

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

PROYECTO TÉCNICO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA CIVIL

TEMA:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA

AUTORES: Yadira Nataly Pachucho Chuquiana David Ernesto Cruz Andrade

TUTOR: Ing. Jorge Javier Guevara Robalino Mg.

AMBATO – ECUADOR Junio – 2023

CERTIFICACIÓN

En mi calidad de Tutor del Proyecto Técnico, previo a la obtención del Título de Ingenieros Civiles, con el tema: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA, elaborado por los señores, Yadira Nataly Pachucho Chuquiana, portadora de la cédula de ciudadanía: C.I. 1805322367, y David Ernesto Cruz Andrade, portador de la cédula de ciudadanía: C.I. 0604430850 estudiantes de la Carrera de Ingeniería Civil de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente proyecto técnico es original de sus autores.
- Ha sido revisado cada uno de sus capítulos componentes.
- Está concluido en su totalidad.

Ambato, junio 2023

Ing. Jorge Javier Guevara Robalino Mg.

TUTOR

AUTORÍA DE LA INVESTIGACIÓN

Nosotros, Yadira Nataly Pachucho Chuquiana, con C.I. 1805322367, y David Ernesto Cruz Andrade, con C.I. 0604430850, declaramos que todas las actividades y contenidos expuestos en el presente Proyecto Técnico con el tema: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA. Así como también los gráficos, tablas, conclusiones y recomendaciones son de nuestra exclusiva responsabilidad como autores del proyecto técnico, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, junio 2023

Yadira Nataly Pachucho Chuquiana C.I. 1805322367

AUTOR

David Ernesto Cruz Andrade

C.I. 0604430850

AUTOR

DERECHOS DE AUTOR

Autorizamos a la Universidad Técnica de Ambato, para que haga de este Proyecto Técnico o parte de él, un documento disponible para su lectura, consulta y procesos de investigación, según las normas de la Institución.

Cedemos los Derechos en línea patrimoniales de nuestro Proyecto Técnico, con fines de difusión pública, además apruebo la reproducción de este documento dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando nuestros derechos de autor.

Ambato, junio 2023

Yadira Nataly Pachucho Chuquiana

C.I. 1805322367

AUTOR

David Ernesto Cruz Andrade

C.I. 0604430850

AUTOR

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado, aprueban el informe del Proyecto Técnico, realizado por la estudiante Yadira Nataly Pachucho Chuquiana, de la Carrera de Ingeniería Civil bajo el tema: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA.

Ambato, junio 2023

Para constancia firman:

Ing. Fidel Alberto Castro Solórzano Mg.

MIEMBRO CALIFICADOR

Ing. Bolívar Eduardo Paredes Beltrán PhD.

MIEMBRO CALIFICADOR

DEDICATORIA

Este trabajo es el esfuerzo, dedicación y el cumplimiento de un sueño. Dedicado al forjador de mi camino, padre celestial por haberme permitido llegar hasta este momento tan importante de mi vida.

A mis amados padres Miguel Pachucho y Magdalena Chuquiana que han sido los pilares fundamentales durante toda mi vida, siendo un ejemplo a seguir inculcándome los valores y enseñanzas para seguir adelante y así nunca rendirme, por más difícil que se ponga la vida.

A mis amados hermanos Isabel, Erik que siempre estuvieron apoyándome en cada sueño y motivándome a seguir, a mi angelito en el cielo, Josué que me ha cuidado desde el momento en que partió de este mundo, que es mi motivo y mi inspiración para culminar con esta etapa importante en mi vida. Esto es por ti hermano de mi vida.

También dedico a mis abuelitos, primos, tíos y tías que siempre estuvieron apoyando con palabras de aliento durante toda mi vida, ya que nunca me falto motivación para salir adelante. Por todo esto les estoy eternamente agradecida.

A los amores de mi vida Anthony Jesús y Sebastián, gracias por ser parte de mi vida por motivarme a terminar esta etapa, y por estar siempre a mi lado.

A mis amigos que fueron personas increíbles que me ayudaron a cumplir este gran sueño. Especialmente a David mi compañero de tesis gracias por ser parte de esta etapa, y mi apoyo durante mi vida universitaria.

Finalmente me dedico este trabajo ya que me esforcé durante varios años, varios tropiezos, es verdad que después de tantas malas noches llega la tan anhelada recompensa.

NATALY PACHUCHO

AGRADECIMIENTO

Agradezco a Dios por darme la vida y la sabiduría para poder llegar hasta este momento de mi vida, a pesar de todas las dificultades que la vida nos presenta día a día.

A mis amados padres por siempre estar apoyándome en cada sueño y meta propuesta, no me alcanzara la vida para agradecerles todo lo que han hecho por mí.

Con mucho amor agradezco la Universidad Técnica de Ambato a mi querida Facultad de Ingeniería Civil y Mecánica por acogerme durante mi vida universitaria, de igual manera agradezco a todos los docentes que fueron participes de mi formación profesional por brindarme su conocimiento.

Agradezco a mis amigos por en mí se quedan los bonitos recuerdos que pasamos durante nuestra vida universitaria.

Agradezco al ingeniero Jorge Guevara por ser guía de este trabajo tan importante en mi vida profesional. De igual manera al ingeniero Dilon Moya por compartir sus conocimientos para la realización de este proyecto

NATALY PACHUCHO

ÍNDICE DE CONTENIDOS

CERTIFICACIÓN	ii
AUTORÍA DE LA INVESTIGACIÓN	iii
DERECHOS DE AUTOR	iv
APROBACIÓN DEL TRIBUNAL DE GRADO	v
DEDICATORIA	vi
AGRADECIMIENTO	vii
ÍNDICE DE CONTENIDOS	viii
RESUMEN	xvii
ABSTRACT	xviii
CAPITULO I MARCO TEÓRICO	1
Tema del proyecto técnico	1
Antecedentes investigativos	1
Justificación	2
Fundamentación legal	3
Fundamentación teórica	5
ASPECTOS GENERALES	5
Alcantarillado	5
Sistemas de alcantarillado	5
Tipos de sistemas de alcantarillado	6
ALCANTARILLADO SANITARIO	7
Componentes de un sistema de alcantarillado	7
Período de diseño	8
La población futura	8
Demanda de agua potable	10
Análisis de Caudales	13

Condiciones hidráulicas de conducción	18
Criterios de diseño	19
Velocidades permisibles	19
Hidráulica	20
Fórmulas para el diseño hidráulico	24
ALCANTARILLADO PLUVIAL	25
Bases de diseño	25
Componentes que conforman un sistema de alcantarillado pluvial	26
Parámetros de diseño	28
Condiciones hidráulicas	35
Criterios de diseño	36
PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES	37
Aguas residuales	37
Características de las aguas residuales	40
Parámetros de las aguas residuales	42
Tratamiento de aguas residuales	43
Fases del tratamiento de aguas residuales	44
Fases de diseño para el tratamiento de aguas residuales	44
Objetivos	47
Objetivo general	47
Objetivos específicos	47
CAPÍTULO II. METODOLOGÍA	48
MATERIALES Y MÉTODOS	48
Materiales	48
Métodos	51
Fase 1 (Preliminar). Información del sitio de estudio	51
Fase 2 (Diseño). Diseño del alcantarillado sanitario	56

	Fase 3 (Diseño). Diseño del alcantarillado pluvial	. 69
	Fase 4 (Diseño). Diseño de la PTAR	. 76
	Fase 5 (Técnica)	. 93
CA	PÍTULO III. DISCUSIÓN DE RESULTADOS	. 94
(Cálculo de la red del sistema de alcantarillado sanitario	. 94
	Periodo de diseño	. 94
	Población actual	. 94
	Cálculo de la tasa de crecimiento	. 94
	Población de diseño o futura	. 97
	Densidad poblacional	. 97
	Dotación actual	. 97
	Cálculo del caudal medio diario	. 98
	Cálculo del caudal medio diario sanitario	. 98
	Cálculo del caudal instantáneo	. 99
	Cálculo del caudal de infiltración	. 99
	Cálculo del caudal de conexiones erradas	. 99
	Cálculo del caudal máximo extraordinario	. 99
	Cálculo del caudal de diseño	100
	Parámetros hidráulicos	107
	Condiciones hidráulicas	108
(Cálculo de la red del sistema de alcantarillado pluvial	118
	Periodo de diseño	118
	Cálculo del coeficiente de escurrimiento	118
	Parámetros hidráulicos pluvial	122
Ι	Diseño de planta de tratamiento de aguas residuales	133
	Relación entre el DBO ₅ /DQO	133
	Cálculo de la relación del DBOs/DOO	133

Parámetro de Diseño de la Planta de Tratamiento	34
Tratamiento preliminar o preparatorio	34
Diseño preliminar	34
Tratamiento primario	38
Diseño de secado de lodos	42
Tratamiento secundario	44
Modulación de las unidades que comprenden el sistema de tratamiento de la aguas residuales	
CAPÍTULO IV. CONCLUSIONES Y RECOMENDACIONES 1	54
Conclusiones: 1	54
Recomendaciones	55
BIBLIOGRAFÍA1	56
ANEXOS1	63
Anexo N° 1: Fotografías	63
Anexo N°2 : Datos topográficos	64
Anexo N°3 : Estudio del agua residual	87
Anexo N°4: Análisis de precios unitarios	88

ÍNDICE DE TABLAS

Tabla 1. Dotación media futura recomendada de agua potable	11
Tabla 2. Consumo doméstico máximo	12
Tabla 3. Contribución de aportes industriales	13
Tabla 4. Contribución comercial	14
Tabla 5. Contribución institucional	14
Tabla 6. Coeficiente de mayoración por el método de Popel	16
Tabla 7. Pendientes mínimas y máximas para tuberías PVC	23
Tabla 8. Valores referencias de coeficiente de escurrimiento según las superficies	
y zonas	29
Tabla 9. Valores referencia de los tiempos de entrada	32
Tabla 10. Valores de velocidad máxima de acuerdo al tipo de material de la	
tubería	36
Tabla 11. Fases de tratamiento de aguas residuales	
Tabla 12. Materiales utilizados	48
Tabla 13. Programas computacionales utilizados	50
Tabla 14. Fases del proyecto	
Tabla 15. Descripción climática de la zona de estudio	55
Tabla 16. Tiempo de vida útil en años de los componentes y equipos para el	
proyecto	56
Tabla 17. Métodos para el cálculo de la tasa de crecimiento	
Tabla 18. Métodos para el cálculo de la población de diseño o futura	58
Tabla 19. Densidad poblacional del proyecto	58
Una vez analizado los valores de la Tabla 20. se estimó que la dotación media	
futura es de 130 lts /hab /día. Al no contar con un valor exacto del caserío	
Sigsipamba. Ya que dicha tabla presenta valores aproximados de la dotación de	
acuerdo al clima y a la población del sector.	59
Tabla 21. Dotación futura	59
Tabla 22. Ecuación para el cálculo del caudal medio diario	59
Tabla 23. Fórmula para el cálculo del caudal medio diario sanitario	60
Tabla 24. Cálculo del caudal instantáneo	60
Tabla 25. Métodos para la obtención del factor de mayoración	60

Tabla 26. Cálculo del caudal de infiltración	61
Tabla 27. Coeficiente de infiltración según el tipo de material	61
Tabla 28. Coeficiente de infiltración según el tipo de suelo	62
Tabla 29. Cálculo del caudal de conexiones erradas	62
Tabla 30. Cálculo del caudal máximo extraordinario	62
Tabla 31. Cálculo del caudal de diseño	63
Tabla 32. Fórmula para obtener la pendiente del terreno	63
Tabla 33. Cálculo de la pendiente del proyecto	64
Tabla 34. Cálculo de la pendiente mínima	64
Tabla 35. Valores de coeficiente de rigurosidad de Manning, para diferentes tip	oos
de conductos	64
Tabla 36. Velocidad mínima	65
Tabla 37. Cálculo de la pendiente máxima	65
Tabla 38. Velocidad máxima	65
Tabla 39. Diámetro de la tubería	66
Tabla 40. Diámetros mínimos de tubería según el tipo de alcantarillado	66
Tabla 41. Condiciones hidráulicas en tuberías totalmente llenas	67
Tabla 42. Tensión tractiva	69
Tabla 43. Coeficiente de escurrimiento.	69
Tabla 44. Ecuación para obtener el coeficiente de escurrimiento	70
Tabla 45. Ecuación para el cálculo del tiempo de flujo	72
Tabla 46. Ecuación para el cálculo del tiempo de concentración	72
Tabla 47. Periodo de retorno según el área de influencia	73
Tabla 48. Valores para el factor de reducción	74
Tabla 49. Ecuación para el cálculo de la intensidad máxima corregida	75
Tabla 50. Cálculo de diseño	75
Tabla 51. Parámetros analizados del agua residual	76
Tabla 52. Relación de parámetros para caracterizar aguas residuales	76
Tabla 53. Parámetros de la dificultad de tratabilidad del agua	77
Tabla 54. Composición del agua residual domestica bruta	77
Tabla 55. Ecuación para el cálculo de las dimensiones del canal de entrada	78
Tabla 56. Ecuación para el cálculo del número de barrotes	79
Tabla 57. Ecuación para el cálculo del ancho libre de barrotes	80

Tabla 58. Ecuación para el cálculo de la longitud de las barras de la rejilla	80
Tabla 59. Ecuación para el cálculo del volumen del desarenador	81
Tabla 60. Ecuación para el cálculo de la dimensión del desarenador	81
Tabla 61. Ecuación para el cálculo del ancho de la cámara	81
Tabla 62. Ecuación para el cálculo de la longitud del desarenador	82
Tabla 63. Ecuación para el cálculo del tiempo de retención	82
Tabla 64. Ecuación para el cálculo del volumen de sedimentación	83
Tabla 65. Volúmenes de lodos producidos por persona	83
Tabla 66. Ecuación para el cálculo del volumen de almacenamiento de lodo	os83
Tabla 67. Ecuación para el cálculo del volumen de almacenamiento de lodo	os84
Tabla 68. Ecuación para el cálculo del área del tanque séptico	84
Tabla 69. Ecuación para el cálculo de la longitud del tanque séptico	85
Tabla 70. Ecuación para el cálculo de la longitud del tanque séptico	85
Tabla 71. Ecuación para el cálculo de la longitud del tanque séptico	86
Tabla 72. Ecuación para el cálculo de la longitud del tanque séptico	86
Tabla 73. Ecuación para el cálculo de la longitud del tanque séptico	86
Tabla 74. Ecuación para el cálculo de la longitud del tanque séptico	87
Tabla 75. Ecuación para el cálculo de la longitud del tanque séptico	88
Tabla 76. Ecuación para el cálculo de la longitud del tanque séptico	88
Tabla 77. Ecuación para el cálculo de la longitud del tanque séptico	89
Tabla 78. Tiempo requerido para la digestión de lodos	89
Tabla 79. Ecuación para el cálculo de la longitud del tanque séptico	89
Tabla 80. Ecuación para el cálculo de la longitud del tanque séptico	90
Tabla 81. Ecuación para el cálculo de la longitud del tanque séptico	91
Tabla 82. Ecuación para el cálculo de la longitud del tanque séptico	91
Tabla 83. Ecuación para el cálculo de la longitud del tanque séptico	91
Tabla 84. Ecuación para el cálculo de la longitud del tanque séptico	92
Tabla 85. Ecuación para el cálculo de la longitud del tanque séptico	92
Tabla 86. Ecuación para el cálculo de la longitud del tanque séptico	92
Tabla 87. Método lineal o aritmético	94
Tabla 88. Método geométrico	95
Tabla 89. Método exponencial	95
Tabla 90. Dotación de agua conforme al nivel de servicio	97

Tabla 91. Cálculo del primer tramo Pozo 1 a Pozo 2 (P1, P2; Calle 1)	98
Tabla 92. Cálculo de caudales de la red de alcantarillado sanitario	101
Tabla 93. Cálculo de parámetros hidráulicos de la red de alcantarillado	112
Tabla 94. Coeficiente de escurrimiento	118
Tabla 95. Cálculo de caudales pluviométricos	124
Tabla 96. Cálculo de los parámetros hidráulicos de la red de alcantarillado	130
Tabla 97. Parámetros de la dificultad de tratabilidad del agua	133
Tabla 98. Medidas del canal de entrada	135
Tabla 99. Características de las rejillas	136
Tabla 100. Dimensiones del desarenador	138
Tabla 101. Dimensiones del tanque séptico	142
Tabla 102. Dimensión del lecho de secado	144
Tabla 103. Dimensión del filtro biológico	147
Tabla 104. Limites admisibles para verter en cuerpos de Agua Dulce	148
Tabla 105. Parámetros analizados del agua residual sin tratar	149
Tabla 106. Dimensiones de Canal de Entrada	149
Tabla 107. Dimensiones del tanque desarenador	149
Tabla 108. Dimensiones del tanque desarenador	150
Tabla 109. Dimensiones del tanque séptico	150
Tabla 110. Lecho de secado	150
Tabla 111. Dimensiones del filtro biológico ascendente	150
Tabla 112. Presupuesto referencial	151

ÍNDICE DE FIGURAS

Figura 1. Sumidero tipo ventana	27
Figura 2. Sumidero tipo rejilla	27
Figura 3. Sumidero tipo mixto con corte longitudinal	28
Figura 4. Curva Intensidad, Duración y Frecuencia	30
Figura 5. Monograma para la determinación del tiempo de entrada	34
Figura 6. Fases de diseño de una planta de tratamiento de aguas residuales	45
Figura 7. Ubicación macro del proyecto	52
Figura 8. Ubicación meso del proyecto	53
Figura 9. Ubicación miso del proyecto	53
Figura 10. Ubicación Caserío Sigsipamba	54
Figura 11. Tubería de sección totalmente llena	67
Figura 12. Tubería de sección parcialmente llena	68
Figura 13. Programa HCANALES	68
Figura 14. Método del monograma	71
Figura 15. Intensidad diaria del periodo de retorno	73
Figura 16. Programa intensidad máxima de precipitación	74
Figura 17. Método lineal o aritmético	94
Figura 18. Método lineal o aritmético	95
Figura 19. Método exponencial	96
Figura 20. Pantalla de inicio del programa HCANALES	110
Figura 21. Condición de la tubería parcialmente llena	110

RESUMEN

Este proyecto de alcantarillado se focaliza en asegurar la correcta conducción y proceso de las aguas servidas y pluviales, plan adecuado para la correcta evacuación de estas a los cuerpos de agua a donde se dirigen.

Para el presente proyecto se realizó un levantamiento topográfico con la precisión correspondiente mediante una Estación Total SOKKIA FX 105, se necesitó datos de la norma vigente en el país, todo esto para establecer la cantidad de habitantes que se beneficiaran del proyecto, el cual consta de 3.8 km de alcantarillado sanitario y 2.1 km alcantarillado pluvial, los cuales responden a un Caudal de diseño de 8.36 lt/seg y 1074.51 lt/seg respectivamente.

La planta de tratamiento de aguas residuales se estructuró con: un canal de entrada, una rejilla, un desarenador, un tanque séptico, un lecho de secados y un filtro biológico de flujo ascendente, funcionando simultáneamente para tener como objetivo la depuración de los contaminantes de las aguas residuales provenientes de la zona de estudio.

Para el proyecto definitivo fue imprescindible establecer los procesos: levantamiento topográfico, estudio demográfico, planos de diseño de alcantarillado sanitario y pluvial, diseño de la planta de tratamiento de aguas residuales, análisis de precios unitarios (APUS), un presupuesto referencial el cual es de USD 834 971.84 dólares.

Palabras Claves: Alcantarillado Sanitario, Alcantarillado Pluvial, Aguas Residuales, Precios unitarios, Filtro biológico.

ABSTRACT

This sewerage project focuses on ensuring the proper conduction and processing

of sewage and rainwater, an adequate plan for the correct evacuation of these to

the bodies of water where they are directed.

For the present project, a topographic survey was carried out with the

corresponding precision by means of a SOKKIA FX 105 Total Station, data from

the current norm in the country was needed, all this to establish the number of

inhabitants that would benefit from the project, which consists of 3.8 km of

sanitary sewerage and 2.1 km of storm sewerage, which respond to a design flow

of 8.36 lt/sec and 1074.51 lt/sec respectively. The wastewater treatment plant was

structured with: an inlet channel, a grate, a grit trap, a septic tank, a drying bed,

and an upflow biological filter, operating simultaneously to purify contaminants

from wastewater from the study area.

For the definitive project, it was essential to establish the processes: topographic

survey, demographic study, sanitary and storm sewer design plans, design of the

wastewater treatment plant, analysis of unit prices (APUS), a referential budget

which is of \$834 971.84.

Keywords: Sanitary Sewerage, Storm Sewerage, Wastewater, Unit prices,

Biological

filter.

xviii

CAPITULO I.- MARCO TEÓRICO

Tema del proyecto técnico

Diseño del alcantarillado sanitario y pluvial y PTAR para el caserío Sigsipamba de la parroquia de Picaihua del cantón Ambato provincia de Tungurahua.

Antecedentes investigativos

En la parroquia Picaihua conforme a su actualización del Plan de Desarrollo y Ordenamiento Territorial desarrollada por su GAD, se evidencia un aumento en la cobertura del alcantarillado con relación al año 2010 hasta en un 50% [1]. Sin embargo, este dato para la población sigue siendo aún deficiente.

Por su parte el servicio requerido para la eliminación de excretas cuenta con variantes establecidas de acuerdo a pozos sépticos y ciegos, además los vierten en ríos o quebradas sin ningún tipo de tratamiento o a su vez cuentan con letrinas sanitarias o simplemente no cuentan con ningún sistema o mecanismo para cumplir con este proceso. Situación que ha generado un gran problema ambiental por el limitado servicio sanitario [1].

Las acciones del GAD municipal por contrarrestar las deficiencias del servicio de alcantarilla son continuas, dentro de sus inversiones importantes se encuentra la registrada en el 2013 con un valor de \$160.000 en beneficio de dicho servicio para sectores como Tangaiche, Terremoto, San Luis, La Atarazana, 10 de Agosto, Mollepamba, Simón Bolívar y San Juan. En 2014 se aportó con un total de \$180.000 para servicios básicos cubriendo al restante de los caseríos de Mollepamba, San Juan, Simón Bolívar, Tangaiche incluyendo a Calicanto. A pesar de los esfuerzos de los gobiernos locales se evidencian la falta de planificación sobre el manejo de las industrias y el crecimiento poblacional lo que generan el descargo permanente de residuos líquidos sin ningún tipo de tratamiento especialmente a la quebrada Terremoto-Picaihua [1]. Razones por las

cuales, las acciones para cubrir con este tipo de servicio requieren sean constantes en busca del bienestar de la población.

Justificación

Perez (2013), explica que conforme al desarrollo de la civilización se asientan las comunidades de manera estable, lo que ha generado la necesidad de contar con servicios necesarios dentro de su convivencia adecuada, entre los cuales se encuentran el desecho de excretas y de los residuos que se generan por la alimentación además de los líquidos que se generan en actividades como la agricultura, la industria, inclusive en el propio hogar. Sin embargo, dentro de las malas acciones para su evacuación se ha visto receptada en recursos naturales como ríos, lagos y el mar propiamente, mismos que no poseen las propiedades necesarias para contrarrestar la carga polucional de tales residuos [2].

Desde lo mencionado resulta imprescindible para las poblaciones el contar como servicios básicos las redes de alcantarillado, pero sin embargo en el Ecuador suele ser deficiente. El servicio que se consideraba como primordial era el agua potable pues la eliminación de excretas o la construcción de la red de alcantarillado no era una opción pues se consideraba que de algún modo estos residuos líquidos saldrían de manera espontánea [2].

Como se mencionó el manejo de aguas servidas en el país es deficiente en varios sectores lo que se relaciona directamente con el retraso social y económico por lo que sigue considerando a Ecuador como una nación en vías de desarrollo [3].

Sin duda resulta indispensable que el sistema de alcantarillado, sanitario y pluvial sea un servicio público imprescindible para los habitantes puesto que permitirá un mejor manejo de las aguas servidas y lluvias procurando un adecuado transporte que garantice el tratamiento oportuno. Todos estos beneficios fomentarán una mejor planificación zonal como el desarrollo de cualquier localidad [4].

Por su parte en la provincia de Tungurahua, en el cantón Ambato, en la parroquia Picaihua, específicamente en el caserío Sigsipamba, no se ha cubierto actualmente la demanda que requiere la población con respecto al servicio de alcantarillado [1]. Razón por la cual resulta necesario de proveer con la construcción de una obra que cubra las necesidades de la población actual y población futura.

Fundamentación legal

Constitución de la República del Ecuador

La constitución de la república del Ecuador especifica los derechos de los ciudadanos, los cuales se mencionan a continuación:

De acuerdo al artículo 14 se menciona acerca de los derechos que poseen la población de vivir en un ambiente saludable, ecológicamente sostenible en busca del Sumak Kawsay o buen vivir. Para este propósito dependerá también de la población, por ello se establece el interés en temas de conservación y preservación del ambiente promoviendo la sostenibilidad en toda actividad para prevenir grandes impactos de los espacios naturales [5].

