)	g
Peso de la	a masa del suelo (Wm)			10:	52	g
	DETERMINACIÓN DEL VO	LUMEN DE L	A PERFORACIO	ÓN EN EL S	UELO	
Peso inic	ial frasco + cono + arena			4823	3.14	g
	l frasco + cono + arena			35		g
	a arena en el hueco			961.47		g
	iòn de la arena de Ottawa γsand			1.582		g/cm³
Volumen	del hueco de la masa Vm			613.87		cm ³
	DETERMINACIÓ	N DEL CONT	ENIDO DE HUN	MEDAD		
Recipient	te Número			3MF	A	-
	estra húmeda + recipiente (Wm + Wr)		102.87	120.84	g
Peso mue	estra seca + recipiente (Ws + Wr)			91.60	107.50	g
Peso del	agua (Ww)			11.27	13.34	g
Peso del	recipiente (Wr)			31.20	33.40	g
	a muestra seca (Ws)			60.40	74.10	g
	o de humedad (ω)			18.66	18.00	%
Promedio	o contenido de humedad (ω)			18.	33	%
		,				
	DETERMINA	CIÓN DE LAS	FASES DEL SU			
	-		Volúm		M	asas
CI	m³	g	Vv =	21.85		
	Vv Va Aire Wa Vw Agua Ww Vs Sólidos Ws		Va =	10.58	Wa =	
Vm	Vw Agua Ww	Wm	Vw =	11.27	Ww =	
	Vs Sólidos Ws	l	Vs =	27.96	Ws =	
			Vm=	49.82	Wm=	85.37
			,			

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO)	
Densidad húmeda o Peso Volumètrico del suelo (γm)	1.714	g/cm³
Densidad seca (yd)	1.448	g/cm³
Contenido de humedad (ω)	18.33	%
Relación de vacíos (e = Vv / Vs)	0.78	-
Porosidad (n = Vv/Vm)	43.87	%
Grado de saturación de agua (Gw = Vw/Vv)	51.57	%
Grado de saturación de aire (Ga = Va/Vv)	48.43	%

40.05 59.95

%

	ENSAYO DE DETER					
	"ANÁLISIS DE LAS CORRELACIÓNES					
Proyecto:	MECÁNICAS EN LOS SUELOS DE LA P.			CA, CANT	ÓN PUJILÍ,	PROVINCIA
		DE COTOPA				
Vía:	Singua/Yallivi	_	Vegetal:	5	cm	
ID Muestra:	4	Profu	ndidad:	80	cm	•
Norma:	AASHTO T191 2014	Coord	enadas:	17- Sur	9877198	731977
	·					
	DETERMINACIÓN I	DEL SUELO I	EXTRAID	0		
	a masa del suelo + recipiente)27	g
	recipiente (funda plastica)				9	g
Peso de l	a masa del suelo (Wm)			10	18	g
	DETERMINACIÓN DEL VOLUMEN	DE LA PERI	ORACIÓ	N EN EL S	UELO	
Peso inic	ial frasco + cono + arena			74	-21	g
Peso fina	l frasco + cono + arena			608	7.97	g
	a arena en el hueco			967	7.24	g
	òn de la arena de Ottawa γsand			1.5	582	g/cm³
Volumen	del hueco de la masa Vm			611	1.40	cm³
	DETERMINACIÓN DEL (CONTENIDO	DE HUM	EDAD		
Recipient	te Número			7	6A	-
Peso muestra húmeda + recipiente (Wm + Wr)				221.75	184.25	g
Peso mue	estra seca + recipiente (Ws + Wr)			204.57	169.87	g
Peso del	agua (Ww)			17.18	14.38	g
Peso del	recipiente (Wr)			24.87	23.94	g
Peso de l	a muestra seca (Ws)			179.70	145.93	g
Contenid	o de humedad (ω)			9.56	9.85	%
Promedic	o contenido de humedad (ω)			9.	71	%
	DETERMINACIÓN DI	E LAS FASES	DEL SUE	LO		
			Volúme	nes	M	asas
	m ³ g		Vv =	42.89		
	Vv Va Aire Wa Vw Agua Ww Wr Vs Sólidos Ws		Va =	25.71	Wa =	0.00
Vm	VW Agua Ww Wr	n	Vw =	17.18	Ww =	17.18
	Vs Sólidos Ws		Vs =	55.07	Ws =	145.93
			Vm =	97.96	Wm=	163.11
		•	<u>.</u>			•
	DETERMINACIÓN DE LAS PR	OPIEDADES	ÍNDICE	DEL SUEL	0	
Densidad	húmeda o Peso Volumètrico del suelo (ym)				1.665	g/cm³
Densidad seca (yd)			1.518	g/cm³		
	Contenido de humedad (ω)				9.71	%
Relación	de vacíos (e = Vv / Vs)				0.78	-
Porosidad (n = Vv/Vm)					43.79	%

Grado de saturación de agua (Gw = Vw/Vv)

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y

Proyecto:	MECÁNICAS EN LOS SUELOS DE LA PARRO				
,		COTOPAXI."	<u> </u>	,	
Vía:	Singua/Yallivi	Capa Vegetal:	5	cm	
ID Muestra:	4	Profundidad:	80	cm	_
Norma:	AASHTO T191 2014	Coordenadas:	17- Sur	9877198	731977
	DETERMINACIÓN DEL	SUELO EXTRAÍD	0		
	a masa del suelo + recipiente		958		g
	ecipiente (funda plastica)		7.	63	g
Peso de la	a masa del suelo (Wm)		950).38	g
	DETERMINACIÓN DEL VOLUMEN DE	LA PERFORACIO			
	al frasco + cono + arena		3600		g
	frasco + cono + arena			0.14	g
	a arena en el hueco		812		g
	òn de la arena de Ottawa γsand		1.5		g/cm³
volumen	del hueco de la masa Vm		513	3.30	cm ³
	DETERMINACIÓN DEL CON	TENIDO DE ULIM	EDAD		
Recipient		TENIDO DE HUM	12	1A	_
	stra húmeda + recipiente (Wm + Wr)		194.58	227.41	σ
	stra seca + recipiente (Ws + Wr)		160.30	185.40	g g
	agua (Ww)		34.28	42.01	g
	recipiente (Wr)		31.40	30.40	g
	a muestra seca (Ws)		128.90	155.00	g
	o de humedad (ω)		26.59	27.10	%
Promedio	contenido de humedad (ω)		26.	.85	%
	· ,				
	DETERMINACIÓN DE LA	S FASES DEL SUF	LO		
		Volúme	nes	M	asas
cn	m³ g	Vv =	43.74		
	Vu Va Aire Wa	Va =	9.46	Wa =	0.00
Vm	Vv	Vw =	34.28	Ww =	34.28
	Vs Sólidos Ws	Vs =	58.49	Ws =	155.00
		Vm =	102.23	Wm=	189.28
	DETERMINACIÓN DE LAS PROPI	EDADES ÍNDICE I	DEL SUEL	0	
Densidad	húmeda o Peso Volumètrico del suelo (γm)			1.852	g/cm³
Densidad seca (γd)			1.460	g/cm³	
Contenido de humedad (ω)				26.85 0.75	%
Relación de vacíos (e = Vv / Vs)					-
	d(n = Vv/Vm)			42.79	%
	saturación de agua (Gw = Vw/Vv)			78.37 21.63	%
Grado de saturación de aire (Ga = Va/Vv)					%

73.80

26.20

%

UT	ENDITO DE D							
"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y								
Proyecto:								
		DE CC	TOPAXI."					
Vía:	Singua/Yallivi		Capa Vegetal:	5	cm			
ID Muestra:	5		Profundidad:	80	cm			
Norma:	AASHTO T191 2014		Coordenadas:	17- Sur	9877934	733072		
	DETERMINAC	IÓN DEL SU	ELO EXTRAÍD	0				
	a masa del suelo + recipiente			1097	7.41	g		
Peso de re	ecipiente (funda plastica)			8.	.1	g		
Peso de la	a masa del suelo (Wm)			1089	9.31	g		
	DETERMINACIÓN DEL VOLU	IMEN DE LA	PERFORACIÓ	N EN EL S	UELO			
	ial frasco + cono + arena			3804	4.92	g		
Peso final	l frasco + cono + arena			1253	3.47	g		
	a arena en el hueco			943	.98	g		
Calibraci	òn de la arena de Ottawa γsand			1.5		g/cm³		
Volumen	del hueco de la masa Vm			596	.70	cm³		
	DETERMINACIÓN	DEL CONTI	ENIDO DE HUM	EDAD				
	e Número			30	5B	-		
Peso muestra húmeda + recipiente (Wm + Wr)				143.58	138.78	g		
	stra seca + recipiente (Ws + Wr)			123.30	120.20	g		
	agua (Ww)			20.28	18.58	g		
	recipiente (Wr)			33.40	32.20	g		
Peso de la	a muestra seca (Ws)			89.90	88.00	g		
	o de humedad (ω)			22.56	21.11	%		
Promedio	contenido de humedad (ω)			21.	.84	%		
	DETERMINACIÓ	ÓN DE LAS I						
			Volúme	nes	M	asas		
cr	n³	g	Vv =	25.17				
	Vy Va Aire Wa		Va =	6.59	Wa =	0.00		
Vm	Vv Va Aire Wa Vw Agua Ww Vs Sólidos Ws	Wm	Vw =	18.58	Ww =	18.58		
	Vs Sólidos Ws		$V_S =$	33.21	Ws =	88.00		
			Vm=	58.38	Wm=	106.58		
	DETERMINACIÓN DE LA		ADES ÍNDICE	DEL SUEL	0			
Densidad	húmeda o Peso Volumètrico del suelo	(ym)			1.826	g/cm³		
	seca (γd)				1.498	g/cm³		
	o de humedad (ω)				21.84	%		
	de vacíos (e = Vv / Vs)				0.76	-		
Porosidad	d(n = Vv/Vm)				43.12	%		

Grado de saturación de agua (Gw = Vw/Vv)

44.36

%

			CION DE CAMI			
	"ANÁLISIS DE LAS CORRELAC					
Proyecto:	MECÁNICAS EN LOS SUELOS DE			RCA, CANT	ÓN PUJILÍ,	PROVINCIA
T7/	G: GI III :	DE CO	OTOPAXI."	_		
Vía:	Singua/Yallivi		Capa Vegetal:	5	cm	
ID Muestra:	6		Profundidad:	80	cm	ı
Norma:	AASHTO T191 2014		Coordenadas:	17- Sur	9877934	733072
	DETERMINA	TIÓN DEL CI	JELO EXTRAÍD	<u> </u>		
Paso do l	a masa del suelo + recipiente	JON DEL SU	JELU EXIKAIL	93	27	
	recipiente (funda plastica)			9.8		g
	a masa del suelo (Wm)			927		g
Peso de I	a masa dei suero (win)			921	.13	lg .
	DETERMINACIÓN DEL VOL	IIMEN DE L	A PERFORACIÓ	N EN EL S	UELO	
Peso inic	ial frasco + cono + arena	CIVILIV DE LI	TI LIU ORICIO	5910		g
	l frasco + cono + arena			1815		g
	a arena en el hueco			742		g
	iòn de la arena de Ottawa γsand			1.5		g/cm³
	del hueco de la masa Vm			469		cm ³
, oranien				,		10111
	DETERMINACIÓN	DEL CONT	ENIDO DE HUM	EDAD		
Recipien	te Número			4B	13	-
Peso mue	estra húmeda + recipiente (Wm + Wr)			111.08	144.14	g
Peso muestra seca + recipiente (Ws + Wr)			103.39	134.10	g	
Peso del	agua (Ww)			7.69	10.04	g
	recipiente (Wr)			31.68	33.77	g
Peso de l	a muestra seca (Ws)			71.71	100.33	g
Contenid	o de humedad (ω)			10.72	10.01	%
Promedic	o contenido de humedad (ω)			10.	.37	%
	DETERMINACI	ÓN DE LAS	FASES DEL SUI	ELO		
			Volúme	nes	M	asas
CI	Ma Vv Va Aire Wa Vw Agua Ww Vs Sólidos Ws	g	Vv =	18.04		1
	Vy Va Aire Wa		Va =	8.00	Wa =	0.00
Vm	VV Vw Agua Ww	Wm	Vw =	10.04	Ww =	10.04
	Vs Sólidos Ws		Vs =	37.86	Ws =	100.33
			Vm =	55.90	Wm=	110.37
	DETERMINACIÓN DE L		DADES ÍNDICE	DEL SUEL	0	
	l húmeda o Peso Volumètrico del suelo	ο (γm)			1.974	g/cm³
	l seca (γd)				1.789	g/cm³
	o de humedad (ω)				10.37	%
	de vacíos (e = Vv / Vs)				0.48	-
	d(n = Vv/Vm)				32.28	%
Grado de	saturación de agua (Gw = Vw/Vv)				55.64	%
					11126	10/

Tabla 97 : Ensayo Contenido de humedad – Muestra 7

28.57

%

ENSAYO DE DETERMINACIÓN DE CAMPO										
"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y										
Proyecto:										
		DE COTOPAXI."	_							
Vía:	Teodasin/Angamarca	Capa Vegeta		cm						
ID Muestra:	7	Profundidad:		cm						
Norma:	AASHTO T191 2014	Coordenadas	s: 17- Sur	9877233	731027					
		EL CHELO EVED	ίρο							
Dago do I	DETERMINACIÓN D	EL SUELO EXTRA		92	I_					
	a masa del suelo + recipiente			.82 1.4	g					
	ecipiente (funda plastica) a masa del suelo (Wm)				g					
Peso de I	a masa dei sueio (wm)		117	70.6	g					
	DETERMINACIÓN DEL VOLUMEN	DE I A DEDECIDAC	TIÓN EN EL S	TIEL O						
Peso inic	ial frasco + cono + arena	DE LA I ERFORAC	877		<u>ر</u>					
	l frasco + cono + arena			4.58	g g					
-	a arena en el hueco		105							
	òn de la arena de Ottawa γsand			582	g/cm³					
-	del hueco de la masa Vm		668		cm ³					
Voluncii	del nacco de la masa vin		000	1.21	CIII					
	DETERMINACIÓN DEL CONTENIDO DE HUMEDAD									
Recipient	te Número		A	В	_					
Peso mue	stra húmeda + recipiente (Wm + Wr)		184.87	164.00	g					
Peso muestra seca + recipiente (Ws + Wr)			158.74	142.14	g					
Peso del	agua (Ww)		26.13	21.86	g					
Peso del	recipiente (Wr)		30.71	30.15	g					
Peso de l	a muestra seca (Ws)		128.03	111.99	g					
Contenido	o de humedad (ω)		20.41	19.52	%					
Promedic	contenido de humedad (ω)		19.	.96	%					
	DETERMINACIÓN DE									
		Volú	menes	M	asas					
CI	m³ g	Vv	36.58							
	Vv Va Aire Wa Vw Agua Ww Wm Vs Sólidos Ws	Va	10.45	Wa =	0.00					
Vm	Vw Agua Ww Wm	Vw	= 26.13	Ww =	26.13					
	Vs Sólidos Ws	Vs	42.26	Ws =	111.99					
		Vm	n = 78.84	Wm=	138.12					
		,								
	DETERMINACIÓN DE LAS PR	OPIEDADES ÍNDIC	CE DEL SUEL	0						
-	húmeda o Peso Volumètrico del suelo (γm)			1.752	g/cm³					
	seca (yd)			1.460	g/cm³					
	o de humedad (ω)			23.33	%					
	de vacíos (e = Vv / Vs)			0.87	-					
	d(n = Vv/Vm)			46.40	%					
Grado de	saturación de agua (Gw = Vw/Vv)			71.43	%					

37.28

%

	"ANÁLISIS DE LAS CORRELAC	IÓNES ENTR	E EL CBR, DCP,	LAS PROP	IEDADES Í	NDICES Y
Proyecto:	MECÁNICAS EN LOS SUELOS DE	LA PARROQ	UIA ANGAMAR	CA, CANTO	ÓN PUJILÍ,	PROVINCIA
		DE CO	TOPAXI."			
Vía:	Teodasin/Angamarca		Capa Vegetal:	5	cm	
ID Muestra:	8		Profundidad:	80	cm	
Norma:	AASHTO T191 2014		Coordenadas:	17- Sur	9876399	731164
		,	,			
	DETERMINAC	ION DEL SU	ELO EXTRAÍD			
Peso de la	1	g				
	ecipiente (funda plastica)			1:		g
Peso de la	a masa del suelo (Wm)			89	99	g
	,					
	DETERMINACIÓN DEL VOLU	MEN DE LA	PERFORACIÓ			
	ial frasco + cono + arena			7321		g
	l frasco + cono + arena			6137		g
	a arena en el hueco			832		g
	òn de la arena de Ottawa γsand			1.5		g/cm³
Volumen	del hueco de la masa Vm			526	.45	cm ³
	,					
	DETERMINACIÓN	DEL CONTE	NIDO DE HUM		1	
	te Número			В	R	-
Peso muestra húmeda + recipiente (Wm + Wr)				169.47	141.98	g
Peso muestra seca + recipiente (Ws + Wr)			149.20	128.40	g	
	agua (Ww)			20.27	13.58	g
	recipiente (Wr)			31.20	30.20	g
	a muestra seca (Ws)			118.00	98.20	g
	o de humedad (ω)			17.18	13.83	%
Promedio	contenido de humedad (ω)			15.	%	
		,				
	DETERMINACIO	ON DE LAS F			ı	
			Volúme		M	asas
cr	m ³	g	Vv =	32.32		
	Vv Va Aire Wa		Va =	12.05	Wa =	0.00
Vm	Vw Agua Ww	Wm	Vw =	20.27	Ww =	1
	Vv Va Aire Wa Ww Vs Sólidos Ws		Vs =	37.06	Ws =	
			Vm=	69.38	Wm=	118.47
			,			
	DETERMINACIÓN DE LA		ADES ÍNDICE	DEL SUEL		
	húmeda o Peso Volumètrico del suelo	(γm)			1.708	g/cm³
	seca (yd)				1.478	g/cm³
	o de humedad (ω)				20.64	%
	de vacíos ($e = Vv / Vs$)				0.87	-
	d(n = Vv/Vm)				46.59	%
Grado de	saturación de agua (Gw = Vw/Vv)				62.72	%
C 1. 1					27.20	10/

38.36

%

	"ANÁLISIS DE LAS CORRELAC		REFLORE DOP		IEDADES Í	NDICE	7S V
Proyecto: N	MECÁNICAS EN LOS SUELOS DE						
Troyceto.	ALCA INICAS EN LOS SOLLOS DI		OTOPAXI."	(C/1, C/11\1)	OIVI OJILI,	I KO V	пчент
Vía:	Teodasin/Angamarca	BE C	Capa Vegetal:	5	cm		
D Muestra:	9		Profundidad:	80	cm		
Norma:	AASHTO T191 2014		Coordenadas:		9877155		730830
				- 1 10 112	, , , , , , ,		
	DETERMINAC	CIÓN DEL S	UELO EXTRAÍD	00			
Peso de la r	masa del suelo + recipiente	0101(2225		91	12	g	
	ipiente (funda plastica)				2	g	
	masa del suelo (Wm)			9()()	g	
1 000 00 10 1	imon del suelo (vill)		ı		,,,	Б	
	DETERMINACIÓN DEL VOL	UMEN DE L	A PERFORACIÓ	N EN EL S	UELO		
Peso inicial	frasco + cono + arena			613	4.87	g	
Peso final f	rasco + cono + arena			495′	7.51	g	
Peso de la a	arena en el hueco			826	5.36	g	
Calibraciòn	n de la arena de Ottawa γsand			1.5	82	g/cm³	
Volumen de	el hueco de la masa Vm			522	35	cm³	
	DETERMINACIÓN	DEL CONT	ENIDO DE HUM	EDAD			
Recipiente	Número			A	В	-	
Peso muesti	ra húmeda + recipiente (Wm + Wr)			197.84	201.50	g	
Peso muesti	ra seca + recipiente (Ws + Wr)			170.50	172.40	g	
Peso del ag	ua (Ww)			27.34	29.10	g	
Peso del rec	cipiente (Wr)			30.20	30.50	g	
Peso de la 1	muestra seca (Ws)			140.30	141.90	g	
Contenido o	le humedad (ω)			19.49	20.67	%	
Promedio c	ontenido de humedad (ω)			20.08		%	
	DETERMINACI	ÓN DE LAS	FASES DEL SUF	ELO			
			Volúme	nes	M	[asas	
cm ³		g	Vv =	44.35			
	Vv Va Aire Wa Ww Ww Vs Still Ww		Va =	17.01	Wa =	0.	.00
Vm	VV Agua Ww	Wm	Vw =	27.34	Ww =	27	.34
	Vs Sólidos Ws		Vs =	52.94	Ws =	140	0.30
•		1	Vm=	97.30	Wm=		7.64
			l L				
	DETERMINACIÓN DE L	AS PROPIE	DADES ÍNDICE	DEL SUEL	0		
Densidad h	úmeda o Peso Volumètrico del suelo	o (ym)			1.723	g/cm³	
Densidad se					1.435	g/cm ³	
	de humedad (ω)				19.49	%	
Relación de	e vacíos (e = Vv / Vs)				0.84	-	
Porosidad ((n = Vv/Vm)				45.59	%	
Grado de sa	aturación de agua (Gw = Vw/Vv)				61.64	%	
C 1 1	· · · · · · · · · · · · · · · · · · ·				20.26	10/	

29.58

%

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y									
Proyecto:	MECÁNICAS EN LOS SUELOS DE			CA, CANTO	ÓN PUJILÍ,	PROVINCIA			
		DE CO	TOPAXI."						
Vía:	Shuyo Grande/Arrayan Pata		Capa Vegetal:	5	cm				
ID Muestra:	10		Profundidad:	80	cm				
Norma:	AASHTO T191 2014		Coordenadas:	17- Sur	9875543	731388			
		,	,						
	DETERMINAC	ION DEL SU	ELO EXTRAÍD			1			
	a masa del suelo + recipiente			12		g			
	ecipiente (funda plastica)			9.		g			
Peso de la	a masa del suelo (Wm)			128	2.5	g			
	,								
	DETERMINACIÓN DEL VOLU	IMEN DE LA	PERFORACIÓ						
	ial frasco + cono + arena			88		g			
	frasco + cono + arena			741		g			
	a arena en el hueco			110		g			
	òn de la arena de Ottawa γsand			1.5		g/cm³			
Volumen	del hueco de la masa Vm			701	.33	cm ³			
	DETERMINACIÓN	DEL CONTE	NIDO DE HUM	EDAD					
Recipient				A	В	-			
	stra húmeda + recipiente (Wm + Wr)			154.80	154.98	g			
Peso muestra seca + recipiente (Ws + Wr)			135.00	134.70	g				
	agua (Ww)			19.80	20.28	g			
	recipiente (Wr)			33.00	32.10	g			
	a muestra seca (Ws)			102.00	102.60	g			
	o de humedad (ω)			19.41	19.77	%			
Promedio	contenido de humedad (ω)			19.	59	%			
		,							
	DETERMINACIÓ	ON DE LAS I							
			Volúme	nes	M	asas			
cn	m³	g	Vv =	28.12					
	Vv Va Aire Wa Ww Vs Sólidos Ws		Va =	8.32	Wa =	0.00			
Vm	Vw Agua Ww	Wm	Vw =	19.80	Ww =				
	Vs <u>Sólidos</u> Ws		Vs =	38.49	Ws =	102.00			
			Vm =	66.61	Wm=	121.80			
	DETERMINACIÓN DE LA		ADES ÍNDICE	DEL SUEL	0				
	húmeda o Peso Volumètrico del suelo	(ym)			1.829	g/cm³			
Densidad seca (γd)			1.529	g/cm³					
	o de humedad (ω)				19.41	%			
	de vacíos (e = Vv / Vs)				0.73	-			
	d(n = Vv/Vm)				42.21	%			
Grado de saturación de agua (Gw = Vw/Vv)					70.42	%			

35.39

%

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y								
Proyecto:	MECÁNICAS EN LOS SUELOS DE	LA PARROQ	UIA ANGAMAR	CA, CANTO	ÓN PUJILÍ,	PROVINCIA		
		DE CO	TOPAXI."					
Vía:	Vía: Shuyo Grande/Arrayan Pata Capa Vegetal: 5							
ID Muestra:	11		Profundidad:	80	cm			
Norma:	AASHTO T191 2014		Coordenadas:	17- Sur	9875543	731388		
		IÓN DEL SU	ELO EXTRAÍD					
	a masa del suelo + recipiente			12'		g		
	ecipiente (funda plastica)			2.		g		
Peso de la	a masa del suelo (Wm)			127	2.5	g		
	,							
	DETERMINACIÓN DEL VOLU	JMEN DE LA	PERFORACIO					
	al frasco + cono + arena			74		g		
	frasco + cono + arena			59		g		
	a arena en el hueco			11:		g		
	òn de la arena de Ottawa γsand			1.5		g/cm³		
Volumen	del hueco de la masa Vm			726	.93	cm³		
	DETERMINACIÓN	DEL CONTE	NIDO DE HUM					
Recipient				A	В	-		
Peso muestra húmeda + recipiente (Wm + Wr)			201.87	207.65	g			
Peso muestra seca + recipiente (Ws + Wr)				173.10	178.80	g		
	agua (Ww)			28.77	28.85	g		
	recipiente (Wr)			33.20	33.50	g		
	a muestra seca (Ws)			139.90	145.30	g		
	o de humedad (ω)			20.56 19.86		%		
Promedio	contenido de humedad (ω)			20.	21	%		
	DEWEDIANIA	ÓMBELAGI	ACEC DEL CHE	T ()				
	DETERMINACIO	ON DE LAS E			3.4			
	2		Volúme		IVI	asas		
cn	n v	g I	Vv =	44.65	337	0.00		
* 7	Vv Va Aire Wa Vw Agua Ww Vs Sólidos Ws	***	Va =	15.80	Wa =	0.00		
Vm	VW Agua WW	wm	Vw =	28.85	Ww =	28.85		
	Vs Solidos Ws	I	Vs =	54.83	Ws =	145.30		
			Vm=	99.48	Wm=	174.15		
	DETERMINACIÓN DE L	A C DD O DEED	ADEC ÍNDICE	DEL CHEL	0			
Danaidad	DETERMINACIÓN DE L		ADES INDICE	DEL SUEL		/ 2		
	húmeda o Peso Volumètrico del suelo	(γιιι)			1.751	g/cm ³		
Densidad	seca (γα) o de humedad (ω)				1.456	g/cm ³		
	de vacíos (e = Vv / Vs)				19.86 0.81	%		
	$\frac{1}{(n = Vv/Vm)}$				44.89	%		
	$\frac{1(11 - VV/VIII)}{\text{saturación de agua (Gw = Vw/Vv)}}$				64.61	%		
Grado de	saturacion de agua (OW - VW/VV)				04.01	/0		

34.29

65.71

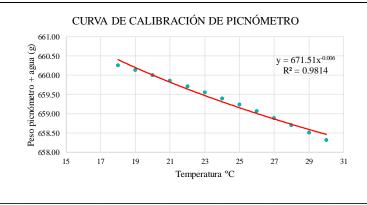
%

ENSAYO DE DETERMINACIÓN DE CAMPO								
	"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y							
Proyecto:						PROVINCIA		
			OPAXI."					
Vía:	Shuyo Grande/Arrayan Pata		Capa Vegetal:	5	cm			
ID Muestra:	12		rofundidad:	100	cm			
Norma:	AASHTO T191 2014	(Coordenadas:	17- Sur	9874312	730541		
	DETERMINACIÓN	DEL SUE	LO EXTRAÍD					
	a masa del suelo + recipiente			92		g		
	recipiente (funda plastica)			9.	8	g		
Peso de l	a masa del suelo (Wm)			91	.2	g		
	DETERMINACIÓN DEL VOLUMEN	N DE LA	PERFORACIÓ					
	ial frasco + cono + arena			427		g		
	l frasco + cono + arena			3094		g		
	a arena en el hueco			837		g		
	iòn de la arena de Ottawa γsand			1.5		g/cm³		
Volumen	del hueco de la masa Vm			529	.64	cm ³		
	DETERMINACIÓN DEL	CONTEN	IDO DE HUM	EDAD				
	te Número			В	C	-		
	estra húmeda + recipiente (Wm + Wr)			183.70	187.54	g		
	estra seca + recipiente (Ws + Wr)			169.20	175.20	g		
	agua (Ww)			14.50	12.34	g		
	recipiente (Wr)			32.40	33.50	g		
	a muestra seca (Ws)			136.80	141.70	g		
	o de humedad (ω)			10.60	8.71	%		
Promedio	o contenido de humedad (ω)			9.6	55	%		
	DETERMINACIÓN D	E LAS FA						
			Volúme	nes	M	asas		
CI	m³ g		Vv =	35.99				
	Vv Va Aire Wa Wa Vw Agua Ww Wi Vs Sólidos Ws		Va =	23.65	Wa =	0.00		
Vm	Vw Agua Ww Wı	m	Vw =	12.34	Ww =	12.34		
	Vs Sólidos Ws		Vs =	53.47	Ws =	141.70		
			Vm =	89.46	Wm=	154.04		
	DETERMINACIÓN DE LAS PI		DES ÍNDICE	DEL SUEL	0			
	l húmeda o Peso Volumètrico del suelo (γm)				1.722	g/cm³		
	l seca (γd)				1.570	g/cm³		
Contenid	o de humedad (ω)				8.71	%		
Relación	de vacíos (e = Vv / Vs)				0.67	-		
Porosida	d(n = Vv/Vm)				40.23	%		
~								

Grado de saturación de agua (Gw = Vw/Vv)

ENSAYO GRAVEDAD ESPECÍFICA

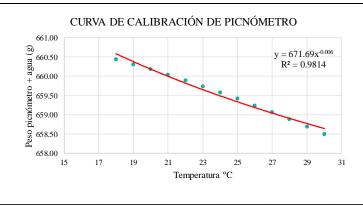
Tabla 103 : Ensayo Gravedad específica – Muestra 1



Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm
ID Muestra:	1	Profundidad:	80	cm
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9882429 N 734127 E.