Además, en su artículo 15 menciona que los sectores públicos y privados deberán optar por energías limpias y alternativas que permitan reducir el impacto ambiental y la contaminación para ello el estado será quien lo regule. Se considera además que no causará ningún tipo de daños la soberanía energética con respecto a la soberanía alimenticia ni al suministro de agua para la población [5].

En el artículo 32 por su parte determina que el Estado velará por el cuidado de la salud de la población, mismo que es un derecho ineludible y su relación con el derecho al agua, la alimentación, la educación, el trabajo, la seguridad social, ambientes saludables, cultura física, entre otros aspectos que promuevan el buen vivir [5].

La manera de garantizar por parte del Estado la salud del país será mediante la formulación de políticas como la apertura permanente de programas, labores y servicios hacia una salud integral presentando principios universales, solidarios, inclusivos, eficientes, eficaces, bioéticos y que se mantenga de forma generacional [5].

La organización por parte de las instituciones será labor del Estado su regulación, por ello, según el artículo 264 establece las competencias que los gobiernos parroquiales rurales deben regirse, donde se menciona que como parte de sus obligaciones será la de planificar el desarrollo territorial, pero manteniendo una comunicación directa con los gobiernos a nivel cantonal como provincial [5].

Conforme a lo estipulado para el buen vivir en la Constitución de la república del Ecuador, hace referencia al artículo 411, en el que determina que el Estado será quien vele por el adecuado manejo de los recursos hídricos. Es así que podrán realizar los respectivos controles sobre las actividades que puedan causar un impacto negativo sobre la dotación de agua y su calidad. El agua podrá ser aprovechada tanto para el consumo humano como para el cuidado de los ecosistemas [5].

El presente proyecto además pretende aportar con los lineamientos y políticas establecidos en el Plan Nacional para el Buen Vivir 2017-2021, dentro de los cuales se mencionan:

Se aporta al cumplimiento de los tres ejes fundamentales del plan enfocados al cumplimiento de los derechos, aporte a la economía y el bienestar social que podrán desarrollarse bajo un eje transversal sea el desarrollo del territorio y fomentar un ambiente sustentable [6].

Respetando los lineamientos y ejes mencionados, que de acuerdo a su política 1.7 determina que las personas deben de contar con una vivienda que incluya la entrega de servicios públicos de manera oportuna y que sean de calidad [6].

Fundamentación teórica

ASPECTOS GENERALES

Alcantarillado

El alcantarillado es considerado como una red que incluye colectores, cámaras, terminales de limpieza, tubos y demás recursos con la finalidad de dar el servicio que permite conducir adecuadamente las aguas residuales o de lluvia a un ligar para su respectivo tratamiento [7].

Es así que el alcantarillado se determina como un servicio de gran utilidad para la población puesto que al requerir agua para sus actividades todo el líquido suministrado deberá de ser evacuado necesariamente [2].

Sistemas de alcantarillado

Al establecer como un sistema, el alcantarillado se compone por redes que incluyen dentro de las mismas varios recursos sean tuberías entre otras obras de recepción, todo en conjunto tiene la finalidad de conducir las aguas residuales y de lluvia a un lugar para su tratamiento [8].

Desde lo comentado resulta necesario determinar que el principio básico para la trasportación de las aguas residuales es el de la gravedad y que por el mismo la transportación por tuberías deberá de llegar al sitio para el adecuado tratamiento. Por ello es necesario que la planificación sea acertada pues sus pendientes serán las que determinen la efectividad del sistema además de las estaciones de bombeo [9].

Tipos de sistemas de alcantarillado

Sistema de alcantarillado sanitario

Conforme al desarrollo de la urbe su requerimiento de agua potable va creciendo paulatinamente y con el tiempo tiene una consecuencia establecida en la manera de desfogar las aguas servidas y residuales que se generan. Para suplir dicha necesidad se establece como una de las mejores opciones la implementación de un sistema de alcantarillado sanitario que transportará dichos líquidos a un lugar para su tratamiento respectivo [9].

Sistema de alcantarillado pluvial

Se refiere a aquel sistema que se relaciona al manejo de las aguas lluvias desde su recolección, el transporte, el tratamiento y hasta su disposición final [7]

Generalmente las precipitaciones o aguas lluvias se aglomeran de manera horizontal, esta particularidad será la que defina el sistema más idóneo para suplir esta particularidad por medio de mediciones, el registro permanente y las lecturas diarias [2].

Sistema de alcantarillado mixto

La demanda conforme a la necesidad de la población ha requerido grandes esfuerzos con respecto a la infraestructura de agua, en este sentido el requerimiento para su buen manejo se ha visto factible en la implementación de sistemas de alcantarillado combinado, que se enfocan a la recolección de aguas pluviales y residuales (industrial, comercial u municipal), todas justas en un mismo sistema de alcantarillado. Para la combinación se requiere que las estructuras estén debidamente equipadas ante desbordamientos que pueden producirse por la suma de aguas residuales o para las precipitaciones fuertes [10].

ALCANTARILLADO SANITARIO

Componentes de un sistema de alcantarillado

Los componentes de un sistema de alcantarillado pueden estar determinados conforme a la disponibilidad que se presenten y la utilidad que así se disponga por ello han de dividirse en pluviales, sanitarios y de acuerdo a su tratamiento final, como se disponen a continuación:

Alcantarillado pluvial: se compone de cunetas, colectores sean principales y secundarios, pozos para inspecciones y la disposición final del agua.

Alcantarillado sanitario: establecido particularmente por colectores terciarios que se encuentran compuestos por tuberías con diámetro de pequeño tamaño que se empatan a las acometidas de los domicilios, aguas que pasan a los colectores secundarios que a su vez transportaran a los primarios mediante tuberías de gran diámetro y que se encuentran enterradas en la vía pública. Además, se cuentan con pozos de inspección que son cámaras verticales diseñadas de manera vertical que permiten el acceso y fácil manteamiento de los colectores [11].

Tuberías: desde las estructuras domiciliarias sanitarias a partir de las descargas de los hogares deben poseer un cierre hermético por los malos olores con un mínimo de diámetro de 30 cm y a una profundidad no menor de 60 cm con una pendiente de 2%. En el caso de las tuberías secundarias y terciarias el diámetro mínimo debería ser de 100 mm, aunque en grandes urbes puede llegar hasta de 500 mm. Para establecer los diámetros mínimos de las medidas en tuberías para el alcantarillado sanitario y pluvial se podría especificar en 200 y 250 mm respectivamente. Es decir, el diámetro dependerá específicamente del cálculo que se establezca al caudal que se requiera trasladar [9].

Colectores: los colectores se caracterizan por la unión de varias tuberías, desde lo expuesto se pueden establecer los siguientes:

Colector terciario: red de tuberías que se adhieren las acometidas de los hogares que pueden ubicarse en las aceras o veredas y con un diámetro mínimo de 150 mm.

Colector secundario: red de tuberías que recolectan las aguas de los terciarios y los trasladan hacia los interceptores y se ubican específicamente debajo de las vías.

Interceptores: referentes a las tuberías con mayor diámetro encargadas de recolectar todas las aguas que serán llevadas a la planta de tratamientos y deben ser ubicadas en las cotas más bajas de las localidades.

Pozos de inspección: relacionado a un espacio de construcción destinado para la inspección ágil de cualquier eventualidad o problema que se pueda presentar en los colectores.

Conexión domiciliaria: conocida como pozo til, es una cámara de hormigón que establece el mecanismo que conecta el domicilio con el colector [12].

Período de diseño

Conforme al período de diseño de un proyecto sanitario se establece como la manera de organizar todos los componentes que se requieren de acuerdo al tiempo expuesto para la implementación de la obra. El mismo deberá de recopilar las necesidades de los usuarios tanto en sus requerimientos económicos como en los tiempos expuestos [7].

La población futura

Para delimitar un proyecto de suministro, control o traslado de agua es necesario conocer la población a futuro que será beneficiada. Desde esta perspectiva se deberá realizar una proyección de la población inicial con una tasa porcentual que generalmente suele relacionarse con el crecimiento sociodemográfico de la zona de estudio [13].

Metodología de cálculo

Método aritmético

Se considera también como lineal puesto que supone que será constante el

crecimiento de la población, estableciendo para ello un promedio de los años

pasados para así delimitar a la población futura como se muestra a continuación:

 $\mathbf{Pfu} = Pa * (1 + (r * n)$

Cada una de las variables representan:

Pfu = población futura

Pa= población actual

r = tasa de crecimiento (poblacional)

n = periodo de diseño [14].

Método geométrico

Este método se lo aplica a poblaciones que se encuentran en un proceso de

desarrollo, donde el crecimiento población es análogo con respecto al capital

establecido en un interés compuesto. Se considera además que su crecimiento es

paulatino, pero en porcentajes no de manera absoluta

$$\mathbf{Pfu} = Pa * (1+r)^n$$

Donde

Pfu = población futura

Pa= población actual

r = tasa de crecimiento (poblacional)

n = periodo de diseño [14].

9

Método exponencial

Referente al cambio presente en el logaritmo de la población de manera lineal en

el transcurso del tiempo. Para su cálculo deberá de contar por lo menos con los

datos de tres levantamientos anteriores (ejemplo censos) para establecer la tasa de

crecimiento. La aplicación de este método suele ser recomendable en aquellas

poblaciones que tiendan o posean a un crecimiento expansivo.

 $\mathbf{Pfu} = Pa * (e)^{r*n}$

Las variables de la ecuación se refieren:

Pfu = población futura

Pa= población actual

r = tasa de crecimiento (poblacional)

n = periodo de diseño

e = exponente de Euler [14].

Demanda de agua potable

La demanda de agua se establecerá conforme a las necesidades de la población

para ello ha de realizarse su cálculo respectivo como también dependerá de varios

factores a nivel climático, socioeconómico y el que se requiera para su uso

personal como doméstico [15].

Factores climáticos

Conforme a la dotación recomendada de agua potable de acuerdo a los climas del

territorio ecuatoriano el Instituto Ecuatoriano de Normalización INEN ha sugerido

parámetros conforme al número de la población y el tipo de clima el suministro

medio futuro, mismo que se detalla a continuación:

10

Tabla 1. Dotación media futura recomendada de agua potable

Población (habitantes)	Tipo de clima	Dotación media futura (l/hab/día)
	Frío	120-150
Hasta 5000	Templado	130-160
	Cálido	170-200
	Frío	180-200
5000 a 50000	Templado	190-220
	Cálido	200-230
	Frío	>200
Más de 50000	Templado	>220
	Cálido	>230

Fuente: CPE INEN 5 [16]

Elaborado por: David Cruz y Yadira Pachucho

Además, para la elección de la dotación dependerá del análisis cualitativo que se debe realizar a los hábitos de consumo, los usos que se le otorgan al agua, los costos por este servicio y la disponibilidad a fuentes hídricas [16].

Factores socioeconómicos

Los factores socioeconómicos se relacionan a la necesidad que poseen los humanos en contar con agua potable y escases de recursos económicos para poder disponer de la capacidad necesaria para asentarse en lugares donde se disponga de este tipo de servicios lo que les obliga a vivir en sectores más alejados que los servicios tardan mayor tiempo en llegar o presentan mayor dificultad para ello lo que suele limitar el que se abastezcan todas sus exigencias [17].

Uso doméstico

Cuando se cuenta con una fuente de agua corriente y sin racionamiento la necesidad humana mínima es tener acceso a 3 litros de agua por día para beber y lavado de manos [18].

Además, pueden establecerse un consumo doméstico máximo que de acuerdo a Lárraga (2016) quien se basó en las normas de diseño para sistemas de abastecimiento de agua potable del proyecto Washed realizado en la ciudad de

Quito en 1995, describe que el consumo doméstico máximo de la siguiente manera:

Tabla 2. Consumo doméstico máximo

	Consumo en Lt/hab/día			
Actividad	Tipo de cli	ma frío	Tipo de clin	na cálido
	Norm.	Máx.	Norm.	Máx.
Alimentación y cocina	8	8	10	10
Bebidas	2	3	2	2
Aseo menor del cuerpo	6	12	10	15
Lavado de vajilla	8	8	8	8
Uso de duchas	21	32	40	60
Inodoros	15	15	15	15
Lavado de prendas de vestir	15	15	15	15
Total per cápita	75	93	100	125

Fuente: Proyecto Washed [17].

Elaborado por: David Cruz y Yadira Pachucho

Dotación actual (Da)

Establecida por la cantidad que una persona puede consumir diariamente de caudal de agua y que podrá ser calculada aritméticamente representada por lt/habitantes*día [19].

Dotación futura

Para establecer la dotación futura por su parte ha de considerarse tanto a la población actual como el tiempo que se espera establecer el diseño como se especifica en la siguiente ecuación [17].

$$Dof = Da + 1 * n$$
 [17].

Donde

Dof = Dotación futura (lt/seg)

n = Periodo de diseño (años)

Análisis de Caudales

Aporte doméstico

Son todas aquellas aguas residuales que proceden como aporte doméstico obtenidas de las activadas humanas específicamente en el hogar sea por el uso de inodoros, duchas, lavaplatos, inodoros entro otras tareas domésticas [20].

Aporte industrial

El descargue de las aguas generadas por las industrias conforme a sus actividades corresponde otro aporte a considerar, esta información puede ser obtenida de acuerdo a cada censo, encuesta o estimación futura de consumo industrial. Para su valoración han de considerarse varios factores pero que de acuerdo a la Empresa Metropolitana de Alcantarillado y Agua Potable de la Ciudad de Quito para las zonas residenciales o comerciales donde se incluyan industrias de pequeño tamaño podrán utilizarse los siguientes valores:

Tabla 3. Contribución de aportes industriales

Contribución de industrias pequeñas		
Nivel de complejidad referente al sistema	Contribución industrial (l/s-ha-com)	
Bajo	0,4	
Medio	0,6	
Medio alto	0,8	
Alto	1,0-1,5	

Fuente: EMAAP Quito [21].

Elaborado por: David Cruz y Yadira Pachucho

Aporte comercial

Las zonas comerciales realizan su aporte conforme a las aguas residuales generadas de acuerdo a las actividades que se desarrollan en centros comerciales, plazas, mercados negocios o establecimientos de servicios, su estudio dependerá de la población como del consumo diario efectuado por cada habitante [21].

Tabla 4. Contribución comercial

Contribución comercial	
Nivel de complejidad referente al sistema	Contribución industrial (l/s-ha-com)
Cualquiera	0,4-0,5

Fuente: EMAAP Quito [21].

Elaborado por: David Cruz y Yadira Pachucho

Aporte institucional

Las instituciones como centros educativos, hoteles, hospitales o centros penitenciarios establecen su aporte de aguas residuales y su registro lo mantienen entidades estatales por ello ha de establecerse un valor en particular, en el caso de instituciones pequeñas el EMMPA de la ciudad de Quito a establecido los siguientes valores.

Tabla 5. Contribución institucional

Contribución institucional	
1 0	Contribución institucional (l/s-ha-com)
Cualquiera	0,4-0,5

Fuente: EMAAP Quito [21].

Elaborado por: David Cruz y Yadira Pachucho

Caudal medio diario de agua potable

Representa el consumo de agua potable que se realiza por un lapso de 24 horas establecido en promedio de manera anual y se expresa con la siguiente ecuación que se expresa en litros por segundo.

$$Qmd_{AP} = \frac{Dof *Pfu}{86400}$$
 [19].

Es decir que se obtiene de multiplicar la dotación futura con la población futura y dividirlo para los 86400 segundos que posee el día [19].

Caudal medio diario sanitario

Se establece a partir de las aguas residuales de uso doméstico con respecto al

volumen de agua, la recolección y evacuación. Puede obtenerse según la siguiente

ecuación:

 $Qmds = C * Qmd_{AP}$ [22].

Donde Qmd_{AP} representa el caudal medio diario y C el coeficiente o factor de

retorno puesto que existen ciertas aguas de uso doméstico que no son descargadas

de manera directa en el alcantarillado y es reutilizada en el riego de plantas por

ejemplo [22].

Es decir, toda el agua que no ingresa al sistema que es consumida por los

domicilios y se expresa a nivel porcentual teniendo una variación entre 65 a 88%.

Este dato puede ser obtenido por medio de información que cuente la empresa de

agua reguladora, en el caso de no existir será evaluado conforme a la normativa

vigente de cada región o país [23].

Caudal instantáneo

Se establece conforme a la caudal con una frecuencia mayoritaria dentro de un

determinado periodo del día resultante de las actividades sanitarias domiciliarias

pero que se amplifica conforme a un factor de mayoración [24].

 $Q_i = M. Qmds$ [24].

Qi= Caudal instantáneo

M= factor de mayoración

Qmds = Caudal medio sanitario

15

Factor o coeficiente de mayoración

Se refiere a los valores altos o bajos de los caudales de las aguas servidas y de consumo de agua potable, por lo que resulta directamente proporcional al número de habitantes [21].

Existen varias formas de obtener este coeficiente, mismos que se describen a continuación:

Método de Harmon

Se establece conforme a la población conforme a una condición que estipula que de ser 1000 < Pf < 1000000 y puede ser representada por la siguiente ecuación.

$$M = 1 + \frac{14}{4 + \sqrt{Pf}} [25]$$

Método de Babbit

Generalmente es aplicado en zona rurales y se muestra bajo la misma condición que el anterior método, es decir 1000 < Pf < 1000000

$$M = \frac{5}{Pf0,2}$$
 [25]

Método de Popel

La condición se establece conforme al tamaño de la población y se otorga un valor de acuerdo al número de la misma, como se muestra en la siguiente tabla.

Tabla 6. Coeficiente de mayoración por el método de Popel

Población establecida en miles	Coeficiente de Mayoración
Menor a 5	2,40 a 2
5 a 10	2 a 1,85
10 a 50	1,85 a 1,60
50 a 250	1,60 a 1,33
Mayor a 250	1,33

Fuente: Norma Boliviana NB688 [26] **Elaborado por:** David Cruz y Yadira Pachucho

Caudal de infiltración y conexiones erráticas

Es aquel caudal que se produce por aquellas entradas de agua al sistema de

alcantarillado provenientes de aguas subterráneas que se presentan principalmente

en las uniones o fisuras de las tuberías o a su vez en los tramos donde existe

alguna conexión con los pozos de inspección [24].

La ecuación se deriva también de las conexiones erráticas que pueden presentarse

por la disposición de tuberías domésticas clandestinas que sobrecargan el sistema

de alcantarillado en el caso de existir precipitaciones elevadas lo que podría

producir una gran afectación en la capacidad de las tuberías [24].

La ecuación que se establece para el caudal de infiltración se presenta como:

$$Qinf = K + L[24].$$

Donde

K = Coeficiente de infiltración

L = Longitud de la tubería

El caudal de conexiones erradas se puede presentar de la siguiente manera

$$Qe = Q_i * (5\% - 10\%)$$
 [24].

Donde

Q_i = Caudal instantáneo

% Pérdidas = varía entre 5 a 10%

Caudal máximo extraordinario

El caudal máximo extraordinario representa la cantidad de aguas lluvia caídas en las cubiertas y patios, etc.

$$Qex = (15\% - 25\%) * Qi$$
 [35].

Caudal de diseño

Conforme a la obtención de los caudales antes mencionados se obtiene el de diseño y se expresa con la siguiente ecuación.

$$Q_d = Q_{ex} + Q_i + Q_e + Qinf$$
 [25].

Donde

Q_d = Caudal de diseño

 Q_{ex} = Caudal extraordinario

Q_{inf} = Caudal de infiltración

Q_e = Caudal errático

Condiciones hidráulicas de conducción

Las condiciones hidráulicas a considerar dentro de una red de alcantarillado se precisan en los siguientes parámetros:

Velocidad: es un factor que debe permanecer constantes puesto que una velocidad mínima proporcionará al conducto la capacidad de autolimpieza.

Gasto: hace relación a las descargas que producen las viviendas y como se mantienen los criterios de seguridad para que el funcionamiento del sistema evite problemas [9].

Ubicación de las tuberías

La ubicación de las tuberías depende del tipo de material que se establece una profundidad mínima de 1,50 m para la recolección de las descargas domiciliarias y con una pendiente no menor al 2% para que exista un adecuado drenaje según dicha pendiente [8].

La profundidad se establecerá conforme a las necesidades constructivas, pero se ajustarán a las disposiciones de requerimiento mínimos normados que promuevan la aireación suficiente de las aguas residuales [8].

Criterios de diseño

Diámetro

En el sistema sanitario la tubería utilizada deberá de tener un diámetro mínimo de 200 mm y en el combinado podrá ser de 250 mm, en el caso de las domiciliarias las tuberías tendrán un mínimo de 100 mm [27].

Velocidades permisibles

Velocidades mínimas

Dentro de las velocidades mínimas a considerar en una red de alcantarillado se encuentra la de escurrimiento que para evitar que se produzca sedimentos deberá ser de 1.20 m/2.

Cuando se requiere en el diseño una tubería de 20 cm como diámetro mínimo su velocidad mínima será de 0.60 m/s y lleno de 0.30 m/s [8].

Velocidades máximas

Para establecer las velocidades máximas en los colectores dependerá del material y los siguientes valores son recomendados con tubos llenos.

Hormigones simples con uniones de mortero (4 m/s) y con un coeficiente de rigurosidad de 0,013.

Hormigones simples con uniones de neopreno destinados para un nivel freático alto (De 3,5 a 4 m/s) y con un coeficiente de rigurosidad también de 0,013.

Tuberías de asbesto de cemento (De 4,5 a 5 m/s) y un coeficiente de rigurosidad de 0,011.

Plástico PVC mayor a 4,5 m/s y una rigurosidad de 0,011 [27].

Coeficiente de rigurosidad

El coeficiente de rigurosidad es uno de los parámetros necesarios para la definición del material y el diámetro que debe poseer una tubería dentro de un sistema o red, puesto que determinará las pérdidas de energía que se podría poseer por fricción hidráulica. Se lo conoce también como n de Manning, su cálculo resulta favorable por su simplicidad matemática y se establecen valores recomendados desde 0,010 a 0,038 conforme el tipo de conducto, tubería o colector y el material utilizado [28].

Hidráulica

Caudal presente con tubo lleno

Para el cálculo del caudal en un tubo lleno se utiliza la fórmula de Manning que incluye un área mojada (m²), el perímetro que se encuentra mojado (m) y el radio hidráulico como se mencionan a continuación

$$Atll = \frac{\pi D}{4}$$
 $Ptll = \pi D$ $Rtll = \frac{Atll}{Ptll}$ [29]

Donde:

Ptll = Perímetro mojado de la sección llena (m)

Atll= Área mojado de la sección llena (m)

D = Diámetro de la tubería (m)

Desde las ecuaciones descritas se han de derivar las fórmulas siguientes que determina la velocidad como el caudal del tubo lleno.

$$Vtll = \frac{0{,}397}{n}D^{\frac{2}{3}} * S^{\frac{1}{2}}[29]$$

$$Qtll = \frac{0{,}312}{n}D^{\frac{8}{3}} * S^{\frac{1}{2}}[29]$$

Donde:

Vtll = velocidad del flujo del tubo lleno

Qtll = caudal de flujo del tubo lleno

D = diámetro interno de la tubería

n = coeficiente de rigurosidad determinado por Manning

S = Pendiente del proyecto

Caudal para un tubo parcialmente lleno

Se establece para el cálculo del caudal con un tubo parcialmente llenos las siguientes ecuaciones:

Ángulo central

$$\theta = 2 \arccos \left(1 - \frac{2h}{D}\right)$$
 [29]

Radio hidráulico

$$Rh = \frac{D}{4} \left(1 - \frac{360 sen\theta}{2\pi\theta} \right) [30]$$

Donde se establece la velocidad parcialmente llena con la siguiente ecuación.

$$Vpll = \frac{0.397}{4} D^{\frac{2}{3}} \left(1 - \frac{360 sen\theta}{2\pi\theta} \right) * S^{\frac{1}{2}} [29]$$

Sea $Vpll \geq V$ mínima

El caudal por su parte se calculará de la siguiente manera.

$$Qpll = \frac{D^{\frac{2}{8}}}{725,15(n)(2\pi\theta)^{\frac{2}{3}}} * (2\pi\theta - 360 * 2sen\theta)^{\frac{5}{3}} * S^{\frac{1}{2}}[29]$$

Donde las cantidades representan:

Vpll = velocidad del flujo del tubo parcialmente lleno

Qpll = caudal de flujo del tubo parcialmente lleno

D = diámetro interno de la tubería

h = calado de agua

 θ = ángulo que se establece por medio del segundo de la circunferencia en grados sexagesimales.

Calado de agua

En las tuberías el calado máximo no deberá de exceder el 75% del diámetro interno quedando un 25% en altura superior para que exista ventilación y evitar se concentren gasea tóxicos [31].