D : :	70	
Recipiente Número	72	
Temperatura del agua + suelo	19.10	°C
Peso del recipiente + suelo seco	103.57	g
Peso del recipiente (Wr)	63.48	g
Peso del suelo seco (Ws)	40.09	g
Peso picnómetro + agua (Wbw)	660.00	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	700.09	g
Peso del picnómetro + agua + suelo (Wbws)	685.00	g
Desplazamiento de agua (Dw)	15.09	g
Factor de correcón por temperatura (K)	0.99840	
Gravedad específica (Gs)	2.652	

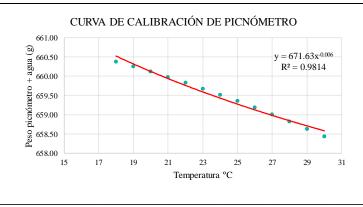
Calibración del Picnómetro					
Temperatura ° C	Masa (g)				
18	660.26				
19	660.13				
20	660.00				
21	659.86				
22	659.72				
23	659.56				
24	659.40				
25	659.23				
26	659.06				
27	658.88				
28	658.70				
29	658.51				
30	658.31				



Vía:	:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm	
ID N	Muestra:	2	Profundidad:	100	cm	
Nor	ma:	AASHTO T100 2015	Coordenadas:	17- Sur	9882052	734794

Recipiente Número	75	
Temperatura del agua + suelo	23.00	°C
Peso del recipiente + suelo seco	105.60	g
Peso del recipiente (Wr)	63.00	g
Peso del suelo seco (Ws)	42.60	g
Peso picnómetro + agua (Wbw)	660.18	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	702.78	g
Peso del picnómetro + agua + suelo (Wbws)	686.78	g
Desplazamiento de agua (Dw)	16.00	g
Factor de correcón por temperatura (K)	0.99760	
Gravedad específica (Gs)	2.656	

Calibración del Picnómetro			
Temperatura Masa (g)			
18	660.44		
19	660.31		
20	660.18		
21	660.04		
22	659.90		
23	659.74		
24	659.58		
25	659.41		
26	659.24		
27	659.06		
28	658.88		
29	658.69		
30	658.49		



Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm	
ID Muestra:	3	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9881614	735210

Recipiente Número	75	
Temperatura del agua + suelo	16.90	°C
Peso del recipiente + suelo seco	107.51	g
Peso del recipiente (Wr)	63.14	g
Peso del suelo seco (Ws)	44.97	g
Peso picnómetro + agua (Wbw)	660.12	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	705.09	g
Peso del picnómetro + agua + suelo (Wbws)	688.16	g
Desplazamiento de agua (Dw)	16.93	g
Factor de correcón por temperatura (K)	0.99820	
Gravedad específica (Gs)	2.651	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	660.38	
19	660.25	
20	660.12	
21	659.98	
22	659.84	
23	659.68	
24	659.52	
25	659.35	
26	659.18	
27	659.00	
28	658.82	
29 658.63		
30	658.43	

Vía:	Singua/Yallivi	Capa Vegetal:	5	cm	
ID Muestra:	4	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9877198	731977

Recipiente Número	13a	
Temperatura del agua + suelo	21.00	°C
Peso del recipiente + suelo seco	178.01	g
Peso del recipiente (Wr)	128.01	g
Peso del suelo seco (Ws)	50.00	g
Peso picnómetro + agua (Wbw)	657.00	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	707.00	g
Peso del picnómetro + agua + suelo (Wbws)	688.17	g
Desplazamiento de agua (Dw)	18.83	g
Factor de correcón por temperatura (K)	0.99820	
Gravedad específica (Gs)	2.651	

Calibración del Picnómetro			
Temperatura ° C	Masa (g)		
18	657.26		
19	657.13		
20	657.00		
21	656.86		
22	656.72		
23	656.56		
24	656.40		
25	656.24		
26	656.07		
27	655.89		
28	655.71		
29	655.52		
30	655.32		

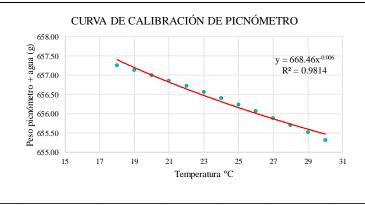
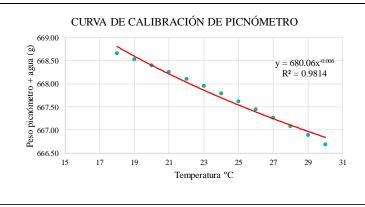


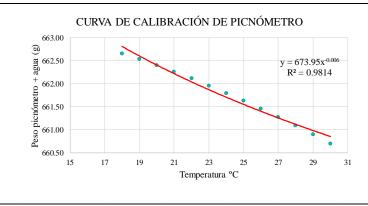
Tabla 107 : Ensayo Gravedad específica – Muestra 5



Vía:	Singua/Yallivi	Capa Vegetal:	5	cm	
ID Muestra:	5	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9877934	733072

Recipiente Número	73	
Temperatura del agua + suelo	22.00	°C
Peso del recipiente + suelo seco	303.62	g
Peso del recipiente (Wr)	257.20	g
Peso del suelo seco (Ws)	46.42	g
Peso picnómetro + agua (Wbw)	668.40	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	714.82	g
Peso del picnómetro + agua + suelo (Wbws)	697.40	g
Desplazamiento de agua (Dw)	17.42	g
Factor de correcón por temperatura (K)	0.99780	
Gravedad específica (Gs)	2.659	

Calibración del Picnómetro			
Temperatura Masa (g)			
18	668.66		
19	668.53		
20	668.40		
21	668.26		
22	668.11		
23	667.95		
24	667.79		
25	667.62		
26	667.45		
27	667.27		
28 667.08			
29 666.89			
30 666.69			



Vía:	Singua/Yallivi	Capa Vegetal:	5	cm	
ID Muestra:	6	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9877934	733072

Recipiente Número	M	
Temperatura del agua + suelo	21.00	°C
Peso del recipiente + suelo seco	300.80	g
Peso del recipiente (Wr)	242.15	g
Peso del suelo seco (Ws)	55.98	g
Peso picnómetro + agua (Wbw)	662.40	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	718.38	g
Peso del picnómetro + agua + suelo (Wbws)	697.40	g
Desplazamiento de agua (Dw)	20.98	g
Factor de correcón por temperatura (K)	0.99979	
Gravedad específica (Gs)	2.668	

Calibración del Picnómetro			
Temperatura ° C	Masa (g)		
18	662.66		
19	662.53		
20	662.40		
21	662.26		
22	662.12		
23	661.96		
24	661.80		
25	661.63		
26	661.46		
27	661.28		
28	661.10		
29	660.90		
30	660.70		

Vía:	Teodasin/Angamarca	Capa Vegetal:	5	cm	
ID Muestra:	7	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9877233	731027

Recipiente Número	F	
Temperatura del agua + suelo	25.00	°C
Peso del recipiente + suelo seco	302.00	g
Peso del recipiente (Wr)	270.14	g
Peso del suelo seco (Ws)	57.89	g
Peso picnómetro + agua (Wbw)	644.10	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	701.99	g
Peso del picnómetro + agua + suelo (Wbws)	671.20	g
Desplazamiento de agua (Dw)	20.04	g
Factor de correcón por temperatura (K)	0.99884	
Gravedad específica (Gs)	2.885	

Calibración del Picnómetro			
Temperatura ° C	Masa (g)		
18	644.35		
19	644.23		
20	644.10		
21	643.96		
22	643.82		
23	643.67		
24	643.51		
25	643.35		
26	643.19		
27	643.01		
28	642.83		
29	642.64		
30	642.45		

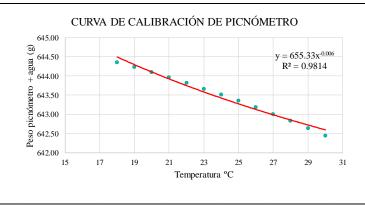
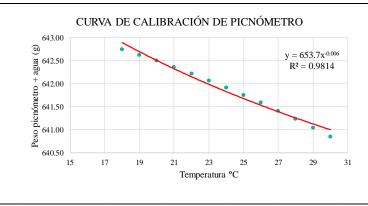


Tabla 110 : Ensayo Gravedad específica – Muestra 8

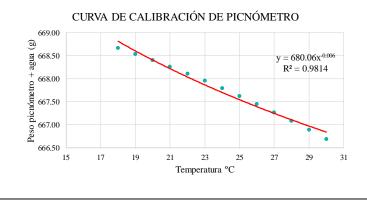


Vía:	Teodasin/Angamarca	Capa Vegetal:	5	cm	
ID Muestra:	8	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9876399	731164

Recipiente Número	88	
Temperatura del agua + suelo	22.00	°C
Peso del recipiente + suelo seco	305.80	g
Peso del recipiente (Wr)	260.03	g
Peso del suelo seco (Ws)	45.78	g
Peso picnómetro + agua (Wbw)	642.50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	688.28	g
Peso del picnómetro + agua + suelo (Wbws)	671.20	g
Desplazamiento de agua (Dw)	17.08	g
Factor de correcón por temperatura (K)	0.99957	
Gravedad específica (Gs)	2.680	

Calibración del Picnómetro			
Temperatura ° C	Masa (g)		
18	642.75		
19	642.63		
20	642.50		
21	642.37		
22	642.22		
23	642.07		
24	641.92		
25	641.75		
26	641.59		
27	641.41		
28	641.23		
29	641.05		
30	640.86		

Tabla 111 : Ensayo Gravedad específica – Muestra 9



Vía:	Teodasin/Angamarca	Capa Vegetal:	5	cm	
ID Muestra:	9	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9877155	730830

Recipiente Número	64	
Temperatura del agua + suelo	21.00	°C
Peso del recipiente + suelo seco	264.98	g
Peso del recipiente (Wr)	215.80	g
Peso del suelo seco (Ws)	49.19	gg
Peso picnómetro + agua (Wbw)	668.40	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	717.59	g
Peso del picnómetro + agua + suelo (Wbws)	699.10	g
Desplazamiento de agua (Dw)	18.49	g
Factor de correcón por temperatura (K)	0.99979	
Gravedad específica (Gs)	2.660	

Calibración del Picnómetro		
Temperatura	Masa (g)	
° C 18	668.66	
19	668.53	
20	668.40	
21	668.26	
22	668.11	
23	667.95	
24	667.79	
25	667.62	
26	667.45	
27	667.27	
28	667.08	
29	666.89	
30	666.69	

Tabla 112 : Ensayo Gravedad específica – Muestra 10

Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm	
ID Muestra:	10	Profundidad:	80	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9875543	731388

		,
Recipiente Número	M	
Temperatura del agua + suelo	19.00	°C
Peso del recipiente + suelo seco	173.59	g
Peso del recipiente (Wr)	123.14	g
Peso del suelo seco (Ws)	50.45	g
Peso picnómetro + agua (Wbw)	650.20	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	700.65	g
Peso del picnómetro + agua + suelo (Wbws)	681.70	g
Desplazamiento de agua (Dw)	18.95	g
Factor de correcón por temperatura (K)	0.99840	
Gravedad específica (Gs)	2.658	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	650.45	
19	650.33	
20	650.20	
21	650.06	
22	649.92	
23	649.76	
24	649.61	
25	649.45	
26	649.28	
27	649.10	
28	648.92	
29	648.73	
30	648.54	

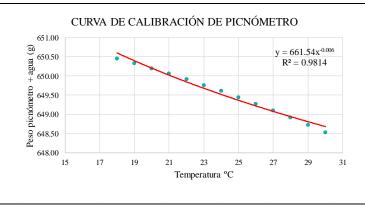
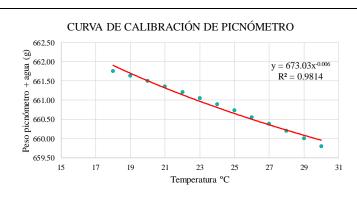


Tabla 113: Ensayo Gravedad específica – Muestra 11

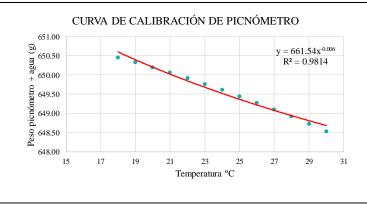


ŀ	Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm	
	ID Muestra:	11	Profundidad:	80	cm	
	Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9875543	731388

		i
Recipiente Número	80	
Temperatura del agua + suelo	20.00	°C
Peso del recipiente + suelo seco	180.60	g
Peso del recipiente (Wr)	134.24	g
Peso del suelo seco (Ws)	46.36	g
Peso picnómetro + agua (Wbw)	661.50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	707.86	g
Peso del picnómetro + agua + suelo (Wbws)	690.50	g
Desplazamiento de agua (Dw)	17.36	g
Factor de correcón por temperatura (K)	0.99820	
Gravedad específica (Gs)	2.666	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	661.76	
19	661.63	
20	661.50	
21	661.36	
22	661.22	
23	661.06	
24	660.90	
25	660.73	
26	660.56	
27	660.38	
28	660.20	
29	660.01	
30	659.81	

Tabla 114 : Ensayo Gravedad específica – Muestra 12

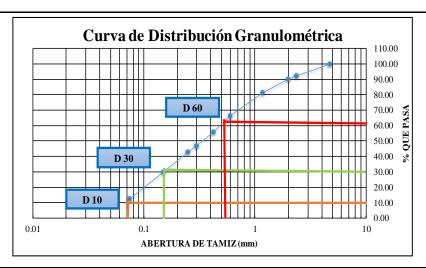


Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm	
ID Muestra:	12	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17- Sur	9874312	730541

		i e
Recipiente Número	79A	
Temperatura del agua + suelo	19.00	°C
Peso del recipiente + suelo seco	210.70	g
Peso del recipiente (Wr)	146.25	g
Peso del suelo seco (Ws)	64.45	g
Peso picnómetro + agua (Wbw)	650.20	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	714.65	g
Peso del picnómetro + agua + suelo (Wbws)	690.49	g
Desplazamiento de agua (Dw)	24.16	g
Factor de correcón por temperatura (K)	0.99840	
Gravedad específica (Gs)	2.663	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	650.45	
19	650.33	
20	650.20	
21	650.06	
22	649.92	
23	649.76	
24	649.61	
25	649.45	
26	649.28	
27	649.10	
28	648.92	
29	648.73	
30	648.54	

ENSAYO GRANULOMETRÍA



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Pingua Quindigua/LlanchachiCapa Vegetal:5cmID Muestra:1Profundidad:80cmNorma:AASHTO T 88 2013Coordenadas:17- Sur9882429 N734127 E.

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	74.89	74.89	7.51	92.49
10	2	23.94	98.83	9.90	90.10
16	1.18	85.96	184.79	18.52	81.48
30	0.6	152.47	337.26	33.80	66.20
40	0.425	101.40	438.66	43.96	56.04
50	0.3	91.84	530.50	53.17	46.83
60	0.25	39.87	570.37	57.16	42.84
100	0.15	129.47	699.84	70.14	29.86
200	0.075	171.58	871.42	87.33	12.67
BANDEJA		126.40	997.82	100.00	

RESULTADOS				
D10 (mm)	0.18	Cu = D60 / D10	13.89	
D30 (mm)	0.6	$Cc = D30^2 / (D60 * D10)$	0.80	
D60 (mm)	2.5	Tamaño Nominal Máximo (TNM)	2	
Error Permitido	1.00%	Error Calculado	0.22%	

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos G					
SUCS	0.00	87	13		
AASHTO	8.00	79	13		

Tabla 116: Ensayo granulometría – Muestra 2

5.86

SP

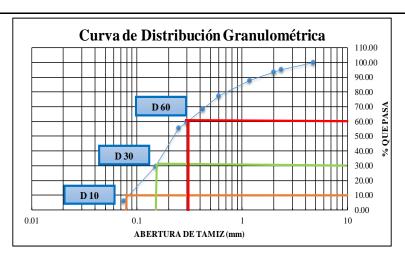
SM

94.14 100.00

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Pingua Quindigua/Llanchachi Capa Vegetal: 5 cm ID Muestra: Profundidad: 100 cm Norma: AASHTO T 88 2013 Coordenadas: 17- Sur 9882052 734794 Peso Muestra Seca: 1000

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	49.20	49.20	4.94	95.06
10	2	16.40	65.60	6.59	93.41
16	1.18	54.00	119.60	12.02	87.98
30	0.6	106.70	226.30	22.74	77.26
40	0.425	87.98	314.28	31.58	68.42
50	0.3	88.76	403.04	40.49	59.51
60	0.25	40.12	443.16	44.53	55.47
100	0.15	257.84	701.00	70.43	29.57


235.98

58.32

0.075

200

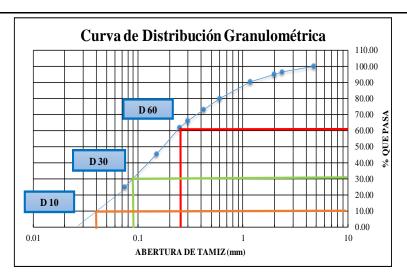
BANDEJA

936.98

995.30

	RESULTADOS				
D10 (mm)	0.08	Cu = D60 / D10	3.75		
D30 (mm)	0.18	$Cc = D30^2 / (D60 * D10)$	1.35		
D60 (mm)	0.3	Tamaño Nominal Máximo (TNM)	1.18		
Error Permitido	1.00%	Error Calculado	0.47%		

PORCENTAJE DE MATERIAL					
	Grava (G%)	Arena (S%)	Limo y Arcilla (Finos %)		
SUCS	0.00	94	6		
AASHTO	5.00	89	6		



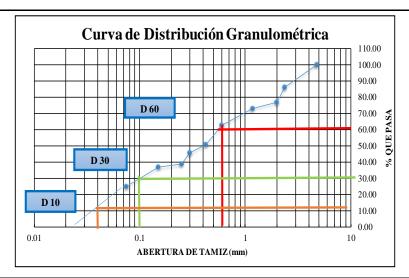
Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm	
ID Muestra:	3	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9881614	735210

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	35.72	35.72	3.59	96.41
10	2	14.28	50.00	5.02	94.98
16	1.18	46.40	96.40	9.68	90.32
30	0.6	101.52	197.92	19.87	80.13
40	0.425	71.32	269.24	27.03	72.97
50	0.3	67.48	336.72	33.81	66.19
60	0.25	42.56	379.28	38.08	61.92
100	0.15	165.36	544.64	54.68	45.32
200	0.075	202.76	747.40	75.04	24.96
BANDEJA		248.56	995.96	100.00	

	RESULTADOS				
D10 (mm)	0.04	Cu = D60 / D10	6.75		
D30 (mm)	0.09	$Cc = D30^2 / (D60 * D10)$	0.75		
D60 (mm)	0.27	Tamaño Nominal Máximo (TNM)	1.18		
Error Permitido	1.00%	Error Calculado	0.40%		

PORCENTAJE DE MATERIAL					
	Grava (G%)	Arena (S%)	Limo y Arcilla (Finos %)		
SUCS	0.00	75	25		
AASHTO	4.00	71	25		



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Singua/Yallivi	Capa Vegetal:	5	cm	
ID Muestra:	4	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9877198	731977

Peso Muestra Seca: 360 g

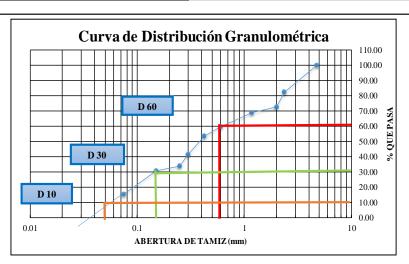
# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	50.14	50.14	13.98	86.02
10	2	33.14	83.28	23.22	76.78
16	1.18	13.24	96.52	26.91	73.09
30	0.6	37.12	133.64	37.26	62.74
40	0.425	42.57	176.21	49.12	50.88
50	0.3	18.14	194.35	54.18	45.82
60	0.25	24.98	219.33	61.14	38.86
100	0.15	7.40	226.73	63.21	36.79
200	0.075	42.80	269.53	75.14	24.86
BANDEJA		89.18	358.71	100.00	

RESULTADOS					
D10 (mm)	0.04	Cu = D60 / D10	15.00		
D30 (mm)	0.1	$Cc = D30^2 / (D60 * D10)$	0.42		
D60 (mm)	0.6	Tamaño Nominal Máximo (TNM)	2.36		
Error Permitido	1.00%	Error Calculado	0.36%		

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0.00	75	25		
AASHTO	14.00	61	25		

Tabla 119: Ensayo granulometría – Muestra 5

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Singua/Yallivi
 Capa Vegetal:
 5 cm

 ID Muestra:
 5
 Profundidad:
 80 cm

 Norma:
 AASHTO T 88 2013
 Coordenadas:
 17- Sur
 9877934
 733072

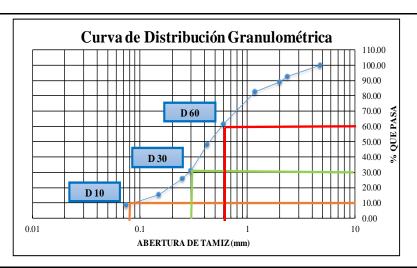
Peso Muestra Seca: 278 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	48.74	48.74	17.71	82.29
10	2	26.14	74.88	27.20	72.80
16	1.18	11.42	86.30	31.35	68.65
30	0.6	25.14	111.44	40.48	59.52
40	0.425	16.74	128.18	46.56	53.44
50	0.3	33.11	161.29	58.59	41.41
60	0.25	21.17	182.46	66.28	33.72
100	0.15	8.15	190.61	69.24	30.76
200	0.075	43.07	233.68	84.89	15.11
BANDEJA		41.60	275.28	100.00	

RESULTADOS				
D10 (mm)	0.05	Cu = D60 / D10	12.00	
D30 (mm)	0.12	$Cc = D30^2 / (D60 * D10)$	0.48	
D60 (mm)	0.6	Tamaño Nominal Máximo (TNM)	4.76	
Error Permitido	1.00%	Error Calculado	0.98%	

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0.00	85	15		
AASHTO	18.00	67	15		

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Singua/Yallivi
 Capa Vegetal:
 5
 cm

 ID Muestra:
 6
 Profundidad:
 80
 cm

 Norma:
 AASHTO T 88 2013
 Coordenadas:
 17- Sur
 9877934
 733072

Peso Muestra Seca: 1000 g

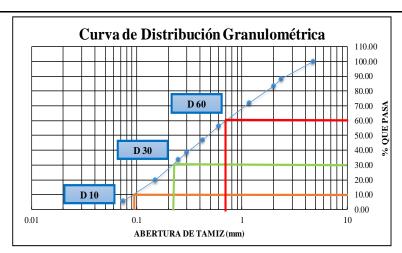
# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	74.28	74.28	7.50	92.50
10	2	34.16	108.44	10.94	89.06
16	1.18	66.16	174.60	17.62	82.38
30	0.6	206.28	380.88	38.43	61.57
40	0.425	133.80	514.68	51.93	48.07
50	0.3	168.40	683.08	68.92	31.08
60	0.25	49.87	732.95	73.96	26.04
100	0.15	104.04	836.99	84.45	15.55
200	0.075	68.47	905.46	91.36	8.64
BANDEJA		85.60	991.06	100.00	

SW-SM-SC

RESULTADOS				
D10 (mm)	0.08	Cu = D60 / D10	7.50	
D30 (mm)	0.3	$Cc = D30^2 / (D60 * D10)$	1.88	
D60 (mm)	0.6	Tamaño Nominal Máximo (TNM)	2	
Error Permitido	1.00%	Error Calculado	0.89%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0.00	91	9			
AASHTO	AASHTO 7.00 84 9					

Tabla 121 : Ensayo granulometría – Muestra 7



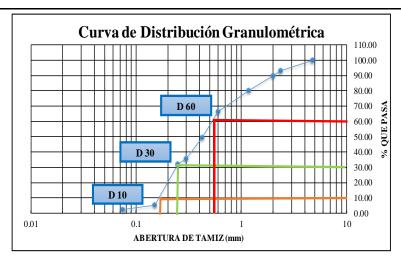
Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Teodasin/Angamarca Capa Vegetal: 5 cm ID Muestra: Profundidad: 80 7 cm AASHTO T 88 2013 Coordenadas: 17- Sur 9877233 731027 Norma: 1000 Peso Muestra Seca:

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	118.57	118.57	11.91	88.09
10	2	48.56	167.13	16.78	83.22
16	1.18	110.32	277.45	27.86	72.14
30	0.6	160.24	437.69	43.95	56.05
40	0.425	91.02	528.71	53.09	46.91
50	0.3	84.39	613.10	61.56	38.44
60	0.25	48.75	661.85	66.46	33.54
100	0.15	138.00	799.85	80.31	19.69
200	0.075	140.50	940.35	94.42	5.58
BANDEJA		55.56	995.91	100.00	

RESULTADOS				
D10 (mm)	0.095	Cu = D60 / D10	7.37	
D30 (mm)	0.22	$Cc = D30^2 / (D60 * D10)$	0.73	
D60 (mm)	0.7	Tamaño Nominal Máximo (TNM)	2.36	
Error Permitido	1.00%	Error Calculado	0.41%	

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0.00	94	6		
AASHTO	12.00	82	6		



Proyecto:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Teodasin/Angamarca	Capa Vegetal:	5	cm	
ID Muestra:	8	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9876399	731164

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	69.68	69.68	6.99	93.01
10	2	32.56	102.24	10.25	89.75
16	1.18	96.48	198.72	19.92	80.08
30	0.6	135.48	334.20	33.50	66.50
40	0.425	171.76	505.96	50.72	49.28
50	0.3	136.84	642.80	64.44	35.56
60	0.25	34.96	677.76	67.94	32.06
100	0.15	267.74	945.50	94.78	5.22
200	0.075	27.48	972.98	97.54	2.46
BANDEJA		24.58	997.56	100.00	

RESULTADOS				
D10 (mm)	0.18	Cu = D60 / D10	3.06	
D30 (mm)	0.25	$Cc = D30^2 / (D60 * D10)$	0.63	
D60 (mm)	0.55	Tamaño Nominal Máximo (TNM)	2	
Error Permitido	1.00%	Error Calculado	0.24%	

PORCENTAJE DE MATERIAL				
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)				
SUCS	0.00	98	2	
AASHTO	7.00	91	2	

60

100

200

BANDEJA

0.25

0.15

0.075

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE GRANULOMETRÍA

Proyecto:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

537.63

734.50

918.78

997.10

53.92

73.66

92.15

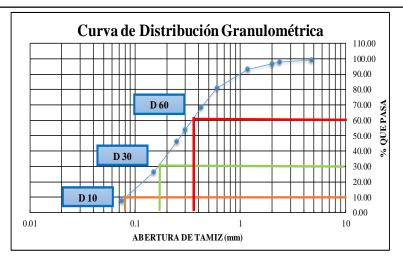
100.00

46.08

26.34

7.85

Vía:	Teodasin/Angamarca	Capa Vegetal:	5	cm	
ID Muestra:	9	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9877155	730830
Peso Muestra Seca:	1000 g				


# TAMIZ	ABERTURA (mm)		PESO RETENIDO ACUMULADO (g)		% QUE PASA
4	4.76	7.45	7.45	0.75	99.25
8	2.36	14.87	22.32	2.24	97.76
10	2	8.96	31.28	3.14	96.86
16	1.18	39.20	70.48	7.07	92.93
30	0.6	119.48	189.96	19.05	80.95
40	0.425	124.80	314.76	31.57	68.43
50	0.3	145.87	460.63	46.20	53.80

77.00

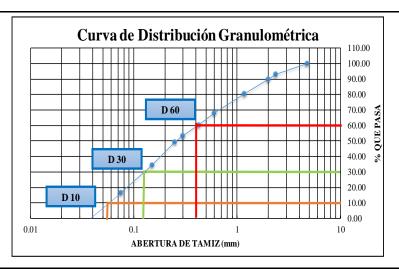
196.87

184.28

78.32

RESULTADOS				
D10 (mm)	0.08	Cu = D60 / D10	4.38	
D30 (mm)	0.19	$Cc = D30^2 / (D60 * D10)$	1.29	
D60 (mm)	0.35	Tamaño Nominal Máximo (TNM)	1.18	
Error Permitido	1.00%	Error Calculado	0.29%	

PORCENTAJE DE MATERIAL				
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)				
SUCS	0.75	91	8	
AASHTO	2.00	90	8	



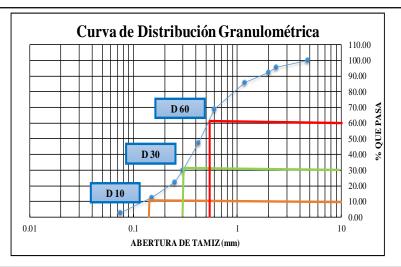
Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm	
ID Muestra:	10	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9875543	731388

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	68.84	68.84	6.94	93.06
10	2	30.16	99.00	9.97	90.03
16	1.18	94.16	193.16	19.46	80.54
30	0.6	125.87	319.03	32.14	67.86
40	0.425	74.16	393.19	39.61	60.39
50	0.3	70.36	463.55	46.70	53.30
60	0.25	40.80	504.35	50.81	49.19
100	0.15	147.58	651.93	65.68	34.32
200	0.075	174.28	826.21	83.24	16.76
BANDEJA		166.32	992.53	100.00	

RESULTADOS			
D10 (mm)	0.055	Cu = D60 / D10	2.55
D30 (mm)	0.12	$Cc = D30^2 / (D60 * D10)$	1.87
D60 (mm)	0.14	Tamaño Nominal Máximo (TNM)	2
Error Permitido	1.00%	Error Calculado	0.75%

PORCENTAJE DE MATERIAL				
	Grava (G%)	Arena (S%)	Limo y Arcilla (Finos %)	
SUCS	0.00	83	17	
AASHTO	7.00	76	17	



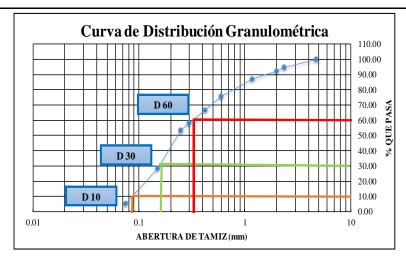
Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Shuyo Grande/Arrayan Pata	Capa Vegetal:	5	cm	
ID Muestra:	11	Profundidad:	80	cm	
Norma:	AASHTO T 88 2013	Coordenadas:	17- Sur	9875543	731388

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	44.96	44.96	4.51	95.49
10 2		30.16	75.12	7.53	92.47
16	1.18	66.16	141.28	14.16	85.84
30	0.6	169.87	311.15	31.19	68.81
40	0.425	213.54	524.69	52.60	47.40
50	0.3	172.96	697.65	69.93	30.07
60 0.25		78.16	775.81	77.77	22.23
100 0.15		98.32	874.13	87.63	12.37
200 0.075		97.58	971.71	97.41	2.59
BANDEJA		25.87	997.58	100.00	

	RESULTADOS							
D10 (mm)	0.15	Cu = D60 / D10	3.67					
D30 (mm)	0.3	$Cc = D30^2 / (D60 * D10)$	1.09					
D60 (mm)	0.55	Tamaño Nominal Máximo (TNM)	1.18					
Error Permitido	1.00%	Error Calculado	0.24%					

PORCENTAJE DE MATERIAL									
	Grava (G%)	Arena (S%)	Limo y Arcilla (Finos %)						
SUCS	0.00	97	3						
AASHTO	5.00	92	3						


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Shuyo Grande/Arrayan Pata
 Capa Vegetal:
 5 cm

 ID Muestra:
 12
 Profundidad:
 100 cm

 Norma:
 AASHTO T 88 2013
 Coordenadas:
 17- Sur
 9874312
 730541

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4.76	0.00	0.00	0.00	100.00
8	2.36	53.60	53.60	5.38	94.62
10	2	22.28	75.88	7.61	92.39
16	1.18	54.84	130.72	13.11	86.89
30	0.6	110.16	240.88	24.17	75.83
40	0.425	89.43	330.31	33.14	66.86
50	0.3	86.16	416.47	41.78	58.22
60	0.25	46.16	462.63	46.41	53.59
100	0.15	251.58	714.21	71.65	28.35
200	0.075	229.58	943.79	94.68	5.32
BANDEJA		53.00	996.79	100.00	

	RESULTADOS								
D10 (mm)	0.09	Cu = D60 / D10	3.67						
D30 (mm)	0.18	$Cc = D30^2 / (D60 * D10)$	1.09						
D60 (mm)	0.33	Tamaño Nominal Máximo (TNM)	1.18						
Error Permitido	1.00%	Error Calculado	0.32%						

PORCENTAJE DE MATERIAL									
	Grava (G%)	Arena (S%)	Limo y Arcilla (Finos %)						
SUCS	0.00	95	5						
AASHTO	5.00	90	5						

ENSAYO LÍMITE LÍQUIDO

Tabla 127: Ensayo Límite líquido — Muestra 1



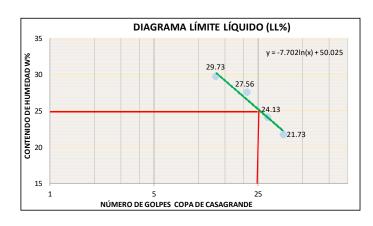
Proyecto:

Vía:		Pingua Quindigua/Llanchachi	Capa Veget	5	cm	
ID N	Auestra:	1	Profundidad	80	cm	
Nori	ma:	AASHTO T 89 2013	Coordenada	17- Sur	9882429 N	734127 E.

									_
Número de Golpes		5	1	8	2	.7	3	2	
Identificación de Cápsula	A	В	C	D	Е	F	G	Н	
Peso de Cápsula	11.14	10.17	22.18	21.95	20.70	23.14	21.81	20.74	g
Peso de muestra húmeda + cápsula	33.14	35.97	52.87	52.78	43.40	44.87	42.14	41.97	g
Peso de muestra seca + cápsula	27.00	28.70	44.87	44.98	38.47	40.18	37.87	37.50	g
Peso del agua	6.14	7.27	8.00	7.80	4.93	4.69	4.27	4.47	g
Peso de la muestra seca	15.86	18.53	22.69	23.03	17.77	17.04	16.06	16.76	g
Contenido de humedad (ω)	38.71	39.23	35.26	33.87	27.74	27.52	26.59	26.67	%
Promedio de contenido de humedad (ω)	38	.97	34	.56	27	.63	26	.63	%
Límite Líquido (LL)		29.31				%			

Tabla 128 :Ensayo Límite líquido – Muestra 2

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE LÍMITE LÍQUIDO (COPA DE CASAGRANDE)



Proyecto:

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA RÍO NEGRO DEL CANTÓN BAÑOS DE AGUA SANTA, PROVINCIA DE TUNGURAHUA."

Vía: F	Pingua Q	uindigua/Llar	nchachi		Capa Veget	5	cm			
ID Muestra:		2			Profundidad	80	cm			
Norma:	AAS	HTO T 89 20)13		Coordenada	17- Sur	9882429 N	734127 E.		
Número de Golpes		1	.3	2	:1	2	29	3	37	
Identificación de Cápsula		16	42	2	31	78	15	75	1	
Peso de Cápsula		11.10	11.80	11.2	13.2	10.98	10.40	12.20	12.41	g
Peso de muestra húmeda + cápsula	a	30.80	29.20	21.3	23	26.40	24.30	23.90	24.80	g
Peso de muestra seca + cápsula		26.30	25.20	19.10	20.90	23.40	21.60	21.80	22.60	g

Peso del agua 4.50 4.00 2.20 2.10 3.00 2.70 2.10 2.20 g Peso de la muestra seca 15.20 13.40 7.90 7.70 12.42 11.20 9.60 10.19 Contenido de humedad (ω) 29.61 29.85 27.85 27.27 24.11 21.88 21.59 24.15 % Promedio de contenido de humedad (ω) 21.73 29.73 27.56 24.13 % Límite Líquido (LL) 25.23 %

Tabla 129: Ensayo Límite líquido – Muestra 3

Proyecto:

Vía:	Pingua Q	uindigua/Llar	nchachi	Capa Veget	5	cm		
ID Muestra:		3		Profundidad	80	cm		
Norma:	AAS	HTO T 89 20)13	Coordenada	17- Sur	9881614	735210	
							•	•
Número de Golpes			9	15		30	3	3
T1 ('C' '/ 1 O/ 1		TD.	0	TT.	т	3.6		Б

Número de Golpes	9	7	1	.5	3	0	3	3	7
Identificación de Cápsula	T	Q	A	T	I	M	Α	В	1
Peso de Cápsula	11.14	11.27	21.47	21.57	20.20	23.14	21.81	20.74	g
Peso de muestra húmeda + cápsula	29.70	36.14	49.21	50.98	42.87	44.37	41.59	41.37	g
Peso de muestra seca + cápsula	25.80	31.00	43.61	44.98	38.47	40.18	37.87	37.42	g
Peso del agua	3.90	5.14	5.60	6.00	4.40	4.19	3.72	3.95	g
Peso de la muestra seca	14.66	19.73	22.14	23.41	18.27	17.04	16.06	16.68	g
Contenido de humedad (ω)	26.60	26.05	25.29	25.63	24.08	24.59	23.16	23.68	%
Promedio de contenido de humedad (ω)	26	.33	25	.46	24	.34	23	.42	%
Límite Líquido (LL)				24	.34				%

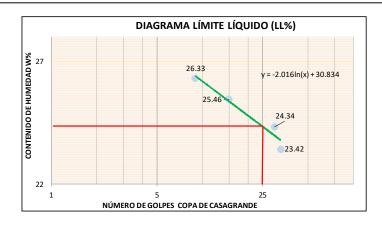
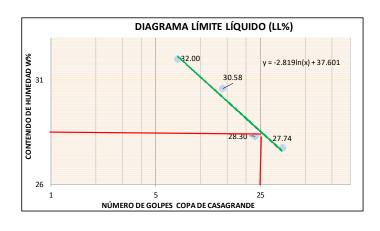


Tabla 130: Ensayo Límite líquido – Muestra 4



Proyecto:

Vía:	Singua/Yallivi	Capa Veget	5	cm	
ID Muestra:	4	Profundidad	80	cm	
Norma:	AASHTO T 89 2013	Coordenada	17- Sur	9877198	731977

									_
Número de Golpes	3	35	2	.3	1	4		7	
Identificación de Cápsula	Q	В	M	F	R	S	A	T	
Peso de Cápsula	11.20	12.80	11.40	11.80	11.50	11.30	11.10	11.10	g
Peso de muestra húmeda + cápsula	21.54	21.62	21.01	20.15	19.72	20.84	16.52	17.69	g
Peso de muestra seca + cápsula	19.30	19.70	18.90	18.30	17.80	18.60	15.20	16.10	g
Peso del agua	2.24	1.92	2.11	1.85	1.92	2.24	1.32	1.59	g
Peso de la muestra seca	8.10	6.90	7.50	6.50	6.30	7.30	4.10	5.00	g
Contenido de humedad (ω)	27.65	27.83	28.13	28.46	30.48	30.68	32.20	31.80	%
Promedio de contenido de humedad (ω)	27	.74	28	.30	30	.58	32	.00	%
Límite Líquido (LL)				28	.30				%

Tabla 131: Ensayo Límite líquido – Muestra 5

Vía:	Singua/Yallivi	Capa Veget	5	cm	
ID Muestra:	5	Profundidad	80	cm	
Norma:	AASHTO T 89 2013	Coordenada	17- Sur	9877934	733072

Número de Golpes	1	2	2	:7	3	1	3	88]		
Identificación de Cápsula	M	F	S	A	C	V	В	T	1		
Peso de Cápsula	11.23	11.72	11.1	11.78	12.49	12.89	13.07	15.39	g		
Peso de muestra húmeda + cápsula	30.50	30.20	28.6	28.3	26.40	25.60	24.70	26.30	g		
Peso de muestra seca + cápsula	26.10	25.90	24.80	24.90	23.60	23.00	22.40	24.10	g		
Peso del agua	4.40	4.30	3.80	3.40	2.80	2.60	2.30	2.20	g		
Peso de la muestra seca	14.87	14.18	13.70	13.12	11.11	10.11	9.33	8.71	g		
Contenido de humedad (ω)	29.59	30.32	27.74	25.91	25.20	25.72	24.65	25.26	%		
Promedio de contenido de humedad (ω)	29	.96	26	.83	25	.46	24	.95	%		
Límite Líquido (LL)				26	.77						

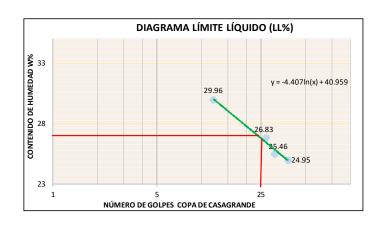


Tabla 132 : Ensayo Límite líquido – Muestra 6

Vía:	Singua/Yallivi Capa Veget	5	cm	
ID M	estra: 6 Profundidad	80	cm	
Norm	: AASHTO T 89 2013 Coordenada	17- Sur	9877934	733072

									_
Número de Golpes	,	7	1	4	1	8	2	.9	
Identificación de Cápsula	M	F	S	A	В	C	D	Е	
Peso de Cápsula	9.57	8.57	10.54	10.58	10.24	10.27	9.57	10.70	g
Peso de muestra húmeda + cápsula	21.67	23.12	23.15	21.45	20.78	22.45	20.34	20.29	g
Peso de muestra seca + cápsula	18.92	19.78	20.50	19.20	18.80	20.10	18.60	18.70	g
Peso del agua	2.75	3.34	2.65	2.25	1.98	2.35	1.74	1.59	g
Peso de la muestra seca	9.35	11.21	9.96	8.62	8.56	9.83	9.03	8.00	g
Contenido de humedad (ω)	29.41	29.79	26.61	26.10	23.13	23.91	19.27	19.88	%
Promedio de contenido de humedad (ω)	29	.60	26	.35	23	.52	19	.57	%
Límite Líquido (LL)				21	.17				%

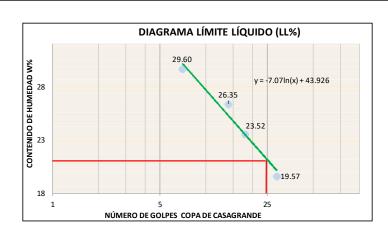


Tabla 133 : Ensayo Límite líquido – Muestra 7

ID Muestra: 7 Profundidad	80 cm	
Norma: AASHTO T 89 2013 Coordenada 17	7- Sur 98	877233 731027

									_
Número de Golpes	1	0	1	4	2	2	3	9	
Identificación de Cápsula	M	F	S	A	В	C	D	Е	
Peso de Cápsula	10.74	10.54	10.47	10.36	10.35	10.48	10.27	10.79	g
Peso de muestra húmeda + cápsula	19.94	25.08	21.64	21.65	20.93	21.87	21.49	21.19	g
Peso de muestra seca + cápsula	18.10	22.20	19.50	19.50	19.00	19.80	19.50	19.40	g
Peso del agua	1.84	2.88	2.14	2.15	1.93	2.07	1.99	1.79	g
Peso de la muestra seca	7.36	11.66	9.03	9.14	8.65	9.32	9.23	8.61	g
Contenido de humedad (ω)	25.00	24.70	23.70	23.52	22.31	22.21	21.56	20.79	%
Promedio de contenido de humedad (ω)	24	.85	23	.61	22	.26	21	.17	%
Límite Líquido (LL)				22	.18				%

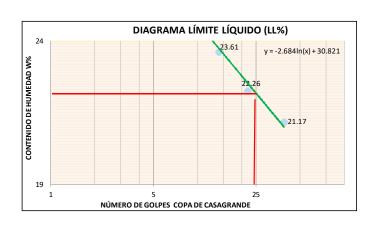
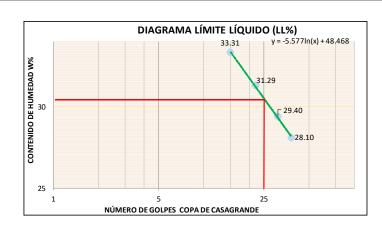


Tabla 134 : Ensayo Límite líquido – Muestra 8


%

Proyecto:

Límite Líquido (LL)

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:	Feodasin/Angama	rca		Capa Veget	5	cm			
ID Muestra:	8			Profundidad	80	cm			
Norma:	AASHTO T 89 20)13		Coordenada	17- Sur	9876399	731164		
							-		
									_
Número de Golpes	1	15	2	22	3	31	3	8	
Identificación de Cápsula	45	4d	R5	2D	G5	71	1D	4F	
Peso de Cápsula	10.58	10.24	10.27	10.29	10.87	10.74	10.97	11.27	g
Peso de muestra húmeda + cápsula	20.87	20.72	21.98	21.74	20.64	21.27	20.82	22.64	g
Peso de muestra seca + cápsula	18.30	18.10	19.20	19.00	18.40	18.90	18.70	20.10	g
Peso del agua	2.57	2.62	2.78	2.74	2.24	2.37	2.12	2.54	g
Peso de la muestra seca	7.72	7.86	8.93	8.71	7.53	8.16	7.73	8.83	g
Contenido de humedad (ω)	33.29	33.33	31.13	31.46	29.75	29.04	27.43	28.77	%
Promedio de contenido de humedad (o	ω) 33	3.31	31	.29	29	.40	28.	.10	%

30.52

Tabla 135 : Ensayo Límite líquido – Muestra 9

Proyecto:

Vía:	Teodasin/Angamarca	Capa Veget	5	cm	
ID Muestra:	9	Profundidad	80	cm	
Norma:	AASHTO T 89 2013	Coordenada	17- Sur	9877155	730830

									-
Número de Golpes	9	9	1	1	1	7	3	7	
Identificación de Cápsula	W	D	F	M	F	S	A	R	
Peso de Cápsula	11.41	11.52	12.19	11.47	11.68	11.02	11.15	11.75	g
Peso de muestra húmeda + cápsula	18.49	19.64	23.98	22.74	20.84	22.54	23.48	24.05	g
Peso de muestra seca + cápsula	16.80	17.70	21.30	20.20	19.00	20.20	21.40	22.00	g
Peso del agua	1.69	1.94	2.68	2.54	1.84	2.34	2.08	2.05	g
Peso de la muestra seca	5.39	6.18	9.11	8.73	7.32	9.18	10.25	10.25	g
Contenido de humedad (ω)	31.35	31.39	29.42	29.10	25.14	25.49	20.29	20.00	%
Promedio de contenido de humedad (ω)	31	.37	29	.26	25	.31	20	.15	%
Límite Líquido (LL)				22	.92				%

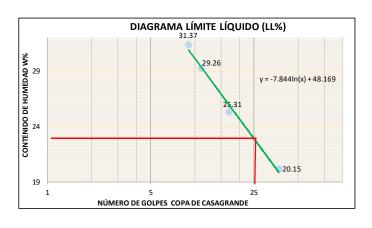


Tabla 136 : Ensayo Límite líquido – Muestra 10

Proyecto:

Vía:	Shuyo Grande/Arrayan Pata	Capa Veget	5	cm	
ID Muestra:	10	Profundidad	80	cm	
Norma:	AASHTO T 89 2013	Coordenada	17- Sur	9875543	731388

									_		
Número de Golpes	!	9	1	4	2	4	3	5			
Identificación de Cápsula	M	F	S	A	V	В	CF	C			
Peso de Cápsula	11.18	11.64	10.62	12.54	11.24	11.13	11.37	11.64	g		
Peso de muestra húmeda + cápsula	20.89	21.90	19.83	23.24	21.49	20.86	23.49	24.17	g		
Peso de muestra seca + cápsula	18.50	19.40	17.80	20.90	19.50	18.90	21.40	22.00	g		
Peso del agua	2.39	2.50	2.03	2.34	1.99	1.96	2.09	2.17	g		
Peso de la muestra seca	7.32	7.76	7.18	8.36	8.26	7.77	10.03	10.36	g		
Contenido de humedad (ω)	32.65	32.22	28.27	27.99	24.09	25.23	20.84	20.95	%		
Promedio de contenido de humedad (ω)	32	.43	28	.13	24	.66	20	.89	%		
Límite Líquido (LL)			•	23	.85		•				

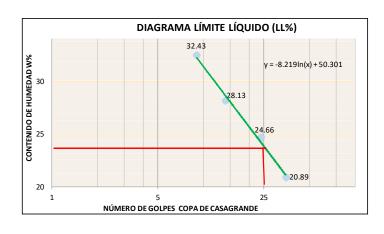
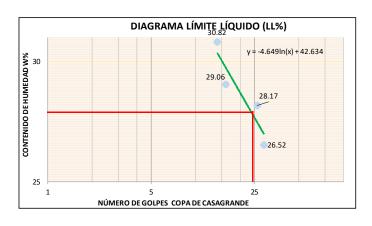


Tabla 137: Ensayo Límite líquido – Muestra 11



Proyecto:

Vía:	Shuyo Grande/Arrayan Pata	Capa Veget	5	cm	
ID Muestra:	11	Profundidad	80	cm	
Norma:	AASHTO T 89 2013	Coordenada	17- Sur	9875543	731388

Número de Golpes	1	.4	1	6	2	6	2	9	
Identificación de Cápsula	75	2	25	62	16	39	19	78	
Peso de Cápsula	10.87	10.86	10.89	11.08	11.07	11.72	11.53	11.68	g
Peso de muestra húmeda + cápsula	19.87	23.25	20.84	20.14	26.74	29.26	24.35	25.42	g
Peso de muestra seca + cápsula	17.70	20.40	18.60	18.10	23.30	25.40	21.70	22.50	g
Peso del agua	2.17	2.85	2.24	2.04	3.44	3.86	2.65	2.92	g
Peso de la muestra seca	6.83	9.54	7.71	7.02	12.23	13.68	10.17	10.82	g
Contenido de humedad (ω)	31.77	29.87	29.05	29.06	28.13	28.22	26.06	26.99	%
Promedio de contenido de humedad (ω)	30	.82	29	.06	28	.17	26	.52	%
Límite Líquido (LL)			•	27	.67				%

Tabla 138: Ensayo Límite líquido – Muestra 12

Promedio de contenido de humedad (ω)

Límite Líquido (LL)

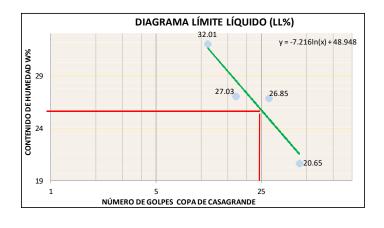
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE LÍMITE LÍQUIDO (COPA DE CASAGRANDE)

20.65

%

Proyecto:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


via.	Shuyo Or	andc/Arraya	II I ata		Capa veget	5	CIII			
ID Muestra:		12			Profundidad	100	cm			
Norma:	AASH	ITO T 89 20	13		Coordenada	17- Sur	9874312	730541		
										_
Número de Golpes		1	1	1	7	2	28	4:	5	
Identificación de Cápsula		12	SS	14A	2F	5G	6S	7J	1V	
Peso de Cápsula		11.50	11.10	11.50	10.90	11.20	11.10	11.30	11.30	g
Peso de muestra húmeda + cáps	sula	24.35	25.57	23.82	26.78	23.75	21.00	21.65	21.58	g
Peso de muestra seca + cápsula		21.20	22.10	21.20	23.40	21.10	18.90	19.90	19.80	g
Peso del agua		3.15	3.47	2.62	3.38	2.65	2.10	1.75	1.78	g
Peso de la muestra seca		9.70	11.00	9.70	12.50	9.90	7.80	8.60	8.50	g
Contenido de humedad (ω)		32.47	31.55	27.01	27.04	26.77	26.92	20.35	20.94	%

27.03

26.72

26.85

32.01

ENSAYO LÍMITE PLÁSTICO

Tabla 139: Ensayo Límite plástico – Muestra 1

Vía: ID Muestra:	6 2	ligua/Llancha 1	ichi		Capa Vegetal: Profundidad:	5 80	cm cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9882429 N	734127 E.
	<u> </u>		T -	1			1	1
	Recipiente Número	P2	3B	104 - 4E	80 - 3D	2E		
	Peso muestra húmeda + recipiente	11.21	11.87	11.62	11.92	11.51	g	
	Peso muestra seca + recipiente	11.02	11.71	11.43	11.79	11.33	g	
	Peso del agua	0.19	0.16	0.19	0.13	0.18	g	
	Peso del recipiente	10.21	11.03	10.82	10.87	10.69	g	
	Peso de la muestra seca	0.81	0.68	0.61	0.92	0.64	g	
	Contenido de humedad (ω)	23.46	23.53	31.15	26.70	26.87	%	
	Promedio contenido de humedad (ω)			27.13			%	
	Límite Plástico (Lp)			27.13			%	
	Límite Líquido (LL)			29.31			%	1
	Índice Plástico (IP)			2.18			%	1

Tabla 140: Ensayo Límite plástico – Muestra 2

Vía:	Pingua Quindigua/Llanchachi	Capa Vegetal:	5	cm	
ID Muestra:	2	Profundidad:	80	cm	
Norma:	AASHTO T90 2016	Coordenadas:	17- Sur	9882429 N	734127 E.
Г					1

Recipiente Número	P2	3B	104 - 4E	80 - 3D	2E				
Peso muestra húmeda + recipiente	11.21	11.87	11.59	11.82	11.49	g			
Peso muestra seca + recipiente	11.02	11.72	11.42	11.62	11.29	g			
Peso del agua	0.19	0.15	0.17	0.20	0.20	g			
Peso del recipiente	10.21	11.06	10.67	10.75	10.43	g			
Peso de la muestra seca	0.81	0.66	0.75	0.87	0.86	g			
Contenido de humedad (ω)	23.46	22.73	22.67	22.99	23.26	%			
Promedio contenido de humedad (ω)			22.79			%			
Límite Plástico (Lp)		22.79							
Límite Líquido (LL)		25.23							
Índice Plástico (IP)		2.44							

Tabla 141: Ensayo Límite plástico – Muestra 3

Vía:	Pingua Quino	ligua/Llancha	igua/Llanchachi			5	cm	
ID Muestra	Iuestra:		3			80	cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9881614	735210
	Recipiente Número	2B	3B	3E	5C	104		
	Peso muestra húmeda + recipiente	12.87	13.70	14.21	12.50	14.69	g	
	Peso muestra seca + recipiente	12.46	13.14	13.21	12.17	14.00	g	
	Peso del agua	0.41	0.56	1.00	0.33	0.69	g	
	Peso del recipiente	10.60	10.70	8.70	10.60	10.70	g	
	Peso de la muestra seca	1.86	2.44	4.51	1.57	3.30	g	
	Contenido de humedad (ω)	22.04	22.95	22.17	21.02	20.91	%	
	Promedio contenido de humedad (ω)			21.76			%	
	Límite Plástico (Lp)			21.76			%	
	Límite Líquido (LL)			24.34			%	
	Índice Plástico (IP)			2.58			%	