Pendiente del proyecto

La pendiente está relacionada de manera directa a mantener velocidades adecuadas permitiendo un adecuado funcionamiento de la red de alcantarillado.

$$S = \frac{c.sup - c.inf}{L} * 100 [29]$$

Desde lo expuesto las pendientes podrían calcularse de la siguiente manera

Pendiente mínima

$$Smin = \left(\frac{Vmin * n}{0,397 D^{\frac{2}{3}}}\right)^{2} [29]$$

$$Smin = 0,5\%$$

Pendiente máxima

$$Smax = \left(\frac{Vmax * n}{0.397 D^{\frac{2}{3}}}\right)^{2} [29]$$

$$Smin > 0.5\%$$

Los datos se representan:

Smin = velocidad mínima de la tubería

Smax = velocidad máxima de la tubería

D = diámetro interno de la tubería

n = coeficiente de rigurosidad determinado por Manning

Gradientes permisibles

Las pendientes se obtienen conforme al diámetro de la tubería y las velocidades generadas, se establecerán como mínimas para que no se produzcan asentamientos en la red de alcantarillado y máximas para evitar el desgaste permanente de las tuberías.

Tabla 7. Pendientes mínimas y máximas para tuberías PVC

	P	endiente mín	diente mínima		Pendiente máxima	
Diámetro de la tubería (mm)	Manning	Chézy	Pendiente a adoptarse	Pendiente a adoptarse	Nivel de zanja	
200	0,0033	0,0041	0,003	0,075	1,25	
250	0,0025	0,028	0,0025	0,056	1,3	
300	0,0019	0,0022	0,002	0,045	1,35	
380	0,0014	0,0016	0,0015	0,038	1,4	
450	0,0011	0,0012	0,0012	0,027	1,5	
600	0,00077	0,0008	0,0006	0,019	1,65	
760	0,00057	0,00059	0,0006	0,014	1,85	
910	0,00045	0,00046	0,0005	0,009	2	

Fuente: Analuisa, J. 2016 [29]

Elaborado por: David Cruz y Yadira Pachucho

Tensión tractiva

Este criterio en redes de alcantarillado es el que determina el control de la zona mojada en la tubería permitiendo controlar factores como la erosión, la sedimentación o el desarrollo de sulfuros, sobre todo en zonas planas donde la velocidad mínima alcanza resultados no adecuados. Se estima en Pascales [32].

$$\tau = \rho * g * R_H * S$$
 [32].

Donde:

 τ = Tensión tractiva

 ρ = Densidad de agua

g = aceleración de la gravedad

R_H = Radio hidráulico

S = pendiente de la tubería

Fórmulas para el diseño hidráulico

Coeficiente de Chézy

Se lo calcula de acuerdo a la siguiente ecuación

$$C_{CH} = \frac{V}{R_H^{\frac{1}{2}} * S^{\frac{1}{2}}} [33]$$

Donde

C_{CH} = coeficiente de Chézy

V = velocidad

R_H = Radio hidráulico

S = pendiente de la tubería

Coeficiente de Manning

La obtención del coeficiente Manning se expresa mediante la siguiente ecuación

$$n_M = \frac{R_H^{\frac{2}{3}} * S^{\frac{1}{2}}}{V} [33]$$

Donde

n_M = coeficiente de Manning

V = velocidad

R_H = Radio hidráulico

S = pendiente de la tubería

ALCANTARILLADO PLUVIAL

Bases de diseño

Área de estudio

Se requieren establecer las áreas de la red de alcantarillado pluvial para establecer la cantidad de escorrentía procedente de las aguas lluvia determinando el caudal que se efectúa y así determinar el tipo de tubería y la pendiente que se necesitará en cada uno de los tramos del sistema [34].

Área de aportación

Las áreas de aportación deben ser analizadas en cada uno de los tramos puesto que de ellas dependerá la cantidad de caudal que se produzcan en las tuberías previo a la llegada al área de drenaje [27].

Además, las áreas de aportación permiten planificar el diseño de la red, de forma que se esquematiza el lugar donde se ubicaran los pozos de revisión, se consideraran situaciones topográficas, demográficas, urbanísticas y también económicas [27].

Descargas finales

La descarga final es un espacio adecuado fuera de la zona urbana donde se desecharán las aguas lluvia recolectadas puede ser en ríos, lagos, lagunas, el mar, esteros, etc. [31].

Componentes que conforman un sistema de alcantarillado pluvial

Conexiones domiciliarias

Las conexiones domiciliarias en un sistema de alcantarillado pluvial suelen ser de hormigón simple o armado con una acometida que puede ser de tipo circular o rectangular estructuralmente, además de contar con una rejilla con cerco, el material utilizado principalmente es el hierro fundido o nodular, PVC y acero dúctil. Para la conexión a la cámara de revisión se lo realiza por medio de una tubería que puede ser de los materiales ya descritos [35].

Sumideros

Los sumideros son aquellas estructuras que permiten la recolección de las aguas lluvia que recorren por las vías, mismo que realizarán la descarga respectiva en los caudales o pozos de inspección y que mediante los colectores se transporta estas aguas hasta los lugares de descarga [36].

Dentro de los sumideros se pueden encontrar varios tipos, los cuales se mencionan a continuación:

Sumidero tipo ventana

Conocidos también como laterales y se desarrollan conforme a una abertura de forma rectangular en una de las caras de la acera cuenta además con un canal de desagüe, una cámara que permita la recolección de los sedimentos y se empata al colector mediante una tubería. Este tipo de sumideros tiende una mayor efectividad si se dispone en pendientes bajas inferiores al 3% [36].

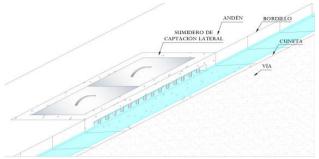


Figura 1. Sumidero tipo ventana

Fuente: Bonilla, C. Ramón, J. Ramón, J. 2022 [36].Elaborado por: David Cruz y Yadira Pachucho

Sumidero tipo rejilla

Este tipo de sumidero puede presentar generalmente un caudal variado y que posee descarga en el fondo por la complejidad en el movimiento de las aguas lo que establece complejidad en la cuantificación del coeficiente de descarga en el fondo y también por el número alto que puede presentarse de formas y pletinas. Dentro de su constitución están equipados por rejillas que se disponen en el piso de la vía junto al bordillo, a una distancia de 0,01 a 0,02 m debajo de la rasante vial sea de tipo A o B [36].

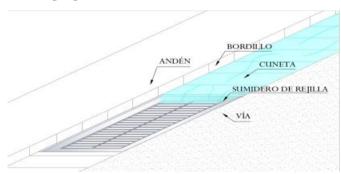


Figura 2. Sumidero tipo rejilla

Fuente: Bonilla, C. Ramón, J. Ramón, J. 2022 [36].Elaborado por: David Cruz y Yadira Pachucho

Sumidero tipo rejilla

Son sumideros que específicamente poseen el beneficio de los anteriores mencionados, por lo tanto, se componen de una abertura rectangular dispuesta en la acera y una rejilla en la vía. La principal ventaja es la de manejar de mejor forma los desechos lo que evita la obstrucción de la rejilla permitiendo que el

desvío del agua hacia otro sumidero. Su implantación se sugiere sea en curvas verticales cóncavas [36].

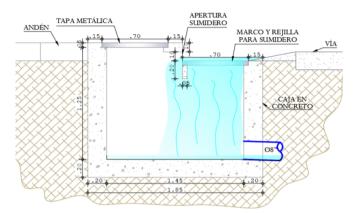


Figura 3. Sumidero tipo mixto con corte longitudinal

Fuente: Bonilla, C. Ramón, J. Ramón, J. 2022 [36].Elaborado por: David Cruz y Yadira Pachucho

Parámetros de diseño

Período de diseño

Representa el tiempo en años que el proyecto tendrá como tiempo de vida útil, mismo que no será mayor a 30 años y que dentro de su planificación se incluyan procesos de mantenimiento o de actualizaciones al sistema de alcantarillado pluvial [27].

Caudal de diseño

El caudal de diseño es aquel que ha sido recolectado en el área de drenaje, se calcula conforme al método racional que dentro de su ecuación analiza el coeficiente de escurrimiento, el área de drenaje y la intensidad de las precipitaciones o lluvias. Todos estos datos deben mantenerse en registros de no existir deberán de ser levantados en un lapso de 24 horas al presentarse lluvias en la zona.

$$Q = 2,78 CIA [27]$$

Donde:

C = Coeficiente de escurrimiento

I = Intensidad de las lluvias

A= área de drenaje

Coeficiente de escurrimiento

Existen varios factores que determina el coeficiente de escurrimiento como el tipo de suelo, la permeabilidad de la zona, pendientes, volúmenes de precipitación, entre otros. Para lo cual se utiliza la siguiente ecuación [36].

$$C = \frac{\sum_{i=1}^{n} (Ai \times Ci)}{At} [35]$$

Donde

C = valor promedio del coeficiente de escurrimiento en la zona de drenaje del proyecto

Ai = área parcial según la superficie

Ci = coeficiente según la superficie

At =área total

Para ello se consideran varios valores referenciales conforme a la superficie y zonas.

Tabla 8. Valores referencias de coeficiente de escurrimiento según las superficies y zonas

Superficies	Coeficiente de escurrimiento
Cubiertas	0,75 - 0,95
Pavimento asfaltico y superficies de concreto	0,70 - 0,95
Vías adoquinadas	0,70 - 0,85
Zonas comerciales o industriales	0,60 - 0,95
Residencial con casas contiguas, predominio de zonas	0,75
Residencial multifamiliar, con bloques contiguos y zonas duras	0,60 - 0,75
Residencial unifamiliar, con casas contiguas y predominio de jardines	0,40 - 0,60
Residencial, con casas rodeadas de jardines o multifamiliares apreciablemente separados	0,45
Residencial, con predominio de zonas verdes y parques - cementerios	0,30
Laderas sin vegetación	0,60
Laderas con vegetación	0,30
Parques recreacionales	0,20 - 0,35

Fuente: Bonilla, C. Ramón, J. Ramón, J. 2022 [36].

Elaborado por: David Cruz y Yadira Pachucho

Intensidad de precipitaciones o máxima

La intensidad máxima se determina conforme a la posibilidad de que se presenten

precipitaciones por el lapso máximo de 24 horas en la zona del proyecto en una

determinada frecuencia (tiempo de retorno) [35].

Cabe mencionar que se requiere de una gran cantidad de datos pluviométricos

para evitar el uso de métodos que se enfoquen a la extrapolación de datos con una

buena correlación. Dentro de la región ecuatoriana se recomienda zona de

estudios pequeños puesto que existe una variación paulatina de condiciones

climáticas o microclimas [35].

Dentro de la distribución espacial de las cuencas hidráulicas rurales a de

considerarse en tiempo y espacio a diferencia de la intensidad de lluvia en la zona

urbana no existe una probabilidad de retorno [35].

Curva de Intensidad, Duración y Frecuencia

La curva de Intensidad, Duración y Frecuencia resulta de la unión de varios

puntos representativos de la intensidad media con lapsos de duración distintos

pero que se mantienen en un mismo periodo de retorno. Como se muestra en la

siguiente figura [37].

T= 5 años

T= 10 años

T= 20 años

T= 30 años

T= 40 años

T= 50 años

T= 50 años

T= 60 años

T= 75 años

T= 75 años

T= 75 años

Figura 4. Curva Intensidad, Duración y Frecuencia

Fuente: Pérez, D. 2022 [37].

Elaborado por: David Cruz y Yadira Pachucho

30

Existen varios valores de la frecuencia, factor que prevé inundaciones viales o en

zonas urbanas, por lo cual resultan importantes para la obtención de la intensidad

máxima, pero que, sin embargo, no suplantan las decisiones que se generan por

los cálculos que realiza el proponente. Desde lo expuesto se toma como referencia

los siguiente:

De 1 a 2 años: son frecuencias que pueden ser utilizadas en áreas urbanas como

sub urbanas.

De 2 a 5 años: áreas residenciales o que se dedican al comercio.

De 10 años: frecuencias que se utilizan en caso de contar con recolectores de

segundo orden

De 20 a 50 años: se usan especialmente en obras especiales (canalizaciones de

primer orden)

De 100 años: para zonas de drenaje [35].

Período de Retorno

La selección del periodo de retorno se relaciona de manera directa con las

afectaciones de cada área y como han repercutido en molestias para los habitantes,

el comercio, la industria o infraestructuras [36].

Por ello, ha de proyectarse puesto que en tiempos de retornos largos se

incrementará el ámbito económico del proyecto sobre todo en el aumento de los

diámetros de las tuberías dispuestas en la red. Para ello, se calcula el periodo de

retorno con la siguiente ecuación.

 $T_r = \frac{1}{\rho(\%)} 100\% [35].$

Donde:

 T_r = tiempo de retorno

p (%) = probabilidad de ocurrencia.

31

Tiempo de concentración

El tiempo de concentración está compuesto por el tiempo de entrada como del

recorrido hasta el colector. Por tanto, representa aquel tiempo que proviene del

lapso de escurrimiento hasta que llegue al sumidero del colector, considerando

también el tiempo en el que recorre el agua en este último [36].

El tiempo de concentración puede calcularse con la siguiente ecuación

$$Tc = Te + Tf$$
 [35]

Donde:

Tc = tiempo de concentración

Te = tiempo de entrada

Tf = tiempo de flujo

Tiempo de entrada

Representa el tiempo de escurrimiento donde una gota de lluvia se traslada desde el lugar más lejano a la zona de drenaje. En el trayecto se verá influenciado por la forma del área de escurrimiento, obstáculos, la cobertura que posee el suelo y sobre todo la pendiente que posea [35]. Existen valores referenciales que pueden ser utilizados, como los que se muestran en la siguiente tabla.

Tabla 9. Valores referencia de los tiempos de entrada

Zonas	Tiempos referenciales (min)
Zona altamente poblada	5
Distritos comerciales	10 a 15
Distritos residenciales planos	20 a 30

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Sin embargo, existen varias ecuaciones que permiten la obtención del tiempo de entrada, por lo cual pueden presentarse las siguientes pero que se debe considerar evitar alteraciones con respecto al tiempo de escurrimiento.

Ecuación de Kerby

$$te = 1,44 \left(\frac{Lm}{\frac{1}{S_2^2}}\right)^{0,4} [35]$$

Donde:

te = tiempo de entrada

L = Longitud de escurrimiento máxima superficial

S = pendiente promedio entre el punto más distante y la zona de recolección

m = Coeficiente retardado

Para (m) existen varios valores a considera según la superficie dentro de los cuales pueden mencionarse:

Superficie impermeable = 0.02

Superficie que posee un suelo sin cobertura sea compacto y liso = 0.10

Superficie que no posee una cobertura moderadamente rugosa = 0.20

Superficie que presenta pastos ralos = 0.30

Superficie con terrenos que posee arborización = 0.70

Superficie con pastos densos = 0.80 [35]

Ecuación de SCS-U.S. (Soil Conservation Service)

$$te = \frac{L}{(60 \times Ve)} [37]$$

y

$$Ve = \alpha \times S^{\frac{1}{2}} [37]$$

Donde:

te = tiempo de entrada

L = Longitud de escurrimiento máxima superficial

Ve = Velocidad media de escurrimiento superficial

S = pendiente promedio entre el punto más distante y la zona de recolección

a = Constante

Para la constante (a) conforme a la superficie existen varios valores a su aplicación, dentro de los que destacan:

Superficie que presentan bosques densos o poblado de árboles y arbustos = 0.70

Superficies con pastos y patios = 2,00

Superficies cultivas por medio de surcos = 2,70

Superficies con suelos desnudos = 3,15

Superficies pavimentadas y tramos de inicio de quebradas = 6,50 [35].

Con los valores obtenidos se puede representar la relación existente entre la distancia del recorrido superficial, la pendiente y el tipo de suelo por medio de monogramas que permitirán además proyectar el valor de tiempo de entrada en minutos [35].

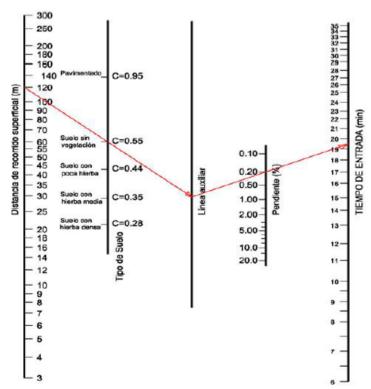


Figura 5. Monograma para la determinación del tiempo de entrada

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Tiempo de flujo

Se establece conforme al tiempo establecido por los caudales y el lapso que toma al llegar al siguiente sumidero para lo cual, se calculará conforme a la longitud de

tubería que compone el recorrido y su sección hidráulica [35].

$$tf = \frac{L}{6V} [35]$$

Donde:

tf = tiempo de flujo

L = longitud de la tubería hasta el lugar de recolección

V = velocidad media

Condiciones hidráulicas

Ubicación de las tuberías

La colocación de la tubería en una red de alcantarillado pluvial se la debe realizar

en el medio de la calzada [37].

Profundidad de las tuberías

Las tuberías para la recolección de aguas lluvias de los domicilios deben diseñarse

con la profundidad necesaria a cualquier lado de la calzada sea el caso de

situaciones excepcionales [27].

Deberá de tomarse en cuenta también la profundidad donde fueron instaladas las

tuberías de agua potable y considerar un distanciamiento de 0,20 m. Es

recomendable que no se ubique por debajo de la tubería de alcantarillado

sanitario, pero de ser el caso, esta deberá de ser protegida por algún tipo de

recubrimiento [27].

35

Criterios de diseño

Diámetros

Las tuberías dispuestas para una red de alcantarillado pluvial pueden ser de 200 a 250 mm de diámetro mientas que la de los domicilios tendrán sería un mínimo de 150 mm [12].

Velocidades permisibles

Velocidad mínima

La velocidad mínima en un sistema de alcantarillado pluvial para un caudal máximo instantáneo es de 0,90 m/s y esta se establece para cualquier período del año [16].

Velocidad máxima

La velocidad máxima dependerá directamente del material de la tubería siendo la principal finalidad el evitar su erosión por las partículas sólidas que se generan en el traslado y los materiales que se generan en el escurrimiento [21].

Desde lo mencionado se establecen los siguientes valores referenciales.

Tabla 10. Valores de velocidad máxima de acuerdo al tipo de material de la tubería

Tipo de material de la tubería	Velocidad máxima
Tubería de Hormigón simple hasta 60 cm. de diámetro	4,5
Tubería de Hormigón armado de 60 cm. de diámetro o mayores.	6,0
Hormigón armado en obra para grandes conducciones 210/240 kg/cm2	6,0 – 6,5
Hormigón armado en obra 280/350 kg/cm2. Grandes conducciones	7,0 – 7,5
PEAD, PVC, PRFV	7,5
Acero *	9,0 o mayor
Hierro dúctil o fundido *	9,0 o mayor

Fuente: EMAAP-Q. 2009 [21].

Pendiente de las tuberías

Pendiente mínima

Las pendientes mínimas en tuberías cuyo diámetro sea de 200 mm deberá ser de un 5% y para diámetros mayores se establecerá el resultado que se obtenga de la velocidad mínima a tubo lleno. Para las conexiones domiciliarias tendrá una pendiente mínima del 2% [27].

Pendiente máxima

La pendiente máxima establece la comprobación de la velocidad máxima, por ello se consideran como referencias los valores mostrados en la Tabla 10, si llegaran a excederse deberán de realizarse otro tipo de hidráulicas [37].

PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES

Una planta de tratamiento de aguas residuales se conforma de una serie de unidades que se diseñan para que de manera técnica se depure y acepte el agua residual doméstica mediante el tratamiento de la misma según propiedades físicas, químicas como biológicas [29].

Aguas residuales

Al hablar de aguas residuales se relaciona directamente con las producidas por los humanos de acuerdo a las actividades diarias, es decir está se desarrollan en los hogares, la industria, el comercio y cualquier otra acción que genere desechos o productos contaminantes [38].

Composición de las aguas residuales

El agua se encuentra de manera natural en ríos, lagunas, mares, de forma subterránea, etc. Todas enfocadas a cubrir las necesidades humanas por medio de

una infraestructura que permita la transportación, canalización y su respectivo

tratamiento, desde este tipo de uso se generan las aguas residuales. Su

composición varía sin duda de acuerdo al uso que establecida en el agua. Por ello

en las aguas residuales pueden presentarse contaminantes difícilmente de tratarlos

[39].

Desde esta perspectiva las aguas residuales pueden suplirse por un 99% de agua

propiamente y el 1% compuesta por sólidos coloidales y bacterias. Además, su

variación de composición variará del lugar de procedencia. En hogares por

ejemplo se presentará más carga bacteriana que en relación a la industria [38].

Las sustancias orgánicas poseen un gran impacto nocivo con respecto a las

inorgánicas, puesto que por su proceso de descomposición generan

microorganismos y patógenos produciendo olores pestilentes como la eliminación

de la transparencia en el agua por lo que se las denomina aguas negras [40].

Problemas de las aguas residuales

Existen varios problemas que han afectado a la población en general en aspectos

relacionados al abastecimiento de agua, saneamiento, higiene o la gestión de

recursos hídricos.

Diarrea

Malnutrición

Malaria

Filaríais linfática

Nematodos (Parásitos del intestino)

Tracoma (Infección bacteriana)

La esquistosomiasis

Encefalitis japonesa

Dengue [41].

38

Clasificación de las aguas residuales

Aguas residuales de origen doméstico

Las aguas residuales de origen doméstico pueden establecerse bajo dos tipos, las aguas grises que se producen de actividades metabólicas de los seres humanos y las aguas grises procedentes de las actividades comunes o diarias que realizan las personas como el lavado de platos o uso de baños [38].

Aguas residuales de origen industrial

La procedencia de las aguas residuales industriales como su nombre lo indica viene de la industria específicamente y que podría conllevar a que el recurso hídrico se vea afectado directamente por sustancias o componentes tóxicos que tienen una gran afectación para la salud de los seres humanos como el impacto al medio ambiente [38].

Aguas residuales de origen agrícola

El aumento paulatino de la agricultura para el desarrollo de la población ha conllevado a la generación de aguas residuales que por su fala de tratamiento han ocasionado graves problemas relacionado a la calidad del agua, puesto que en la actualidad se usan fertilizantes y pesticidas que acarren además grandes problemas a la sociedad y el ambiente [38].

Aguas residuales de origen pluvial

Las aguas residuales de origen pluvial deben contar con su adecuado tratamiento puesto que la lluvia puede reunir el agua a nivel doméstico, industrial o agrícola, así como también distintos contaminantes atmosféricos [38].

Características de las aguas residuales

Se establece tres tipos de características de las aguas residuales sean físico, químicas y biológicas, a continuación, se detalla cada una.

Características físicas

El olor: establecido por la presencia de gases en la descomposición que se produce de la materia orgánica donde se desprende un olor característico producido por el sulfuro de hidrógeno. Los olores se deben a cuatro factores sea el carácter, la detectabilidad, la sensación y la intensidad.

La temperatura: las aguas residuales poseen una mayor temperatura que las comunes por la acción de los microorganismos (actividad bioquímica) además de la recolección de las aguas calientes provenientes de casas e industrias. A mayor temperatura del agua, el oxígeno será menos saludable.

La densidad: representa la masa que se posee por una unidad de volumen, además se considera el peso específico entre el agua con respecto al agua residual. Posee gran dependencia de la temperatura y de la concentración de sólidos.

La turbiedad: parámetro que indica la calidad de las aguas por el vertido que incluye la relación de los materiales coloidales y residuales que se encuentran en suspensión. Su medición está establecida por medios prácticos y físicos que compara entre las intensidades de luz dispersa y acotada en una muestra.

Contenido de sólidos: son aquellos que se muestran como partículas que pueden ser apreciables de tipo coloidal presentes en las aguas residuales y que lo conforman sea por las materias orgánicas como inorgánicas. El contenido de los mismos se lo conoce como Sólidos Totales que se los define como aquellos residuos que se evidencian posterior a la evaporación de la muestra que se evapora a una temperatura de 105° C en un lapso de 24 horas.

Color: el color de las aguas residuales es característico y se muestra por las partículas en suspensión, sustancias coloidales y disueltas, colorantes industriales, ácidos, entre otros elementos que son arrojados a los desagües.

Distribución de partículas de acuerdo al tamaño: las partículas de acuerdo al tamaño varían y pueden presentarse de la siguiente manera: < 0,08 μm en

sustancias disueltas, en el caso de partículas coloidales puede variar entre 0,08 a 1,0 μm, para las supracoloidales 1 a 100 μm y en las sediméntales son > 100 μm.

pH: representativo a la acidez y alcalinidad del agua, puede variar en las aguas residuales de 0 a 14 donde 7 se considera el pH neutro y así se puede conocer el nivel de acidificación de estas aguas [42].

Características químicas

Dentro de las características químicas pueden separarse en orgánicas e inorgánicas.