Tabla 142 : Ensayo Límite plástico – Muestra 4

Vía: ID Muestra: Norma:	:	a/Yallivi 4 O T90 2016			Capa Vegetal: Profundidad: Coordenadas:	5 80 17- Sur	cm cm 9877198	731977
	Recipiente Número	106	1A	2B	7C	109		
	Peso muestra húmeda + recipiente	12.70	13.50	13.80	12.70	13.70	g	
	Peso muestra seca + recipiente	12.27	12.89	13.12	12.27	13.09	g	
	Peso del agua	0.43	0.61	0.68	0.43	0.61	g	
	Peso del recipiente	10.70	10.60	10.60	10.60	10.70	g	
	Peso de la muestra seca	1.57	2.29	2.52	1.67	2.39	g	
	Contenido de humedad (ω)	27.39	26.64	26.98	25.75	25.52	%	
	Promedio contenido de humedad (ω)			26.22			%	
	Límite Plástico (Lp)			26.22			%	
	Límite Líquido (LL)			28.30		•	%	
	Índice Plástico (IP)			2.08			%	

Tabla 143 : Ensayo Límite plástico – Muestra 5

Vía: ID Muestra		Capa Vegetal: Profundidad:	5 80	cm cm				
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9877934	733072
İ	Recipiente Número	A	В	С	D	Е		1
	Peso muestra húmeda + recipiente	8.92	7.51	12.43	12.67	12.24	g	
	Peso muestra seca + recipiente	8.60	7.20	12.10	12.30	11.90	g	1
	Peso del agua	0.32	0.31	0.33	0.37	0.34	g]
	Peso del recipiente	7.27	6.00	10.70	10.80	10.60	g	Ì
	Peso de la muestra seca	1.33	1.20	1.40	1.50	1.30	g]
	Contenido de humedad (ω)	24.06	25.83	23.57	24.67	26.15	%	
	Promedio contenido de humedad (ω)			24.86			%	
	Límite Plástico (Lp)			24.86			%	
	Límite Líquido (LL)			26.77			%	
	Índice Plástico (IP)			1.91			%	1

Tabla 144: Ensayo Límite plástico – Muestra 6

Vía:	Singu	ıa/Yallivi			Capa Vegetal:	5	cm	
ID Muestra	•	6		Profundidad:			cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9877934	733072
	D		-					1
	Recipiente Número	M	F	S	A	В		
	Peso muestra húmeda + recipiente	9.17	9.30	12.36	13.21	13.61	g	
	Peso muestra seca + recipiente	8.90	8.80	12.10	12.80	13.10	g	
	Peso del agua	0.27	0.50	0.26	0.41	0.51	g	
	Peso del recipiente	7.50	6.10	10.70	10.70 10.50		g	
	Peso de la muestra seca	1.40	2.70	1.40	2.10	2.60	g	
	Contenido de humedad (ω)	19.29	18.52	18.57	19.52	19.62	%	
	Promedio contenido de humedad (ω)			19.24			%	
	Límite Plástico (Lp)	. ,					%	
	Límite Líquido (LL)		21.17			%]	
	Índice Plástico (IP)	1.93			%			

Tabla 145 : Ensayo Límite plástico – Muestra 7

Vía:	Teodasii	n/Angamarca			Capa Vegetal:	5	cm	
ID Muestra	•	7			Profundidad:	80	cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9877233	73102
								1
	Recipiente Número	MM	AA	VV	II	P2		1
	Peso muestra húmeda + recipiente	12.78	12.92	12.84	14.01	12.87	g	
	Peso muestra seca + recipiente	12.30	12.50	12.50	13.40	12.50	g	
	Peso del agua	0.48	0.42	0.34	0.61	0.37	g	
	Peso del recipiente	10.10	10.40	10.90	10.60	10.50	g	
	Peso de la muestra seca	2.20	2.10	1.60	2.80	2.00	g	
	Contenido de humedad (ω)	21.82	20.00	21.25	21.79	18.50	%	
	Promedio contenido de humedad (ω)			20.51			%	
	Límite Plástico (Lp)			20.51			%	
	Límite Líquido (LL)	22.18					%	
	Índice Plástico (IP)	1.67					%	

Tabla 146 : Ensayo Límite plástico – Muestra 8

Vía:	Teodasii	n/Angamarca			Capa Vegetal:	5	cm	
ID Muestra	a:	8			Profundidad:	80	cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9876399	731164
								_
	Recipiente Número	2A	P3B	P6A	P1	45C		
	Peso muestra húmeda + recipiente	13.25	12.14	12.18	12.17	12.94	g	
	Peso muestra seca + recipiente	12.68	11.85	11.85	1.85 11.86		g	
	Peso del agua	0.57	0.29	0.33	0.31	0.48	g	
	Peso del recipiente	10.60	10.80	10.60	10.70	10.70	g	
	Peso de la muestra seca	2.08	1.05	1.25	1.16	1.76	g	
	Contenido de humedad (ω)	27.26	27.62	26.40	26.72	27.27	%	
	Promedio contenido de humedad (ω)			26.91			%	
	Límite Plástico (Lp)			26.91			%	
	Límite Líquido (LL)			30.52			%	
	Índice Plástico (IP)			3.61			%	1

Tabla 147 : Ensayo Límite plástico – Muestra 9

Vía: ID Muestra Norma:	:	n/Angamarca 9 O T90 2016	Capa Vegetal: Profundidad: Coordenadas:	5 80 17- Sur	cm cm 9877155	730830		
	D : :		10					
	Recipiente Número	54	10	5F	71	56		
	Peso muestra húmeda + recipiente	7.69	7.19	7.91	9.12	8.21	g	
	Peso muestra seca + recipiente	7.41	6.99	7.59	8.57	7.89	g	
	Peso del agua	0.28	0.20	0.32	0.55	0.32	g	
	Peso del recipiente	6.00	6.08	6.04	5.87	6.14	g	
	Peso de la muestra seca	1.41	0.91	1.55	2.70	1.75	g	
	Contenido de humedad (ω)	19.86	21.98	20.65	20.37	18.29	%	
	Promedio contenido de humedad (ω)			19.79			%	
	Límite Plástico (Lp)			19.79			%	
	Límite Líquido (LL)			22.92			%	
	Índice Plástico (IP)			3.13			%	

Tabla 148: Ensayo Límite plástico – Muestra 10

Vía: ID Muestra	•	de/Arrayan P 10	'ata		Capa Vegetal: Profundidad:	5 80	cm	
		- "				17- Sur	cm	724200
Norma:	AASHI	O T90 2016			Coordenadas:	1/- Sur	9875543	731388
	Recipiente Número	53	42	41D	24	2C		1
	Peso muestra húmeda + recipiente	7.76	8.62	7.41	7.98	8.19	g	
	Peso muestra seca + recipiente	7.48	8.37	7.22	7.63	7.87	g	
	Peso del agua	0.28	0.25	0.19	0.35	0.32	g	
	Peso del recipiente	6.20	7.10 6.30 6.00		6.20	g		
	Peso de la muestra seca	1.28	1.27	0.92	1.63	1.67	g	
	Contenido de humedad (ω)	21.87	19.69	20.65	21.47	19.16	%	
	Promedio contenido de humedad (ω)			20.79			%	
	Límite Plástico (Lp)			20.79			%	
	Límite Líquido (LL)			23.85			%	
	Índice Plástico (IP)			3.06			%	1

Tabla 149: Ensayo Límite plástico – Muestra 11

Vía:	Shuyo Gran	de/Arrayan P	ata		Capa Vegetal:	5	cm	
ID Muestra:		11			Profundidad:	80	cm	
Norma:	AASHT	O T90 2016	O T90 2016			17- Sur	9875543	731388
					_			_
	Recipiente Número	M	F	S	R	SS		1 1
	Peso muestra húmeda + recipiente	12.82	13.42	12.08	12.12	12.47	g]
	Peso muestra seca + recipiente	12.40	12.90	11.80	11.80	12.10	g]
	Peso del agua	0.42	0.52	0.28	0.32	0.37	g	
	Peso del recipiente	10.70	10.70	10.70	10.50	10.60	g]
	Peso de la muestra seca	1.70	2.20	1.10	1.30	1.50	g]
	Contenido de humedad (ω)	24.71	23.64	25.45	24.62	24.67	%	1
	Promedio contenido de humedad (ω)			24.59			%]
	Límite Plástico (Lp)			24.59			%	1
	Límite Líquido (LL)			27.67	-		%	1
	Índice Plástico (IP)			3.08			%]

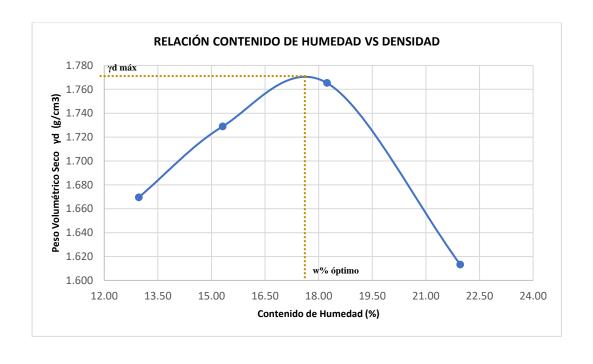
Tabla 150 : Ensayo Límite plástico – Muestra 12

Vía:	Shuyo Gran	de/Arrayan Pa	ata	van Pata Capa Vegetal:				
ID Muestra:		12			Profundidad:	100	cm	
Norma:	AASHT	O T90 2016			Coordenadas:	17- Sur	9874312	730541
İ		_						
	Recipiente Número	A	3	6G	M	F		
	Peso muestra húmeda + recipiente	7.33	8.05	8.47	8.60	7.96	g	
	Peso muestra seca + recipiente	7.10	7.70	8.00	8.10	7.60	g	
	Peso del agua	0.23	0.35	0.47	0.50	0.36	g	
	Peso del recipiente	6.12	6.19	6.11	6.02	6.13	g	
	Peso de la muestra seca	0.98	1.51	1.89	2.08	1.47	g	
	Contenido de humedad (ω)	23.47	23.18	24.87	24.04	24.49	%	
	Promedio contenido de humedad (ω)			24.14			%	
	Límite Plástico (Lp)			24.14			%	
	Límite Líquido (LL)	26.72			%	1		
	Índice Plástico (IP)		2.58				%	

ENSAYO PROCTOR

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 1
 Profundidad:
 100 cm

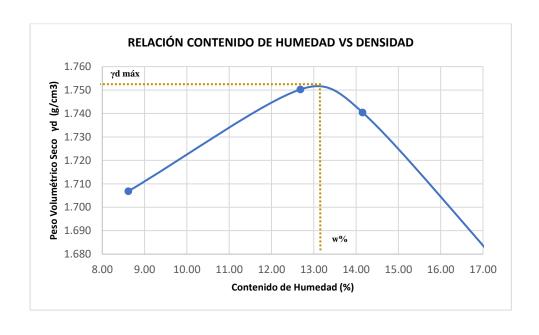
 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur 9877233 N
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

		ESPEC	IFICACION	ES DEL PRO	OCTOR						
Número de Golpes	56	Altura o	de Caída	18"	Peso de	l Molde	14992	g			
Número de Capas	5	Peso del Martillo		10 lb	Volumen	del Molde	2297.29	cm³			
Energía de Compactación		55986	55986		Øint	15	h	13	cm		
Peso Inicial Deseado	7000			000		000	70	000	g		
		PRO	CESO DE C	COMPACTA	CIÓN						
Ensayo Número		1		2		3		4			
Humedad inicial añadida	12	2%	1:	5%	18	3%	21	.%	%		
P. molde+Suelo húmedo						787	195	512	g		
Peso suelo húmedo Wm	333	4580 4			95	45	520	g			
Peso unitario húmedo γm				1.994			1.968		g/cm³		
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD											
Recipiente número	32J	27I	14M	58A	74F	26E	48	51			
Peso del recipiente Wr	18.57	36.91	45.87	27.14	29.28	37.35	29.06	36.48	g		
Peso muestra húmeda + recipiente (Wm + Wr)	101.47	121.25	117.00	104.58	161.05	187.21	87.12	164.57	g		
Peso muestra seca + recipiente (Ws + Wr)	92.07	111.45	107.58	94.27	140.58	164.27	76.65	141.54	g		
Peso de la muestra seca (Ws)	73.50	74.54	61.71	67.13	111.30	126.92	47.59	105.06	g		
Peso del agua (Ww)	9.40	9.80	9.42	10.31	20.47	22.94	10.47	23.03	g		
Contenido de humedad (ω)	12.79	13.15	15.26	15.36	18.39	18.07	22.00	21.92	%		
Promedio contenido de humedad (ω)	12	.97	15	.31	18	.23	21	.96	%		
Peso Volumétrico Seco γd						1.729 1.765 1.613					
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	IMEDAD ÓI	PTIMA				
Cont. Humedad ópt	Cont. Humedad óptimo ω				17.50						
Densidad seca máx γd			1.770						g/cm³		

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 2
 Profundidad:
 100 cm

 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

	Ť										
		ESPEC	IFICACION	ES DEL PRO	OCTOR						
Número de Golpes	56	Altura o	le Caída	e Caída 18"		Peso del Molde		g			
Número de Capas	5	Peso del	Peso del Martillo		Volumen	del Molde	2279.62	cm³			
Energía de Compactación		55986	55986		Øint	15	h	12.9	cm		
Peso Inicial Deseado	60	000	60	000	60	000	60	00	g		
		PRO	CESO DE C	COMPACTA	CIÓN						
Ensayo Número		1		2		3	4	4			
Humedad inicial añadida	9	%	1:	2%	14	1%	16	5%	%		
P. molde+Suelo húmedo	1917	79.84	194	49.82	1948	32.74	1942	29.31	g		
Peso suelo húmedo Wm	422	6.16	449	6.14	452	9.06	4475	5.63	g		
Peso unitario húmedo γm	354		972		987	1.963		g/cm³			
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD											
Recipiente número	M	F	A	В	C	D	Е	F			
Peso del recipiente Wr	28.74	22.87	25.24	25.14	19.84	25.71	30.12	27.84	g		
Peso muestra húmeda + recipiente (Wm + Wr)	97.65	107.94	121.67	122.09	91.04	89.90	111.05	102.87	g		
Peso muestra seca + recipiente (Ws + Wr)	92.12	101.27	110.95	111.04	82.07	82.07	99.87	92.04	g		
Peso de la muestra seca (Ws)	63.38	78.40	85.71	85.90	62.23	56.36	59.14	64.20	g		
Peso del agua (Ww)	5.53	6.67	10.72	11.05	8.97	7.83	11.18	10.83	g		
Contenido de humedad (ω)	8.73	8.51	12.51	12.86	14.41	13.89	18.91	16.87	%		
Promedio contenido de humedad (ω)	8.	62	12	2.69	14	.15	17.	.89	%		
Peso Volumétrico Seco γd	eso Volumétrico Seco γd 1.707					740	1.665		g/cm³		
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	IMEDAD ÓI	PTIMA				
Cont. Humedad ópt	Cont. Humedad óptimo ω				13.30						
Densidad seca má	Densidad seca máx γd				1.755						

Tabla 153 : Ensayo Proctor – Muestra 3

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

P			

Vía: Capa Vegetal: 4 cm ID Muestra: 3 Profundidad: 100 cm Norma: AASHTO T 180 Coordenadas: 17 - Sur 9877233 N Elaborado: Jhimy Gomez 731027 E

Entioratio:	Jinny Concz						731027	-		
		ECDEC	TETCACION	ES DEL PRO	OCTOD.					
Número de Golpes	56	,	de Caída	18"		l Molde	14952.67	_		
•					Volumen del Molde			g		
Número de Capas	5		Martillo	10 lb			2279.62	cm ³		
Energía de Compactación		55986		lb pie/pie ³	Øint	15	h	12.9	cm	
Peso Inicial Deseado	70	000		000		000	70	000	g	
		PRO	CESO DE C	COMPACTA	CIÓN					
Ensayo Número		1		2	:	3	4	4		
Humedad inicial añadida	12	2%	10	5%	18	3%	21	%	%	
P. molde+Suelo húmedo	19	294	195	08.54	1967	79.63	1945	52.71	g	
Peso suelo húmedo Wm	434	1.33	455	5.87	472	6.96	450	0.04	g	
Peso unitario húmedo γm	904	1.	999	2.0)74	1.974		g/cm³		
	DE	TERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD	•			
Recipiente número	M	F	S	A	T	R	S	В		
Peso del recipiente Wr	36.00	37.80	23.89	24.87	21.21	21.87	33.45	47.21	g	
Peso muestra húmeda + recipiente	00.40	07.57	122.50	101.57	04.14	02.70	106.00	102.00		
(Wm + Wr)	99.48	97.57	122.58	121.57	94.14	92.70	106.08	102.98	g	
Peso muestra seca + recipiente (Ws +	02.12	00.67	100.70	100.74	02.12	01.07	02.20	02.20		
Wr)	92.13	90.67	109.78	108.74	83.12	81.85	93.38	93.38	g	
Peso de la muestra seca (Ws)	56.13	52.87	85.89	83.87	61.91	59.98	59.93	46.17	g	
Peso del agua (Ww)	7.35	6.90	12.80	12.83	11.02	10.85	12.70	9.60	g	
Contenido de humedad (ω)	13.09	13.05	14.90	15.30	17.80	18.09	21.19	20.79	%	
Promedio contenido de humedad (ω)	13	.07	15	.10	17	.94	20	.99	%	
Peso Volumétrico Seco γd	eso Volumétrico Seco γd 1.684				1.736 1.758 1.632					
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	MEDAD ÓI	PTIMA			
Cont. Humedad ópt	Cont. Humedad óptimo ω				17.10					
Densidad seca máx γd			1.765						g/cm³	

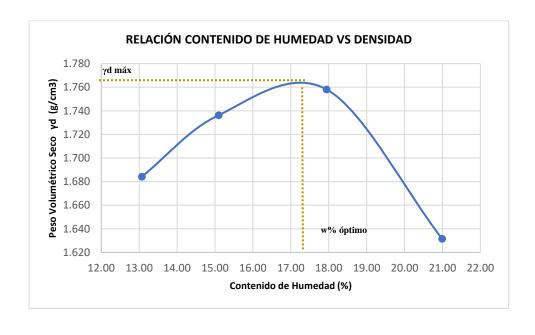
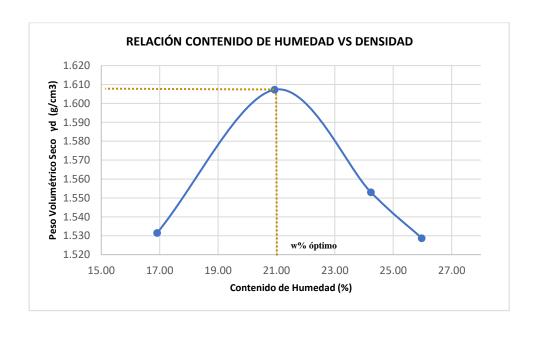


Tabla 154 : Ensayo Proctor – Muestra 4

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 4
 Capa Vegetal:
 4
 cm

 ID Muestra:
 Profundidad:
 100
 cm

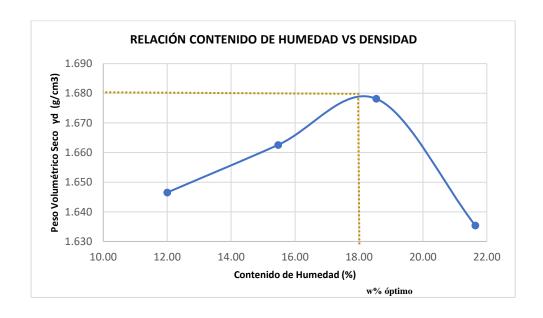
 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

Elaborado: .	mmy Gomez						/3102/	t				
				ES DEL PRO			,	T				
Número de Golpes	56			18"	Peso del Molde		12752	g				
Número de Capas	5	Peso del Martillo		10 lb	Volumen	del Molde	2289.86	cm³				
Energía de Compactación		55986		lb pie/pie ³	Øint	15.11	h	12.77	cm			
Peso Inicial Deseado	70	000		000		000	70	000	g			
		PRO	CESO DE C	OMPACTAC	CIÓN							
Ensayo Número		1		2		3	4	4				
Humedad inicial añadida	16	5%	20)%	24	! %	26	5%	%			
P. molde+Suelo húmedo	16	852	17	203	17	170	17	162	g			
Peso suelo húmedo Wm	41	00	44	151	44	18	44	10	g			
Peso unitario húmedo γm	1.7	790	1.9	944	1.9	929	1.926		g/cm³			
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD												
Recipiente número	27J	39	78	19	34	25	65	28				
Peso del recipiente Wr	10.64	17.44	11.23	11.23	30.57	30.57	25.22	25.22	g			
Peso muestra húmeda + recipiente (Wm + Wr)	31.99	38.81	49.64	49.64	110.74	110.74	90.01	90.01	g			
Peso muestra seca + recipiente (Ws + Wr)	28.91	35.71	42.99	42.99	95.10	95.10	76.65	76.65	g			
Peso de la muestra seca (Ws)	18.27	18.27	31.76	31.76	64.53	64.53	51.43	51.43	g			
Peso del agua (Ww)	3.08	3.10	6.65	6.65	15.64	15.64	13.36	13.36	g			
Contenido de humedad (ω)	16.86	16.97	20.94	20.94	24.24	24.24	25.98	25.98	%			
Promedio contenido de humedad (ω)	16	.91	20	.94	24	.24	25.	.98	%			
Peso Volumétrico Seco γd	531	1.607 1.553 1.529					g/cm³					
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	MEDAD ÓI	PTIMA					
Cont. Humedad ópt	imo ω		21.00						%			
Densidad seca má	1.675						g/cm³					
	Bensidad seed max d											

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 5
 Profundidad:
 100 cm

 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

		-							
		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	13741	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2431.54	cm³	
Energía de Compactación		55986		lb pie/pie3	Øint	13.4	cm		
Peso Inicial Deseado	70	000	70	000	70	000	70	00	g
		PRO	CESO DE C	OMPACTA	CIÓN				
Ensayo Número		1		2		3	4	4	
Humedad inicial añadida	5%	20)%	24	1%	26	i%	%	
P. molde+Suelo húmedo	18	225	18	409	18.	578	185	578	g
Peso suelo húmedo Wm	44	184	46	668	48	337	48	37	g
Peso unitario húmedo γm	1.8	344	1.9	920	1.9	989	1.9	989	g/cm³
	DE	TERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD			
Recipiente número	32J	27I	14M	58A	74F	26E	48	51	
Peso del recipiente Wr	10.47	10.44	21.60	18.86	19.25	27.30	25.93	18.54	g
Peso muestra húmeda + recipiente (Wm + Wr)	82.73	93.21	130.85	121.64	155.80	182.64	90.50	173.84	g
Peso muestra seca + recipiente (Ws + Wr)	75.00	84.13	117.76	106.54	134.56	159.87	79.00	145.67	g
Peso de la muestra seca (Ws)	64.53	73.69	96.16	87.68	115.31	132.57	53.07	127.13	g
Peso del agua (Ww)	7.73	9.08	13.09	15.10	21.24	22.77	11.50	28.17	g
Contenido de humedad (ω)	11.98	12.32	13.61	17.22	18.42	17.18	21.67	22.16	%
Promedio contenido de humedad (ω)	12	.00	15	.47	18	.54	21	.64	%
Peso Volumétrico Seco γd	1.663 1.678 1.635					g/cm³			
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA		
Cont. Humedad ópt	imo ω		18.00						%
Densidad seca má	x γd		1.680					g/cm³	

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 6
 Profundidad:
 100 cm

Norma: AASHTO T 180 Coordenadas: 17 - Sur 9877233 N
Elaborado: Jhimy Gomez 731027 E

Elaborado:	Jhimy Gomez		731027 E									
		ESPEC	IFICACION	ES DEL PRO	OCTOR							
Número de Golpes	56	Altura o	le Caída	18"	Peso de	el Molde	14953.48	g				
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2279.62	cm³				
Energía de Compactación		55986		lb pie/pie³	Øint	15	h	12.9	cm			
Peso Inicial Deseado	60	000	-	000		000	60	000	g			
		PRO	CESO DE C	COMPACTAC	CIÓN							
Ensayo Número		1		2		3	4	4				
Humedad inicial añadida 8%			1	1%	14	1%	16	5%	%			
P. molde+Suelo húmedo	lde+Suelo húmedo 19173.21 19442.14 19491.885 19456.62						g					
Peso suelo húmedo Wm	421	9.73	448	38.66	4538	3.405	450	3.14	g			
Peso unitario húmedo γm									g/cm³			
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD												
Recipiente número	M	F	A	R	T	Y	U	I				
Peso del recipiente Wr	21.98	24.68	24.58	24.85	29.74	31.04	29.74	29.47	g			
Peso muestra húmeda + recipiente	97.64	107.42	121.52	122.98	58.24	102.04	104.05	102.74				
(Wm + Wr)	97.04	107.42	121.32	122.96	36.24	102.04	104.03	102.74	g			
Peso muestra seca + recipiente (Ws +	92.40	101.33	111.32	113.50	54.90	93.47	93.75	92.14	_			
Wr)	92.40	101.55	111.32	113.30	34.90	93.47	93.73	92.14	g			
Peso de la muestra seca (Ws)	70.42	76.65	86.74	88.65	25.16	62.43	64.01	62.67	g			
Peso del agua (Ww)	5.24	6.09	10.20	9.48	3.34	8.57	10.30	10.60	g			
Contenido de humedad (ω)	7.44	7.95	11.76	10.69	13.28	13.73	16.09	16.91	%			
Promedio contenido de humedad (ω)	omedio contenido de humedad (ω) 7.69 11.23 13.50 16.50							%				
Peso Volumétrico Seco γd	1.7	719	1.	770	1.7	754	1.6	596	g/cm³			
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA					
Cont. Humedad ópt	imo ω		11.90						%			
Densidad seca má	xγd		1.700 g/c						g/cm³			
·												

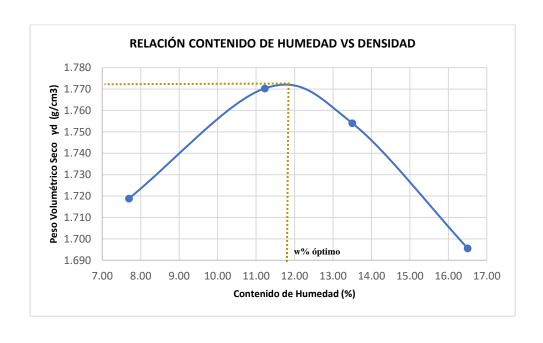


Tabla 157: Ensayo Proctor – Muestra 7

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICAD

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA Proyecto: ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Capa Vegetal: Profundidad: Coordenadas: Vía: 4 ID Muestra: 100 cm

AASHTO T 180 9877233 N Norma: 17 - Sur Elaborado: Jhimy Gomez 731027 **E**

			ESPEC	IFICACION	ES DEL PR	OCTOR					
Número de Golpes	56	Altura o	de Caída	18"	Peso de	l Molde	13991	g			
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2431.54	cm³			
Energía de Compactación		55986		lb pie/pie3	Øint	15	h	12.9		cm	
Peso Inicial Deseado	70	000	70	000	70	000	70	00		g	
			PRO	CESO DE C	OMPACTA	CIÓN					
Ensayo Número		1		2		3		1			
Humedad esperada	10	5%	20)%	24	! %	26	i%		%	
P. molde+Sueto humedo	192	18	841	18	525	18	192		g		
Peso suelo húmedo Wm							01		g		
Peso unitario húmedo γm							351		g/cm ³		
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD											
Recipiente número	32J	27I	14M	58A	74F	26E	48	51			
Peso del recipiente Wr	16.87	20.34	22.54	24.58	25.50	27.30	25.93	18.54		g	
Peso muestra húmeda + recipiente (Wm + Wr)	82.60	93.11	130.85	121.64	152.98	182.64	89.00	173.54		g	
Peso muestra seca + recipiente (Ws + Wr)	72.51	81.97	112.61	104.87	130.15	154.67	76.65	142.65		g	
Peso de la muestra seca (Ws)	55.64	61.63	90.07	80.29	104.65	127.37	50.72	124.11		g	
Peso del agua (Ww)	10.09	11.14	18.24	16.77	22.83	27.97	12.35	30.89		g	
Contenido de humedad (ω)	18.13	18.08	20.25	20.89	21.82	21.96	24.35	24.89		%	
Promedio contenido de humedad (ω)	18	.11	20	.57	21	.89	24	.62		%	
Peso Volumétrico Seco γd		463		554		530		85		g/cm³	
		RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	TIMA			
Cont. Humedad ópt			20.50							%	
Densidad seca má	x γd		1.650						g/cm ³		