Las orgánicas presentan las siguientes características:

Carbohidratos: en las aguas residuales lo conforma el 25% compuesto por almidones, azúcares o a su vez carbohidratos difícilmente degradables

Proteínas: se presentan en un 65% en las aguas residuales domésticas son los componentes principales que son expuestos a los sistemas de tratamiento al igual que el ácido sulfhídrico.

Lípidos: constituye el 10% de las aguas residuales presentes en los aceites y grasas, los cuales pueden causar taponamiento en tuberías como malos olores.

Por su parte en las sustancias inorgánicas pueden presentarse las siguientes características:

Nitratos: son el resultado de la descomposición de vegetales y animales como de compuestos nitrogenados.

Sulfatos: se desarrollan conforme a la oxidación bacteriana de los sulfuros presentes entre 20 a 50 mg/l en los ríos.

Cromo: en las aguas residuales se evidencia su presencia en metales contaminantes sea en complejos aminados o cianurados y con otros químicos como cloruros, amoniaco, cianuros, sulfatos y nitratos.

Hierro: originados por la producción de varios materiales principalmente del acero, tiene un alto nivel de toxicidad y es el principal causante de la dermatitis.

Cloruro: se desprenden de la disolución que se presentan en los depósitos de algunos minerales que se generan en afluentes producidos por actividades industriales y algunas domésticas.

Calcio: se asocia a la mineralización por medio de sales solubles con presencia de aniones de bicarbonato, fluoruro, cloruro y sulfatos.

Zinc: no es común pero su presencia se establece por la contaminación de elementos como los aceites de motor, pilas que han sido causados por derrames ocurridos en vertederos [42].

Características biológicas

En el caso de las características biológicas presentes en las aguas residuales pueden desarrollarse por un sinnúmero de organismos que causan contaminación, dentro de los cuales se enlistan los siguientes:

Bacterias (Nitrobacter, Nitrosomas, Nocardia, Sphaerotillus)

Virus

Parásitos (Escherichia Coli)

Ciliados (rotíferos, pedunculados)

Parámetros de las aguas residuales

Demanda bioquímica de oxígeno

Representa el total de oxígeno necesario para estabilizar la materia orgánica conforme a un lapso de tiempo y ciertas temperaturas específicas que generalmente se establece en 5 días a 20° C. [21].

Demanda química de oxígeno

Se establece como la medida que presenta la cantidad de oxígeno que se requiere para la oxidación de la materia orgánica o carbonácea de las aguas residuales y que para ello ha de usarse sale inorgánicas como el permanganato o dicromato, prueba que puede tener una duración de 2 horas [21].

Potencial hidrógeno

Se establece como un parámetro que se enfoca a determinar la alcalinidad y acidez que puede presentar las aguas residuales. Con una concentración elevada del ion de hidrógeno el tratamiento por medios biológicos tendrá un grado de complejidad alto o a su vez se presentará una alteración se verá conformada por microorganismos biológicos [37].

Nitrógeno

El nitrógeno es un elemento químico necesario para la vida, pero en el agua la concentración elevada del mismo puede causar toxicidad, por ello en el tratamiento de aguas residuales debe ser usado en cantidades mínimas sino podría ser contraproducente [43].

Fósforo

Elemento químico que se encuentra en el crecimiento de especie acuáticas que en el caso de aguas residuales se generan por los detergentes, fertilizantes o excrementos humanos. En el tratamiento del agua, su excesivo puede deteriorar de los cuerpos de agua [43].

Tratamiento de aguas residuales

El tratamiento de las aguas residuales resulta de un proceso que incluye varias etapas y que se enfocan a la purificación o descontaminación de dichas aguas. Sobre estas aguas existen varias utilidades y dependerá de ello el tipo de tratamiento que se le otorgue, es por ello que al finalizar un sistema de alcantarillado es necesario se instale una planta de tratamiento de aguas residuales [40].

Fases del tratamiento de aguas residuales

Dentro de las fases generales para el tratamiento de las aguas residuales según Sánchez (2018) se encuentran:

Pretratamiento

Consiste en remoción de componentes de gran tamaño sean rocas, papel o troncos de las aguas negras, no se mantiene ninguna obstrucción por tuberías lo que conlleva a evitar variaciones que puedan presentarse en el caudal [44].

Para establecer las siguientes fases de tratamiento de aguas residuales se establece la siguiente tabla.

Tabla 11. Fases de tratamiento de aguas residuales

Fases	Procesos que se efectúan	Contaminantes removidos
Primario: asentamiento de sólidos.	SedimentaciónDecantaciónLagunas de estabilización	Ajusta el PH del aguaOrgánicos e inorgánicos
Secundario: tratamiento biológico de la materia orgánica disuelta.	 Lodos activados Lagunas aireadas Filtros biológicos Reactores anaerobios de flujos ascendente (RAFA) 	Orgánicos coloidales Orgánicos disueltos
Terciario: microfiltración y desinfección.	Desinfección Filtración química	Orgánicos disueltosIonesBacteriasVirus

Fuente: Sánchez, M. 2019 [39].

Elaborado por: David Cruz y Yadira Pachucho

Fases de diseño para el tratamiento de aguas residuales

Conforme a las fases de tratamiento de aguas grises se establece el diseño de la planta, como se visualiza en la figura que se muestra a continuación:



Figura 6. Fases de diseño de una planta de tratamiento de aguas residuales

Fuente: Sánchez, M. 2019 [39]. **Elaborado por:** David Cruz y Yadira Pachucho

Criba

La fase de cribado se compone de barreras físicas cuyo objetivo es el de evitar que pasen en gran medida piedras y arena lo que promoverá el adecuado funcionamiento de los equipos impidiendo obstrucciones [44].

Desengrasado, desarenado y neutralización

Consiste en una fase que se encarga de remover la arena, grasa y aceites del agua mediante movimientos mecánicos que generan una corriente transversal secundaria que hace que las partículas de arena se sedimenten asentándolos en el fondo del desarenador. En cuanto a grasas y aceites se remueven conforme un sistema de difusión de aire generando burbujas que elevan dichos elementos para ser retirados por una compuerta [44].

Tratamiento primario

En esta etapa se establece la clarificación que se enfoca a la remoción de sólidos orgánicos que se consigue por medio de un proceso de precipitación por gravedad. Una vez clarificado el afluente pasa a los módulos de tratamiento biológico [44].

Tratamiento secundario o biológico

En esta etapa se realiza la remoción de las demandas químicas y bioquímicas de oxígeno como de los sólidos por medio de la suspensión en un proceso de oxigenación como de la conversión de CO2 y H2O, el mismo se consigue por medio de microorganismos, los cuales producen una gran cantidad de lodo.

El lodo es recolectado y posteriormente almacenado en tanques colectores para su respectivo tratamiento que se llevan a cabo en el digestor de lodos [44].

Desinfección

La desinfección proveniente de los tratamientos primarios y secundarios se realiza en uno solo punto por medio de la dosificación de cloro y el flujo total de agua a desinfectar, en esta etapa se reducen los coliformes fecales. Con todos los tratamientos mencionados se desecha en el Río donde se cumplirán los parámetros establecidos por la legislación y normativas vigentes de cada nación [44].

Tratamiento de lodos

Los lodos tratados por procesos anaeróbicos que descomponen sustancias complejas en simples son manejados por un digestor que posteriormente serán suavizados en un mezclador para posteriormente ser sometidos a una controlada temperatura para la transformación de metano en CO₂, elemento que tiene menor impacto sobre el efecto invernadero. Finalmente, el lodo al ser digerido pasa por la decantadora que extraerá la mayor cantidad de humedad y así poder estabilizarlo [44].

Objetivos

Objetivo general

Diseñar el alcantarillado sanitario y pluvial y PTAR para el caserío Sigsipamba de la parroquia de Picaihua del cantón Ambato provincia de Tungurahua.

Objetivos específicos

Disponer del levantamiento georeferenciado del Caserío Sigsipamba.

Diseñar el sistema de alcantarillado sanitario y pluvial en base a las normas establecidas.

Diseñar la planta de tratamiento de aguas residuales

Realizar el análisis de precios unitarios.

CAPÍTULO II. METODOLOGÍA

MATERIALES Y MÉTODOS

Materiales

Para el diseño del alcantarillado sanitario y pluvia del Caserío Sigsipamba de la parroquia Picaihua, cantón Ambato se utilizaron los siguientes materiales que se detallan a continuación, haciendo un uso correcto de los mismos para obtener mejores resultados durante la ejecución de la obra.

Tabla 12. Materiales utilizados

Equipo	Características	Beneficios	Marca	
	Determinar los datos de	Funcionamiento en		
	altitud y longitud	todo tipo de terreno.		
GPS		Cuenta con un error	Garmin	
		$de \pm 3 m$		
		Coordenadas UTM.		
	Aparato topográfico	Permite el cálculo de		
	eléctrico – óptico que	volúmenes,		
ESTACIÓN	puede medir ángulos y	replanteos etc.		
TOTAL	distancias	Precisión en los	Trimble	
TOTAL	simultáneamente	datos.		
		Almacenamiento de		
		datos.		
	Aparato topográfico con	Mayor precisión		
	navegación cinética	Margen de error del	Hi targetV200	
RTK	satelital en tiempo real	1%	Til target v 200	
	con señales GPS,	Fácil transportación		
	GLONASS.	del equipo		
	Cocido como target, se	Fácil manejo		
DDICMA	coloca sobre un punto			
PRISMA	cualquiera y al ser			
	observado por medio de			

	la estación total dispara		
	un láser el cual rebota de		
	vuelta hacia el aparto		
	para la lectura de puntos.		
	Bastón metálico	Fácil manejo	
BASTÓN	graduado donde se		
	coloca el prisma		
FLÉXOMETRO	Herramienta para la	Fácil manejo	Truper
TELXOWETRO	medición de distancias		Truper
	Herramienta utilizada	Fácil manejo	
PINTURA	para marcar los cambios		
	de estación		
	Equipo utilizado para	Permite realizar	
CALCULADORA	realizar actividades de	cálculos.	CASIO
	campo y de oficina	Fácil manejo	
	Equipo utilizado para	Almacenamiento de	
	múltiples actividades	fotografías e	
CELULAR		información del	HUAWEI P20
		proyecto.	
		Fácil manejo.	
	Equipo utilizado para la		
IMPRESORA	impresión de hojas del	Fácil manejo.	EPSON L355
IVII KLSOKA	proyecto finalmente	racii manejo.	LI SON LSSS
	ejecutado.		
	Materiales de oficina		
MATERIALES DE	como esferos, lápices y		
BAJA	otros materiales que		
RELEVANCIA	serán utilizados durante		
RELEVANCIA	el proceso de la		
	ejecución del proyecto.		
	Equipo utilizado para	Permite el diseño del	
	realizar diferentes	sistema del	
COMPUTADORA	actividades, compatible	alcantarillado.	DELL
	con programas como	Fácil acceso y manejo	
	Civil 3D, Google Earth,	de las aplicaciones.	

Excel, Word entre otras	Almacenamiento	de	
aplicaciones.	datos.		

Fuente: Tibán, B. 2021 [45].

Elaborado por: David Cruz y Yadira Pachucho

Tabla 13. Programas computacionales utilizados

PROGRAMAS COMPUTACIONALES			
GOOGLE EARTH	Herramienta interfaz basado en imágenes		
GOOGLE EARTH	satelitales, que permite la visualización de		
	la zona de estudio.		
	Software de procesamiento de datos SIG		
GLOBAL MAPPER:	potente y asequible, que permite la		
	accesibilidad de información cartográfica		
	precisa.		
	Software que nos ayudó en el diseño del		
	sistema de alcantarillado y en el diseño de		
CIVIL 3D	la planta de tratamiento. Es una		
	herramienta BIM, que permite un trabo		
	más eficiente.		
	Es un software que permite el diseño de		
HCANALES	canales y estructuras hidráulicas, ya que		
TICHWILLS	este software nos brinda datos confiables y		
	de una forma rápida.		
	En el paquete Office están incluidos		
	programas como Word que permitieron la		
	realización de este trabajo, también		
PROGRAMAS MICROSOFT OFFICE	incluimos Excel en cual utilizamos para		
	realización de cálculos de población,		
	caudales hidráulicos para el sistema		
	sanitario y pluvial, además el cálculo del		
	presupuesto,		
Fuente: A quaquiña M 2022 [46]			

Fuente: Aguaguiña, M. 2022 [46].

Elaborado por: David Cruz y Yadira Pachucho

Métodos

El presente trabajo es un proyecto técnico del "DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA", por lo que es necesario realizarlo por fases como se detalla a continuación. Este proyecto se realizará en 5 fases las cuales incluyen investigación bibliográfica y campo para la recolección de información del sector y así obtener un mejor resultado como se muestra en la siguiente tabla. Posterior a esto se realizó el diseño del sistema propuesto que fue de gran utilidad para el caserío Sigsipamba.

Tabla 14. Fases del proyecto

N° de Fase	Actividad	Tipo de investigación	
FASE 1 (Preliminar)	Información del sitio de estudio	Bibliográfica	
		De campo	
FASE 2 (Diseño)	Diseño del alcantarillado sanitario	Bibliográfica	
		De campo	
FASE 3 (Diseño)	Diseño del alcantarillado pluvial	Bibliográfica	
		De campo	
FASE 4 (Diseño)	Diseño de la planta de tratamiento	Bibliográfica	
		De campo	
FASE 5 (Técnica)	Creación de planos	Bibliográfica	
	Realización de los precios unitarios		

Fuente: Aguaguiña, M. 2022 [46].

Elaborado por: David Cruz y Yadira Pachucho

Fase 1 (Preliminar). Información del sitio de estudio

En esta fase se realiza el levantamiento de información del sitio de estudio, como la ubicación, condiciones económicas y sociales, número de habitantes etc. Esta información será de mucha importancia para iniciar con el diseño del sistema sanitario, pluvial y PTAR.

Ubicación macro

Figura 7. Ubicación macro del proyecto **Fuente:** Bing imágenes. 2022 [47].

Ecuador es un país que se encuentra localizado en Sudamérica, con una extensión territorial de 283.561 km². Limita al norte con Colombia, al sur y este con Perú y al oeste con el Océano Pacifico [48].

El mismo que se encuentra divido en tres regiones las cuales son: Costa, Sierra y Amazonia, ya que el país se encuentra a travesado por la línea ecuatoriana en forma horizontal y vertical [49].

Ecuador tiene una población aproximada de 17.5 millones de personas aproximadamente. Su densidad poblacional es de 63 hab /Ha². El idioma hablado es el español y el quechua. El territorio ecuatoriano se encuentra dividido em 24 provincias las que se dividen cantones, ciudades y se subdividen en parroquias. Entre las ciudades más importantes del país están: Quito, Guayaquil, Cuenca y Ambato [50].

Ubicación meso

Figura 8. Ubicación meso del proyecto

Fuente: Bing imágenes. 2022 [51].

La provincia de Tungurahua es una de las 24 provincia que conforma la republica del Ecuador, cuya capital es la ciudad de Ambato. Dicha provincia se encuentra ubicada en la sierra. Ocupando un territorio de 322 Km². Limitada al norte con Cotopaxi, Al sur con Chimborazo, al sureste con Morona Santiago, al occidente con Bolívar y al noroeste con Napo. En la provincia habitan 590 mil personas aproximadamente siendo la séptima provincia más poblada. La provincia se divide en 9 cantones las cuales se dividen en parroquias urbanas y rurales [52].

Ubicación miso

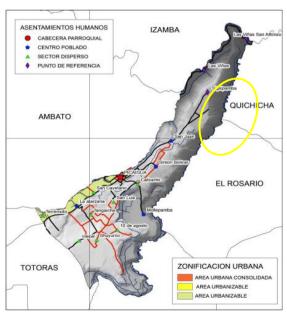


Figura 9. Ubicación miso del proyecto

Fuente: PDOT parroquial Picaihua, 2020 [1].

La parroquia de Picaihua, se encuentra ubica en la provincia de Tungurahua, en el cantón Ambato, formando parte de una de las 14 parroquias del cantón [53]. La parroquia de se encuentra en la zona centro-norte a 7km del centro sureste la ciudad de Ambato. Tiene una superficie de 154 Km, se encuentra limitada al norte por la parroquia Izamba y la parroquia Pishilata, al sur por la parroquia Huachi Grande y la parroquia Totora, al este por el cantón Pelileo, y al oeste por las parroquias totoras y Huachi Grande [54].

El sector Sigsipamba, se ubica en la parroquia Picaihua, cantón Ambato, provincia de Tungurahua. El Caserío de Sigsipamba cuenta con un área de 54.50 hectáreas, con una población aproximadamente de 160 habitantes que se dedican a diferentes actividades como manufactura, comercio, agricultura y ganadería. El Caserío se encuentra limitado al norte por el sector Las Viñas San Antonio, al sur por Barrio San Juan de la parroquia Picaihua, al este por la parroquia Chiquicha y al oeste por el sector Las Viñas. En la figura se puede observar una ortofoto de la ubicación del proyecto [1].

Figura 10. Ubicación Caserío Sigsipamba **Fuente:** PDOT parroquial Picaihua, 2020 [1].

Economía del sector

En el sector del Caserío Sigsipamba la mayoría de los habitantes se dedican a la producción agrícola, con productos como: el aguacate, las hortalizas y el maíz. Los cuales, están destinados para el autoconsumo y en un porcentaje menor para

la venta. En el sector también se dedican a las actividades agropecuarias, venta de productos alimenticios y a la fabricación de artículos de cuero [1].

Clima de la zona

De acuerdo con el PDOT de Picaihua la temperatura del sector oscila entre 12 a 18 °C, lo que permite que en la zona sea un área de cultivo óptimo. La evaporación anual provoca un déficit hídrico, lo que aumenta los sitios con grandes sequías [1].

Descripción climática

Tabla 15. Descripción climática de la zona de estudio

Variable	Descripción
Precipitación	400 - 600 mm
Temperatura	12 − 18 °C
Pisos climáticos	
Humedad	60%

Fuente: PDOT parroquial Picaihua, 2020 [1].

Elaborado por: David Cruz y Yadira Pachucho

Muestreo poblacional

El muestreo población se estableció conforme el número de habitantes que serán beneficiados con el proyecto, básicamente se obtuvo información del número de viviendas y acometidas domiciliarias en el sector. Esta información permitió establecer los parámetros de diseño para el desarrollo del sistema de alcantarillado sanitario y pluvial.

Levantamiento topográfico

En el Caserío Sigsipamba se tomó los puntos de referencia del proyecto con el TRK, posterior a ello se realizó el levantamiento topográfico con la estación total. Ya que esta información es primordial para iniciar con el diseño del alcantarillado sanitario, pluvial y PTAR.

Fase 2 (Diseño). Diseño del alcantarillado sanitario

Para un mejor conocimiento y ubicación del Caserío Sigsipamba se utilizó como

herramienta inicial la aplicación Google Earth, en el cual se delimitó el área de

trabajo mediante un polígono. Posterior a esto se obtuvieron los datos

topográficos, los cuales, se exportaron al programa civil 3D, para visualizar la

superficie topográfica, curvas de nivel, etc. Para la realización de los cálculos se

utilizaron las siguientes normativas:

Normas de diseño de sistemas de alcantarillado para la EMAAP-Q.

Norma de diseño para sistemas de abastecimiento de agua potable, disipaciones de

excretas y residuos líquidos en el área rural. (SENAGUA norma rural para

estudios y diseños).

Norma Boliviana NB 688. Reglamento técnico de diseño para sistemas de

alcantarillado sanitario [35].

Periodo de diseño

El periodo de diseño representa la vida útil de la estructura, por lo cual se deben

considerar diferentes etapas como el financiamiento, adjudicación, y construcción.

Existen valores recomendados para el período de diseño basados en la población y

componentes que constituyen el sistema [35].

Tabla 16. Tiempo de vida útil en años de los componentes y equipos para el proyecto

COMPONENTES y/o EQUIPOS		VIDA ÚTIL (años)
Pozos		10 a 25
Conducciones	Hierro dúctil	40 a 50
Conducciones	PVC O AC	20 a 30
Planta de tratamiento		20 a 30

Fuente: Abad, I. 2022 [55]

El proyecto se ajustó a un período de diseño de 20 a 30 años, tomando el valor de la tabla 11, puesto que se utilizaron componentes de conducción de PVC para garantizar el funcionamiento adecuado del sistema.

Población actual

La población actual del sector se encuentra compuesta por 243 habitantes, datos obtenidos posterior al censo realizado a los habitantes del Caserío Sigsipamba.

Cálculo de la tasa de crecimiento

Para calcular la tasa de crecimiento se tomó como referencia los datos censales del INEC, que se encuentran en el Plan de Ordenamiento Territorial de la parroquia rural de Picaihua. Y se puede utilizar uno de los métodos presentados a continuación en la tabla 17.

Tabla 17. Métodos para el cálculo de la tasa de crecimiento

Método	Ecuación	Nomenclatura
Método Lineal o aritmético	$r(\%) = \left[\frac{\left(\frac{Pf}{Pi} \right) - 1}{t} \right] * 100$ Ecuación 1	
Método geométrico	$r(\%) = \left[\left(\frac{Pf}{Pi} \right)^{\frac{1}{t}} - 1 \right] * 100$ Ecuación 1	Pf = Población final (hab) Pi = Población inicial (hab) t = intervalo de tiempo (años) r = tasa de crecimiento (%)
Método exponencial	$r(\%) = \left[\frac{1}{t} * Ln\left(\frac{Pf}{Pi}\right)\right] * 100$ Ecuación 1	

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Población de diseño o futura

Representa la población que se obtiene al final del periodo de diseño, para el cálculo de la misma se utilizarán tres métodos conocidos, que se detallan a

continuación en la tabla 18, donde se requiere conocer la población actual y la tasa de crecimiento, sea el método que se seleccione para el cálculo, deberá ajustarse a varios aspectos como políticos económicos y sociales del sector.

Tabla 18. Métodos para el cálculo de la población de diseño o futura

Método	Ecuación	Nomenclatura
Método Lineal o aritmético	$\mathbf{Pfu} = Pa * (1 + (r * n))$	
	Ecuación 2	Pfu = Población futura
Método geométrico	$\mathbf{Pfu} = Pa * (1+r)^n$	Pa = Población actual
	Ecuación 3	n = Periodo de diseño r = tasa de crecimiento
Método exponencial	$\mathbf{Pfu} = Pa * (e)^{r*n}$	1 – tasa de crecimiento
	Ecuación 4	
	Ecuación 4	

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Para determinar la población futura del sector se utilizó el método lineal por razones antes mencionadas al seleccionar la tasa de crecimiento, puesto que se considera óptimo para poblaciones menores a 2.000 habitantes.

Densidad poblacional

Para el diseño se utilizó la población futura dividido para la sumatoria de las áreas de aportaciones del sistema. Puesto que la densidad de la población representa la cantidad de habitantes en un área determinada.

Tabla 19. Densidad poblacional del proyecto

Ecuación	Nomenclatura
$egin{aligned} oldsymbol{Dpf} &= rac{Pfu}{Aptotal} \ & & & & & & & & & & & & & & & & & & $	Pfu = Población futura (hab) Dpf = Población actual (hab) Aptotal = Periodo de diseño (Ha)

Fuente: Moya, D. 2018 [35]

Dotación actual

La dotación actual se establece conforme a la cantidad de agua utilizada por persona en un día. Este valor fue seleccionado por medio de la población y del clima de la zona del proyecto. [56].

Una vez analizado los valores de la *Tabla 1*. se estimó que la dotación media futura es de 130 lts /hab /día. Al no contar con un valor exacto del caserío Sigsipamba. Ya que dicha tabla presenta valores aproximados de la dotación de acuerdo al clima y a la población del sector.

Dotación futura

La dotación futura se estableció conforme al incremento de consumo de agua potable puesto que si la población aumenta el consumo también lo hará. Es decir, la dotación futura equivalentemente incrementa 1 lt/día durante el periodo de diseño [37].

Tabla 20. Dotación futura

Ecuación	Nomenclatura
$\mathbf{Dof} = Da + 1 * n$	Dof = Dotación futura (lt/seg) n = Periodo de diseño (años)
Ecuación 4	

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

Cálculo del caudal medio diario

Caudal que es generado en un día completo por la población, el cual se determina por la siguiente formula.

Tabla 21. Ecuación para el cálculo del caudal medio diario

Ecuación	Nomenclatura
$Qmd_{AP} = \frac{Dof * Pfu}{86400}$	Dof = Dotación futura (lt/hab/dia) Pfu = Población futura (hab)
Ecuación 5	

Fuente: López, R. [58].

Cálculo del caudal medio diario sanitario

Es el caudal que se genera por las descargas domiciliarias que son transportadas por las tuberías del sistema de alcantarillado y se lo calculó con la siguiente fórmula.

Tabla 22. Fórmula para el cálculo del caudal medio diario sanitario

Ecuación	Nomenclatura
$Qmds = C * Qmd_{AP}$	Qmd_{AP} = Caudal medio diario
	(lt/seg)
Ecuación 7	C = Coeficiente de retorno (%)

Fuente: López, R. [58].

Elaborado por: David Cruz y Yadira Pachucho

El coeficiente de retorno oscila entre el (60 - 80) % por lo cual para este proyecto se tomó el valor del 80% por encontrarse en una zona que se dedica a la agricultura.

Cálculo del caudal instantáneo

Para el cálculo del caudal instantáneo se multiplicó el caudal medio sanitario por el coeficiente de mayoración según el método que se detallan a continuación en la tabla 24.

Tabla 23. Cálculo del caudal instantáneo

Ecuación	Nomenclatura	
$\mathbf{Qi} = M * Qmds$	M = Coeficiente de	
	mayoración	
Ecuación 10	Qmds =Caudal medio diario	
	sanitario (lt/seg/m)	

Fuente: López, R. [58].

Elaborado por: David Cruz y Yadira Pachucho

El factor de mayoración fue seleccionado de acuerdo a las características del proyecto.

Tabla 24. Métodos para la obtención del factor de mayoración

Métodos	Ecuación	Rango	Nomenclatura
Harmon	$M = 1 + \frac{14}{4 + \sqrt{Pf}}$ Ecuación 8	$2 \le M \le 3.8$	

Babit	$M = \frac{5}{Pf^{0.20}}$ Ecuación 9		Pf = Población en miles
	POBLACIÓN EN MILES	COEFICIENTE DE M	(hab) M = Coeficiente de
Popel	Menor a 5	2.40 a 2.00	mayoración
	5 a 10	2.00 a 1.85	
	10 a 50	2.00 a 1.85	
	50 a 250	1.85 a 1.60	
	Mayor a 250	1.33	

Fuente: Norma Boliviana NB 688-01 [59]. **Elaborado por:** David Cruz y Yadira Pachucho

Una vez analizado los tres métodos de mayoración se optó por el coeficiente de Babit puesto que la población futura es de 374 habitantes, puesto que se recomienda su uso para poblaciones menores a 1000 habitantes.

Cálculo del caudal de infiltración

Para determinar el caudal de infiltración se multiplica la constante de infiltración por la longitud de la tubería, la constante de infiltración va a depender del material de tuberías, uniones que se utilice y al nivel freático de la zona donde se encuentre en proyecto.

Tabla 25. Cálculo del caudal de infiltración

Ecuación	Nomenclatura
Qinf = K * L	K = Coeficiente de infiltración (lt/seg/m)
Ecuación 11	L = Longitud de tubería (m)

Fuente: López, R. [58].

Elaborado por: David Cruz y Yadira Pachucho

Para el proyecto se consideró un nivel freático de 0.00005, debido a la zona donde se encentra el área del proyecto, y también a que el material de la tubería será de PVC, que tiene una mejor resistencia a la corrosión y fácil instalación, las uniones serán de caucho para evitar posibles fugas dentro del sistema.

Tabla 26. Coeficiente de infiltración según el tipo de material

COEFICINTE DE INFILTRACIÓN				
	POR E	L TIPO DE MAT	EKIAL	
Tipo de tubería	Tubería H.S. Tubería PVC			
Unión	Mortero	Caucho	Pegamento	Caucho
N. freático bajo	0.0005	0.0002	0.00010	0.00005
N. freático bajo	0.0008	0.0002	0.00015	0.0005

Fuente: Norma Boliviana NB 688-01 [59].

Tabla 27. Coeficiente de infiltración según el tipo de suelo

COEFICINTE DE INFILTRACIÓN SEGÚN EL TIPO DE SUELO			
Nivel de complejidad del Infiltración Infiltración Infiltración Infiltración Media (l/s-Ha) Baja (l/s-Ha)			
Bajo y medio	0.1 - 0.3	0.1 - 0.3	0.05 - 0.2
Medio alto y alto	0.15 - 0.4	0.1 - 0.3	0.05 - 0.2

Fuente: Empresa Metropolitana de Alcantarillado y Agua Potable de Quito [21]

Elaborado por: David Cruz y Yadira Pachucho

Cálculo del caudal de conexiones erradas

El caudal de conexiones erradas se efectuó de acuerdo al incremento de caudal por aporte pluviométrico en los domicilios a través de las rejillas. Para su cálculo se consideró el incremento del 5% al 10% del caudal instantáneo. Para el proyecto se utilizó 10% ya que el área donde se encuentra es una zona rural y carece de cuentas para una correcta evacuación de las aguas lluvia, presentando fallas constructivas.

Tabla 28. Cálculo del caudal de conexiones erradas

Ecuación	Nomenclatura
Qe = (5% - 10%) * Qi	Qi = Caudal instantáneo (lt/seg)
Ecuación 12	

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Cálculo del caudal máximo extraordinario

Para el cálculo se consideró un factor de mayoración del 15% al 25% del caudal máximo instantáneo, conforme la situación actual del terreno y su proyección tanto del crecimiento doméstico como comercial del área del proyecto.

Tabla 29. Cálculo del caudal máximo extraordinario

Ecuación	Nomenclatura
Qex = (15% - 25%) * Qi	Qi = Caudal instantáneo (lt/seg)
Ecuación 13	

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Para el cálculo del caudal máximo extraordinario fue considerado un coeficiente de seguridad del 15%.

Cálculo del caudal de diseño

El caudal de diseño se obtuvo realizando la sumatoria del caudal instantáneo, de infiltración, de conexiones erradas y del caudal extraordinario. Para ello se utilizó la fórmula que se detalla a continuación en la tabla 31.

Tabla 30. Cálculo del caudal de diseño

Ecuación	Nomenclatura
	Qi = Caudal instantáneo (lt/seg)
Qd = Qi + Qe + Qinf + Qex	Qe = Caudal de conexiones erradas (lt/seg)
	Qinf = Caudal de infiltración (lt/seg)
Ecuación 14	Qex = Caudal extraordinario (lt/seg)

Fuente: López, R. [58].

Elaborado por: David Cruz y Yadira Pachucho

Parámetros hidráulicos

Pendiente del terreno

La pendiente del terreno se calculó una vez conocidas las cotas de la superficie, las cuales se obtuvieron mediante el levantamiento topográfico realizado inicialmente, posteriormente se utilizó la siguiente formula.

Tabla 31. Fórmula para obtener la pendiente del terreno

Ecuación	Nomenclatura
$i = \frac{CTi - CTf}{*100}$	CTf = Cota final del terreno (m)
$\iota = \frac{L}{L} * 100$	CTi = Cota inicial del terreno (m)
	L = Longitud de la tubería (m)
Ecuación 14	i = Pendiente del terreno (%)

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

Pendiente del proyecto

La pendiente se calculó en función de las cotas del proyecto, las cuales se determinaron mediante los cortes del terreno. Para el cálculo de la pendiente del terreno se utilizó la siguiente fórmula.

Tabla 32. Cálculo de la pendiente del proyecto

Ecuación	Nomenclatura
	CPf = Cota final del proyecto (m)
$s = \frac{CPi - CPf}{1 + 100} * 100$	CPi =Cota inicial del proyecto (m)
$s = \frac{377}{L} * 100$	L = Longitud de la tubería (m)
	s = Pendiente del proyecto (%)
Ecuación 14	

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Pendiente permisible

Las pendientes permisibles se obtuvieron con las pendientes mínimas y máximas que se consideraron en el diseño del sistema de alcantarillado sanitario, las cuales se calcularon en función de la fórmula de Manning [59].

Pendiente mínima

La fórmula que se utilizó para determinar la pendiente mínima fue la siguiente.

Tabla 33. Cálculo de la pendiente mínima

Ecuación	Nomenclatura
$Smin = \left[\frac{n * Vmin}{0.397 * D^{\frac{2}{3}}}\right]^{2} * 100$ Ecuación 14	n = Coeficiente de rigurosidad Vmin = velocidad mínima (m/seg) D = Diámetro de la tubería (m) Smin= Pendiente mínima (m/m)
Ecuacion 14	Simi – Pendiente minima (m/m)

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

El coeficiente de rigurosidad que se utilizó fue de 0.010, ya que el material a utilizar es la tubería de termoplástica de interior liso o PVC, además el valor mínimo de velocidad es de 0.6m/ seg², valores que se detallan a continuación.

Tabla 34. Valores de coeficiente de rigurosidad de Manning, para diferentes tipos de conductos

Tipo de conducto	Intervalo de valor de "n"	Valor de "n" recomendado
Tubería de hormigón simple		0.013
Tubería de plástico o PVC corrugada	0.012 - 0.015	0.013
Tubería de termoplástica de		0.010

interior liso o PVC		
Colectores y tuberías de	0.013 - 0.015	0.015
hormigón armado,		
fundido en sitio	0.014 - 0.019	0.016
Ladrillos	0.017 - 0.020	0.018
Mampostería de piedra	0.024 - 0.027	0.026
Tubería de acero corrugado	0.025 - 0.040	0.033
Canal de tierra sin revestir	0.030 - 0.045	0.038
Canal de roca sin revestir	0.013 - 0.015	0.015
Canal revestido con	0.025 - 0.040	0.022
hormigón	0.025 - 0.040	0.033
Túnel en roca sin revestir	0.014 0.016	
Túnel revestido con	0.014 - 0.016	0.015
hormigón		

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Tabla 35. Velocidad mínima

Tubería	Vmin (m/seg)
Parcialmente lleno	0.30
Totalmente lleno	0.60

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Pendiente máxima

La fórmula que se utilizó para determinar la pendiente máxima fue la siguiente.

Tabla 36. Cálculo de la pendiente máxima

Ecuación	Nomenclatura
$\begin{bmatrix} n * Vm \acute{a}x \end{bmatrix}^2$	n = Coeficiente de rigurosidad
$ \mathbf{Smax} = {2} * 100$	Vmáx = velocidad máxima (m/seg)
$[0.397 * D^{\frac{1}{3}}]$	D = Diámetro de la tubería (m)
Ecuación 14	Smáx = Pendiente máxima (m/m)

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

El valor de la velocidad máxima que se utilizó fue de 4,5 m/seg², ya que le material de la tubería que ocupada fue de PVC. Datos que se detallan en la siguiente tabla.

Tabla 37. Velocidad máxima

Tubería		Vmax (m/seg)
Hormigón simple Con uniones de		4
mortero		
	Con uniones de	
	neopreno	
	Para nivel freático	

	alto	
Asbesto	_	4.5 - 5
Plástico		4.5

Fuente: Abad, I. 1992 [55].

Elaborado por: David Cruz y Yadira Pachucho

Diámetro de tubería

El diámetro de la tubería se calculó mediante la fórmula del caudal en la que se realizó un despeje de variable del diámetro, como se detalla a continuación.

Tabla 38. Diámetro de la tubería

Ecuación	Nomenclatura		
$D = \left[\frac{Qd * n}{0.312 * S^{\frac{1}{2}}} \right]^{\frac{3}{8}}$	 D = Diámetro de la tubería (m) n = Coeficiente de rigurosidad Qd = Caudal de diseño (lt/seg) S= Pendiente del proyecto (m/m) 		
Ecuación 14			

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

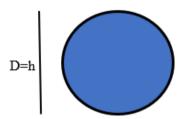
En el proyecto de alcantarillado sanitario el diámetro mínimo fue de 200 mm, como se detalla en la siguiente tabla.

Tabla 39. Diámetros mínimos de tubería según el tipo de alcantarillado

Tipo de alcantarillado	Diámetro mínimo (mm)
Sanitario	200
Pluvial y Combinado	250

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho


Condiciones hidráulicas

Para las condiciones hídricas se analizó tanto la tubería totalmente llena como la parcialmente llena y se utilizó el programa HCANALES.

Tubería de la sección totalmente llena

Para el diseño de la tubería toralmente llena se utilizaron las siguientes fórmulas como se detallan en la tabla 41, puesto que esta condición de la tubería ayuda en su dimensionamiento.

Sección totalmente llena

Figura 11. Tubería de sección totalmente llena **Fuente:** Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Tabla 40. Condiciones hidráulicas en tuberías totalmente llenas

Tipo de conducto	Ecuación	Nomenclatura		
•		Nomenciatura		
Caudal	$Qtll = \frac{0.312}{} * D^{\frac{8}{3}}$	D = Diámetro de la tubería (m)		
	$Qtil = {n} * D^3$	n = Coeficiente de rigurosidad		
		ĕ		
	$*S^{\frac{1}{2}}$	S= Pendiente del proyecto (m/m)		
	Ecuación 14			
Radio hidráulico	4+11	Ptll = Perímetro mojado de la sección		
	$Rtll = rac{Atll}{Ptll}$	llena (m)		
	$Rttt - {Ptll}$	3 4 1		
	Ecuación 14	Atll= Área mojado de la sección llena (m)		
Velocidad	$Vtll = \frac{0.397}{n} * D^{\frac{2}{3}}$	n = Coeficiente de rigurosidad		
	Vtll = * D3	D = Diámetro de la tubería (m)		
	Iι	` /		
	$*S^{\frac{1}{2}}$	S= Pendiente del proyecto (m/m)		
	Ecuación 14			
Área mojada	$\pi * D$			
J	$Atll = \frac{\pi * D}{4}$	D = Diámetro de la tubería (m)		
	Ecuación 14	, ,		
Perímetro mojado	$Ptll = \pi * D$	D = Diámetro de la tubería (m)		
	Ecuación 14			

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Tubería de la sección parcialmente llena

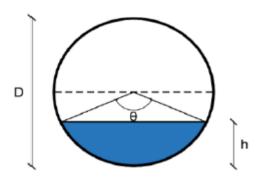


Figura 12. Tubería de sección parcialmente llena

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Para la sección parcialmente utilizaremos el programa HCANALES V 3.0, para obtener resultados de una forma rápida y precisa. Los datos que ingresaremos en el programa son: diámetro, caudal de diseño, pendiente del proyecto, coeficiente de rigurosidad.

Figura 13. Programa HCANALES

Fuente: Moya, D. 2018 [35].

Elaborado por: David Cruz y Yadira Pachucho

Tensión tractiva

La tensión tractiva fue de gran utilidad dentro del diseño del alcantarillado sanitario, ya que permitió la comprobación de las condiciones hidráulicas de cada tramo de tubería. La tensión tractiva se calculó con la fórmula que se detalla a continuación en la tabla 42.

Tabla 41. Tensión tractiva

Ecuación	Nomenclatura		
au = ho * g * Rh * S Ecuación 14	 ρ = Densidad del agua (Kg/m³) g = Gravedad (m/seg²) Rh = Radio hidráulico (m) S= Pendiente del proyecto (m/m) 		

Fuente: Reglamento Técnico de Diseño para Sistemas de Alcantarillado [57]

Elaborado por: David Cruz y Yadira Pachucho

Fase 3 (Diseño). Diseño del alcantarillado pluvial

Periodo de diseño

El periodo de diseño es el tiempo en el cual la estructura funcionara de manera óptima sin presentar problemas de manteamiento y operación. La vida útil de un sistema de alcantarillado pluvial no debe ser menor a 30 años [21].

Coeficiente de escurrimiento

Para determinar el coeficiente de escurrimiento se utilizó los valores que se detallan a continuación en tabla 43.

Tabla 42. Coeficiente de escurrimiento

Tipo de superficie	C	
Cubierta metálica o teja	0.95	
vidriada		
Cubierta con teja ordinaria o	0.90	
impermeable	0.90	
Pavimentos asfalticos en	0.85 - 0.90	
buenas condiciones	0.83 - 0.90	
Pavimentos de hormigón	0.80 - 0.85	
Adoquines (juntas pequeñas)	0.75 - 0.80	
Empedrados (juntas	0.40 - 0.50	
ordinarias)	0.40 - 0.30	
Pavimentos de macadam	0.25 - 0.60	
(lastrado)	0.23 – 0.00	
Superficies no pavimentadas	0.10 - 0.30	
Parques y jardines	0.05 - 0.25	

Fuente: Moya, D. 2018 [35]

Una vez zonificada las diferentes superficies que se encuentran dentro del área del proyecto, se utilizó la siguiente fórmula para determinar el valor del coeficiente de escurrimiento.

Tabla 43. Ecuación para obtener el coeficiente de escurrimiento

Ecuación	Nomenclatura					
$C = \frac{\sum_{j=1}^{n} (Ai * Ci)}{At}$	Ai = Área parcial según tipo de superficie (Ha)					
Fanorián 14	Ci = Coeficiente parcial según tipo de superficie					
Ecuación 14	$\mathbf{At} = \mathbf{\acute{A}}$ rea total del proyecto (Ha)					

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Tiempo de entrada (te)

Para el tiempo de entrada del proyecto se evaluó con la longitud y cotas de la tubería máxima de todo el proyecto, como se detalla a continuación. Ya que se utilizó el método por monogramas para calcular este valor.

$$LT = LA + L$$

LA = Longitud horizontal del área de aportación (m)

L = Longitud de la tubería máxima. (m)

LT = Longitud total. (m)

$$D = Cmax - Cmin$$

D = Diferencia entre la cota máxima y la cota mínima (m)

Cmax = Cota máxima (m)

Cmin = cota mínima (m)

$$j\% = \frac{D}{LT}$$

j% = pendiente de la (m/m)

L = Longitud de la tubería máxima (m)

LT = Longitud total (m)

Una vez calculado la pendiente se procedió a utilizar el siguiente monograma para determinar el tiempo de entrada.

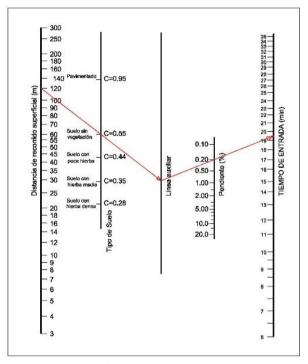


Figura 14. Método del monograma

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Para encontrar el tiempo de entrada se trazó una línea desde la regleta de la izquierda que es la distancia de recorrido superficial, siguiendo el trazo que cruza por la línea del tipo de suelo del proyecto hasta la línea auxiliar del monograma. Posterior a ello se trazó otra línea desde la línea auxiliar que cruza por la línea de la pendiente hasta la regleta de la derecha que representa el tipo de concentración. Y este valor se tomó para realizar los posteriores cálculos.

Tiempo de flujo (tf)

Referente al tiempo que se tardó el flujo desde la rejilla hasta el pozo de recolección.

$$d = \frac{Dmv}{sen45^{\circ}}$$

Dmv = distancia media del ancho de la vía. (m)

d = Distancia de la rejilla al pozo.

Para calcular el tiempo del flujo se utilizó la siguiente formula.

Tabla 44. Ecuación para el cálculo del tiempo de flujo

Ecuación	Nomenclatura	
$tf = \frac{e}{V}$ Ecuación 14	e = d = distancia de la rejilla al pozoV = Velocidad (m/seg)	

Fuente: Tippens, P. 2011 [60]

Elaborado por: David Cruz y Yadira Pachucho

Para la velocidad se utilizó el valor mínimo de la tubería totalmente llena como se detalló en la tabla 47.

Tiempo de concentración

El tiempo de concentración es la suma del tiempo de entrada más el tiempo de flujo.

Tabla 45. Ecuación para el cálculo del tiempo de concentración

Ecuación	Nomenclatura	
tc = te + tf	te = Tiempo de entrada (min)	
Ecuación 14	tf = Tiempo de flujo (min)	

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Periodo de retorno

Es la frecuencia con la que un evento puede suceder, es decir el número de años en el cual un evento puede ser igualado o superado.

Tabla 46. Periodo de retorno según el área de influencia

Tipo de ocupación del área de influencia de la obra	Tr(años)	
Residencial	5	
Comercial	5	
Área con edificios de servicio publico	5	
Aeropuertos	10	
Áreas comerciales y vías de tránsito intenso	10-25	
Áreas comerciales y residenciales	25	
Áreas de importancia especifica	50 -100	

Fuente: EMAAP-Q, 2009 [21]

Elaborado por: David Cruz y Yadira Pachucho

Intensidad diaria del periodo de retorno

Para la intensidad diaria del periodo de retorno se utilizaron las isoyetas según el periodo de retorno (Tr), para encontrar el valor en el mapa.

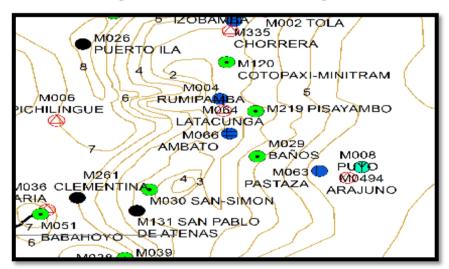


Figura 15. Intensidad diaria del periodo de retorno

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Intensidad máxima (ITR)

Para la intensidad máxima se utilizó el programa intensidad máxima de precipitación, en el cual se ingresó la zona, periodo de retorno, tiempo de concentración y la intensidad.

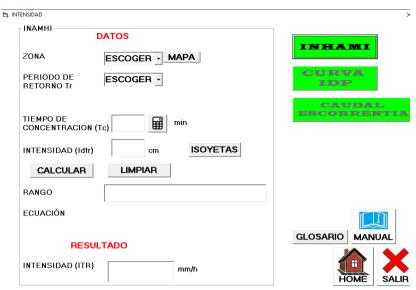


Figura 16. Programa intensidad máxima de precipitación

Fuente: Moya, D. 2018 [35] Elaborado por: David Cruz y Yadira Pachucho

Factor de reducción (% reducción)

Para determinar el factor de reducción se utilizaron los valores que se detallan a continuación.

Tabla 47. Valores para el factor de reducción

Duración =30 min		Duración = 45 min		Duración = 60 min	
Área (Ha)	% reducción	Área (Ha)	% reducción	Área (Ha)	% reducción
50 - 100	99	100 a 200	95	200 a 400	96
100 a 200	95	200 a 400	92	400 a 800	92
				800 a	
200 a 400	92	400 a 800	89	1600	88

Fuente: Universidad Autónoma Juan Misael Saracho [59]

Elaborado por: David Cruz y Yadira Pachucho

El factor de reducción que se utilizó fue del 99%, ya que el tiempo de duración que obtenido de presente proyecto fue de 28 min.

Intensidad máxima corregida

Para la intensidad máxima corregida se utilizó la fórmula que se detalla a continuación.

Tabla 48. Ecuación para el cálculo de la intensidad máxima corregida

Ecuación	Nomenclatura
$Imax\ corregida = ITR*\% reducción$	ITR =intensidad máxima
Ecuación 14	%reducción = factor de reducción

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Caudal de diseño

El caudal de diseño se recolecta en toda el área de drenaje, la cual se calculó por la siguiente formula.

Tabla 49. Cálculo de diseño

Ecuación	Nomenclatura
$\mathbf{Qp} = 2.87 * Imax corregida * C * A$	Imax corregida =intensidad
	máxima corregida
	C = Coeficiente de
	escurrimiento
Ecuación 14	$\mathbf{A} = \mathbf{\acute{A}}$ rea de drenaje

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Diámetro de tuberías

Para el alcantarillado pluvias se utilizó como mínimo tuberías de 250mm de diámetro de PVC [59].

Parámetros hidráulicos

Para el cálculo de los parámetros hidráulicos del alcantarillado pluvial se utilizaron las fórmulas indicadas en el parámetro de diseño del alcantarillado sanitario, indicados en los numerales 2.2.2.15.1 al numeral 2.2.2.17.

Fase 4 (Diseño). Diseño de la PTAR

Para empezar con el diseño de la planta de tratamiento se realizó el análisis de las aguas residuales de las viviendas del Caserío Sigsipamba. Cabe recalcar que se tomaron las muestras de una vivienda, las muestras fueron tomadas cada hora, en la mañana al medio día y en la tarde.

Tabla 50. Parámetros analizados del agua residual

Informe de los resultados		
Parámetro	Unidades	Resultados
Aceites y Grasas	mg/l	46.45
PH(agua residual)	UpH	6.46
Demanda Bioquímica de Oxigeno DBO ₅	mg/l	293
Demanda Química de Oxigeno DQO	mg/L	464

Elaborado por: David Cruz y Yadira Pachucho

Relación entre el DBO₅/DQO

Tabla 51. Relación de parámetros para caracterizar aguas residuales

Tipo de agua residual	DBO ₅ /DQO
No tratada	0.3 - 0.8
Después de la sedimentación	0.4 - 0.6
primaria	
Efluente final	0.1 - 0.3

Fuente: Crites, y otros, 2000 [61]

Elaborado por: David Cruz y Yadira Pachucho

La relación de la DBO5/BQO en las aguas residuales deben encontrarse en un rango de 0.3 y 0.8. si la relación DBO5/BQO es > 0.5 el agua se considera fácilmente tratable, si es < a 0.3 el agua residual contiene constituyentes tóxicos por lo que su tratamiento es más complicado [61].