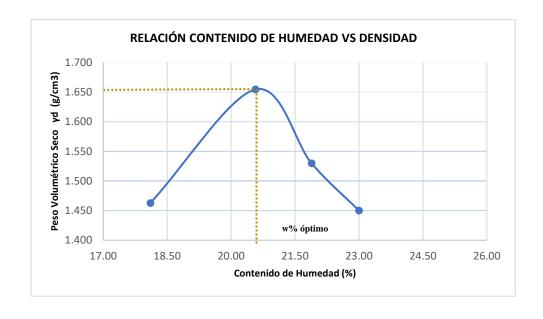
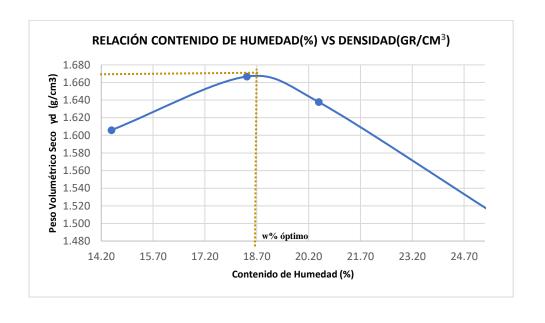


Tabla 158: Ensayo Proctor – Muestra 8

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 8
 Profundidad:
 100 cm

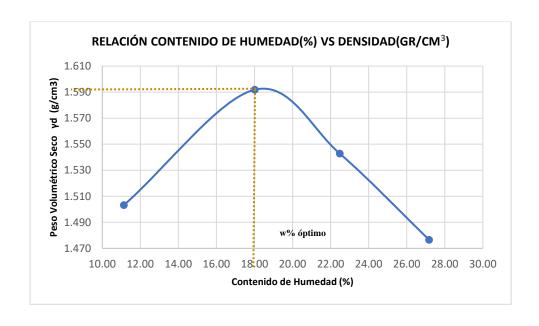
 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

Diaborado:	July Gomez	-					731027	_	
		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura o	de Caída	18"	Peso de	el Molde	14952.37	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2279.62	cm³	
Energía de Compactación		55986		lb pie/pie ³	Øint	15.2	h	13.4	cm
Peso Inicial Deseado	60	000	60	000	60	g			
		PRO	CESO DE C	COMPACTA	CIÓN				
Ensayo Número		1		2		3		4	
Humedad inicial añadida 14%			13	8%	20)%	26	i%	%
P. molde+Suelo húmedo	P. molde+Suelo húmedo 19143.87 19451.58 19451.07 19274.28								g
Peso suelo húmedo Wm	419	91.5	449	9.21	449	98.7	432	1.91	g
Peso unitario húmedo γm	1.8	839	1.	974	1.9	973	1.8	396	g/cm³
	DE	TERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD	•		
Recipiente número	S	FR	C	V4	G2	F6	J9	G2	
Peso del recipiente Wr	16.54	31.57	21.42	22.54	19.04	28.69	16.54	17.00	g
Peso muestra húmeda + recipiente	46.24	55.00	15.55	56.71	46.41	56.21	44.20	46.25	_
(Wm + Wr)	46.24	55.60	45.55	56.71	46.41	56.31	44.20	46.25	g
Peso muestra seca + recipiente (Ws +	12.51	50.51	41.76	51.45	41.67	51.70	20.57	40.25	_
Wr)	42.54	52.51	41.76	51.45	41.67	51.70	38.57	40.25	g
Peso de la muestra seca (Ws)	26.00	20.94	20.34	28.91	22.63	23.01	22.03	23.25	g
Peso del agua (Ww)	3.70	3.09	3.79	5.26	4.74	4.61	5.63	6.00	g
Contenido de humedad (ω)	14.23	14.76	18.63	18.19	20.95	20.03	25.56	25.81	%
Promedio contenido de humedad (ω)	14	.49	18	3.41	20	.49	25.	.68	%
Peso Volumétrico Seco γd	1.6	606	1.	667	1.6	638	1.5	508	g/cm ³
DETE	RMINACIÓ	N GRÁFIC <i>a</i>	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA		
Cont. Humedad ópt	imo ω		18.70						%
Densidad seca má	Densidad seca máx γd			1.670					
	Densidad seca máx γd 1.670 g/cm ³								

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 9
 Capa Vegetal:
 4
 cm

 ID Muestra:
 Profundidad:
 100
 cm

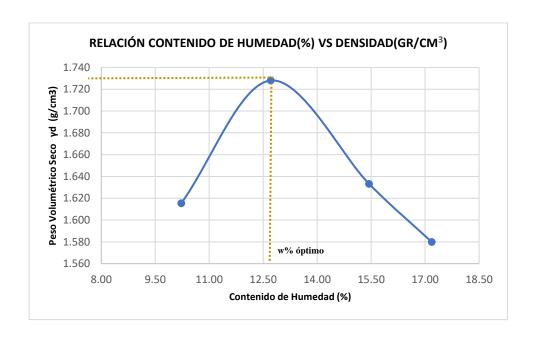
 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

Elaborado: J	himy Gomez			731027 E							
		EGDEG	TETCA CION	EC DEL DD	CTOD						
				ES DEL PRO					ı		
Número de Golpes	56		le Caída	18"		Peso del Molde 14998 g					
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2297.29	cm³			
Energía de Compactación		55986		lb pie/pie³	Øint	15	h	cm			
Peso Inicial Deseado	70	000	70	000	70	000	70	g			
		PRO	CESO DE C	COMPACTAC	CIÓN						
Ensayo Número		1		2		3		1			
Humedad inicial añadida	14	1%	18	3%	22	2%	28	%	%		
P. molde+Suelo húmedo	188	836	19	314	193	19339 19312					
Peso suelo húmedo Wm	38	338	43	316	43	341	43	14	g g		
Peso unitario húmedo γm	1.6	571	1.3	879	1.8	390	1.8	78	g/cm³		
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD											
Recipiente número	32J	27I	14M	58A	74F	26E	48	51			
Peso del recipiente Wr	20.11	38.98	45.87	27.14	29.28	37.35	29.06	36.48	g		
Peso muestra húmeda + recipiente	101.47	119.25	118.54	106.54	165.84	192.54	88.50	172.49	g		
(Wm + Wr)	101.47	117.23	110.54	100.54	105.01	172.54	00.50	172.49	5		
Peso muestra seca + recipiente (Ws +	93.07	111.45	107.58	94.27	140.58	164.27	76.65	141.54	g		
Wr)	75.07	111110	107.50	<i>y</i> 27	1.0.50	10.127	70.02	1.1.0.	ь		
Peso de la muestra seca (Ws)	72.96	72.47	61.71	67.13	111.30	126.92	47.59	105.06	g		
Peso del agua (Ww)	8.40	7.80	10.96	12.27	25.26	28.27	11.85	30.95	g		
Contenido de humedad (ω)	11.51	10.76	17.76	18.28	22.70	22.27	24.90	29.46	%		
Promedio contenido de humedad (ω)	11	.14	18	3.02	22	.48	27.	.18	%		
Peso Volumétrico Seco γd		503		592		543		.77	g/cm³		
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA				
Cont. Humedad ópt	imo ω				18	.00			%		
Densidad seca má	xγd				1.5	592			g/cm³		

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

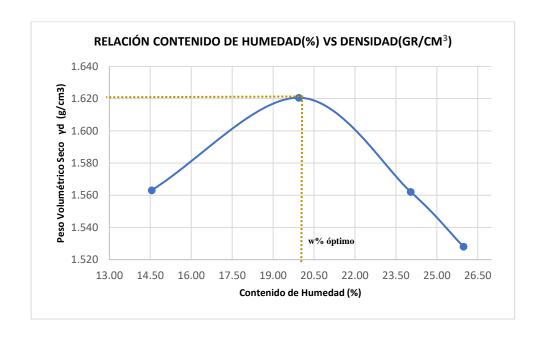
 ID Muestra:
 10
 Profundidad:
 100 cm

 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

Elaborado: J	nimy Gomez		/3102/ E									
		EGDEG	TEICA CION	EG DEL DD	CTOD							
	_	-		ES DEL PRO								
Número de Golpes	56		de Caída	18"	Peso del Molde 14951.54			g				
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2279.62	cm³				
Energía de Compactación		55986		lb pie/pie³	Øint	Øint 15 h 12.9						
Peso Inicial Deseado	70	000	70	000	70	00	g					
		PRO	CESO DE C	COMPACTAC	CIÓN							
Ensayo Número		1		2		3	4	1				
Humedad inicial añadida 10%			1:	2%	16	5%	18	%	%			
P. molde+Suelo húmedo	molde+Suelo húmedo 19010.74 19391.48 19249.47 19172.04						2.04	g				
Peso suelo húmedo Wm	405	59.2	443	9.94	429	7.93	422	0.5	g			
Peso unitario húmedo γm	1.7	781	1.	948	1.885 1.851							
Peso unitario húmedo γm 1.781 1.948 1.885 1.851 g/cm³ DETERMINACIÓN DE CONTENIDOS DE HUMEDAD												
Recipiente número	7	34	27	27	34	25	65	28				
Peso del recipiente Wr	29.54	34.87	25.74	23.58	10.89	10.47	30.12	30.12	g			
Peso muestra húmeda + recipiente	00.47	107.00	100.47	101.54	04.14	02.40	102.70	104.00				
(Wm + Wr)	98.47	107.89	122.47	121.54	94.14	93.40	103.70	104.80	g			
Peso muestra seca + recipiente (Ws +	02.14	101.05		110.51	02.12	02.10	02.20	02.20				
Wr)	92.14	101.05	111.32	110.74	83.12	82.19	93.38	93.38	g			
Peso de la muestra seca (Ws)	62.60	66.18	85.58	87.16	72.23	71.72	63.26	63.26	g			
Peso del agua (Ww)	6.33	6.84	11.15	10.80	11.02	11.21	10.32	11.42	g			
Contenido de humedad (ω)	10.11	10.34	13.03	12.39	15.26	15.63	16.31	18.05	%			
Promedio contenido de humedad (ω)	10	.22	12	2.71	15	.44	17.	.18	%			
Peso Volumétrico Seco γd	1.6	515	5 1.728 1.633 1.580						g/cm³			
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA					
Cont. Humedad ópt	imo ω		12.70						%			
Densidad seca má	xγd				1.7	730			g/cm³			
ş												

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Capa Vegetal:
 4 cm

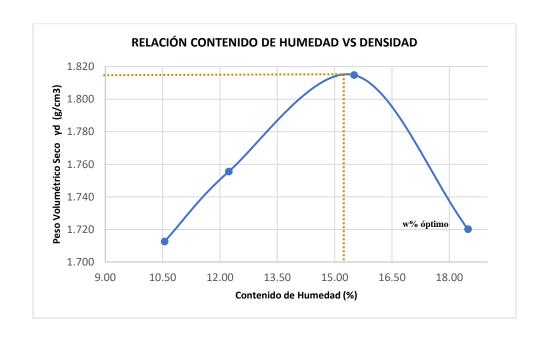
 ID Muestra:
 11
 Profundidad:
 100 cm

Norma: AASHTO T 180 Coordenadas: 17 - Sur 9877233 N Elaborado: Jhimy Gomez 731027 E

Elaborado: J	miny Gomez						/3102/	E			
		ECDEC	IEICACION	ES DEL PRO	ОСТОВ						
Número de Golpes	56		le Caída	18"		el Molde	12752	α	I		
Número de Capas	5		Martillo	10 lb		del Molde	2289.86	g cm³			
1		55986	Maruno						cm		
Energía de Compactación	5/			lb pie/pie ³	Øint	15.11		h 12.77 7000			
Peso Inicial Deseado	/(000		000		000	/0	00	g		
			CESO DE C	COMPACTAC			,				
Ensayo Número		1		2		3		1			
Humedad inicial añadida	16	5%	2	0%	24	1%	26	5%	%		
P. molde+Suelo húmedo	16	852	17	203	17189		7189 17160				
Peso suelo húmedo Wm	húmedo Wm 4100 4451 4437 4408							g			
Peso unitario húmedo γm								g/cm³			
DETERMINACIÓN DE CONTENIDOS DE HUMEDAD											
Recipiente número	27J	39	78	19	34	25	65	28			
Peso del recipiente Wr	10.64	17.44	11.23	11.23	30.57	30.57	25.22	25.22	g		
Peso muestra húmeda + recipiente (Wm + Wr)	31.81	38.71	49.44	49.34	110.61	110.62	90.01	90.01	g		
Peso muestra seca + recipiente (Ws + Wr)	29.06	36.07	43.10	42.99	95.10	95.10	76.65	76.65	g		
Peso de la muestra seca (Ws)	18.42	18.63	31.87	31.76	64.53	64.53	51.43	51.43	g		
Peso del agua (Ww)	2.75	2.64	6.34	6.35	15.51	15.52	13.36	13.36	g		
Contenido de humedad (ω)	14.93	14.17	19.89	19.99	24.04	24.05	25.98	25.98	%		
Promedio contenido de humedad (ω)	14	.55	19	9.94	24	.04	25.	.98	%		
Peso Volumétrico Seco γd		563	1.621 1.562 1.528					g/cm³			
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA		•		
Cont. Humedad ópti	imo ω				20	.00			%		
Densidad seca má	xγd			1.620							

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B"

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


 Vía:
 Capa Vegetal:
 4 cm

 ID Muestra:
 12
 Profundidad:
 100 cm

 Norma:
 AASHTO T 180
 Coordenadas:
 17 - Sur
 9877233 N

 Elaborado:
 Jhimy Gomez
 731027 E

Elaborado: J	himy Gomez		/3102/ E						
		ECDEC	TEICACION	ES DEL PRO	ACTOR				
Número de Golpes	56		de Caída	18"		el Molde	12421	α	
Número de Capas	5		Martillo	10 lb		del Molde	2270.72	g cm³	
	3	55986	Martino					12.68	
Energía de Compactación Peso Inicial Deseado	7.0			lb pie/pie ³	Øint	15.1	h 70	cm	
Peso Inicial Deseado	70	000				000	/0	00	g
				COMPACTAC			ı		
Ensayo Número		1		2		3		4	
Humedad inicial añadida	24	1%	2	8%	32	2%	36	i%	%
P. molde+Suelo húmedo	77.7						g		
Peso suelo húmedo Wm	42	.99	4.	474	47	760	46	28	g
Peso unitario húmedo γm	1.8	393	1.	970	2.0	096	2.0)38	g/cm³
	DE	TERMINAC	IÓN DE CO	ONTENIDOS	DE HUMEI	OAD			
Recipiente número	A	В	С	D	Е	F	G	Н	
Peso del recipiente Wr	11.20	21.30	10.86	15.75	11.35	12.37	11.42	18.54	g
Peso muestra húmeda + recipiente (Wm + Wr)	35.67	45.67	27.78	32.78	38.67	39.87	36.54	47.00	g
Peso muestra seca + recipiente (Ws + Wr)	33.40	43.28	25.92	30.94	35.04	36.14	32.70	42.47	g
Peso de la muestra seca (Ws)	22.20	21.98	15.06	15.19	23.69	23.77	21.28	23.93	g
Peso del agua (Ww)	2.27	2.39	1.86	1.84	3.63	3.73	3.84	4.53	g
Contenido de humedad (ω)	10.23	10.87	12.35	12.11	15.32	15.69	18.05	18.93	%
Promedio contenido de humedad (ω)	10	.55	12	2.23	15	.51	18	.49	%
Peso Volumétrico Seco γd	1.7	713	1.756 1.815 1.720						g/cm³
DETE	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA		
Cont. Humedad ópti	imo ω			15.10					
Densidad seca má:	xγd			1.817					g/cm ³

ENSAYO CBR

Tabla 163: Ensayo CBR – Muestra 1

Peso muestra seca + recipiente (Ws + Wr)

Peso del agua (Ww)

Peso del recipiente (Wr)

Peso de la muestra seca (Ws)

Promedio contenido de humedad (ω)

Contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Provecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: Profundidad: 80 cm AASHTO T 193 - 2013 Norma: Coordenadas: 17 813756 m 9843409 m ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.770 g/cm3 Peso Martillo 10 W% Óptimo 17.50 % Altura de Caída 18 ENSAYO DE COMPACTACIÓN CBR MOLDE 12 Diámetro 15.2 Diámetro 15.1 Diámetro 15.2 cm DIMENSIONES 12.6 Altura 12.9 Altura Altura 12.7 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 14086 10857 11978 Peso Molde 9508 6461 7608 Peso de Muestra Húmeda 4569 4396 4370 g Volumen Muestra 2286.37 2274.30 2340.81 cm3 Peso unitario Húmedo ym 1.998 1.933 1.867 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 42 89 69 81 Peso muestra húmeda + recipiente (Wm + Wr) 149.00 131.98 113.50 185.95 147.80 110.98 Peso muestra seca + recipiente (Ws + Wr) 162.30 98.80 130.70 116.90 99.50 129.30 Peso del agua (Ww) 15.08 14.00 23.65 18.50 12.18 18.30 Peso del recipiente (Wr) 30.50 30.70 23.40 31.70 31.80 30.60 Peso de la muestra seca (Ws) 100.20 86.20 76.10 130.60 97.50 68.20 Contenido de humedad (ω) 17.49 17.86 18.26 18.40 18.11 18.97 % Promedio contenido de humedad (ω) 17.88 18.25 18.42 Peso Volumétrico Seco γd 1.695 1.577 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 14134 11127 12347 g Peso Molde 9508 6461 7608 g Peso de Muestra Húmeda 4626 4666 4739 g 2274.30 Volumen Muestra 2286.37 2340.81 cm3 Peso unitario Húmedo γm 2.023 2.052 2.025 g/cm3 CONTENIDO DE HUMEDAD 52 77 41 56 Recipiente Número 45 Peso muestra húmeda + recipiente (Wm + Wr) 156.87 182.74 166.87 184.70 135.80 123.50

19.27

158.50

24.24

30.90

127.60

19.00

141.60

25.27

24.00

117.60

21.49

156.20

28.50

23.50

132.70

21.48

21.48

116.70

19.10

31.10

85.60

22.31

22.83

105.90

17.60

30.50

75.40

23.34

%

136.30

20.57

31.00

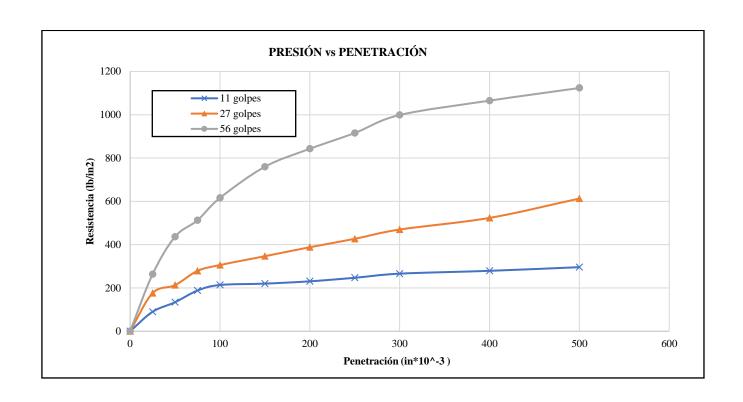
105.30

19.53

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Capa Vegetal: 5 cm


ID Muestra: 12 Profundidad: 80 cm

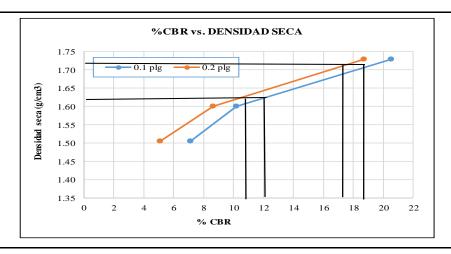
Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 808775 m 9843698 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

Área de Pistón 3 in^2 Velocida de carga 1.270 mm/min 0.05 in/min

DENIET	RACIÓN			MOLDEN°	1 (56 Golpes)	•		MOLDEN°	2 (27 Golpes)			MOLDE Nº	3 (11 Golpes)	
PENEII	KACION	Q Estándar (lb/in²)	Q	Pres	iones	CBR	Q	Presiones		CBR	Q	Pres	iones	CBR
mm	in *10-3	(12,111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		263.1	87.7			175.8	58.6			89.7	29.9		
1.27	50		436.4	145.5			212.8	70.9			133.8	44.6		
1.91	75		512.6	170.9			278.7	92.9			187.9	62.6		
2.54	100	1000	615.8	205.3	205.27	20.53	305.7	101.9	101.90	10.19	213.5	71.2	71.17	7.12
3.81	150		759.6	253.2			346.5	115.5			219.8	73.3		
5.08	200	1500	842.6	280.9	280.87	18.72	387.9	129.3	129.30	8.62	230.4	76.8	76.80	5.12
6.35	250		915.6	305.2			426.8	142.3			246.8	82.3		
7.62	300]	998.7	332.9			469.7	156.6			265.8	88.6		
10.16	400		1065.0	355.0			523.5	174.5			278.9	93.0		
12.7	500		1123.5	374.5			612.7	204.2			295.8	98.6		

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR


18.5

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."+

Vía:Capa Vegetal:5cmID Muestra:12Profundidad:80cm

Norma: AASHTO T 193 - 2013 Coordenadas: 17 808775 m 9843698 m

MOLDE		1	2	3	
CBR %	0.1"	20.53	10.19	7.12	
CBR 76	0.2"	18.72	8.62	5.12	
Densida Seca	g/cm3	1.729	1.600	1.505	

Densidad seca máx: 1.817 gr/cm3

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.635	12	11	12
95% DSM= 1.726	18.5	17.2	18.5

Tabla 164: Ensayo CBR – Muestra 2

Promedio contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: Profundidad: 80 AASHTO T 193 - 2013 Norma: Coordenadas: 17 814193 m 9841909 m ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.755 g/cm³ Peso Martillo 10 1b W% Óptimo 13.30 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro 15.11 Diámetro 15.16 Diámetro 15.17 cm DIMENSIONES Altura 12.9 Altura 12.8 Altura 12.7 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 10389 12572 12625 5840 Peso Molde 8342 8615 4230 Peso de Muestra Húmeda 4549 4010 Volumen Muestra 2313.17 2310.46 2295.43 cm³ Peso unitario Húmedo ym 1.967 1.831 1.747 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número Α В D Е Peso muestra húmeda + recipiente (Wm + Wr) 107.65 142.58 121.57 96.57 103.68 90.78 Peso muestra seca + recipiente (Ws + Wr) 99.27 129.70 110.52 88.69 95.43 83.75 7.88 Peso del agua (Ww) 8.38 11.05 8.25 7.03 12.88 Peso del recipiente (Wr) 36.38 34.91 30.64 30.91 30.78 31.24 Peso de la muestra seca (Ws) 62.89 94.79 79.88 57.78 64.65 52.51 Contenido de humedad (ω) 13.32 13.59 13.83 13.64 12.76 13.39 % Promedio contenido de humedad (ω) 13.46 13.74 13.07 % Peso Volumétrico Seco γd 1.545 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 15592 14631 11684 5840 Peso Molde 8342 8615 g Peso de Muestra Húmeda 9752 6289 3069 g Volumen Muestra 2313.17 2310.46 2295.43 cm^3 Peso unitario Húmedo γm 4.216 2.722 1.337 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 53 15 56 69 Peso muestra húmeda + recipiente (Wm + Wr) 202.00 232.58 134.70 139.08 148.05 149.07 Peso muestra seca + recipiente (Ws + Wr) 178.09 118.40 127.60 204.58 122.51 126.80 g Peso del agua (Ww) 23.91 28.00 16.30 16.57 21.25 21.47 g Peso del recipiente (Wr) 32.40 34.36 30.45 31.27 30.20 30.90 Peso de la muestra seca (Ws) 145.69 170.22 87.95 91.24 96.60 96.70 Contenido de humedad (ω) 22.20

16.45

16.43

16.41

18.53

18.16

18.35

22.00

22.10

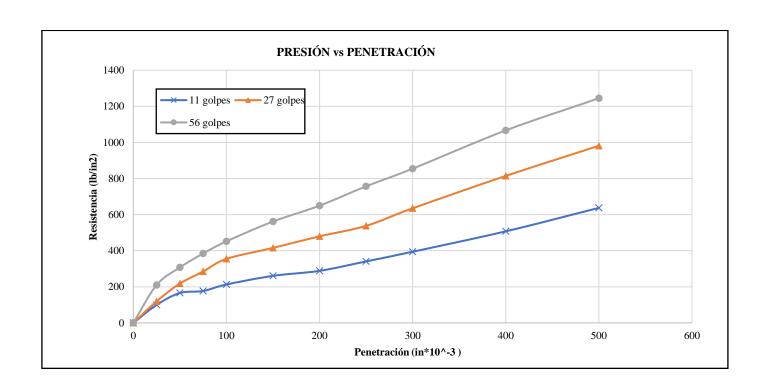
%

%

ENSAYO PARA DETERMINAR CBR

Proyecto:

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."


Vía:Capa Vegetal:5cmID Muestra:P2Profundidad:80cm

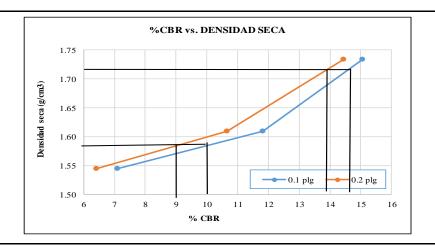
Norma: AASHTO T 193 - 2013 Coordenadas: 17 814193 m 9841909 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

Área de Pistón	2	:2	Valanida da asses	1.270	mm/min
	3	1n²	Velocida de carga	0.05	in/min

DENET	RACIÓN			MOLDE Nº	1 (56 Golpes)			MOLDE Nº 2	MOLDE N° 2 (27 Golpes) MOLDE N° 3 (11 Golpes)			3 (11 Golpes)		
PENEI	KACION	Q Estándar (lb/in²)	Q	Pres	iones	CBR	Q	Pres	iones	CBR	Q	Pres	iones	СВЕ
mm	in *10-3	(====,	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25]	209.8	69.9	1		119.4	39.8	1		99.7	33.2]	
1.27	50]	307.4	102.5	1		218.0	72.7	1		165.7	55.2]	
1.91	75]	384.7	128.2	1		284.7	94.9	1		176.8	58.9]	
2.54	100	1000	451.8	150.6	150.60	15.06	354.6	118.2	118.20	11.82	212.7	70.9	70.90	7.09
3.81	150		561.8	187.3			415.7	138.6			260.7	86.9		
5.08	200	1500	649.7	216.6	216.57	14.44	479.8	159.9	159.92	10.66	288.4	96.1	96.13	6.41
6.35	250		756.8	252.3			537.8	179.3			340.7	113.6		
7.62	300]	854.7	284.9	1		635.1	211.7	1		394.4	131.5]	
10.16	400	1	1066.8	355.6			814.5	271.5			507.4	169.1		
12.7	500]	1244.9	415.0	1		981.7	327.2	1		637.4	212.5]	

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:P2Profundidad:80cm

Norma: AASHTO T 193 - 2013 Coordenadas: 17 814193 m 9841909 m

MOLDE	1	2	3	
CBR %	0.1"	15.06	11.82	7.09
	0.2"	14.44	10.66	6.41
Densida Seca	g/cm3	1.733	1.610	1.545

Densidad seca máx :	1.755	g/cm3

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR		
90% DSM =	1.580	10	9	10	13
95% DSM=	1.667	13	12	13	

Tabla 165: Ensayo CBR – Muestra 3

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

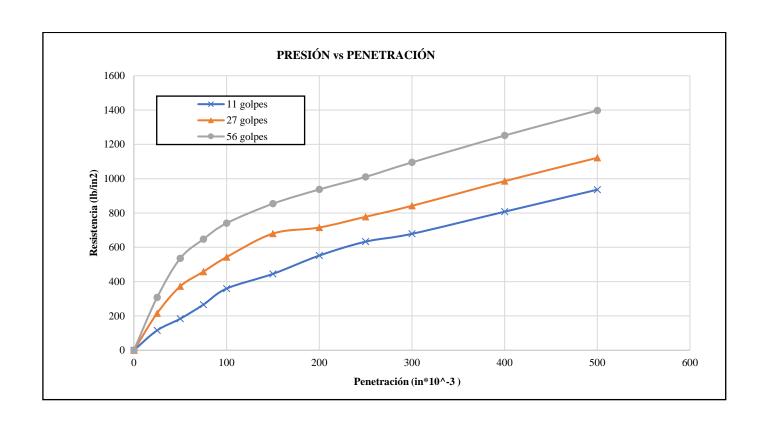
rroyecto:	SUELOS DE LA PARF	ROQUIA AN	GAMARCA,	CANTON PU	JILI, PROVIN	ICIA DE CO	ГОРАХІ."	
Vía: ID Muestra: Norma:	3 AASHTO T 193 -	2013		Pro	a Vegetal: fundidad: ordenadas:	5 80 17	cm cm 811690 m	9843711 n
		ESPECIFIC	ACIONES 1	DEL ENSAYO)			
Peso Muestra	5000	g	Densidad Máx. Seca		1.765		g/cm³	
Peso Martillo	10	lb		****	<i>A</i> .			
Altura de Caída	18	in		W% (Óptimo	17	.10	%
		ENSAYO DI	E COMPAC	TACIÓN CB	R			
MOLDE		1	0]	11		12	
DIMENSIONES		Diámetro	15.1	Diámetro	15.2	Diámetro	15.2	cm
	Altura	12.7	Altura	12.9	Altura	12.7	cm	
Nº de Capas		5		5		5		
Nº de Golpes		6		27		11		
Peso Húmeda + Mold	e		509		629		741	g
Peso Molde		98		089		316	g	
Peso de Muestra Húm	45	4.30		540		125	g	
Volumen Muestra	Peso unitario Húmedo γm				0.81	2304.52 1.920		cm ³
Peso unitario Humedo	γm	1.983			939	1.	920	g/cm³
			NIDO DE H					1
Recipiente Número		32	6	2	84	77	41	
Peso muestra húmeda	111.20	146.90	124.97	99.01	107.05	93.20	g	
Peso muestra seca + re	ecipiente (ws + wr)	99.30	130.70	110.60	88.60	95.40	83.70	g
Peso del agua (Ww) Peso del recipiente (V	(Zer)	11.90	16.20 34.40	14.37 30.70	10.41 30.90	11.65 30.90	9.50	g
Peso de la muestra sec		36.40 62.90	96.30	79.90	57.70	64.50	31.10 52.60	g
Contenido de humedad		18.92	16.82	17.98	18.04	18.06	18.06	g %
Promedio contenido d	()			18.01		18.06		%
Peso Volumétrico Sec		17.87 1.683		1.643		1.626		g/cm³
1 eso volumenteo sec	o _f a			TURACIÓN	0+3	1.	320	gem
Peso Húmeda + Mold	e e	138			221	12	609	σ.
Peso Molde	-		98)89		316	g
Peso de Muestra Húm	eda		29		132		293	g
Volumen Muestra			4.30		0.81		4.52	cm ³
Peso unitario Húmedo	γm	2.1			192		297	g/cm³
		CONTE	NIDO DE H	UMEDAD				
Recipiente Número		10	16	19	25	35	98	
Peso muestra húmeda	+ recipiente (Wm + Wr)	134.80	135.60	189.78	147.02	122.47	179.08	g
Peso muestra seca + recipiente (Ws + Wr)		116.28	116.10	161.50	126.50	106.30	151.90	g
Peso del agua (Ww)		23.87	28.00	16.30	16.57	21.25	21.47	g
Peso del recipiente (V	Vr)	26.47	24.70	31.10	33.20	32.20	31.80	g
Peso de la muestra sec	ca (Ws)	145.69	170.22	87.95	91.24	96.60	96.70	g
Contenido de humeda	d (ω)	16.38	16.45	18.53	18.16	22.00	22.20	%
Promedio contenido d	e humedad (ω)	16	.42	18	3.35	22	.10	%

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

5

cm

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

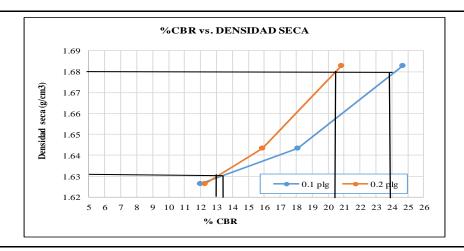

Vía: Capa Vegetal:

ID Muestra: 3 Profundidad: 80 cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 811690 m 9843711 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

DENIETI	RACIÓN			MOLDE Nº	1 (56 Golpes)			MOLDE Nº 2	(27 Golpes)		MOLDE Nº 3 (11 Golpes)			
PENEIR	KACION	Q Estándar (lb/in²)	Q	Pres	siones	CBR	Q	Pres	iones	CBR	Q	Pres	siones	CBR
mm	in *10-3	(10/111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		307.1	102.4			214.7	71.6			115.4	38.5		
1.27	50		535.0	178.3			372.4	124.1			183.4	61.1		
1.91	75		647.4	215.8			457.8	152.6			265.7	88.6		
2.54	100	1000	740.2	246.7	246.73	24.67	542.7	180.9	180.90	18.09	359.2	119.7	119.73	11.97
3.81	150		854.0	284.7			680.0	226.7			445.0	148.3		
5.08	200	1500	937.1	312.4	312.37	20.82	715.2	238.4	238.39	15.89	551.7	183.9	183.90	12.26
6.35	250		1010.4	336.8			777.8	259.3			632.7	210.9		
7.62	300		1094.8	364.9			841.7	280.6			678.4	226.1		
10.16	400		1251.4	417.1			985.7	328.6	1		807.4	269.1		
12.7	500		1397.1	465.7			1121.5	373.8			935.7	311.9		


ENSAYO PARA DETERMINAR CBR

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS **Proyecto:** SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Capa Vegetal: Vía: cm ID Muestra: **Profundidad:** 80 cm

AASHTO T 193 - 2013 Coordenadas: Norma: 17 811690 m 9843711 m

MOLDE	1	2	3	
CBR %	0.1"	24.67	18.09	11.97
	0.2"	20.82	15.89	12.26
Densida Seca	g/cm3	1.683	1.643	1.626

|--|

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR		
90% DSM =	1.630	13.5	13	13.5	24
95% DSM=	1.680	24	20.5	24	

Tabla 166: Ensayo CBR – Muestra 4

Promedio contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLI	SIS DE LAS CORRELACI SUELOS DE LA PARI							S EN LOS
Vía: ID Muestra: Norma:	4 AASHTO T 193 -	2013		Pro	pa Vegetal: fundidad: ordenadas:	5 80 17	cm cm 811690 m	9843711 n
		ESPECIFIC	ACIONES I	DEL ENSAY	0			
Peso Muestra	5000				Máx. Seca	1 1 /	575	g/cm³
Peso Martillo	10	g lb				1.0	573	g/CIIP
Altura de Caída	18	in W% Óptimo				21	.00	%
		ENSAYO DI	Е СОМРАС	TACIÓN CB	SR .			
MOLDE		1	0		11	1	.2	
DB (ENGLONES		Diámetro		Diámetro		Diámetro		cm
DIMENSIONES		Altura		Altura		Altura		cm
Nº de Capas		4	5		5		5	
Nº de Golpes		5	6	:	27	1	1	
Peso Húmeda + Mol	de	124	178	118	64.41	10	827	g
Peso Molde		6479	9.12	64	87.4	644	2.14	g
Peso de Muestra Húi	meda	5998	8.88	537	77.01	438	4.86	g
Volumen Muestra		3229	9.47	3229.47		3211.81		cm³
Peso unitario Húmedo γm		1.8	58	1.	665	1.3	365	g/cm³
		CONTE	NIDO DE H	UMEDAD				
Recipiente Número		A	В	С	D	Е	F	
Peso muestra húmeda	a + recipiente (Wm + Wr)	107.65	142.58	121.57	96.57	103.68	90.78	g
Peso muestra seca +	recipiente (Ws + Wr)	99.27	129.70	110.52	88.69	95.43	83.75	g
Peso del agua (Ww)		8.38	12.88	11.05	7.88	8.25	7.03	g
Peso del recipiente (Wr)	36.38	34.91	30.64	30.91	30.78	31.24	g
Peso de la muestra se	eca (Ws)	62.89	94.79	79.88	57.78	64.65	52.51	g
Contenido de humeda	ad (ω)	13.32	13.59	13.83	13.64	12.76	13.39	%
Promedio contenido	de humedad (ω)	13.	.46	13.74		13.07		%
Peso Volumétrico Se	eco γd	1.6	37	1.464		1.207		g/cm³
		DESPÚES	DE LA SA	TURACIÓN				
Peso Húmeda + Mol	de	132	214	11	103	10	842	g
Peso Molde		6479	9.12	64	87.4	644	2.14	g
Peso de Muestra Húi	meda	6734	4.88	46	15.6	439	9.86	g
Volumen Muestra		3229	9.47	322	29.47	321	1.81	cm³
Peso unitario Húmedo γm		2.0	85	1.	429	1.3	370	g/cm³
		CONTE	NIDO DE H	UMEDAD				
Recipiente Número		A	В	С	D	Е	F	
	a + recipiente (Wm + Wr)	203.00	232.58	134.70	139.08	148.05	149.07	g
	recipiente (Ws + Wr)	178.09	204.58	118.40	122.51	126.80	127.60	g
Peso del agua (Ww)		23.87	28.00	16.30	16.57	21.25	21.47	g
Peso del recipiente (Wr)	32.40	34.36	30.45	31.27	30.20	30.90	g
Peso de la muestra se	eca (Ws)	145.69	170.22	87.95	91.24	96.60	96.70	g
Contenido de humeda	ad (ω)	16.38	16.45	18.69	18.14	22.40	22.27	%
B 11			10	4.0			2.4	

16.42

18.42

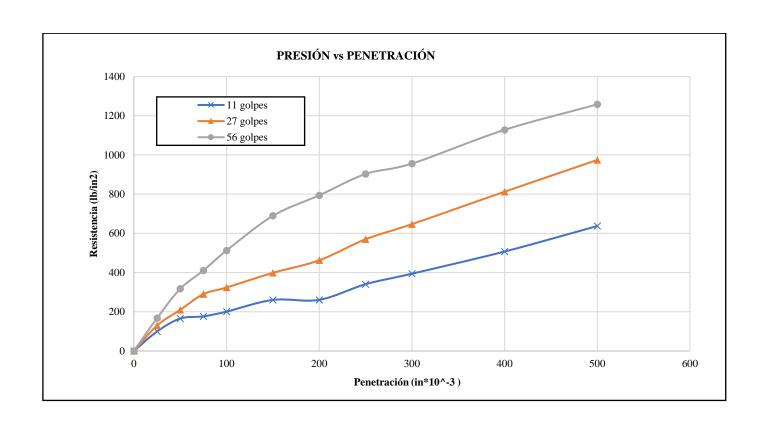
22.27 22.34

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Capa Vegetal: 5 cm

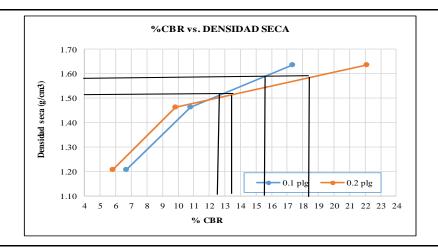

ID Muestra: 4 Profundidad: 80 cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 811690 m 9843711 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

Á 1. Dietés	2	:2	V-1	1.270	mm/min	
Area de Piston	3	1n ²	Velocida de carga	0.05	in/min	

PENETRACIÓN		Q Estándar (lb/in²)	MOLDE Nº 1 (56 Golpes)				MOLDENº 2 (27 Golpes)				MOLDE Nº 3 (11 Golpes)			
			Q	Presiones		CBR	Q	Presiones		CBR	Q	Presiones		CBR
mm	in *10-3	(11111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		167.4	57.7			130.0	43.3			99.7	33.2		
1.27	50		317.4	105.8			210.0	70.0			165.7	55.2		
1.91	75		410.5	136.8			290.0	96.7			176.8	58.9		
2.54	100	1000	512.7	173.5	173.47	17.35	324.0	108.0	108.00	10.80	201.0	67.0	67.00	6.70
3.81	150		689.7	229.9			398.7	132.9			260.7	86.9		
5.08	200	1500	794.1	331.5	331.47	22.10	462.8	147.4	147.37	9.82	261.0	87.0	87.00	5.80
6.35	250		902.8	300.9]		570.0	190.0]		340.7	113.6		
7.62	300		955.9	318.6			647.1	215.7			394.4	131.5		
10.16	400		1128.0	376.0			812.5	270.8			507.4	169.1		
12.7	500		1258.0	419.3			974.5	324.8			637.4	212.5		



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:4Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 811690 m 9843711 m

MOLDE		1	2	3
CBR %	0.1"	17.35	10.80	6.70
CBR 76	0.2"	22.10	9.82	5.80
Densida Seca	g/cm3	1.637	1.464	1.207

Densidad seca máx :	1.675	gr/cm3

Densidad seca máx		% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR	
90% DSM =	1.508	12.5	13.5	13.5	18.5
95% DSM=	1.591	15.5	18.5	18.5	

Tabla 167: Ensayo CBR – Muestra 5

Peso Volumétrico Seco γd

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

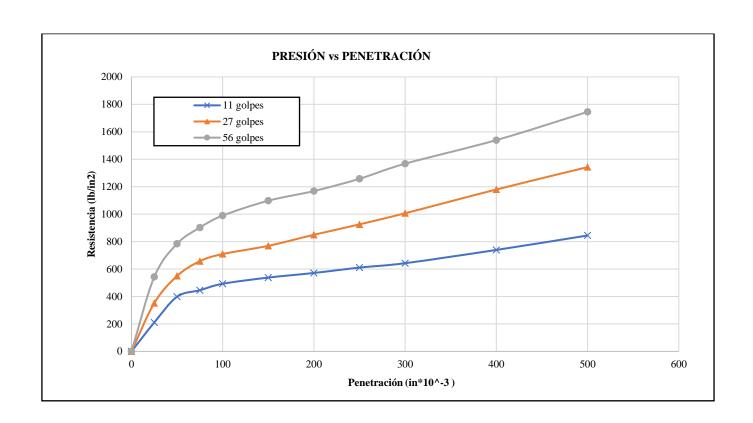
g/cm³

ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Provecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: Profundidad: 80 cm AASHTO T 193 - 2013 Norma: Coordenadas: 812921 m 9843856 m 17 ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.680 g/cm3 Peso Martillo 10 1b W% Óptimo 18.00 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro 15 Diámetro Diámetro 15.2 cm DIMENSIONES Altura 12.5 Altura 12.9 Altura 12.72 cm Nº de Capas 27 Nº de Golpes 56 11 Peso Húmeda + Molde 10572 11345 10257 Peso Molde 6229 6931 6214 Peso de Muestra Húmeda 4343 4414 4043 g Volumen Muestra 2208.93 2340.81 2308.15 cm3 Peso unitario Húmedo γm 1.966 1.886 1.752 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número В С D G Α Е Peso muestra húmeda + recipiente (Wm + Wr) 166.87 145.12 157.98 155.74 92.98 107.24 Peso muestra seca + recipiente (Ws + Wr) 145.30 127.10 138.30 136.90 83.50 95.40 Peso del agua (Ww) 21.57 18.02 19.68 18.84 9.48 11.84 g Peso del recipiente (Wr) 31.10 31.10 32.20 33.20 30.90 31.00 Peso de la muestra seca (Ws) 114.20 96.00 106.10 103.70 52.60 64.40 Contenido de humedad (ω) 18.89 18.77 18.55 18.17 18.02 18.39 % Promedio contenido de humedad (ω) 18.83 18.36 18.20 % Peso Volumétrico Seco γd 1.655 1.593 1.482 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 14908 14973 11981 Peso Molde 6229 6931 6214 Peso de Muestra Húmeda 8679 8042 5767 Volumen Muestra 2208.93 2340.81 2308.15 cm3 3,436 2,499 Peso unitario Húmedo γm 3.929 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 42 35 69 78 84 81 Peso muestra húmeda + recipiente (Wm + Wr) 174.90 145.00 109.30 135.90 133.40 110.10 Peso muestra seca + recipiente (Ws + Wr) 131.10 113.90 100.40 86.20 84.30 100.80 Peso del agua (Ww) 43.80 31.10 33.00 23.10 25.80 35.10 g 30.80 30.80 Peso del recipiente (Wr) 31.70 31.10 30.60 31.00 Peso de la muestra seca (Ws) 99.40 82.80 69.80 55.40 53.30 70.00 g Contenido de humedad (ω) 44.06 37.56 47.28 41.70 48.41 50.14 % Promedio contenido de humedad (ω) 49.27 %

2.790

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:5Profundidad:80cm

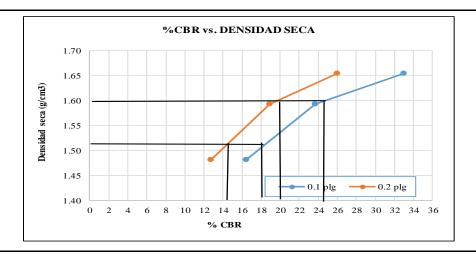
Norma: AASHTO T 193 - 2013 Coordenadas: 17 812921 m 9843856 m

Áron do Pietón	2	in2	Valacida da cargo	1.270	mm/min	
Area de Piston	3	1115	Velocida de carga	0.05	in/min	<u> </u>

DEVICED	MOLDE N° 1 (56 Golpes) ETRACIÓN O Estándar			MOLDE Nº 2 (27 Golpes)				MOLDE Nº 3 (11 Golpes)						
PENEIR	TEVERACION		Q	Pres	iones	CBR	Q	Pres	iones	CBR	Q	Pres	iones	CBR
mm	in *10-3	(lb/in²)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		542.7	180.9			352.1	117.4			210.8	70.3		
1.27	50		784.2	261.4			549.7	183.2			398.4	132.8		
1.91	75		902.5	300.8			657.4	219.1			445.8	148.6		
2.54	100	1000	989.6	329.9	329.86	32.99	709.5	236.5	236.51	23.65	492.9	164.3	164.29	16.43
3.81	150		1098.0	366.0			769.4	256.5			537.9	179.3		
5.08	200	1500	1168.4	389.5	389.47	25.96	849.8	283.3	283.27	18.88	571.6	190.5	190.53	12.70
6.35	250		1258.0	419.3			925.8	308.6			610.8	203.6		
7.62	300		1367.8	455.9			1006.8	335.6			642.9	214.3		
10.16	400		1539.7	513.2	1		1179.8	393.3			739.4	246.5		
12.7	500		1745.4	581.8	1		1342.8	447.6			844.7	281.6		

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO PARA DETERMINAR CBR


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

 Vía:
 Capa Vegetal:
 5
 cm

 ID Muestra:
 5
 Profundidad:
 80
 cm

 Norma:
 AASHTO T 193 - 2013
 Coordenadas:
 17
 812921 m
 9843856 m

MOLDE	1	2	3	
CBR %	0.1"	32.99	23.65	16.43
CBR 76	0.2"	25.96	18.88	12.70
Densida Seca	g/cm3	1.655	1.593	1.482

Densidad seca máx :	1.680	gr/cm3

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.512	18	14	18
95% DSM= 1.596	24	20	24

Tabla 168: Ensayo CBR – Muestra 6

Promedio contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

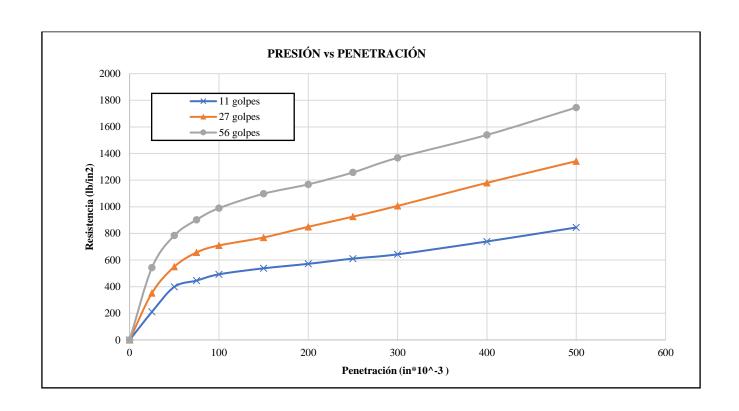
ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Provecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Capa Vegetal: Vía: ID Muestra: Profundidad: 80 AASHTO T 193 - 2013 Coordenadas: 17 812024 m 9849225 m Norma: ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.770 g/cm3 Peso Martillo 10 1b W% Óptimo 11.90 % Altura de Caída 18 ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro 15.1 Diámetro 15.1 Diámetro DIMENSIONES Altura 12.9 Altura 12.8 Altura 12.8 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 12543 13251 10975 σ Peso Molde 8011 7322 8867 g Peso de Muestra Húmeda 4532 4384 3653 g 2310.11 2292.20 2292.21 Volumen Muestra cm3 Peso unitario Húmedo γm 1.962 1.913 1.594 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número D Ε Peso muestra húmeda + recipiente (Wm + Wr) 162.59 132.57 207.10 203.40 231.40 216.70 Peso muestra seca + recipiente (Ws + Wr) 147.60 120.40 183.80 209.80 187.00 196.80 Peso del agua (Ww) 12.17 14.99 20.10 19.60 21.60 19.90 Peso del recipiente (Wr) 24.90 24.00 31.80 30.50 32.10 32.20 Peso de la muestra seca (Ws) 122.70 96.40 155.20 153.30 177.70 164.60 Contenido de humedad (ω) 12.21 12.62 12.95 12.79 12.16 12.09 % Promedio contenido de humedad (ω) 12.42 12.87 12.12 % Peso Volumétrico Seco γd 1.745 1.695 1.421 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 12947 12345 Peso Molde 8011 8867 5023 Peso de Muestra Húmeda 4936 4917 Volumen Muestra 2310.11 2292.20 2292.20 cm3 CONTENIDO DE HUMEDAD Recipiente Número 93 16 6 91 42 Peso muestra húmeda + recipiente (Wm + Wr) 153.40 144.80 175.90 137.80 182.68 135.76 Peso muestra seca + recipiente (Ws + Wr) 135.80 128.30 151.20 120.50 156.69 117.23 Peso del agua (Ww) 17.60 16.50 24.70 17.30 25.99 18.53 Peso del recipiente (Wr) 33.50 33.40 30.60 34.30 32,40 31.70 g Peso de la muestra seca (Ws) 102.30 94.90 120.60 86.20 124.29 85.53 Contenido de humedad (ω) 17.20 17.39 20.48 20.07 20.91 21.66 %

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

cm

cm

CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

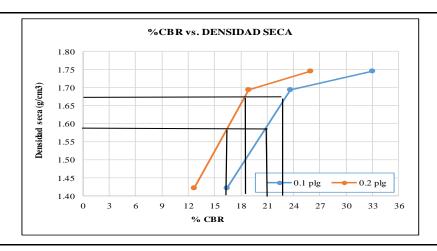

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5ID Muestra:6Profundidad:80

Norma: AASHTO T 193 - 2013 Coordenadas: 17 812024 m 9849225 m

Árao do Dietón	2	in?	Valorido do como	1.270	mm/min
Area de Piston	3	1112	Velocida de carga	0.05	in/min

DENIETI	PENETRACIÓN O Estándar		MOLDENº 1 (56 Golpes)				MOLDENº 2 (27 Golpes)			MOLDENº 3 (11 Golpes)				
I EVEII	KACION	Q Estándar (lb/in²)	Q	Pres	iones	CBR	Q	Pres	Presiones		Q	Pres	iones	CBR
mm	in *10-3	(Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		542.7	180.9			352.1	117.4			210.8	70.3		
1.27	50		784.2	261.4			549.7	183.2			398.4	132.8		
1.91	75		902.5	300.8			657.4	219.1			445.8	148.6		
2.54	100	1000	989.6	329.9	329.86	32.99	709.5	236.5	236.51	23.65	492.9	164.3	164.29	16.43
3.81	150		1098.0	366.0			769.4	256.5			537.9	179.3		
5.08	200	1500	1168.4	389.5	389.47	25.96	849.8	283.3	283.27	18.88	571.6	190.5	190.53	12.70
6.35	250		1258.0	419.3			925.8	308.6			610.8	203.6		
7.62	300		1367.8	455.9			1006.8	335.6			642.9	214.3		
10.16	400		1539.7	513.2			1179.8	393.3			739.4	246.5		
12.7	500		1745.4	581.8	1		1342.8	447.6]		844.7	281.6]	



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:6Capa Vegetal:5cmID Muestra:Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 812024 m 9849225 m

MOLDE	1	2	3	
CBR %	0.1"	32.99	23.65	16.43
CBR 76	0.2"	25.96	18.88	12.70
Densida Seca	g/cm3	1.745	1.695	1.421

ı	D	1.770	/ 2
	Densidad seca máx :	1.770	gr/cm3

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.593	21	16	21
95% DSM= 1.682	23	18.2	23

Tabla 169 : Ensayo CBR – Muestra 8

Contenido de humedad (ω)

Promedio contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Capa Vegetal: Vía: ID Muestra: Profundidad: 80 cm AASHTO T 193 - 2013 Norma: Coordenadas: 17 811415 m 9853136 m ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.650 g/cm³ Peso Martillo 10 1b W% Óptimo 20.70 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro 14.87 Diámetro 15.14 Diámetro 15.02 cm DIMENSIONES Altura 12.9 Altura 12.82 Altura 12.83 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 10202 13325 12597 Peso Molde 5841 9211 8758 Peso de Muestra Húmeda 4361 4114 3839 Volumen Muestra 2240.27 2307.97 2273.30 cm³ Peso unitario Húmedo γm 1.947 1.783 1.689 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número D G Α Peso muestra húmeda + recipiente (Wm + Wr) 138.41 162.57 231.40 208.47 200.47 250.14 Peso muestra seca + recipiente (Ws + Wr) 119.26 139.57 196.98 178.40 172.35 210.80 Peso del agua (Ww) 19.15 23.00 34.42 30.07 28.12 39.34 Peso del recipiente (Wr) 26.67 25.81 31.13 33.42 33.64 31.02 Peso de la muestra seca (Ws) 92.59 113.76 165.85 144.98 138.71 179.78 Contenido de humedad (ω) 20.68 20.22 20.75 20.74 20.27 21.88 % Promedio contenido de humedad (ω) 21.08 20.45 20.75 % Peso Volumétrico Seco γd 1.616 1.476 1.395 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 11959 12917 14618 Peso Molde 5841 9211 8758 Peso de Muestra Húmeda 6118 3706 5860 g 2307.97 2273.30 Volumen Muestra 2240.28 cm3 Peso unitario Húmedo ym 2.731 1.606 2.578 g/cm³ CONTENIDO DE HUMEDAD Recipiente Número G Peso muestra húmeda + recipiente (Wm + Wr) 110.00 119.40 118.30 129.90 109.70 95.00 79.30 Peso muestra seca + recipiente (Ws + Wr) 91.30 98.60 97.30 106.00 90.30 Peso del agua (Ww) 18.70 20.80 21.00 23.90 19.40 15.70 Peso del recipiente (Wr) 30.40 31.00 31.20 31.30 30.80 30.70 Peso de la muestra seca (Ws) 60.90 67.60 74.70 59.50 48.60 66.10