Tabla 52. Parámetros de la dificultad de tratabilidad del agua

DBO ₅ /DQO	Tratabilidad
< a 0.3	Difícil
0.3 - 0.5	Tratable
> 0.5	Fácil de tratar

Fuente: Crites, y otros, 2000 [61]

Elaborado por: David Cruz y Yadira Pachucho

Tabla 53. Composición del agua residual domestica bruta

Contaminantes	Unidades	Concentración		
		Débil	Media	Fuerte
Sólidos Totales (ST)	mg/l	350	720	1200
Disueltos Totales (SDT)	mg/l	250	500	850
Fijos	mg/l	145	300	525
Volátiles	mg/l	105	200	325
Sólidos en suspensión (SS)	mg/l	100	220	350
Fijos	mg/l	20	55	75
Volátiles	mg/l	80	165	275
Sólidos sediméntales	mg/l	5	10	20
Demanda bioquímica de oxígeno, mb/l: días, 20°C (DB05,20°C)	mg/l	110	220	400
Carbono orgánico total (COT)	mg/l	80	160	290
Demanda química del oxígeno (DQO)	mg/l	250	500	1000
Nitrógeno (total en la forma N)	mg/l	20	40	85
Orgánica	mg/l	8	15	35
Amoniaco libre	mg/l	12	25	50
Nitritos	mg/l	0	0	0
Nitratos	mg/l	0	0	0
Fósforo (total en la forma P)	mg/l	4	8	15
Orgánica	mg/l	1	3	5
Inorgánica	mg/l	3	5	10
Cloruros ^a	mg/l	30	50	100
Sulfato ^a	mg/l	20	30	50
Alcalinidad (como CaCO ₃)	mg/l	50	100	200
Grasa	mg/l	50	100	150
Coliformes totales b	n°/100m1	$10^6 - 10^7$	$10^7 - 10^8$	$10^7 - 10^9$
Compuestos orgánicos volátiles (COVs)	ug/l	<100	100	>400

Fuente: Metcalf & Eddy INC., 1995 [62]

Parámetros de diseño para la planta de aguas residuales

Para el diseño de la PTAR se tomarán en cuenta datos como:

n= Periodo de diseño

El periodo de diseño para una PTAR es un mínimo de 15 años, la vida útil de los componentes o equipos complementarios debe ser superior a 10 años por lo cual el periodo de diseño para el proyecto es de 20 años [63].

Pf = Población futura (hab)

Qdiseño= Caudal de diseño

Estos datos se calcularon anteriormente en la etapa 2 del proyecto.

Tratamiento preliminar

Dimensión del canal de entrada

La longitud del canal no necesariamente deberá ser calculada, pero tienen que abastecer todos los residuos y sedimentos que se aglomeren en las rejillas. Por lo que asume un ancho de 0.30 m.

$$Base = 0.30 \, m$$

Tabla 54. Ecuación para el cálculo de las dimensiones del canal de entrada

Ecuación	Nomenclatura
$A = \frac{Q}{V}$ Ecuación 14 Realizamos un despeje para encontrar las dimensiones del canal. $A = y * b$ $A = \frac{A}{b}$	Q =Caudal de diseño V = velocidad (esta será la velocidad ultima con la que llega al canal de entrada) y = Altura del canal de entrada b =Base asumida

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Dimensiones de la rejilla

Consideraciones para el diseño de cribados

Para rejillas de sección rectangular de 5 a 15 mm se utilizarán barras de 30 a 75

mm.

Las cribas tienen una sección mínima de 6 x 40 mm y un máximo de 13 x 60 mm.

La velocidad a través de las barras debe mantenerse entre 0.4 a 0.75 m/s. esto va a

depender mucho del caudal.

La velocidad del caudal antes de las barras deberá mantenerse entre 0.3 y 0.6 m/s,

pero la norma INEN recomienda que es común utilizar una velocidad 0.45 m/s.

El ángulo de inclinación de las barras será entre $44-60^{\circ}$ con respecto a la

horizontal.

Para facilitar la instalación y el mantenimiento en las cribas se recomienda una

limpieza manual [16].

Numero de barras

Tabla 55. Ecuación para el cálculo del número de barrotes

Ecuación	Nomenclatura
$N = \frac{b + \emptyset}{e + \emptyset}$	b =ancho total de la rejilla
Ecuación 14	Ø = Diámetro de las varillas
	e = espaciamiento sugerido, 2.5
	recomendado.

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Ancho libre de los barrotes

Tabla 56. Ecuación para el cálculo del ancho libre de barrotes

Ecuación	Nomenclatura
$e = \frac{b + \emptyset}{N}$	b =ancho total de la rejilla
Ecuación 14	Ø = Diámetro de las varillas
	N = Numero de barrotes

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Longitud de las barras de la rejilla

Tabla 57. Ecuación para el cálculo de la longitud de las barras de la rejilla

Ecuación	Nomenclatura
$L = \frac{y}{sen\theta}$	y = altura del canal de entrada
Ecuación 14	• Angulo de inclinación

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Diseño del desarenador

El desarenador es un sistema que se utiliza para retirar los sólidos como las arenas, cenizas y gravas, ya que esto puede causar desgates en lo equipos mecánicos [64].

Consideraciones para el diseño del desarenador

Se sugiere que el desarenador tenga la capacidad de retener partículas con un diámetro menor a 3cm.

La velocidad adecuada para realizar el proceso de la sedimentación es de 0.1 m/seg.

Se consideró que el desarenador tenga una sola cámara ya el diseño cuenta con un caudal pequeño, para facilitar las operaciones de limpieza se recomienda cámaras de media profundidad para facilitar el desalojo de los sedimentos [65].

Volumen del desarenador

Tabla 58. Ecuación para el cálculo del volumen del desarenador

Ecuación	Nomenclatura
Vdes = Qdis * Tr	Qdis = Caudal de diseño m ³ /seg
Ecuación 14	\mathbf{Tr} = Tiempo de retención

Fuente: Comisión Nacional del Agua de México, 2016 [9] **Elaborado por:** David Cruz y Yadira Pachucho

Dimensiones del desarenador

Tabla 59. Ecuación para el cálculo de la dimensión del desarenador

Ecuación	Nomenclatura
$A = \frac{Qdis}{Vfluj}$	Qdis = Caudal de diseño lt/seg Vfluj = Velocidad media del flujo =0.1
Ecuación 14	m/seeg

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Ancho de la cámara

Tabla 60. Ecuación para el cálculo del ancho de la cámara

Ecuación	Nomenclatura
$B = \frac{A}{Hasum}$ Ecuación 14	A= Área hidráulica m² Hasum = Valor sugerido 0.50 m

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Longitud del desarenador

Tabla 61. Ecuación para el cálculo de la longitud del desarenador

Ecuación	Nomenclatura
Vdes - Vdes	Vdes= Volumen del desarenador
$Vdes = {Hasum * B}$	Hasum = Valor sugerido 0.50 m
Ecuación 14	$\mathbf{B} = \mathrm{Base}$ del desarenador

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Tratamiento primario

Diseño del tanque séptico

Consideraciones para el diseño del desarenador

La relación largo ancho de la superficie está comprendida entre 2:1 a 5:1

El espacio libre entre la nata y espuma no debe ser menor a 0.30 m

El anchoo del tanque no deberá ser menor 0.60 m y la profundidad no deberá ser menor a 0.75m.

El diámetro mínimo de la tubería de entrada al tanque será de 75 a 100 mm.

La tubería de salida del tanque deber estar situada a 0.5m por debajo de la tubería de entrada.

Se debe dejar una luz libre de 0.05 para la ventilación

Tiempo de retención hidráulica del volumen del sedimentador

Tabla 62. Ecuación para el cálculo del tiempo de retención

Ecuación	Nomenclatura	
$Pr = 1.5 - 0.3 * \log(P * q)$	Pr = Tiempo promedio de retención	
Ecuación 14	hidráulica en días	
q = C * Dmf	P = Población servida	
Ecuación 14	q = Caudal de aporte unitario de las aguas residuales en lt/hab/dia	
	C = Coeficiente de retorno 0.60	
	Dmf = Dotación media futura l/hab/dia	

Fuente: Comisión Nacional del Agua de México, 2016 [9] Elaborado por: David Cruz y Yadira Pachucho

Volumen de sedimentación

Tabla 63. Ecuación para el cálculo del volumen de sedimentación

Ecuación	Nomenclatura
	Pr = Tiempo promedio de retención
$\mathbf{Vs} = 10^{-3} * (P * q) * Pr$	hidráulica en días
Ecuación 14	P = Población servida
	q = Caudal de aporte unitario de las aguas residuales en lt/hab/dia

Fuente: Comisión Nacional del Agua de México, 2016 [9] **Elaborado por:** David Cruz y Yadira Pachucho

Volumen de almacenamiento de lodos

Tabla 64. Volúmenes de lodos producidos por persona

Clima cálido	40 lt/hab/año
Clima frio	50 lt/hab/año

Fuente: Organización Panamericana de la Salud, 1995 [66]

Elaborado por: David Cruz y Yadira Pachucho

Tabla 65. Ecuación para el cálculo del volumen de almacenamiento de lodos

Ecuación	Nomenclatura
	G = Volumen de lodos producidos por
$Vd = G * P * N * 10^3$	persona y por año en litros
Ecuación 14	P = Población servida
	N = Intervalo de limpieza o retiro de lodos
	en años

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Volumen de natas

Para el volumen de natas se considera un valor mínimo de 0.7 m³

Espacio de seguridad

La distancia entre la parte inferior del ramal de la tee de salida y la superficie inferior de la capa de natas no deberá ser menor a 0.10 m

Volumen neto del tanque séptico

Tabla 66. Ecuación para el cálculo del volumen de almacenamiento de lodos

Ecuación	Nomenclatura
	$\mathbf{V}\mathbf{s} = \text{Volumen de sedimentación}$
VT = VS + Vd + Vn	Vd = Volumen de almacenamiento de lodos
Ecuación 14	$\mathbf{V}\mathbf{n} = \mathbf{V}$ olumen de natas

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Dimensionamiento interior del tanque

Área del tanque séptico

Tabla 67. Ecuación para el cálculo del área del tanque séptico

Ecuación	Nomenclatura
$AT = \frac{VT}{hasum}$	VT = Volumen neto del tanque séptico
Ecuación 14	hasum = 2.0

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Ancho del tanque séptico

$$A = b * L$$

$$A = b * 2b$$

$$\boldsymbol{b} = \sqrt{\frac{A}{2.5}}$$

Donde:

A= Área

b= ancho

L= Largo

Longitud del tanque séptico

Tabla 68. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	AT = Área del tanque séptico
$L = \frac{AT}{b}$ Ecuación 14	b = Ancho del tanque séptico

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Para comprobar los datos calculados aplicamos la siguiente condición

$$2 < \frac{L}{b} < 5$$

Profundidad de natas

Tabla 69. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$He = rac{Vn}{AT}$ Ecuación 14	Vn = Volumen de natas AT = Área superficial del tanque séptico

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Profundidad de sedimentación

Tabla 70. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	$\mathbf{V}\mathbf{s} = \mathbf{V}$ olumen de sedimentación
$Hs = \frac{Vs}{AT}$ Ecuación 14	AT = Área superficial del tanque séptico

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Profundidad de almacenamiento de lodos

Tabla 71. Ecuación para el cálculo de la longitud del tanque séptico

	Nomenclatura
$Ha = \frac{1}{\Delta T}$	\mathbf{I} = Volumen de almacenamiento de lodos $\mathbf{\Gamma}$ = Área superficial del tanque séptico

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Profundidad neta del tanque séptico

Tabla 72. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	He =Profundidad de natas
Hn = He + Hs + Hd + Hseg	Hs = Profundidad de sedimentación
Ecuación 14	Hd = Profundidad de almacenamiento de lodos
	Hseg = Profundidad de seguridad (el espacio libre entre la espuma o natas será de 0.30 m)

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Diseño del lecho de secado

El lecho de lodos es un método simple y económico para deshidratar los lodos,

ideal para comunidades pequeñas.

Criterios de diseño para lecho de secado de lodos

Dependiendo del tipo de lodos será el contenido de los sólidos, se consideran

lodos primarios cuando contienen un porcentaje de sólidos del 8% al 12%, lodos

biológicos cuando tienen un porcentaje de sólidos del 6 al 10%.

La contribución per cápita en el caso de no contar con el sistema de alcantarillado

se tomará el valor promedio de 90 gr.SS/(Hab*dia).

Las dimensiones del tanque están basadas en la normativa ecuatoriana la cual

indica que la profundidad esta entre 30 a 40 cm. El ancho va desde los 3 a 6 m

[66].

Carga de sólidos que ingresa al sedimentador (C, en g de ss/dia)

Tabla 73. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	He =Profundidad de natas
$C = \frac{Pf * contibución percapita}{1000}$	Pf = Población futura
Ecuación 14	C = Carga de sólidos que ingresa al sedimentador (C, en Kg de SS/dia)
	Cuando la población no cuenta con un sistema de alcantarillado se utiliza una contribución per cápita de 90 gr. SS/(hab*dia)

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Masa de sólidos que conforman los lodos (Msd, en Kg SS/dia)

Tabla 74. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	C = Carga de sólidos que ingresa al
Msd = (0.5 * 0.7 * 0.5 * C) + (0.5 * 0.3 * C)	sedimentador (C, en Kg de SS/dia)
Ecuación 14	

Fuente: Comisión Nacional del Agua de México, 2016 [9] **Elaborado por:** David Cruz y Yadira Pachucho

Volumen diario de lodos digeridos (VLd, en lT/dia)

Las consideraciones para el cálculo del volumen diario de lodos digeridos, son las siguientes:

La gravedad especifica de los lodos digeridos varían entre 1.03 y 1.04 Los lodos primarios digeridos varían de 8 a 12% de sólidos Para lodos de procesos biológicos incluidos lodos primarios de 6 a 10 % de sólidos [16]

Tabla 75. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$Vld = rac{Msd}{plodo*\left(rac{\% de \ solido}{100} ight)}$ Ecuación 14	 plodos = Densidad de lodos, igual a 1.04 Kg/lt % de solidos = % de sólidos contenidos en el lodo, 10%

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Volumen de lodos a extraerse del tanque (Vel, en m3)

Tabla 76. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$ extbf{\emph{Vel}} = rac{Vld*Td}{1000}$ $ extbf{\emph{Ecuación 14}}$	Vld = Volmen diario de lodos digeridos

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Tabla 77. Tiempo requerido para la digestión de lodos

Temperatura °C	Tiempos de digestión (días)
5°	110
10°	76
15°	55
20°	40
>25°	30

Fuente: Organización Panamericana de la Salud, 1995 [66]

Elaborado por: David Cruz y Yadira Pachucho

Tabla 78. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
	Vld = Volumen diario de lodos
$ extbf{\emph{Vel}} = rac{Vld*Td}{1000}$	digeridos
1000	Td = Tiempo diario delodos
Ecuación 14	digeridos

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Área del lecho de secado (Als, en m2)

Tabla 79. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$Als = \frac{Vel}{Ha}$	Vel = Volumen de lodos a extraerse del tanque
Ecuación 14	Ha = Profundidad de aplicación

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Longitud del lecho de secado

$$Als = B * L$$
$$L = \frac{Als}{B}$$

Donde:

Als= Área del lecho de secado

B= Ancho asumido

L=longitud

Tratamiento secundario

Filtro biológico

Es una estructura que tiene como objetivo retener los materiales sólidos que se encuentran en las aguas residuales [67].

Diseño del filtro biológico

Tiempo de retención

Según el manual URALITA recomienda utilizar u tiempo de retención del80% para diseños de tanques sépticos [68].

$$Tr = 80\% * Pr$$

Tabla 80. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura					
	QF.B = Caudal del filtro biológico					
$\mathbf{QF.B} = 0.524 * Dmf + Pf * Tr$	Pr = Periodo de retención					
Ecuación 14	Dmf = Dotación futura					
	Pf = Población futura					

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Área del filtro

Para el filtro biológico recomienda que se utilice una Tasa de Aplicación Hidráulica de 1 a 5 m3 /día *m2 [67].

Tabla 81. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$Afiltro = \frac{QF.B}{TAH}$	QF.B = Caudal del filtro biológico TAH = Tasa de aplicación hidráulica
Ecuación 14	•

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Diámetro del filtro biológico

Tabla 82. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$\mathbf{D} = \sqrt{\frac{4 * Afiltro}{\pi}}$	Afiltro = área del filtro biológico
Ecuación 14	

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Volumen del filtro biológico

Tabla 83. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura						
Vfiltro = Afiltro * hasumi	Afiltro = área del filtro biológico (m²)						
Ecuación 14	hasum = altura de agua asumida (m)						

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Periodo de retención (Tr, en horas)

Tabla 84. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura
$Trcal = rac{Vtotal}{QF.B}$ Ecuación 14	QF.B = Caudal del filtro biológico Vtotal = Volumen total del filtro biológico
<i>Trcal ≥ Trasum</i> Ecuación 14	

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Elaborado por: David Cruz y Yadira Pachucho

Chequeo de la tasa de aplicación hidráulica (TAH, en m³/dia*m²)

Tabla 85. Ecuación para el cálculo de la longitud del tanque séptico

Ecuación	Nomenclatura					
$TAHcal = rac{Vtotal}{Afiltro}$	Vtotal = Volumen total del filtro biológico					
Ecuación 14	Afiltro = área del filtro biológico (m²)					
$1 \leq Trcal \leq 5$	(III)					
Ecuación 14						

Fuente: Comisión Nacional del Agua de México, 2016 [9]

Fase 5 (Técnica)

Planos

Lámina 1, contiene el plano Topográfico

Lámina 2, contiene el plano de Áreas de Aportación de alcantarillado Sanitario

Láminas 3, 4, 5 contienen los planos del Esquema de pozos y tuberías de alcantarillado Sanitario

Láminas 6, 7, 8, 9, 10, 11, 12, 13 contienen los planos de los Perfiles de alcantarillado Sanitario

Lámina 14, contiene el plano de Áreas de Aportación de alcantarillado Pluvial

Láminas 15, 16, contienen los planos del Esquema de pozos y tuberías de alcantarillado Pluvial

Láminas 17, 18, 19, 20 contienen los planos de los Perfiles de alcantarillado Pluvial

Lámina 21, contiene el plano de Detalles de Alcantarillado

Láminas 22, 23, 24, 25 contienen los planos del Diseño de la PTAR

Precios unitarios

Para la realización de los precios unitarios se utilizó el programa Microsoft Excel, por la facilidad y precisión de resultados. Para dicho análisis se tomó precios del Modus Vivendi y precios unitarios otorgados por la ilustre municipalidad de Ambato. En el análisis se consideró el 12% actual porcentaje de IVA en el país.

CAPÍTULO III. DISCUSIÓN DE RESULTADOS

Cálculo de la red del sistema de alcantarillado sanitario

Periodo de diseño

El periodo de diseño se estableció para 30 años, el cual se encuentra en función del material de la tubería que se utilizó en el sistema, y como indica la Normativa.

Población actual

La población actual del sector fue de 243 habitantes.

Cálculo de la tasa de crecimiento

Tabla 86. Método lineal o aritmético

ANO CENSO	POBLACION	INTERVALO DE TIEMPO	TASA DE CRECIMIENTO	
CENSO	hb	T	r(%)	
1990	5923			
2001	7403	11	2.27%	
2010	8283	9	1.32%	rr1

Elaborado por: David Cruz y Yadira Pachucho

1.80%

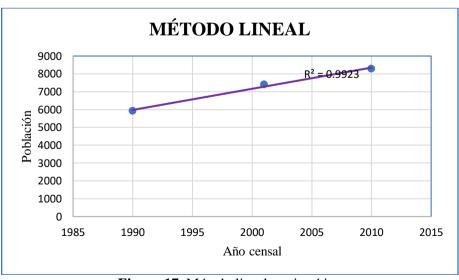
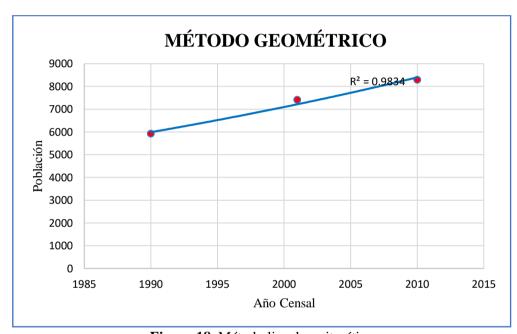



Figura 17. Método lineal o aritmético

Tabla 87. Método geométrico

AÑO	POBLACIÓN	INTERVALO	TASA		
CENSO		DE TIEMPO	CRECIMIENTO		
	hab	T	r(%)		
1990	5923				
2001	7403	11	2.04%		
2010	8283	9	1.25%	rr1	1.65%

Elaborado por: David Cruz y Yadira Pachucho

Figura 18. Método lineal o aritmético **Elaborado por:** David Cruz y Yadira Pachucho

Tabla 88. Método exponencial

AÑO CENSO	POBLACIÓN	INTERVALO DE TIEMPO	TASA DE CRECIMIENTO		
	hb	T	r(%)		
1990	5923				
2001	7403	11	2.03%		
2010	8283	9	1.25%	rr1	1.64%

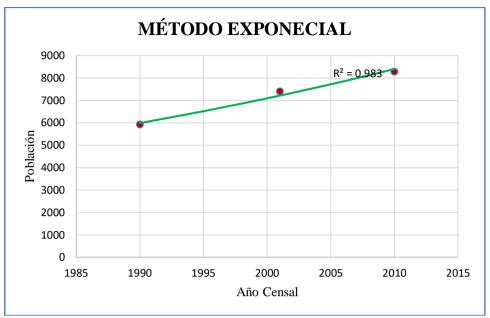


Figura 19. Método exponencial

Elaborado por: David Cruz y Yadira Pachucho

Al analizar los datos censales obtenidos en el Plan de Ordenamiento Territorial de la parroquia rural de Picaihua, y los métodos utilizados para calcular la tasa de crecimiento, se escogió el método lineal, por el valor del R que es de 0.9923 más próximo a uno. El comportamiento de la gráfica de la tendencia población en el método lineal fue una recta, como se puede observar en la figura 10, cabe recalcar que el aumento poblacional no se mantiene en un crecimiento constante, por lo que se descartó el método geométrico, y el exponencial que se utilizan para grandes ciudades y urbes.

$$r1(\%) = \frac{\left(\frac{pfPf}{Pi}\right) - 1}{t}$$

$$r1(\%) = \frac{\left(\frac{7403}{5923}\right) - 1}{11}$$

$$r1(\%) = 2.27$$

$$r2(\%) = \frac{\left(\frac{Pf}{Pi}\right) - 1}{t}$$

$$r2(\%) = \frac{\left(\frac{8283}{7403}\right) - 1}{9}$$

$$r2(\%) = 1.32$$

$$rr1(\%) = \frac{2.27 + 1.32}{2}$$

 $rr1(\%) = 1.80$

Como se obtuvieron dos valores de tasa de crecimiento en el método lineal se procedió a realizar un promedio de los datos, dando como resultado r(%)= 1.80%

Población de diseño o futura

$$Pfu = Pa(1 + rn)$$
 $Pfu = 243hab(1 + (0.0180)(30))$
 $Pf = 374.22 \ hab$
 $Pfu = 374hab$

Densidad poblacional

$$egin{aligned} \mathbf{Dpf} &= rac{\mathbf{Pfu}}{\mathbf{Aptotal}} \ \mathbf{Dpf} &= rac{374hab}{25.85\,Ha} \ \mathbf{Dpf} &= 14.46\,hab/Ha \ \mathbf{Dpf} &= \mathbf{14}\,hab/Ha \end{aligned}$$

Dotación actual

Tabla 89. Dotación de agua conforme al nivel de servicio

NIVEL DE SERVICIO	VEL DE SERVICIO CLIMA FRÍO (L/hab*día)						
la	25	30					
lb	50	65					
lla llb	60 75	85 100					
110	75	100					

Fuente: Instituto Ecuatoriano De Normalización [69].

La dotación actual del sector fue de 75 lts /hab /día.