30.77

30.74

31.77

31.88

31.99

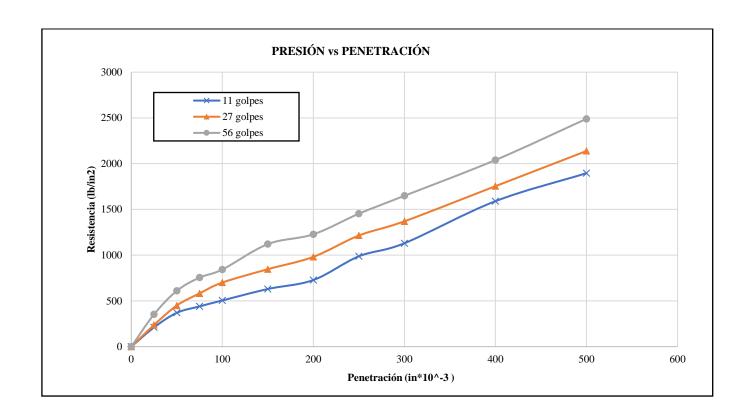
32.61

32.30

32.45

%

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

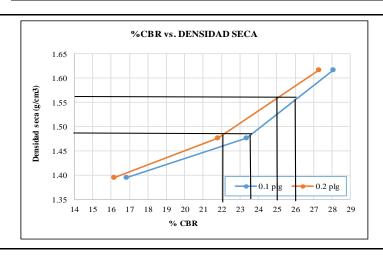

Vía:Capa Vegetal:5cmID Muestra:7Profundidad:80cm

Norma: AASHTO D 1883 Coordenadas: 17 811415 m 9853136 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

Área de Pistón 3 in² Velocida de carga $\frac{1.270 \text{ mm/min}}{0.05 \text{ in/min}}$

DENETI	RACIÓN			MOLDE Nº	1 (56 Golpes)			MOLDE Nº	2 (27 Golpes)		MOLDENº 3 (11 Golpes)			
PENEII	KACION	Q Estándar (lb/in²)	Q	Pres	siones	CBR	Q	Pres	iones	CBR	Q	Presiones		CBR
mm	in *10-3	()	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		352.7	117.6			236.7	78.9			210.5	70.2		
1.27	50		610.3	203.4			449.8	149.9			369.7	123.2		
1.91	75		754.8	251.6			581.7	193.9			439.8	146.6		
2.54	100	1000	842.5	280.8	280.83	28.08	700.5	233.5	233.50	23.35	504.7	168.2	168.23	16.82
3.81	150		1120.7	373.6			846.5	282.2			630.0	210.0		
5.08	200	1500	1227.8	409.3	409.27	27.28	981.5	327.2	327.17	21.81	727.9	242.6	242.63	16.18
6.35	250		1452.8	484.3			1214.5	404.8			987.4	329.1		
7.62	300		1648.7	549.6			1369.9	456.6			1129.9	376.6		
10.16	400		2039.7	679.9			1753.9	584.6			1589.8	529.9		
12.7	500		2489.7	829.9			2138.4	712.8	1		1895.8	631.9		



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:7Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 811415 m 9853136 m

MOLDE	1	2	3	
CDD 4/	0.1"	28.08	23.35	16.82
CBR %	0.2"	27.28	21.81	16.18
Densida Seca	g/cm3	1.616	1.476	1.395

ſ	Densidad seca máx :	1.650	gr/cm3
- 1	Densidad seca max.	1.050	gi/clib

Densidad seca máx		% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM =	1.485	23.2	22	23.2
95% DSM=	1.568	26	25	26

Tabla 170: Ensayo CBR – Muestra 8

Promedio contenido de humedad (ω)

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

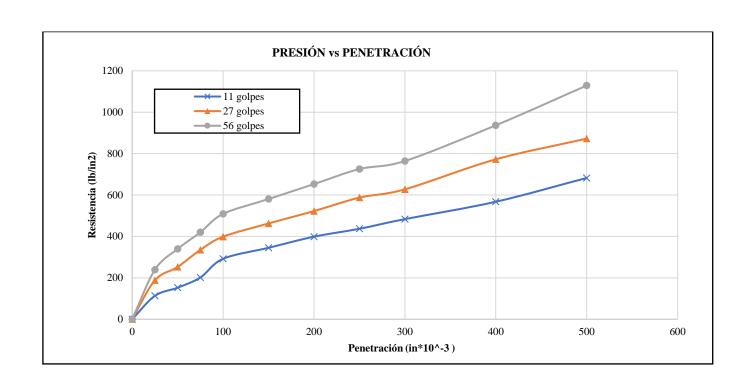
ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: Profundidad: 80 AASHTO T 193 - 2013 Coordenadas: 17 812579 m 9844307 m Norma: ESPECIFICACIONES DEL ENSAYO 5000 Densidad Máx, Seca Peso Muestra 1.67 g/cm³ Peso Martillo 10 1b W% Óptimo 18.70 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro 15.2 Diámetro 15.1 Diámetro 15.22 cm DIMENSIONES 12.81 Altura 12.9 Altura 12.9 Altura cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 10549 11514 10304 Peso Molde 5903 7094 6825 4646 4420 3479 Peso de Muestra Húmeda Volumen Muestra 2340.81 2310.11 2330.60 cm3 Peso unitario Húmedo γm 1.985 1.913 1.493 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número В D Peso muestra húmeda + recipiente (Wm + Wr) 145.62 158.49 172.60 163.80 178.90 198.30 Peso muestra seca + recipiente (Ws + Wr) 126.47 136.82 149.50 140.60 154.80 171.80 Peso del agua (Ww) 19.15 21.67 23.10 24.10 26.50 Peso del recipiente (Wr) 24.92 24.02 31.80 30.50 32.10 32.20 Peso de la muestra seca (Ws) 101.55 112.80 117.70 110.10 122.70 139.60 Contenido de humedad (ω) 18.86 19.21 19.63 21.07 18.98 19.64 % Promedio contenido de humedad (ω) 19.03 20.35 19.31 % Peso Volumétrico Seco γd 1.590 1.251 1.667 g/cm³ DESPÚES DE LA SATURACIÓN 10749 Peso Húmeda + Molde 11972 10849 Peso Molde 5903 7094 6825 Peso de Muestra Húmeda 4846 4878 4024 g 2310.11 2330.60 Volumen Muestra 2340.81 cm3 Peso unitario Húmedo γm 2.070 2.112 1.727 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 78 95 65 6 Peso muestra húmeda + recipiente (Wm + Wr) 158.58 149.87 152.87 126.57 187.89 172.80 Peso muestra seca + recipiente (Ws + Wr) 134.70 127.40 127.20 106.70 152.40 140.50 Peso del agua (Ww) 22.47 25.67 35.49 32.30 23.88 19.87 Peso del recipiente (Wr) 33.50 32.40 31.70 33.40 30.60 34.30 Peso de la muestra seca (Ws) 101.20 94.00 96.60 72.40 120.00 108.80 Contenido de humedad (ω) 23.60 23.90 26.57 27.44 29.58 29.69

27.01

29.63

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía: Capa Vegetal: 5 cm


ID Muestra: 8 Profundidad: 80 cm

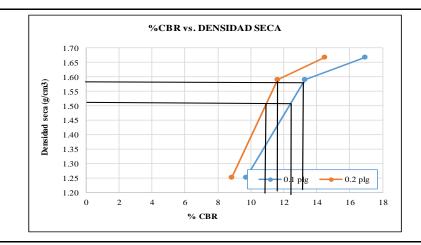
Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 812579 m 9844307 m

MÁQUINA DE COMPRESIÓN SIMPLE (CONTROLS)

Área de Pistón 3 in² Velocida de carga $\frac{1.270 \text{ mm/min}}{0.05 \text{ in/min}}$

PENETRACIÓ	UN		MOLDEN® 1 (56 Golpes) O Estándar MOLDE N® 2 (27 Golpes)						MOLDENº 3 (11 Golpes)					
		(lb/in²)	Q	Pres	iones	CBR	Q	Presiones		CBR	Q	Presiones		CBR
mm in	in *10-3	()	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		238.7	79.6			187.7	62.6			112.8	37.6		
1.27	50		339.4	113.1			252.4	84.1			152.4	50.8		
1.91	75		419.8	139.9			334.8	111.6			201.5	67.2		
2.54	100	1000	508.7	169.6	169.57	16.96	398.7	132.9	132.90	13.29	291.8	97.3	97.27	9.73
3.81	150		580.5	193.5			462.6	154.2			345.0	115.0		
5.08	200	1500	652.7	217.6	217.57	14.50	522.4	174.1	174.13	11.61	398.7	132.9	132.90	8.86
6.35	250		725.5	241.8			587.4	195.8			437.0	145.7		
7.62	300		764.3	254.8			627.4	209.1			483.5	161.2		
10.16	400		936.7	312.2			772.4	257.5			567.5	189.2		
12.7	500		1128.8	376.3			872.4	290.8			682.4	227.5		

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL


ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:8Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 812579 m 9844307 m

MOLDE	1	2	3	
CBR %	0.1"	16.96	13.29	9.73
	0.2"	14.50	11.61	8.86
Densida Seca	g/cm3	1.667	1.590	1.251

Densidad seca máx :	1.670	gr/cm3

Densidad seca máx		% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM =	1.503	12.5	11	12.5
95% DSM=	1.587	13.4	11.5	13.4

Tabla 171: Ensayo CBR – Muestra 9

Promedio contenido de humedad (ω)

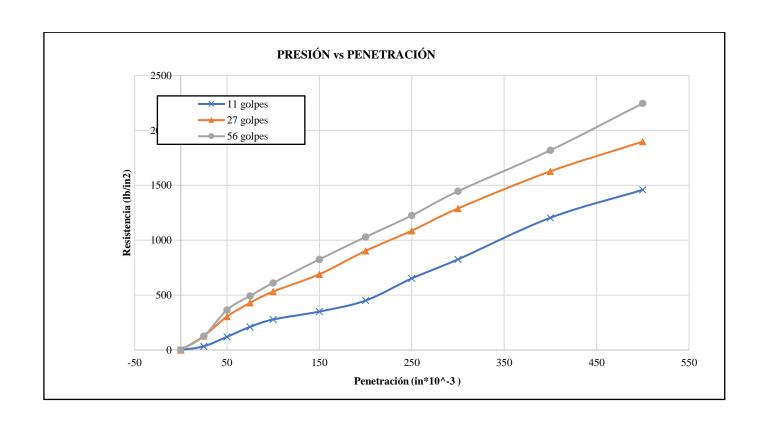
UNIVERSIDAD TÉCNICA DE AMBATO CARRERA DE INGENIERÍA CIVIL

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Capa Vegetal: ID Muestra: Profundidad: 80 cm AASHTO T 193 - 2013 Norma: Coordenadas: 17 812294 m 9846955 m ESPECIFICACIONES DEL ENSAYO Densidad Máx. Seca Peso Muestra 5000 1.592 g/cm3 Peso Martillo 10 lb W% Óptimo 18.20 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE Diámetro Diámetro Diámetro 15.1 cm DIMENSIONES Altura 12.9 Altura 12.8 Altura 12.9 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 10982 11897 12185 Peso Molde 6680 8027 8375 g Peso de Muestra Húmeda 4302 3870 3810 g Volumen Muestra 2340.81 2322.67 2310.11 cm3 Peso unitario Húmedo γm 1.838 1.666 1.649 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número D Peso muestra húmeda + recipiente (Wm + Wr) 154.10 175.24 145.78 197.80 164.70 187.50 Peso muestra seca + recipiente (Ws + Wr) 134.50 150.60 128.70 172.14 143.80 163.50 Peso del agua (Ww) 19.60 24.64 17.08 25.66 20.90 24.00 Peso del recipiente (Wr) 26.60 25.80 31.10 33.40 33.50 31.40 Peso de la muestra seca (Ws) 107.90 124.80 97.60 138.74 110.30 132.10 Contenido de humedad (ω) 18.16 19.74 17.50 18.50 18.95 18.17 % Promedio contenido de humedad (ω) 18.00 18.95 18.56 % Peso Volumétrico Seco γd 1.545 1.412 1.391 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 12455 12987 14289 Peso Molde 8027 8375 6680 Peso de Muestra Húmeda 5775 4960 5914 2340.81 2322.67 2310.11 Volumen Muestra cm3 CONTENIDO DE HUMEDAD Recipiente Número 16 98 Peso muestra húmeda + recipiente (Wm + Wr) 156.80 178.90 132.70 198.70 165.80 169.40 Peso muestra seca + recipiente (Ws + Wr) 137.80 131.20 151.20 140.10 110.50 165.50 Peso del agua (Ww) 25.60 27.70 29.30 22.20 33.20 28.00 Peso del recipiente (Wr) 30.40 31.00 31.20 31.30 30.80 30.70 Peso de la muestra seca (Ws) 79.20 100.80 120.20 108.90 134.70 107.10 Contenido de humedad (ω) 25.40 23.04 26.91 28.03 24.65 26.14 %

27.47

25.40

%


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

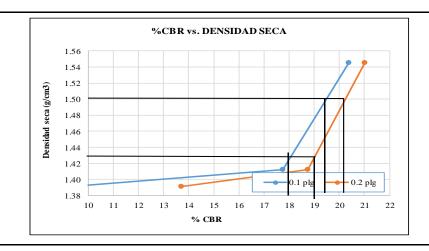
Vía:Capa Vegetal:5cmID Muestra:9Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 812294 m 9846955 m

Ámas da Distán	2	i.n?	Velocida de carga	1.270	mm/min
Area de Pistón	3	1112	Velocida de carga	0.05	in/min

DEMETE	RACIÓN			MOLDE N°	1 (56 Golpes)			MOLDE Nº 2	(27 Golpes)			MOLDE N°	3 (11 Golpes)			
FENEII	KACION	Q Estándar (lb/in²)	Q	Pres	iones	CBR	Q P		Presiones		Presiones		CBR Q	Pres	Presiones	
mm	in *10-3	(10,111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%		
0	0		0	0			0	0			0	0				
0.64	25		127.4	42.5			128.7	42.9			34.5	11.5				
1.27	50]	365.4	121.8	1		304.8	101.6			120.5	40.2				
1.91	75		493.7	164.6			429.8	143.3			210.8	70.3				
2.54	100	1000	611.7	203.9	203.90	20.39	532.8	177.6	177.60	17.76	278.4	92.8	92.80	9.28		
3.81	150		825.7	275.2			690.4	230.1			350.4	116.8				
5.08	200	1500	1029.4	343.1	343.13	21.01	903.1	301.0	301.30	18.74	450.7	150.2	150.23	13.70		
6.35	250		1225.7	408.6			1087.0	362.3			652.0	217.3				
7.62	300		1446.2	482.1			1289.6	429.9			825.7	275.2				
10.16	400		1819.7	606.6			1627.6	542.5			1204.8	401.6				
12.7	500]	2246.7	748.9			1898.1	632.7	1		1459.0	486.3	1			

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL


ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:9Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 812294 m 9846955 m

MOLDE	1	2	3	
CBR %	0.1"	20.39	17.76	9.28
CBR %	0.2"	21.01	18.74	13.70
Densida Seca	g/cm3	1.545	1.412	1.391

Donaidad acea món .	1.502	~~/~~~?
Densidad seca máx :	1.592	gr/cm3

Densidad seca máx		% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM =	1.433	18	19	19
95% DSM=	1.512	19.8	20.1	20.1

Tabla 172 : Ensayo CBR – Muestra 10

Promedio contenido de humedad (ω)

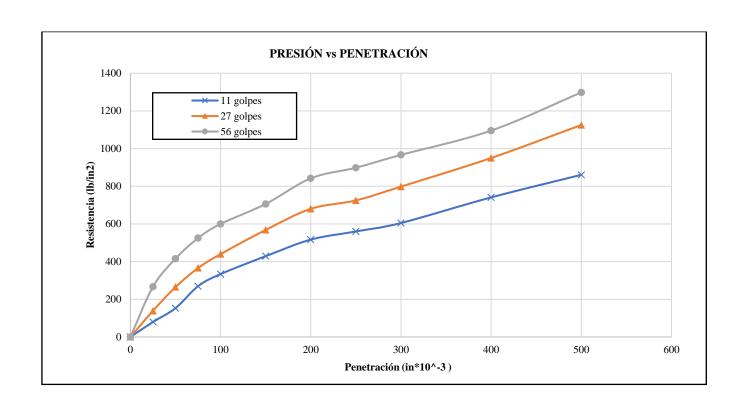
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

	H I	ENSAYO PA	RA DETER	MINAR CBF	ł		<u>u</u>	
Proyecto: "ANÁLISI	IS DE LAS CORRELACIÓ SUELOS DE LA PARR							AS EN LOS
Vía: ID Muestra: Norma:	10 AASHTO T 193 -	2013	Capa Vegetal: Profundidad: Coordenadas:			5 80 17	cm cm 808742 m	9840053 m
	1	ESPECIFICA	ACIONES D	EL ENSAYO)			
Peso Muestra	5000	g		Densidad	Máx. Seca	1.7	730	g/cm³
Peso Martillo	10	lb		4				
Altura de Caída	18	in		W% C	Óptimo	12	.70	%
	I	ENSAYO DE	COMPAC	FACIÓN CB	R			
MOLDE)		4		1	T
		Diámetro	15.1	Diámetro	15.2	Diámetro	15.2	cm
DIMENSIONES		Altura	12.7	Altura	12.9	Altura	15.7	cm
Nº de Capas			5		5		5	
Nº de Golpes		5	6	2	.7	1	1	
Peso Húmeda + Molo		969	11761		119	920	g	
Peso Molde	6610		74	182	7882		g	
Peso de Muestra Hún	43	59	42	:79	4038		g	
Volumen Muestra	227-	4.30	234	0.81	284	8.90	cm ³	
Peso unitario Húmedo γm		1.9	17	1.8	328	1.417		g/cm³
		CONTE	NIDO DE H	UMEDAD				
Recipiente Número		34I	58H	14	74	36	49	
Peso muestra húmeda	+ recipiente (Wm + Wr)	108.01	142.87	121.47	96.40	103.47	90.87	g
Peso muestra seca + 1		99.30	130.70	110.60	88.60	95.40	83.70	g
Peso del agua (Ww)	_	8.71	12.17	10.87	7.80	8.07	7.17	g
Peso del recipiente (Wr)	36.40	34.40	30.70	30.90	30.90	31.10	g
Peso de la muestra se	ca (Ws)	62.90	96.30	79.90	57.70	64.50	52.60	g
Contenido de humeda	d (ω)	13.85	12.64	13.60	13.52	12.51	13.63	%
Promedio contenido o	de humedad (ω)	13	.24	13.56		13	.07	%
Peso Volumétrico Se	co γd	1.6	593	1.6	510	1.2	254	g/cm³
		DESPÚES	DE LA SAT	TURACIÓN				
Peso Húmeda + Molo	le	112	249	12	148	12	443	g
Peso Molde		66	10	74	82	78	382	g
Peso de Muestra Hún	neda	43	89	43	194	42	236	g
Volumen Muestra		227	4.30	234	0.81	284	8.90	cm ³
		CONTE	NIDO DE H	UMEDAD				
Recipiente Número		40	87F	24W	69T0	14A	14SD	
	+ recipiente (Wm + Wr)	111.24	137.43	176.98	166.74	174.58	169.10	g
Peso muestra seca + i		100.50	122.70	155.40	147.30	152.40	146.80	g
Peso del agua (Ww)		10.74	14.73	21.58	19.44	22.18	22.30	g
Peso del recipiente (Wr)	26.50	24.70	31.10	33.20	32.20	31.80	g
Peso de la muestra se	ca (Ws)	74.00	98.00	124.30	114.10	120.20	115.00	g
Contenido de humeda	d (ω)	14.51	15.03	17.36	17.04	18.45	19.39	%

17.20

cm

cm


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

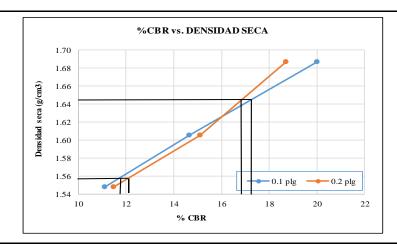
Vía:Capa Vegetal:5ID Muestra:10Profundidad:80

Norma: AASHTO T 193 - 2013 Coordenadas: 17 808742 m 9840053 m

Ámas da Distán	2	:?	Valorido de como	1.270	mm/min
Área de Pistón	3	1n ²	Velocida de carga	0.05	in/min

DIMET	RACIÓN			MOLDE Nº	1 (56 Golpes)			MOLDE N°	2 (27 Golpes)			MOLDE N°	3 (11 Golpes)	
FENEI	KACION	Q Estándar (lb/in²)	Q	Pres	iones	CBR	Q	Pres	iones	CBR	Q	Pres	iones	CBR
mm	in *10-3	(14,111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		266.7	88.9			138.7	46.2			79.4	26.5		
1.27	50		415.7	138.6			264.7	88.2			152.8	50.9		
1.91	75		524.7	174.9			365.7	121.9			269.4	89.8		
2.54	100	1000	600.0	200.0	200.00	20.00	439.7	146.6	146.57	14.66	333.7	111.2	111.23	11.12
3.81	150		706.0	235.3			568.0	189.3			428.7	142.9		
5.08	200	1500	842.1	280.7	280.70	18.71	680.1	226.7	226.71	15.11	516.7	172.2	172.23	11.48
6.35	250		898.4	299.5			724.8	241.6			560.0	186.7		
7.62	300		966.5	322.2			798.0	266.0			604.8	201.6		
10.16	400]	1095.4	365.1	1		950.0	316.7	1		740.8	246.9		
12.7	500]	1298.0	432.7	1		1125.0	375.0	1		860.8	286.9		
				-	-	-		-		•	-		-	-

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL


ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:10Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 808742 m 9840053 m

MOLDE	1	2	3	
CBR %	0.1"	20.00	14.66	11.12
CBR 76	0.2"	18.71	15.11	11.48
Densida Seca	g/cm3	1.687	1.606	1.548

Densidad seca máx :	1.730	gr/cm3

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.557	11.2	12.2	12.2
95% DSM= 1.644	17.4	16.8	17.4

Tabla 173 : Ensayo CBR – Muestra 11

Peso Volumétrico Seco γd

UNIVERSIDAD TÉCNICA DE AMBATO CARRERA DE INGENIERÍA CIVIL

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA ENSAYO PARA DETERMINAR CBR "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Provecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: Profundidad: 80 AASHTO T 193 - 2013 Norma: Coordenadas: 17 806387 m 9843876 m ESPECIFICACIONES DEL ENSAYO 5000 Peso Muestra Densidad Máx. Seca 1.620 g/cm3 Peso Martillo 10 1b W% Óptimo 21.00 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE 11 Diámetro 15.11 Diámetro 15.16 Diámetro 15.17 cm DIMENSIONES Altura 17.8 Altura 17.7 Altura 17.6 cm Nº de Capas Nº de Golpes 56 27 11 Peso Húmeda + Molde 14443 14001 12879 7975 7513 Peso Molde 8045 Peso de Muestra Húmeda 6468 5956 5366 3191.82 3194.93 3181.07 Volumen Muestra cm³ Peso unitario Húmedo γm 2.026 1.864 1.687 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 91 86 53 61 Peso muestra húmeda + recipiente (Wm + Wr) 217.00 249.40 140.70 145.40 151.30 151.90 Peso muestra seca + recipiente (Ws + Wr) 178.10 204.40 118.40 122.60 126.80 127.60 Peso del agua (Ww) 24.50 38.90 45.00 22.30 22.80 24.30 Peso del recipiente (Wr) 32.40 34.40 30.50 31.30 30.20 30.90 Peso de la muestra seca (Ws) 145.70 170.00 87.90 91.30 96.60 96.70 25,37 Contenido de humedad (ω) 26.70 26.47 24.97 25.36 25.13 % Promedio contenido de humedad (ω) 26.58 25.17 25.25 % Peso Volumétrico Seco γd 1.601 1.489 1.347 g/cm3 DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 14456 12978 Peso Molde 7975 8045 7513 Peso de Muestra Húmeda 6710 6411 5465 g Volumen Muestra 3191.82 3194.93 3181.07 cm3 Peso unitario Húmedo γm 2.102 2.007 1.718 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número 28 11 Peso muestra húmeda + recipiente (Wm + Wr) 135.40 145.10 156.80 165.70 189.70 145.80 Peso muestra seca + recipiente (Ws + Wr) 115.50 122.70 131.60 138.50 157.80 123.80 Peso del agua (Ww) 19.90 22.40 25.20 27.20 31.90 22.00 Peso del recipiente (Wr) 30.90 31.10 26.00 25.60 30.60 30.70 Peso de la muestra seca (Ws) 84.60 105.60 112.90 127.20 93.10 91.60 Contenido de humedad (ω) 23.52 24.45 23.86 24.09 25.08 23.63 % Promedio contenido de humedad (ω) 24.35 %

1.619

1.382

g/cm3

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

5

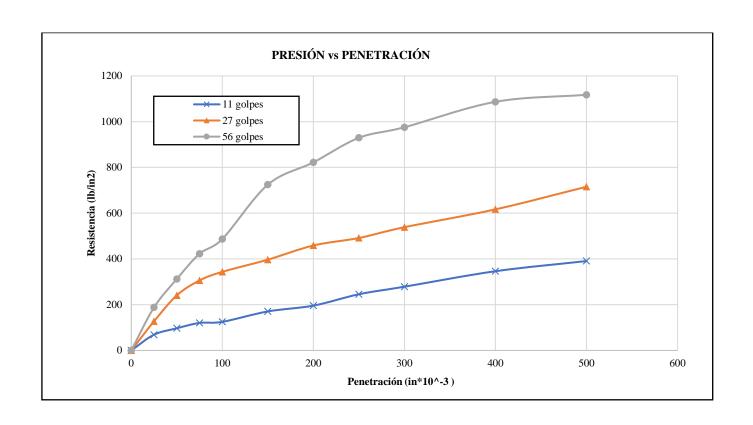
80

cm

cm

CARRERA DE INGENIERÍA CIVIL

ENSAYO PARA DETERMINAR CBR


Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

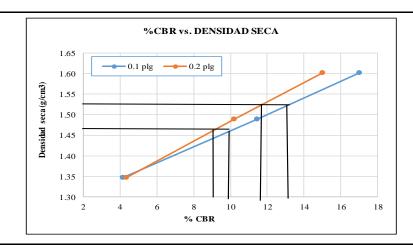
Vía: Capa Vegetal: ID Muestra: 11 Profundidad:

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 806387 m 9843876 m

Área de Pistón	2	:2	Valorido de como	1.270	mm/min	
	3	1n ²	Velocida de carga	0.05	in/min	

DENIEW	n . crón			MOLDE Nº	1 (56 Golpes)			MOLDE Nº	2 (27 Golpes)			MOLDE N° 3 (11 Golpes)				
PENEII	RACIÓN	Q Estándar (lb/in²)	Q	Pres	iones CBR		Presiones		Q Presio		Presiones		Q	Pres	iones	CBR
mm	in *10-3	(===)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%		
0	0		0	0			0	0			0	0				
0.64	25		188.2	62.7			127.4	42.5			68.7	22.9				
1.27	50		312.1	104.0			240.7	80.2			96.8	32.3				
1.91	75		422.8	140.9			305.8	101.9			120.1	40.0				
2.54	100	1000	486.8	162.3	162.27	16.23	343.5	114.5	114.50	11.45	124.9	41.6	41.63	4.16		
3.81	150		724.7	241.6			396.8	132.3			170.4	56.8				
5.08	200	1500	822.2	274.1	274.07	18.27	458.7	152.9	152.90	10.19	195.8	65.3	65.27	4.35		
6.35	250		929.5	309.8			491.5	163.8			245.5	81.8				
7.62	300]	975.6	325.2			538.7	179.6	1		278.5	92.8	1			
10.16	400]	1086.8	362.3			616.7	205.6]		346.2	115.4]			
12.7	500]	1117.6	372.5			715.5	238.5]		390.7	130.2]			

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL


ENSAYO PARA DETERMINAR CBR

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5cmID Muestra:11Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 806387 m 9843876 m

MOLDE	1	2	3	
CBR %	0.1"	17.00	11.45	4.16
CBR %	0.2"	15.00	10.19	4.35
Densida Seca	g/cm3	1.601	1.489	1.347

Densidad seca máx :	1.620	gr/cm3
Densidad seca max.	1.020	gi/ciib

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.458	10	9	10
95% DSM= 1.539	13	12	13

Tabla 174: Ensayo CBR – Muestra 12

Promedio contenido de humedad (ω)

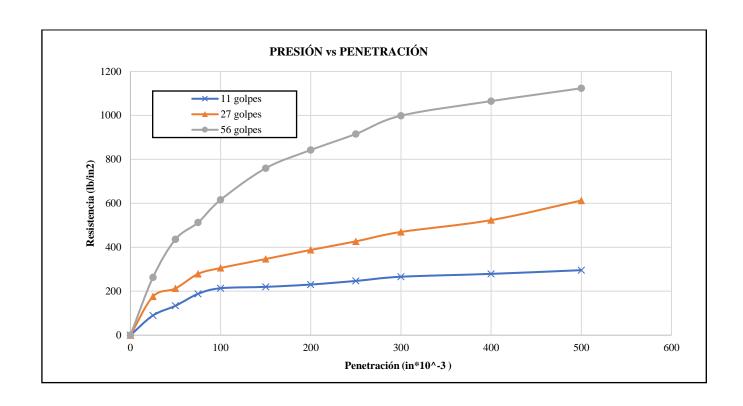
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

%

"ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Provecto: SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI." Vía: Capa Vegetal: ID Muestra: 12 Profundidad: 80 cm Norma: AASHTO T 193 - 2013 Coordenadas: 17 808775 m 9843698 m ESPECIFICACIONES DEL ENSAYO Peso Muestra 5000 Densidad Máx. Seca 1.817 g/cm3 Peso Martillo 10 lb W% Óptimo 15.10 % Altura de Caída 18 in ENSAYO DE COMPACTACIÓN CBR MOLDE 15.1 Diámetro Diámetro 15.1 Diámetro 15.2 cm DIMENSIONES Altura 12.9 Altura 12.8 Altura 12.7 cm Nº de Capas Nº de Golpes 27 56 11 Peso Húmeda + Molde 13000 14159 11000 Peso Molde 9551 8761 6991 Peso de Muestra Húmeda 4608 4239 4009 g Volumen Muestra 2310.11 2292.20 2304.52 cm³ Peso unitario Húmedo γm 1.995 1.849 1.740 g/cm3 CONTENIDO DE HUMEDAD Recipiente Número В D Е F Peso muestra húmeda + recipiente (Wm + Wr) 169.24 153.57 173.50 182.98 156.58 147.58 Peso muestra seca + recipiente (Ws + Wr) 150.60 137.50 154.70 162.50 139.80 131.70 Peso del agua (Ww) 18.64 16.07 18.80 20.48 16.78 15.88 Peso del recipiente (Wr) 31.10 31.10 32.20 33.20 30.90 31.00 Peso de la muestra seca (Ws) 119.50 106.40 122.50 129.30 108.90 100.70 Contenido de humedad (ω) 15.60 15.10 15.35 15.84 15.41 15.77 % Promedio contenido de humedad (ω) 15.35 15.59 15.59 % Peso Volumétrico Seco γd 1.729 1.600 1.505 g/cm³ DESPÚES DE LA SATURACIÓN Peso Húmeda + Molde 14879 13876 12426 Peso Molde 9551 8761 6991 Peso de Muestra Húmeda 5328 5435 5115 2304.52 Volumen Muestra 2310.11 2292.20 cm3 CONTENIDO DE HUMEDAD Recipiente Número 79 11 Peso muestra húmeda + recipiente (Wm + Wr) 149.00 131.02 143.89 144.80 165.50 128.85 Peso muestra seca + recipiente (Ws + Wr) 130.50 115.40 124.50 125.60 140.80 110.80 Peso del agua (Ww) 18.50 15.62 19.39 19.20 24.70 18.05 Peso del recipiente (Wr) 31.70 31.10 30.60 30.80 31.00 30.80 Peso de la muestra seca (Ws) 93.90 94.80 98.80 84.30 109.80 80.00 Contenido de humedad (ω) 18.72 18.53 20.25 22.50 22.56 20.65

cm

cm

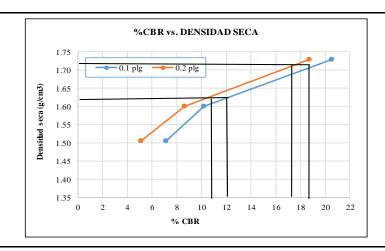

Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."