Dotación futura

$$egin{aligned} oldsymbol{Dof} &= oldsymbol{Da} + 1*n \ oldsymbol{Dof} &= 75 \ lt/hab/dia + 1*30a\~nos \ oldsymbol{Dof} &= 105 \ lt/hab/dia \end{aligned}$$

Cálculo del caudal medio diario

Tabla 90. Cálculo del primer tramo Pozo 1 a Pozo 2 (P1, P2; Calle 1)

Ecuación	Nomenclatura
$Pfu_{tramo\ P1-P2} = A * Dpf$	A = Área de aportacionesDpf = Densidad poblacional
Ecuación 6	

Elaborado por: David Cruz y Yadira Pachuco

$$Pfu_{tramo\ P1-P2} = A*Dpf$$
 $Pfu_{tramo\ P1-P2} = 0.27\ Ha*14\ hab/Ha$
 $Pfu_{tramo\ P1-P2} = 3.78\ hab$
 $Pfu_{tramo\ P1-P2} = 4\ hab$

$$egin{aligned} oldsymbol{Qmd_{AP}} &= rac{Dof*Pfu}{86400} \ oldsymbol{Qmd_{AP}} &= rac{105\ Lt/hab/dia*4hab}{86400} \ oldsymbol{Qmd_{AP}} &= 0.0048\ lt/seg &\cong 0.005\ lt/seg \end{aligned}$$

Cálculo del caudal medio diario sanitario

$$egin{aligned} m{Qmds} &= C*Qmd_{AP} \ m{Qmds} &= 80\%*0.005\ lt/seg \ m{Qmds} &= 0.004\ lt/seg \end{aligned}$$

Cálculo del caudal instantáneo

$$M = \frac{5}{Pf^{0.20}}$$

$$M = \frac{5}{\left(\frac{374}{1000}\right)^{0.20}}$$

$$M = 6.08$$

El coeficiente de mayoración que se utilizó fue de 6.08

$$egin{aligned} oldsymbol{Qi} &= M*Qmds \ oldsymbol{Qi} &= 6.08*0.004 \ lt/seg \ oldsymbol{Qi} &= 0.024 \ lt/seg \end{aligned}$$

Cálculo del caudal de infiltración

$$egin{aligned} oldsymbol{Qinf} &= K*L \ oldsymbol{Qinf} &= 0.00005 \ lt/seg/m*40.13m \ oldsymbol{Qinf} &= 0.002 \ lt/seg \end{aligned}$$

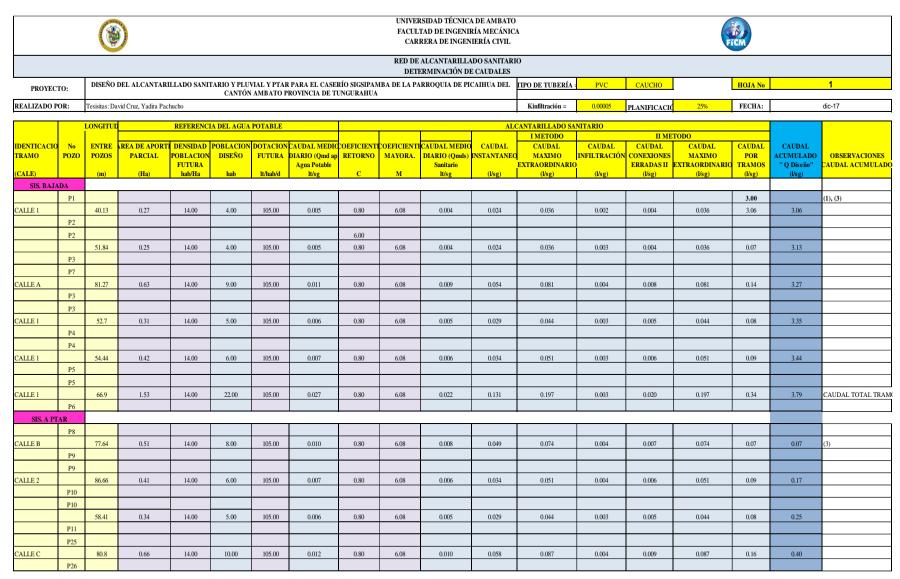
Cálculo del caudal de conexiones erradas

$$egin{aligned} {\it Qe} &= (5\% - 10\%) * \it Qi \ {\it Qe} &= 10\% * 0.024 \ \it lt/seg \ {\it Qe} &= 0.004 \ \it lt/seg \end{aligned}$$

Cálculo del caudal máximo extraordinario

$$Qex = (15\% - 25\%) * Qi$$

 $Qex = 15\% * 0.24 lt/seg$
 $Qex = 0.036 lt/seg$


Cálculo del caudal de diseño

$$Qd = Qi + Qe + Qinf + Qex$$

 $Qd = (0.024 + 0.004 + 0.002 + 0.036)lt/seg$
 $Qd = 0.06 lt/seg$

Cabe recalcar que el P1y P59 son pozos de cabecera por lo que se incrementó un caudal de 3lt/seg al pozo, considerando que es un punto de incremento en un futuro, ya que fueron zonas que no se consideradas actualmente en el proyecto.

$$Qd = 0.06 lt/seg + 3lt/seg$$

 $Qd = 3.06 lt/seg$

Tabla 91. Cálculo de caudales de la red de alcantarillado sanitario

RED DE ALCANTARILLADO SANITARIO DETERMINACIÓN DE CAUDALES

PROYECTO: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA

REALIZADO POR: Tesisitas: David Cruz, Yadira Pachacho

Kinfiltración = 0.00005 PLANIFICACIÓ 25% FECHA: dic-17

Part			LONGITUI		REFERENCI	IA DEL AGUA	POTABLE		ALCANTARILLADO SANITARIO										
Part					ALL LIKE (C	II DEE HOUL	TOTABLE												
Mathematical Math	IDENTICACIO	No	ENTRE	REA DE APORT	DENSIDAD		DOTACION	CAUDAL MEDIO	COEFICIENT	COEFICIENTI	CAUDAL MEDIO	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	
Part	TRAMO	POZO	POZOS	PARCIAL		DISEÑO	FUTURA		RETORNO	MAYORA.									OBSERVACIONES
Part					FUTURA			Agua Potable			Sanitario		EXTRAORDINARIO) T	ERRADAS II	EXTRAORDINARIO	TRAMOS	" Q Diseño"	CAUDAL ACUMULADO
Pi		P26																	
Pi			71.5	0.42	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.004	0.006	0.051	0.09	0.49	
P12 P13 P13 P13 P14 P15 P15																			
P12		P11																	
CALLE D			93.22	0.53	14.00	8.00	105.00	0.010	0.80	6.08	0.008	0.049	0.074	0.005	0.007	0.074	0.13	0.63	
CALLE D																			
P28		P27																	
P28	CALLE D		82.3	0.67	14.00	10.00	105.00	0.012	0.80	6.08	0.010	0.058	0.087	0.004	0.009	0.087	0.16	0.78	
1																			
P12 P13 P13 P14 P15 P15		P28																	
P12			79	0.48	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.004	0.006	0.066	0.12	0.90	
Pi3																			
P13		P12																	
CALLEE P20 CALLEE P30 CALLEE CALLEE P30 CALLEE CALLEE P30 CALLEE CALLEE			57.34	0.28	14.00	4.00	105.00	0.005	0.80	6.08	0.004	0.024	0.036	0.003	0.004	0.036	0.07	0.96	
CALLE 26.88 0.20																			
P30 P30 P30 P30 P30 P32 P33 P33		P29																	
P30	CALLE E	D20	26.88	0.20	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.001	0.003	0.029	0.05	1.01	
No. No.																			
P13 P13 P14 P14 P15 P14 P15 P15		P30																	
P13		D10	32.15	0.14	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.002	0.002	0.015	0.03	1.04	
S8.69																			
P14		P13	50.00	0.25	14.00	5.00	105.00	0.000	0.00	C 00	0.005	0.020	0.044	0.002	0.005	0.044	0.00	1.12	
P14		D14	38.09	0.33	14.00	5.00	105.00	0.006	0.80	0.08	0.005	0.029	0.044	0.003	0.005	0.044	0.08	1.12	
S8.69 0.33 14.00 5.00 105.00 0.006 0.80 6.08 0.005 0.029 0.044 0.003 0.005 0.044 0.08 1.20 P15																			
P15		F 14	59.60	0.22	14.00	5.00	105.00	0.006	0.90	6.00	0.005	0.020	0.044	0.002	0.005	0.044	0.00	1.20	
P31		D15	36.09	0.55	14.00	5.00	105.00	0.000	0.00	0.06	0.003	0.029	0.044	0.003	0.003	0.044	0.08	1.20	
CALLEF 17.28 0.11 14.00 2.00 105.00 0.002 0.80 6.08 0.002 0.010 0.015 0.001 0.002 0.015 0.03 1.23 P32																			
P32	CALLEE	F31	17.29	0.11	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.02	1.22	
P32	CALLE	P32	17.20	0.11	14.00	2.00	105.00	0.002	0.00	0.06	0.002	0.010	0.013	0.001	0.002	0.013	0.03	1.23	
14.94																			
P33 P34 P35		1 32	14.94	0.11	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.03	1.25	
P33 25.98 0.23 14.00 4.00 105.00 0.005 0.80 6.08 0.004 0.024 0.036 0.001 0.004 0.036 0.06 1.32		P33	14.74	0.11	14.00	2.00	105.00	0.002	0.00	0.00	0.002	0.010	0.013	0.001	0.002	0.013	0.03	1.23	
25.98 0.23 14.00 4.00 105.00 0.005 0.80 6.08 0.004 0.024 0.036 0.001 0.004 0.036 0.06 1.32																			
		1 33	25.08	0.23	14.00	4.00	105.00	0.005	0.80	6.08	0.004	0.024	0.036	0.001	0.004	0.036	0.06	1.32	
		P34	23.70	0.23	14.00	4.00	105.00	0.003	0.00	0.00	0.004	0.024	0.030	0.001	0.004	0.030	0.00	1.32	

RED DE ALCANTARILLADO SANITARIO DETERMINACIÓN DE CAUDALES

PROYECTO:		TIPO DE TUBERÍA =	PVC	CAUCHO		HOJA No	1
	CANTÓN AMBATO PROVINCIA DE TUNGURAHUA						
REALIZADO POR:	Tesisitas: David Cruz, Yadira Pachucho	Kinfiltración =	0.00005	PLANIFICACIÓ	25%	FECHA:	dic-17

		LONGITUE		REFERENCI	A DEL ACUA	POTABLE					ΔΙ.	CANTARILLADO SA	NITARIO					
	i	LONGITUL		REFERENCE	IN DEE NOCK	TOTABLE					AL	I METODO	MINIO	II ME	TODO			
IDENTICACIO	No	ENTRE	REA DE APORT	DENSIDAD	POBLACION	DOTACION	CAUDAL MEDIC	COEFICIENTI	COEFICIENTE	CAUDAL MEDIO	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	
TRAMO	POZO	POZOS	PARCIAL	POBLACION	DISEÑO		DIARIO (Qmd ap			DIARIO (Qmds)	INSTANTANEC	MAXIMO	INFILTRACIÓN		MAXIMO	POR	ACUMULADO	OBSERVACIONES
				FUTURA			Agua Potable			Sanitario		EXTRAORDINARIO		ERRADAS II	EXTRAORDINARIO	TRAMOS	" Q Diseño"	CAUDAL ACUMULADO
	P34																	
		61.53	0.55	14.00	8.00	105.00	0.010	0.80	6.08	0.008	0.049	0.074	0.003	0.007	0.074	0.13	1.45	
	P35																	
	P35																	
		53.75	0.52	14.00	8.00	105.00	0.010	0.80	6.08	0.008	0.049	0.074	0.003	0.007	0.074	0.13	1.58	
	P36	33.13	0.32	14.00	0.00	105.00	0.010	0.00	0.00	0.000	0.047	0.074	0.003	0.007	0.074	0.13	1.30	
	P36	63.6	0.42	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.003	0.000	0.051	0.00	1.67	
	D. C	0.5.0	0.42	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.003	0.006	0.051	0.09	1.67	
	P15																	
	P15																	
		30.83	0.16	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.002	0.003	0.029	0.05	1.72	
	P16																	
	P49																	
CALLE 3-A		94.71	0.49	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.005	0.006	0.066	0.12	1.84	(3)
	P50																	
	P50																	
		63.85	0.44	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.003	0.006	0.066	0.12	1.96	
	P51																	
	P51																	
		68.38	0.56	14.00	8.00	105.00	0.010	0.80	6.08	0.008	0.049	0.074	0.003	0.007	0.074	0.13	2.09	
	P52			2.1.00			0.000	0.00								****		
	P52																	
	1 32	78.46	0.63	14.00	9.00	105.00	0.011	0.80	6.08	0.009	0.054	0.081	0.004	0.008	0.081	0.14	2.23	
	P53	70.40	0.05	14.00	2.00	105.00	0.011	0.00	0.00	0.009	0.054	0.001	0.004	0.000	0.001	0.14	2,23	
	P53																	
		20.53	0.12	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.03	2.26	
	P54																	
	P58																	
CALLE K		43.92	0.10	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.002	0.002	0.015	0.03	2.29	
	P54																	
	P54																	
		98.69	0.70	14.00	10.00	105.00	0.012	0.80	6.08	0.010	0.058	0.087	0.005	0.009	0.087	0.16	2.44	CAUDAL TOTAL DEL TI
	P55																	

RED DE ALCANTARILLADO SANITARIO DETERMINACIÓN DE CAUDALES

PROYECTO: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA

REALIZADO POR: Tesisitas: David Cruz, Yadira Pachucho

	1	LONGITUD		REFERENCI	A DEL AGUA	POTABLE					ALO	CANTARILLADO SA	NITARIO					
												I METODO		П МЕ				
IDENTICACIO			REA DE APORTI									CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	on annual around
TRAMO	POZO	POZOS	PARCIAL	POBLACION FUTURA	DISEÑO	FUTURA	DIARIO (Qmd ap Agua Potable	RETORNO	MAYORA.	DIARIO (Qmds) Sanitario		MAXIMO EXTRAORDINARIO	INFILTRACIÓN		MAXIMO EXTRAORDINARIO	POR TRAMOS	ACUMULADO " Q Diseño"	OBSERVACIONES CAUDAL ACUMULADO
	P59			FUTURA			Agua i otable			Salitario		EATRAORDINARIO		EKKADASII	EATRAORDINARIO	3,00	Q Diseilo	(2)
CALLE 3-B	F 39	68,36	0,52	14,00	8,00	105,00	0,010	0,80	6,08	0,008	0,049	0,074	0,003	0,007	0,074	3,13	5,58	(3)
CALLE 3-B	P60	06,30	0,52	14,00	0,00	103,00	0,010	0,80	0,08	0,008	0,049	0,074	0,003	0,007	0,074	3,13	3,38	(3)
	P60	56.52	0,43	14,00	7,00	105,00	0,009	0,80	6,08	0,007	0,044	0,066	0,003	0,006	0,066	0.12	5.00	
	P61	56,53	0,43	14,00	7,00	105,00	0,009	0,80	0,08	0,007	0,044	0,000	0,003	0,000	0,000	0,12	5,69	
	P61			4400			0.00-		- 00				0.004					
	n.ca	41,94	0,33	14,00	5,00	105,00	0,006	0,80	6,08	0,005	0,029	0,044	0,002	0,005	0,044	0,08	5,77	
	P62																	
	P62		0.50				0.044	0.00	- 00					0.000		0.11		
	20.00	73	0,58	14,00	9,00	105,00	0,011	0,80	6,08	0,009	0,054	0,081	0,004	0,008	0,081	0,14	5,91	
	P63																	
	P63																	
		56,06	0,44	14,00	7,00	105,00	0,009	0,80	6,08	0,007	0,044	0,066	0,003	0,006	0,066	0,12	6,03	
	P64																	
	P64																	
		87,33	0,69	14,00	10,00	105,00	0,012	0,80	6,08	0,010	0,058	0,087	0,004	0,009	0,087	0,16	6,19	
	P65																	
	P65																	
		79,52	0,64	14,00	9,00	105,00	0,011	0,80	6,08	0,009	0,054	0,081	0,004	0,008	0,081	0,14	6,33	
	P66																	
	P66				,													
		34,08	0,27	14,00	4,00	105,00	0,005	0,80	6,08	0,004	0,024	0,036	0,002	0,004	0,036	0,06	6,39	
	P67																	
	P67																	
		43,13	0,35	14,00	5,00	105,00	0,006	0,80	6,08	0,005	0,029	0,044	0,002	0,005	0,044	0,08	6,47	
	P68																	
	P68																	
		87,26	0,69	14,00	10,00	105,00	0,012	0,80	6,08	0,010	0,058	0,087	0,004	0,009	0,087	0,16	6,63	
	P69																	
	P69																	
		53,63	0,42	14,00	6,00	105,00	0,007	0,80	6,08	0,006	0,034	0,051	0,003	0,006	0,051	0,09	6,72	
	P70																	
	P70																	
		53,63	0,31	14,00	5,00	105,00	0,006	0,80	6,08	0,005	0,029	0,044	0,003	0,005	0,044	0,08	6,80	
	P55																	

RED DE ALCANTARILLADO SANITARIO DETERMINACIÓN DE CAUDALES

PROYECTO:		TIPO DE TUBERÍA =	PVC	CAUCHO		HOJA No	1
TROTLETO.	CANTÓN AMBATO PROVINCIA DE TUNGURAHUA						
REALIZADO POR:	Tesisitas: David Cruz, Yadira Pachucho	Kinfiltración =	0.00005	PLANIFICACIÓ	25%	FECHA:	dic-17

		LONGITUI		REFERENCI	A DEL ACHA	POTARLE					AI.C	CANTARILLADO SA	NITARIO					
		LONGITUE		REFERENCE	A DEL AGOA	TOTABLE					ALC	I METODO	MIANO	II ME	TODO			
IDENTICACIO	No	ENTRE	REA DE APORT	DENSIDAD								CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	CAUDAL	
TRAMO	POZO	POZOS	PARCIAL	POBLACION	DISEÑO	FUTURA		RETORNO	MAYORA.	DIARIO (Qmds)			INFILTRACIÓN		MAXIMO	POR	ACUMULADO	OBSERVACIONES
				FUTURA			Agua Potable			Sanitario		EXTRAORDINARIO)	ERRADAS II	EXTRAORDINARIO	TRAMOS	" Q Diseño"	CAUDAL ACUMULADO
	P55																	
CALLE G		64.18	0.44	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.003	0.006	0.066	0.12	6.91	
	P56																	
	P56																	
		64.19	0.68	14.00	10.00	105.00	0.012	0.80	6.08	0.010	0.058	0.087	0.003	0.009	0.087	0.15	7.07	
	P57																	
	P57																	
		64.1	0.42	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.003	0.006	0.051	0.09	7.16	
	P16		****									******				0.07		
	P16																	
CALLE 2	1 10	82.89	0.40	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.004	0.006	0.051	0.09	7.25	
CALLE 2	P17	04.07	0.40	14.00	0.00	105.00	0.007	0.00	0.00	0.000	0.034	0.031	0.004	0.000	0.031	0.09	1.23	
	P17																	
	P1/	co 20	0.45	14.00	7.00	105.00	0.000	0.00	6.00	0.007	0.044	0.000	0.002	0.006	0.000	0.12	7.07	
	D.10	60.38	0.45	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.003	0.006	0.066	0.12	7.37	
	P18																	
	P18																	
		62.22	0.48	14.00	7.00	105.00	0.009	0.80	6.08	0.007	0.044	0.066	0.003	0.006	0.066	0.12	7.49	
	P19																	
	P37																	
CALLE H		56.5	0.55	14.00	8.00	105.00	0.010	0.80	6.08	0.008	0.049	0.074	0.003	0.007	0.074	0.13	7.62	
	P38																	
	P38																	
		60.97	0.25	14.00	4.00	105.00	0.005	0.80	6.08	0.004	0.024	0.036	0.003	0.004	0.036	0.07	7.68	
	P19																	
	P19																	
CALLE 2		69.72	0.30	14.00	5.00	105.00	0.006	0.80	6.08	0.005	0.029	0.044	0.003	0.005	0.044	0.08	7.76	
	P20																	
	P39																	
CALLE I		45.91	0.41	14.00	6.00	105.00	0.007	0.80	6.08	0.006	0.034	0.051	0.002	0.006	0.051	0.09	7.85	
	P40																	
	P40																	
		29.97	0.14	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.03	7.88	
	P20	27.71	0.14	14.00	2.00	105.00	0.002	0.00	0.00	0.002	0.010	0.015	0.001	0.002	0.013	0.03	7.00	
	P20																	
	F 20	22.76	0.18	14.00	3.00	105.00	0.004	0.90	6.08	0.003	0.019	0.029	0.002	0.003	0.029	0.05	7.93	
	D21	32.76	0.18	14.00	5.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.002	0.003	0.029	0.05	1.95	
	P21																	

RED DE ALCANTARILLADO SANITARIO DETERMINACIÓN DE CAUDALES

ΓΙΡΟ DE TUBERÍA : HOJA No DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL PROYECTO: CANTÓN AMBATO PROVINCIA DE TUNGURAHUA REALIZADO POR: Tesisitas: David Cruz, Yadira Pachucho Kinfiltración = 0.00005 PLANIFICACIÓ FECHA: dic-17

		LONGITUI		REFERENCI	A DEL AGUA	POTABLE					ALC	CANTARILLADO SA	NITARIO					
												I METODO			TODO			
IDENTICACIO TRAMO (CALE)	No POZO	ENTRE POZOS (m)	REA DE APORT PARCIAL (Ha)	I DENSIDAD POBLACION FUTURA hab/Ha	POBLACION DISEÑO hab					CAUDAL MEDIO DIARIO (Qmds) Sanitario It/sg	INSTANTANEO	CAUDAL MAXIMO EXTRAORDINARIO (l/sg)	CAUDAL INFILTRACIÓN (I/sg)		CAUDAL MAXIMO EXTRAORDINARIO (Vsg)	CAUDAL POR TRAMOS (l/sg)	CAUDAL ACUMULADO " Q Diseño" (l/sg)	OBSERVACIONES CAUDAL ACUMULADO
	P21														_			
		42.28	0.31	14.00	5.00	105.00	0.006	0.80	6.08	0.005	0.029	0.044	0.002	0.005	0.044	0.08	8.01	
	P22																	
	P22																	
		23.62	0.21	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.001	0.003	0.029	0.05	8.06	
	P23																	
	P47																	
P J-2		51.59	0.16	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.003	0.003	0.029	0.05	8.11	
	P48																	
	P48																	
		11.95	0.16	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.001	0.003	0.029	0.05	8.16	
	P45																	
	P41																	
CALLE J-1		16.52	0.11	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.03	8.19	
	P42																	
	P42																	
		7.38	0.06	14.00	1.00	105.00	0.001	0.80	6.08	0.001	0.005	0.008		0.001	0.008	0.01	8.20	
	P43																	
	P43																	
		44.69	0.20	14.00	3.00	105.00	0.004	0.80	6.08	0.003	0.019	0.029	0.002	0.003	0.029	0.05	8.26	
	P44																	
	P44																	
		14.84	0.34	14.00	5.00	105.00	0.006	0.80	6.08	0.005	0.029	0.044	0.001	0.005	0.044	0.08	8.33	
	P45																	
	P45																	
		49.77	0.08	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.002	0.002	0.015	0.03	8.36	
	P23																	
	P23																	
		22.7	0.10	14.00	2.00	105.00	0.002	0.80	6.08	0.002	0.010	0.015	0.001	0.002	0.015	0.03	8.39	
	P24																	
	24 - PTAI	32.71															8.39	
	SUMA	53.63	25.97	SUMA	292.00					0.38		SUMA			9.41		8.39	CAUDAL TOTAL SISTEM

NOTA:

SE NORBINISTIA EL CALDAL DE 3 LTISS AL POZO DE CABECERA PI, CONSIDERANDO QUE ES UN PUNTO DE INCREMENTO EN EL FUTURO DE ZONAS NO CONSIDERANDA SE ACTUALMENTE Y QUE POR PLANIFICACIÓN EN EL FUTURO TEXICA UNA POSELUDA DE NORBINISTO EN EL FUTURO DE ZONAS NO CONSIDERADAS ACTUALMENTE Y QUE POR PLANIFICACIÓN EN EL FUTURO TEXICA UNA POSELUDA DE NORBINISTO

Parámetros hidráulicos

Cálculo del tramo 1 (P1 a P2)

Pendiente del terreno

$$i = \frac{CTi - CTf}{L} * 100$$

$$\mathbf{i} = \frac{2624.08 \, m - 2624.81 \, m}{36.19 \, m} * 100$$

$$i = -2.017\%$$

Pendiente del proyecto

$$s = \frac{CPi - CPf}{L} * 100$$

$$s = \frac{2622.58 \, m - 2622.40 m}{36.19 \, m} * 100$$
$$s = 0.50\%$$

Pendiente mínima

$$Smin = \left[\frac{n * Vmin}{0.397 * D^{\frac{2}{3}}}\right]^{2} * 100$$

$$Smin = \left[\frac{0.010 * 0.6 \ m/seg}{0.397 * (0.2 \ m)^{\frac{2}{3}}}\right]^{2} * 100$$

$$Smin = 0.20\%$$

Pendiente máxima

$$Sm\acute{a}x = \left[\frac{n * Vm\acute{a}x}{0.397 * D^{\frac{2}{3}}}\right]^{2} * 100$$

$$Sm\acute{a}x = \left[\frac{0.010 * 4.5m/seg}{0.397 * 0.2^{\frac{2}{3}}}\right]^{2} * 100$$

$$Sm\acute{a}x = 10.99 \%$$

Diámetro de la tubería

$$\mathbf{D} = \left[\frac{Qd * n}{0.312 * S^{\frac{1}{2}}} \right]^{\frac{3}{8}}$$

$$\mathbf{D} = \left[\frac{0.00312 \ m3/seg * 0.010}{0.312 * 0.50\%^{\frac{1}{2}}} \right]^{\frac{3}{8}} * 1000$$

$$\mathbf{D} = 84.82 \ mm$$

$$\mathbf{Diámetro \ asumido} = 200 \ mm$$

El diámetro mínimo para el alcantarillado sanitario fue de 200 mm, por lo tanto, se asumió dicho valor.