Vía:Capa Vegetal:5ID Muestra:12Profundidad:80

Norma: AASHTO T 193 - 2013 Coordenadas: 17 808775 m 9843698 m

Áras de Pistón	2	in?	Valacida da cargo	1.270	mm/min	
Area de Pistón	3	1n ²	Velocida de carga	0.05	in/min	

DENIEF	RACIÓN			MOLDE N°	1 (56 Golpes)			MOLDEN°	2 (27 Golpes)			MOLDEN°	3 (11 Golpes)	
PENEIL	RACION	Q Estándar (lb/in²)	Q	Pres	siones	CBR	Q	Pres	siones	CBR	Q	Pres	iones	CBR
mm	in *10-3	(13,111)	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%	Carga	Leída	Correg.	%
0	0		0	0			0	0			0	0		
0.64	25		263.1	87.7			175.8	58.6			89.7	29.9		
1.27	50		436.4	145.5			212.8	70.9			133.8	44.6		
1.91	75		512.6	170.9			278.7	92.9			187.9	62.6		
2.54	100	1000	615.8	205.3	205.27	20.53	305.7	101.9	101.90	10.19	213.5	71.2	71.17	7.12
3.81	150		759.6	253.2			346.5	115.5			219.8	73.3		
5.08	200	1500	842.6	280.9	280.87	18.72	387.9	129.3	129.30	8.62	230.4	76.8	76.80	5.12
6.35	250		915.6	305.2			426.8	142.3			246.8	82.3		
7.62	300		998.7	332.9			469.7	156.6			265.8	88.6		
10.16	400]	1065.0	355.0	1		523.5	174.5			278.9	93.0		
12.7	500		1123.5	374.5			612.7	204.2			295.8	98.6		
		•			•		•		•					



Proyecto: "ANÁLISIS DE LAS CORRELACIÓNES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA ANGAMARCA, CANTÓN PUJILÍ, PROVINCIA DE COTOPAXI."+

Vía:Capa Vegetal:5cmID Muestra:12Profundidad:80cm

Norma: AASHTO T 193 - 2013 **Coordenadas:** 17 808775 m 9843698 m

MOLDE	1	2	3	
CBR %	0.1"	20.53	10.19	7.12
CBR %	0.2"	18.72	8.62	5.12
Densida Seca	g/cm3	1.729	1.600	1.505

Densidad seca máx :	1.817	gr/cm3
Denotate Seed Habi .	1.017	51,0112

Densidad seca máx	% CBR-0,1 in	% CBR-0,2 in	MAYOR % CBR
90% DSM = 1.635	12	11	12
95% DSM= 1.726	18.5	17.2	18.5

CONTEO VEHICULAR

	-		CONTE	O VEHICULAR	DÍA 1			
				Camiones				
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	ACUMULADO
6:00 - 6:15	7	0	2	0	0	0	9	
6:14 - 6 :30	6	1	1	0	0	0	8	34
6:30 - 6:45	7	0	2	0	0	0	9	34
6:45 - 7:00	7	0	1	0	0	0	8	
7:00 - 7:145	6	0	2	0	0	0	8	
7:14 – 7 :30	7	1	1	0	0	0	9	32
7:30 - 7:45	5	0	2	0	0	0	7	. 32
7:45 - 8:00	6	0	2	0	0	0	8	
8:00 – 8:15	5	0	1	0	0	0	6	
8:14 – 8 :30	6	0	2	0	0	0	8	28
8:30 - 8:45	4	0	1	0	0	0	5	
8:45 - 9:00 9:00 - 9:145	5	0	3	0	0	0	6	
9:00 – 9:145 9:14 – 9 :30	7	0	3	0	0	0	10	-
9:30 – 9:45	4	1	1	0	0	0	6	29
9:45 – 10:00	5	0	2	0	0	0	7	
10:00 - 10:145	6	0	1	0	0	0	7	
10:14 – 10 :30	3	0	1	0	0	0	4	
10:30 – 10:45	5	0	2	0	0	0	7	27
10:45 – 11:00	7	0	2	0	0	0	9	-
	7	-			1		8	
11:00 – 11:15		0	1	0	0	0		-
11:14 – 11 :30	5	1	2		0	0	8	30
11:30 – 11:45	6	0	1	0	0	0	7	-
11:45 – 12:00	6	0	1	0	0	0	7	
12:00 – 12:15	6	0	2	0	0	0	8	
12:14 – 12 :30	7	0	2	0	0	0	9	31
12:30 – 12:45	5	0	2	0	0	0	7	
12:45 - 13:00	6	0	1	0	0	0	7	
13:00 – 13:15	8	0	2	0	0	0	10	
13:14 – 13 :30	5	1	2	0	0	0	8	29
13:30 - 13:45	6	0	0	0	0	0	6	
13:45 - 14:00	4	0	1	0	0	0	5	
14:00 – 14:15	7	0	2	0	0	0	9	
14:14 - 14 :30	6	0	2	0	0	0	8	30
14:30 – 14:45	4	0	3	0	0	0	7	
14:45 - 15:00	4	0	2	0	0	0	6	
15:00 - 15:15	6	0	2	0	0	0	8	
15:14 – 15 :30	4	0	1	0	0	0	5	28
15:30 - 15:45	5	0	1	0	0	0	6	20
15:45 – 16:00	6	0	3	0	0	0	9	
16:00 - 16:15	5	0	1	0	0	0	6	
16:14 – 16 :30	6	0	3	0	0	0	9	25
16:30 - 16:45	3	0	2	0	0	0	5	25
16:45 - 17:00	4	0	1	0	0	0	5	1
17:00 - 17:15	7	0	2	0	0	0	9	
17:14 – 17 :30	7	0	2	0	0	0	9	1
17:30 – 17:45	6	1	2	0	0	0	9	35
17:45 – 18:00	6	0	2	0	0	0	8	1
Total	271	6	81	302	0	0	358	358

		CONT	EO VEHICU	LAR DÍA 2				
				Camiones				ACUMULA
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	DO
6:00 - 6:145	7	1	2	0	0	0	10	
6:14 – 6 :30	5		2	0	0	0	6.5	32
6:30 - 6:45	7		1	0	0	0	8	32
6:45 - 7:00	5		3	0	0	0	7.5	
7:00 - 7:145	7		1	0	0	0	8	
7:14 – 7 :30	6		2	0	0	0	7.5	34
7:30 – 7:45	7		2	0	0	0	8	J .
7:45 – 8:00	9		2	0	0	0	10.5	
8:00 - 8:15	5		1	0	0	0	5.5	
8:14 – 8 :30	4	1	1	0	0	0	5.5	25
8:30 - 8:45	6		2	0	0	0	7	
8:45 - 9:00	6		2	0	0	0	7	
9:00 - 9:145	4	-	1	0	0	0	4	-
9:14 – 9 :30	4	-	2	0	0	0	5	19
9:30 - 9:45	4		1	0	0	0	4.5	4
9:45 - 10:00	5		2	0	0	0	5.5	
10:00 - 10:145	6		1		0		6	-
10:14 - 10 :30			1	0	0	0	7	25
10:30 - 10:45	5		2	0	0	0	7	4
10:45 – 11:00	3		2	0	0	0	4.5	
11:00 – 11:15	6		1	0	0	0	7	
11:14 – 11 :30	7		2	0	0	0	8	31
11:30 – 11:45	7	1	1	0	0	0	9	
11:45 – 12:00	5		2	0	0	0	7	
12:00 - 12:15	7		3	0	0	0	9	
12:14 - 12 :30	7		1	0	0	0	7.5	32
12:30 - 12:45	7		2	0	0	0	8.5	32
12:45 - 13:00	5		2	0	0	0	7	
13:00 - 13:15	6		2	0	0	0	8	
13:14 - 13 :30	7		1	0	0	0	7.5	21
13:30 - 13:45	8		1	0	0	0	8.5	31
13:45 - 14:00	5		2	0	0	0	6.5	
14:00 - 14:15	4	1	2	0	0	0	6	
14:14 – 14 :30	6		2	0	0	0	8	1
14:30 - 14:45	7		2	0	0	0	8.5	29
14:45 - 15:00	5		1	0	0	0	6	
15:00 - 15:15	6		2	0	0	0	7	
15:14 – 15 :30	4		1	0	0	0	4.5	
15:30 – 15:45	5		1	0	0	0	6	25
15:45 – 16:00	5		3	0	0	0	7.5	-
16:00 – 16:15	5	 	2	0	0	0	7.3	
16:14 – 16:30	5			0	0		7	1
	5		3 03			0		20
16:30 – 16:45		-	1	0	0	0	6	-
16:45 – 17:00	7		1	0	0	0	8	
17:00 – 17:15	6		2	0	0	0	7.5	4
17:14 – 17 :30	7		3	0	0	0	9	39
17:30 – 17:45	7		1	0	0	0	7.5	4
17.45 10.00	6	I		Δ.	^	^	C 5	1

		CONTEO VEHICU	LAR DÍA 3					
				Camiones			ACUMULAI	
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	O
6:00 - 6:145	6	1	1	0	0	0	7	
6:14 - 6 :30	7		2	0	0	0	8.5	27
6:30 - 6:45	4		1	0	0	0	4.5	21
6:45 - 7:00	6		1	0	0	0	7	
7:00 - 7:145	5		1	0	0	0	5.5	
7:14 – 7 :30	6		0	0	0	0	6	25
7:30 – 7:45	6		2	0	0	0	7	
7:45 - 8:00	6		1	0	0	0	6.5	
8:00 - 8:15	5		1	0	0	0	5.5	4
8:14 - 8 :30	<u>4</u> 5		1	0	0	0	4.5	22
8:30 - 8:45 8:45 - 9:00	6		1	0	0	0	5.5	-
9:00 - 9:145	7	1	1	0	0	0	6.5 8	
9:14 - 9:30	5	1	2	0	0	0	6.5	1
9:30 - 9:45	4		1	0	0	0	4.5	27
9:45 - 10:00	7		1	0	0	0	7.5	1
10:00 - 10:145	5		1	0	0	0	6	
10:14 - 10 :30	5		1	0	0	0	5.5	1
10:30 - 10:45	6		1	0	0	0	6	23
10:45 - 11:00	5		1	0	0	0	5.5	1
11:00 - 11:15	8		0	0	0	0	8	
11:14 – 11 :30	8		2	0	0	0	9	1
11:30 – 11:45	6	1	1	0	0	0	7	30
11:45 – 12:00	6	•	0	0	0	0	5.5	
12:00 - 12:15	8		1	0	0	0	8.5	
12:14 - 12 :30	6		2	0	0	0	7.5	1
12:30 - 12:45	8		1	0	0	0	8	31
12:45 - 13:00	6	+	1	0	0	0	7	-
13:00 - 13:15	8		2	0	0	0	9.5	
	3	+				0		-
13:14 - 13 :30			1	0	0	0	4	25
13:30 - 13:45	5		1	0			6.5	-
13:45 - 14:00			1	0	0	0	5	
14:00 - 14:15	7	1	1	0	0	0	8	4
14:14 - 14 :30	8		0	0	0	0	7.5	27
14:30 – 14:45	5		1	0	0	0	5.5	-
14:45 - 15:00	5		1	0	0	0	6	
15:00 - 15:15	6		1	0	0	0	6.5	4
15:14 - 15 :30	6		2	0	0	0	8	25
15:30 - 15:45	4		1	0	0	0	4	4
15:45 - 16:00	7		0	0	0	0	6.5	
16:00 - 16:15	6		1	0	0	0	7	1
16:14 – 16 :30	7		1	0	0	0	8	29
16:30 - 16:45	6		1	0	0	0	7	1 ~
16:45 - 17:00	6		1	0	0	0	6.5	
17:00 - 17:15	4		2	0	0	0	6]
17:14 - 17 :30	4		1	0	0	0	4.5	27
17:30 - 17:45	7		1	0	0	0	8	21
17:45 - 18:00	8		1	0	0	0	8	
Total	272	4	40	0	0	0	316	316

			CONTE	O VEHICULAR	DÍA 4			
				Camiones				
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	ACUMULADO
6:00 - 6:145	6	1	1	0	0		7.5	
6:14 - 6 :30	7		2	0	0	0	8	32
6:30 - 6:45	7		2	0	0	0	8	32
6:45 - 7:00	6		2	0	0	0	8	
7:00 - 7:145	6		3	0	0	0	8	
7:14 – 7 :30	6		3	0	0	0	9	28
7:30 - 7:45	5		2	0	0	0	7	20
7:45 - 8:00	3		2	0	0	0	4	
8:00 - 8:15	4		1	0	0	0	4.5	
8:14 – 8 :30	5		2	0	0	0	7	23
8:30 - 8:45	5		2	0	0	0	6	23
8:45 - 9:00	4		1	0	0	0	5	
9:00 - 9:145	4		2	0	0	0	5	
9:14 – 9 :30	5		2	0	0	0	7	23
9:30 - 9:45	4	1	1	0	0	0	5.5	23
9:45 - 10:00	4		1	0	0	0	5	
10:00 - 10:145	4		2	0	0	0	5.5	
10:14 - 10 :30	4		1	0	0	0	4.5	22
10:30 - 10:45	4		2	0	0	0	5.5	22
10:45 - 11:00	6		1	0	0	0	6.5	
11:00 - 11:15	4		2	0	0	0	5	
11:14 - 11 :30	4		2	0	0	0	5	21
11:30 - 11:45	6	1	1	0	0	0	7	21
11:45 - 12:00	3		2	0	0	0	4	
12:00 - 12:15	3		2	0	0	0	4.5	
12:14 - 12 :30	5		2	0	0	0	6	24
12:30 - 12:45	6		2	0	0	0	7	24
12:45 - 13:00	6		1	0	0	0	6.5	
13:00 - 13:15	5		2	0	0	0	7	
13:14 - 13 :30	4		1	0	0	0	5	24
13:30 - 13:45	6		1	0	0	0	6.5	24
13:45 - 14:00	4		2	0	0	0	5	
14:00 - 14:15	5	1	1	0	0	0	6	
14:14 - 14 :30	6		1	0	0	0	7	24
14:30 - 14:45	3		2	0	0	0	4.5	24
14:45 - 15:00	4		2	0	0	0	6	
15:00 - 15:15	4		2	0	0	0	5.5	
15:14 - 15 :30	5		1	0	0	0	5	26
15:30 - 15:45	7		2	0	0	0	8.5	20
15:45 - 16:00	6		2	0	0	0	7	
16:00 - 16:15	5		2	0	0	0	6	
16:14 – 16 :30	5		1	0	0	0	6	20
16:30 - 16:45	4		2	0	0	0	5	20
16:45 - 17:00	2		1	0	0	0	3	
17:00 - 17:15	4		2	0	0	0	5.5	
17:14 – 17 :30	4		3	0	0	0	6.5	25
17:30 - 17:45	5		1	0	0	0	5	23
17:45 - 18:00	6		2	0	0	0	7.5	
Total	218	4	68	0	0	0	289	289

		CONT	EO VEHICU	LAR DÍA 5				
				Camiones				A CTIMITIT A
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	ACUMULA DO
6:00 - 6:145	7	1	2	0	0	0	9.5	
6:14 - 6 :30	6		3	0	0	0	8.5	35
6:30 - 6:45	7		2	0	0	0	8	33
6:45 - 7:00	7		2	0	0	0	8.5	
7:00 - 7:145	6		3	0	0	0	8	
7:14 - 7:30	6		1	0	0	0	7	20
7:30 - 7:45	5		3	0	0	0	7.5	30
7:45 - 8:00	7		1	0	0	0	7.5	
8:00 - 8:15	6		2	0	0	0	7.5	
8:14 - 8 :30	5		1	0	0	0	6	20
8:30 - 8:45	6		2	0	0	0	7.5	28
8:45 - 9:00	5		2	0	0	0	7	1
9:00 - 9:145	4		1	0	0	0	5	
9:14 - 9 :30	5	1	2	0	0	0	7.5	1
9:30 - 9:45	5		1	0	0	0	6	25
9:45 - 10:00	5		2	0	0	0	6.5	1
10:00 - 10:145	4		1	0	0	0	5	
10:14 - 10 :30	6		1	0	0	0	7	1
10:30 - 10:45	5		1	0	0	0	6	24
10:45 - 11:00	5		1	0	0	0	6	1
11:00 – 11:15	6		2	0	0	0	7	
11:14 – 11 :30	7		2	0	0	0	8	1
11:30 – 11:45	6	1	2	0	0	0	8	29
11:45 – 12:00	5	1	1	0	0	0	5.5	1
12:00 – 12:15	6		3	0	0	0	8	
12:14 – 12 :30	6		2	0	0	0	7	1
12:30 – 12:45	6		1	0	0	0	6.5	30
12:45 - 13:00	7		2	0	0	0	8	1
	7		2	0	0	0	8.5	
13:00 – 13:15	5		2	0	0	0	6.5	1
13:14 – 13 :30			1				7	28
13:30 - 13:45	5		1	0	0	0		1
13:45 - 14:00	5	1	1	0	0	-	6 7	
14:00 – 14:15		1				0		-
14:14 – 14 :30	6	+	2	0	0	0	7.5	27
14:30 - 14:45	5		2	0	0	0	6	4
14:45 - 15:00	5	+	2	0	0	0	6.5	1
15:00 – 15:15	5		2	0	0	0	6	-
15:14 – 15 :30	4		1	0	0	0	4.5	25
15:30 – 15:45	6		2	0	0	0	7.5	-
15:45 – 16:00	5	1	2	0	0	0	7	
16:00 – 16:15	6		1	0	0	0	6.5	-
16:14 – 16 :30	6	1	2	0	0	0	7.5	26
16:30 – 16:45	6	1	1	0	0	0	7	4
16:45 – 17:00	4	1	1 206	0	0	0	5	!
17:00 – 17:15	5	<u> </u>	306	0	0	0	7	4
17:14 – 17 :30	5	ļ	2	0	0	0	6	29
17:30 – 17:45	7	ļ	2	0	0	0	8	4 ~
17:45 - 18:00	7	ļ	1	0	0	0	8	
Total	260	4	71	0	0	0	335	335

		CONTEO VEHICU	ILAR DÍA 6					
				Camiones				ACUMULAI
Hora	Livianos (A)	Buses (B)	Dos ejes	Tres ejes	>Tres ejes	OTROS	TOTAL	O
6:00 - 6:145	7	1	2	0	0	0	9	
6:14 - 6 :30	6		1	0	0	0	6.5	32
6:30 - 6:45	6		2	0	0	0	8	32
6:45 - 7:00	6		3	0	0	0	8	
7:00 - 7:145	5		1	0	0	0	5.5	
7:14 - 7:30	6		2	0	0	0	7.5	28
7:30 - 7:45	6		2	0	0	0	7.5	26
7:45 - 8:00	6		2	0	0	0	7	1
8:00 - 8:15	6		1	0	0	0	6.5	
8:14 - 8 :30	5	1	1	0	0	0	7	20
8:30 - 8:45	6		1	0	0	0	6.5	28
8:45 - 9:00	6		3	0	0	0	8	1
9:00 - 9:145	6		1	0	0	0	6.5	
9:14 - 9 :30	5		2	0	0	0	6.5	1
9:30 - 9:45	4		1	0	0	0	4.5	23
9:45 - 10:00	4		2	0	0	0	5	1
10:00 - 10:145	7		1	0	0	0	8	
10:14 - 10 :30	7		1	0	0	0	7.5	1
10:30 - 10:45	6	i	2	0	0	0	7	28
10:45 - 11:00	5	i	1	0	0	0	5.5	1
11:00 - 11:15	7	i	2	0	0	0	8.5	
11:14 - 11 :30	5	i	2	0	0	0	6.5	1
11:30 – 11:45	6	1	2	0	0	0	8	29
11:45 – 12:00	5	1	1	0	0	0	5.5	
12:00 - 12:15	6		2	0	0	0	7.5	
12:14 - 12 :30	6		1	0	0	0	6	1
12:30 - 12:45	6		1	0	0	0	7	29
12:45 - 13:00	7		2	0	0	0	8.5	1
13:00 - 13:15	6		1	0	0	0	7	
13:14 – 13 :30	7		2	0	0	0	8.5	1
13:30 - 13:45	6		2	0	0	0	8	29
13:45 - 14:00	5		1	0	0	0	5.5	1
14:00 - 14:15	5	1	1	0	0	0	6.5	
14:14 – 14:30	6	1	2	0	0	0	7	1
14:30 - 14:45	5		2	0	0	0	6.5	27
14:45 – 15:00	6		2	0	0	0	7	1
15:00 – 15:15	5		2	0	0	0	6.5	
15:14 – 15:30	5		1	0	0	0		1
15:30 – 15:45	5		1	0	0	0	6	26
15:45 – 16:00	7		1	0	0	0	7	1
16:00 – 16:15	5		1	0	0	0	6	1
	6		2	0	0	0		1
16:14 - 16 :30 16:30 - 16:45	6		1	0	0	0	7.5 6	26
	6		1	0	0	0		1
16:45 - 17:00							6.5	
17:00 - 17:15	5		2	0	0	0	7	4
17:14 – 17 :30	5		1	0	0	0	5.5	28
17:30 - 17:45	7		1	0	0	0	8	4
17:45 - 18:00	6		2	0	0	0	7.5	L
Total	265	4	62	0	0	0	331	331

CONTEO VEHICULAR DÍA 7 Camiones								
6:00 - 6:145	8	1	1	0	0	0	10	35
6:14 - 6 :30	8		3	0	0	0	10	
6:30 - 6:45	6		2	0	0	0	7.5	
6:45 - 7:00	6		2	0	0	0	7.5	
7:00 - 7:145	4		2	0	0	0	6	26
7:14 – 7 :30	5		1	0	0	0	5.5	
7:30 - 7:45	5		2	0	0	0	7	
7:45 - 8:00	6		2	0	0	0	7	
8:00 - 8:15	7		1	0	0	0	8	28
8:14 – 8 :30	5		2	0	0	0	6	
8:30 - 8:45	6		1	0	0	0	7	
8:45 - 9:00	5		2	0	0	0	6.5	
9:00 - 9:145	4		2	0	0	0	5.5	23
9:14 – 9 :30	6		2	0	0	0	7.5	
9:30 - 9:45	4		1	0	0	0	4.5	
9:45 - 10:00	4		1	0	0	0	5	
10:00 - 10:145	7		1	0	0	0	8	27
10:14 - 10 :30	5		2	0	0	0	7	
10:30 - 10:45	5		1	0	0	0	6	
10:45 - 11:00	5		1	0	0	0	6	
11:00 - 11:15	8		1	0	0	0	9	31
11:14 - 11 :30	5		2	0	0	0	6.5	
11:30 - 11:45	7	1	1	0	0	0	8.5	
11:45 - 12:00	6		2	0	0	0	7	
12:00 - 12:15	5		2	0	0	0	6.5	30
12:14 - 12 :30	6		2	0	0	0	7.5	
12:30 - 12:45	7		1	0	0	0	7.5	
12:45 - 13:00	7		2	0	0	0	8	
13:00 - 13:15	7		2	0	0	0	8	31
13:14 – 13 :30	7		1	0	0	0	7.5	
13:30 - 13:45	7	_	1	0	0	0	7.5	
13:45 - 14:00	7	_	1	0	0	0	7.5	
14:00 – 14:15	6	1	1	0	0	0	7.5	26
14:14 – 14 :30	5		1	0	0	0	5.5	
14:30 – 14:45	7		2	0	0	0	8	
14:45 – 15:00	4		2	0	0	0	5	
15:00 – 15:15	6		2	0	0	0	7	28
15:14 – 15 :30	5		2	0	0	0	6.5	
15:30 – 15:45	6		1	0	0	0	7	
15:45 – 16:00	6		2	0	0	0	7	27
16:00 – 16:15	7		2	0	0	0	8.5	
16:14 – 16 :30	6		1	0	0	0	6.5	
16:30 – 16:45	5		1	0	0	0	5.5	
16:45 – 17:00	6		1	0	0	0	6.5	
17:00 – 17:15	8		2	0	0	0	9	30
17:14 – 17 :30	7		1	0	0	0	7.5	
17:30 – 17:45	6		1	0	0	0	6.5	
17:45 - 18:00	6		1	0	0	0	7	
Total	273	3	63	0	0	0	339	339