Condiciones hidráulicas

Tubería totalmente llena

Cálculo del caudal

$$Qtll = \frac{0.312}{n} * D^{\frac{8}{3}} * S^{\frac{1}{2}}$$

$$Qtll = \frac{0.312}{0.010} * 0.2 m^{\frac{8}{3}} * 0.50\%^{\frac{1}{2}}$$

$$Qtll = 0.0301 \frac{m^3}{seg}$$

$$Qtll = 30.10 \frac{lt}{seg}$$

Cálculo del área mojada

$$Atll = \frac{\pi * D}{4}$$

$$Atll = \frac{\pi * 0.2}{4}$$

$$Atll = 0.15 m2$$

Cálculo del perímetro mojado

$$Ptll = \pi * D$$

$$Ptll = \pi * 0.2 m$$

$$Ptll = 0.62 m$$

Cálculo de la velocidad

$$Vtll = \frac{0.397}{n} * D^{\frac{2}{3}} * S^{\frac{1}{2}}$$

$$Vtll = \frac{0.397}{0.010} * 0.2 m^{\frac{2}{3}} * 0.50\%^{\frac{1}{2}}$$

$$Vtll = 0.960 \frac{m3}{seg}$$

Cálculo del radio hidráulico

$$Rtll = \frac{D}{4}$$

$$Rtll = \frac{200 \ mm}{4}$$

$$Rtll = 50 \ mm$$

Tubería parcialmente llena

Para el cálculo de la velocidad, radio hidráulico y el calado del agua se ocupó la aplicación HCANALES para mayor facilidad y rapidez al momento de obtener dichos resultados. Las opciones que se utilizaron dentro del programa fueron tirante normal y sección circular como se presenta a continuación.

Figura 20. Pantalla de inicio del programa HCANALES

Fuente: HCANALES

Elaborado por: David Cruz y Yadira Pachucho

En la siguiente ventana del programa se ingresan dos como: caudal diseño, diámetro, rugosidad de la tubería y la pendiente del proyecto.

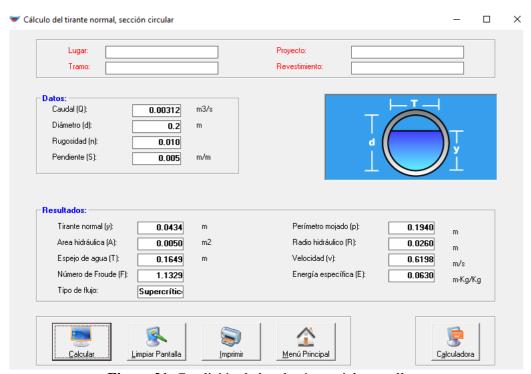


Figura 21. Condición de la tubería parcialmente llena

Fuente: HCANALES

Verificación del calado del flujo

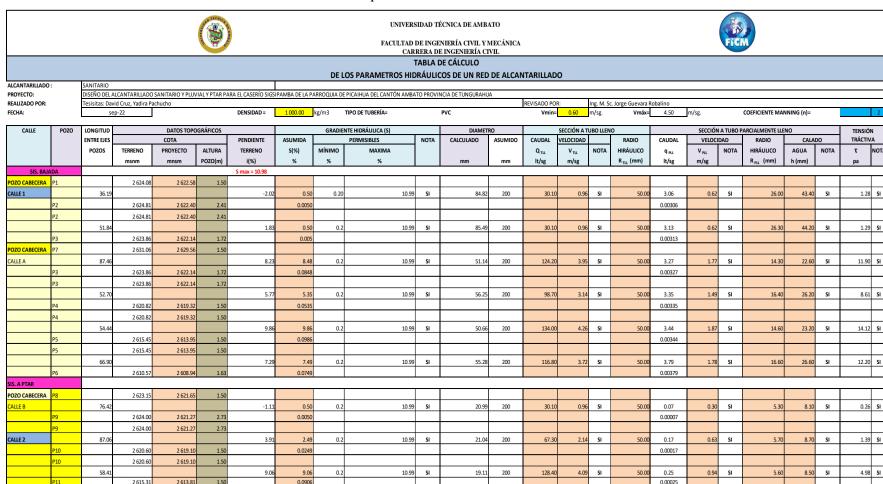
El flujo tiene que ser $h = \le 0.75D$

$$h = \le 0.75D$$

 $43.40mm = \le 0.75(200mm)$
 $43.40 mm = \le 150 mm \rightarrow \mathbf{0k}$

Cálculo de la tensión tractiva

$$\tau = \rho * g * Rh * S$$


$$\tau = 1000 kg/m3 * 9.81m/s2 * 0.026m * 0.50\%$$

$$\tau = 1.28 Pa$$

$$\tau > 1 Pa$$

$$1.28 Pa > 1 Pa \rightarrow \mathbf{OK}$$

Tabla 92. Cálculo de parámetros hidráulicos de la red de alcantarillado

10.99

30.93 200

0.40

2.47 SI

POZO CABECERA

2 617.90

2 616.40

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO

CALLE	POZO	LONGITUD		DATOS TOPO	GRÁFICOS			GRADIE	NTE HIDRÁULICA (S)		DIAMETI	20		SECCIÓN A TI	IIRO II EN	ın		SECCIÓN	I A TURO E	PARCIALMENTE LLE	NO		TENSIÓ	iN
CALLE	. 020	ENTRE EJES		COTA	Civaricos	PENDIENTE	ASUMIDA	GIULDIEI	PERMISIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD	ODO ELLI	RADIO	CAUDAL	VELOCI		RADIO	CALAE	00	TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				QTLL	V _{TLL}	NOTA	HIRÁULICO	q _{PLL}	V _{PLL}	NOTA	HIRÁULICO	AGUA	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	lt/sg	m/sg		R _{TLL} (mm)	lt/sg	m/sg		R _{PLL} (mm)	h (mm)		pa	
	P26		2 616.41	2 614.91	1.50																		I	
		71.50				1.54	3.09	0.2	10.99	SI	30.36	200	75.00	2.39	SI	50.00	0.49	0.42	SI	14.90	23.60	SI	4.57	2 SI
	P11		2 615.31	2 612.70	2.61		0.0309										0.00049							
	P11		2 615.31	2 613.81	1.50																			
CALLE 2		93.22				8.66	8.76	0.2	10.99	SI	27.32	200	126.30	4.02	SI	50.00	0.63	1.24	SI	8.70	13.40	SI	7.48	S SI
	P12		2 607.24	2 605.64	1.60		0.0876										0.00063							
POZO CABECERA	P27		2 606.74	2 605.24	1.50																			
CALLE D		82.30				0.01	0.66	0.2	10.99	SI	48.20	200	34.60	1.10	SI	50.00	0.78	0.62	SI	15.60	24.90	SI	1.01	1 SI
	P28		2 606.73	2 604.70	2.03		0.0066										0.00078							
	P28		2 606.73	2 604.70	2.03																			
		79.00				-0.65	0.55	0.2	10.99	SI	52.58	200	31.60	1.01	SI	50.00	0.90	0.51	SI	19.40	31.40	SI	1.05	SI
	P12		2 607.24	2 604.26	2.98		0.0055										0.00090						1	
	P12		2 607.24	2 604.26	2.98																		1	
		57.34				4.62	2.30	0.2	10.99	SI	41.28	200	64.70	2.06	SI	50.00	0.96	8.88	SI	14.20	22.40	SI	3.20	SI
	P13		2 604.59	2 602.94	1.65		0.023										0.00096							
POZO CABECERA	P29		2 603.34	2 601.84	1.50																			
CALLE E		26.88				-0.86	0.50	0.2	10.99	SI	56.03	200	30.10	0.96	SI	50.00	1.01	0.67	SI	17.50	28.10	SI	0.86	S SI
	P30		2 603.57	2 601.71	1.86		0.0050										0.00101							
	P30		2 603.57	2 601.71	1.86																			
		32.15				-3.17	0.50	0.2	10.99	SI	56.60	200	30.10	0.96	SI	50.00	1.04	0.53	SI	20.70	33.70	SI	1.07	2 SI
	P13		2 604.59	2 601.54	3.05		0.0050										0.00104							
	P13		2 604.59	2 601.54	3.05																			
		58.69				3.51	0.88	0.2	10.99	SI	52.32	200	40.00	1.27	SI	50.00	1.12	1.07	SI	13.80	21.90	SI	1.19	SI
	P14		2 602.53	2 601.03	1.50		0.0088										0.00112							
	P14		2 602.53	2 601.03	1.50																			
		58.69				3.77	3.77	0.2	10.99	SI	40.86	200	82.80	2.64	SI	50.00	1.20	1.12	SI	14.00	22.20	SI	5.18	S SI
	P15		2 600.32	2 598.82	1.50		0.0377										0.00120							
POZO CABECERA	P31		2 606.15	2 604.65	1.50																		<u> </u>	
CALLE F		17.28				0.81	0.81	0.2	10.99	SI	54.98	200	38.40	1.22	SI	50.00	1.23	0.66	SI	20.00	32.50	SI	1.59	SI
	P32		2 606.01	2 604.51	1.50		0.0081										0.00123							Ш
	P32		2 606.01	2 604.51	1.50																		ļ	Ш
		14.94				3.68	3.68	0.2	10.99	SI	41.73	200	81.80	2.60	SI	50.00	1.25	1.13	SI	14.40	22.80	SI	5.20	SI
	P33		2 605.46	2 603.96	1.50		0.0368										0.00125							Ш
	P33		2 605.46	2 603.96	1.50																			\perp
		25.98				4.12	4.12	0.2	10.99	SI	41.61	200	86.60	2.76	SI	50.00		1.19	SI	14.40	22.80	SI	5.87	2 SI
	P34		2 604.39	2 602.89	1.50		0.0412										0.00132						ı	

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO

ALCANTARILLADO: SANITARIO DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA PROYECTO: REVISADO POR: REALIZADO POR: Tesisitas: David Cruz, Yadira Pachucho Ing. M. Sc. Jorge Guevara Robalino DENSIDAD = 1000.00 kg/m3 TIPO DE TUBERÍA= Vmáx= 4.50 m/sg. COEFICIENTE MANNING (n)= sep-22 PVC FECHA:

CALLE	POZO	LONGITUD		DATOS TOPO	IGRÁFICOS			GRADIEN	NTE HIDRÁULICA (S)		DIAMET	80		SECCIÓN A T	IBO I I FN	0		SECCIÓN	I Δ TURO F	PARCIALMENTE LLE	NO.		TENSIÓ	N.
UNILL	. 020	ENTRE EJES		COTA		PENDIENTE	ASUMIDA	GIUIDIE	PERMISIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD	JOO ELE.	RADIO	CAUDAL	VELOCI		RADIO	CALA	00	TRÁCTIN	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TLL}	V _{TLL}	NOTA	HIRÁULICO	q _{PLL}	V _{PLL}	NOTA	HIRÁULICO	AGUA	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	lt/sg	m/sg		R _{TLL} (mm)	lt/sg	m/sg		R _{PLL} (mm)	h (mm)		pa	
	P34		2 604.39	2 602.89	1.50																			
		61.53				4.71	4.71	0.2	10.99	SI	42.05	200	92.60	2.95	SI	50.00	1.45	1.29	SI	14.50	23.00	SI	6.7/	O SI
	P35		2 601.49	2 599.99	1.50		0.0471										0.00145							
	P35		2 601.49	2 599.99	1.50																			
		53.75				1.86	1.86	0.2	10.99	SI	51.71	200	58.20	1.85	SI	50.00	1.58	0.95	SI	18.60	30.00	SI	3.39	9 SI
	P36		2 600.49	2 598.99	1.50		0.0186										0.00158							
	P36		2 600.49	2 598.99	1.50																			
		63.60				0.27	0.50	0.2	10.99	SI	67.55	200	30.10	0.96	SI	50.00	1.67	0.61	SI	25.55	42.60	SI	1.25	5 SI
	P15		2 600.32	2 598.67	1.65		0.0050										0.00167							
	P15		2 600.32	2 598.67	1.65																			
		30.83				2.72	2.75	0.2	10.99	SI	49.64	200	70.70	2.25	SI	50.00	1.72	1.12	SI	17.80	28.60	SI	4.80	O SI
	P16		2 599.48	2 597.83	1.65		0.0275										0.00172							
POZO CABECERA	P49		2 624.01	2 622.51	1.50																			
CALLE 3-A		94.71				3.04	3.04	0.2	10.99	SI	49.95	200	74.40	2.37	SI	50.00	1.84	1.18	SI	17.80	28.60	SI	5.31	1 SI
	P50		2 621.13	2 619.63	1.50		0.0304										0.00184							
	P50		2 621.13	2 619.63	1.50																			
		63.85				9.26	9.26	0.2	10.99	SI	41.48	200	129.80	4.13	SI	50.00	1.96	1.78	SI	14.20	22.50	SI	12.90	O SI
	P51		2 615.22	2 613.72	1.50		0.0926										0.00196							
	P51		2 615.22	2 613.72	1.50																			
		68.38				6.01	6.01	0.2	10.99	SI	46.09	200	104.60	3.33	SI	50.00	2.09	1.56	SI	16.10	25.80	SI	9.49	9 SI
	P52		2 611.11	2 609.61	1.50		0.0601										0.00209							
	P52		2 611.11	2 609.61	1.50																			\perp
		78.46				2.87	2.87	0.2	10.99	SI	54.28	200	72.30	2.30	SI	50.00	2.23	1.23	SI	19.60	31.80	SI	5.52	2 SI
	P53		2 608.86	2 607.36	1.50		0.0287										0.00223							ш
	P53		2 608.86	2 607.36	1.50																			\perp
		20.53				3.12	3.12	0.2	10.99	SI	53.68	200	75.30	2.40	SI	50.00	2.26	1.27	SI	19.40	31.40	SI	5.94	4 SI
	P54		2 608.22	2 606.72	1.50		0.0312										0.00226							+
POZO CABECERA	P58		2 607.21	2 605.71	1.50																			+
CALLEK		43.92				-2.30	0.50	0.2	10.99	SI	76.02	200	30.10	0.96	SI	50.00	2.29	0.66	SI	29.10	49.60	SI	1.43	3 SI
	P54		2 608.22	2 605.49	2.73		0.005										0.00229							\vdash
	P54		2 608.22	2 605.49	2.73																			\vdash
		98.69				3.87	2.62	0.2	10.99	SI	57.12	200	69.00	2.20	SI	50.00	2.44	1.22	SI	20.90	34.00	SI	5.37	7 SI
	P55		2 604.40	2 602.90	1.50		0.0262										0.00244							

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO

ACANTARILLADO: SANITARIO | SANITARIO | DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

REALIZADO POR: | Tesisitas: David Cruz, Yadira Pachucho | Sep-22 | DENSIDAD = 1000.00 | kg/m 3 | TIPO DE TUBERÍA = | PVC | Vmin= 0.60 | m/sg. | Vmáx= 4.50 | m/sg. | COEFICIENTE MANNING (n) = 2 | 2 |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**REALIZADO POR: | Ing. M. Sc. Jorge Guevara Robalino |

**FECHA: | Sep-22 | DENSIDAD = 1000.00 | kg/m 3 | TIPO DE TUBERÍA = | PVC | Vmin= 0.60 | m/sg. | Vmáx= 4.50 | m/sg. | COEFICIENTE MANNING (n) = 2 |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA |

**TORRO NECLATOR SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGULA DE TUNGULA DE

	1				(_								,
CALLE	POZO	LONGITUD ENTRE EJES		DATOS TOPO	GRAFICOS	PENDIENTE	ASUMIDA	GRADIEN	PERMISIBLES	NOTA	CALCULADO	ASUMIDO		SECCIÓN A TU VELOCIDAD	JBO LLEN	O RADIO	CAUDAL	VELOCI		PARCIALMENTE LLE RADIO	NO CALAD	· ·	TENSIO TRÁCTI	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA	NUIA	CALCULADO	ASUMIDO			NOTA	HIRÁULICO			NOTA	HIRÁULICO	AGUA	NOTA	T	NOTA
		PUZUS	msnm	mnsm	POZO(m)		5(%) %	%	MAXIMA %		mm	mm	Q _{TLL}	V _{TLL}	NUIA	R _{TIL} (mm)	q _{PLL}	V _{PLL}	NOIA	R _{PLL} (mm)		NUIA	-	NOIA
	P59		2 610.38	2 608.88	1.50	i(%)	76	70	76		mm	mm	lt/sg	m/sg		K _{TLL} (IIIII)	lt/sg	m/sg		K PLL (IIIII)	h (mm)		pa	4
CALLE 3-B	P39	68.36	2 010.36	2 000.00	1.50	2.76	2.70	0.2	10.99	SI	77.07	200	70.00	2.20	SI	50.00	5.58	1.47	SI	26.30	44.20	SI	7.	12 SI
CALLE 3-B	P60	68.36	2.500.40	2 505 00	4.50	2.76	2.76	0.2	10.99	31	77.07	200	70.90	2.26	31	50.00		1.4/	31	26.30	44.20	31	/.1	.2 31
			2 608.49	2 606.99	1.50		0.0276										0.00558							+-
	P60		2 608.49	2 606.99	1.50																			+
	P61	56.53	2 607.00	2 605.50	1.50	2.64	2.64 0.0264	0.2	10.99	SI	78.32	200	69.30	2.21	SI	50.00	5.69 0.00569	1.45	SI	26.90	45.30	SI	6.9	97 SI
	P61		2 607.00	2 605.50	1.50		0.0264										0.00569							+-
	PDI	44.04	2 607.00	2 605.50	1.50	2.04	2.24		40.00	-	77.00	200	74.50	2.20		50.00		4.40	SI	25.70	45.00			
		41.94				2.81	2.81	0.2	10.99	SI	77.80	200	71.50	2.28	SI	50.00	5.77	1.49	51	26.70	45.00	SI	7.3	36 SI
	P62		2 605.82	2 604.32	1.50		0.0281										0.00577							+
	P62		2 605.82	2 604.32	1.50																			
	P63	73.00	2 604.32	2 502 70	4.50	2.05	2.10 0.021	0.2	10.99	SI	82.93	200	61.80	1.97	SI	50.00	5.91	1.34	SI	28.90	6.00	SI	5.9	95 SI
				2 602.79	1.53		0.021										0.00591							+-
	P63		2 604.32	2 602.79	1.53																			+
		56.06				0.14	0.50	0.2	10.99	SI	109.34	200	30.10	0.96	SI	50.00	6.03	1.05	SI	34.20	60.10	SI	1.6	68 SI
	P64		2 604.24	2 602.51	1.73		0.0050										0.00603							+
	P64		2 604.24	2 602.51	1.73																			
		87.33				1.10	0.84	0.2	10.99	SI	100.15	200	39.10	1.24	SI	50.00	6.19	1.10	SI	34.00	59.60	SI	2.8	80 SI
	P65		2 603.28	2 601.78	1.50		0.0084										0.00619							+
	P65		2 603.28	2 601.78	1.50																		 	+
		79.52				2.26	2.26	0.2	10.99	SI	83.91	200	64.10	2.04	SI	50.00	6.33	1.43	SI	29.50	50.40	SI	6.5	54 SI
	P66		2 601.48	2 599.98	1.50		0.0226										0.00633							+
	P66		2 601.48	2 599.98	1.50																		 	_
		34.08				3.02	3.01	0.2	10.99	SI	79.82	200	74.00	2.36	SI	50.00	6.39	1.59	SI	27.80	47.10	SI	8.2	21 SI
	P67		2 600.45	2 598.95	1.50		0.0301										0.00639							+
	P67		2 600.45	2 598.95	1.50																			++
		43.13				1.99	1.99	0.2	10.99	SI	86.66	200	60.20	1.92	SI	50.00	6.47	1.41	SI	30.30	52.00	SI	5.9	92 SI
	P68		2 599.59	2 598.09	1.50		0.0199										0.00647						 	+
	P68		2 599.59	2 598.09	1.50																		 	+
		87.26				-0.84	0.50	0.2	10.99	SI	113.27	200	30.10	0.96	SI	50.00	6.63	1.09	SI	36.00	64.00	SI	1.7	77 SI
	P69		2 600.32	2 597.66	2.66		0.0050										0.00663							+
	P69		2 600.32	2 597.66	2.66																			+
		53.63				-3.26	0.50	0.2	10.99	SI	113.85	200	30.10	0.96	SI	50.00	6.72	0.85	SI	41.90	77.70	SI	2.0	06 SI
	P70		2 602.07	2 597.39	4.68		0.0050										0.00672						í	
	P70		2 602.07	2 597.39	4.68																			+
		53.63				-4.34	0.50	0.2	10.99	SI	114.35	200	30.10	0.96	SI	50.00	6.80	0.83	SI	40.80	74.90	SI	2.0	00 SI
	P55		2 604.40	2 597.12	7.28		0.0050										0.00680						J	

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO

ALCANTARILLADO: SANITARIO
PROYECTO: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA
REVISADO POR: Ing. M. Sc. Jorge Guevara Robalino
FECHA: sep-22 DENSIDAD = 1000.00 kg/m3 TIPO DE TUBERÍA= PVC Vmin= 0.50 m/sg. Vmáx= 4.50 m/sg. COEFICIENTE MANNING (n)= 2

																		_						
CALLE	POZO	LONGITUD		DATOS TOPO	GRÁFICOS			GRADIEI	NTE HIDRÁULICA (S)		DIAMETE			SECCIÓN A TI	UBO LLEN					ARCIALMENTE LLE			TENSIÓ	
		ENTRE EJES	-	COTA		PENDIENTE	ASUMIDA		PERMISIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD		RADIO	CAUDAL	VELOCI		RADIO	CALA		TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TLL}	V _{TLL}	NOTA	HIRÁULICO	q _{PLL}	V _{PLL}	NOTA	HIRÁULICO	AGUA	NOTA		NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	lt/sg	m/sg		R _{TLL} (mm)	lt/sg	m/sg		R _{PLL} (mm)	h (mm)		pa	
	P55		2 604.40	2 597.12	7.28																			ш
CALLE G		64.18				2.98	0.50	0.2	10.9	9 SI	115.09	200	30.10	0.96	SI	50.00	6.91	1.63	SI	29.20	49.70	SI	1.43	3 SI
	P56		2 602.49	2 596.80	5.69		0.005										0.00691							Ш
	P56		2 602.49	2 596.80	5.69																			Ш
		64.19				2.59	0.50	0.2	10.9	9 SI	116.04	200	30.10	0.96	SI	50.00	7.07	1.56	SI	30.40	52.20	SI	1.49	9 SI
	P57		2 600.83	2 596.48	4.35		0.005										0.00707							
	P57		2 600.83	2 596.48	4.35																			
		64.23				2.10	0.50	0.2	10.9	9 SI	116.60	200	30.10	0.96	SI	50.00	7.16	1.46	SI	32.00	55.50	SI	1.57	7 SI
	P16		2 599.48	2 596.16	3.32		0.0050										0.00716							Ш
	P16		2 599.48	2 596.16	3.32					1														Ш
		60.38				1.41	0.50	0.2	10.9	9 SI	117.16	200	30.10	0.96	SI	50.00	7.25	1.27	SI	35.10	62.00	SI	1.72	2 SI
	P17		2 598.63	2 595.86	2.77		0.005										0.00725							Ш
	P17		2 598.63	2 595.86	2.77																			
		46.07				0.80	0.50	0.2	10.9	9 SI	117.87	200	30.10	0.96	SI	50.00	7.37	1.04	SI	39.80	72.70	SI	1.95	5 SI
	P18		2 598.26	2 595.63	2.63		0.0050										0.00737							Ш
	P18		2 598.26	2 595.63	2.63																			ш
		62.22				2.62	0.72	0.2	10.9	9 SI	110.73	200	36.20	1.15	SI	50.00	7.49	1.60	SI	31.30	53.90	SI	2.21	1 SI
	P19		2 596.63	2 595.18	1.45		0.0072										0.00749							Ш
POZO CABECERA	P37		2 602.51	2 601.01	1.50																			Ш
CALLE H		56.50				6.14	6.14	0.2	10.9	9 SI	74.57	200	105.70	3.36	SI	50.00	7.62	2.18	SI	26.20	44.00	SI	15.78	B SI
	P38		2 599.04	2 597.54	1.50		0.0614										0.00762							ш
	P38		2 599.04	2 597.54	1.50																			\vdash
		60.97				3.95	3.95	0.2	10.9	19 SI	81.26	200	84.80	2.70	SI	50.00	7.68	1.87	SI	29.00	49.30	SI	11.24	4 SI
	P19		2 596.63	2 595.13	1.50		0.0395										0.00768							Ш
	P19		2 596.63	2 595.13	1.50																			\perp
		69.72				2.11	2.11	0.2	10.9	9 SI	91.75	200	61.90	1.97	SI	50.00	7.76	1.50	SI	33.40	58.20	SI	6.91	1 SI
	P20		2 595.16	2 593.66	1.50		0.0211										0.00776							+
	P39		2 596.00	2 594.50	1.50																			+
CALLEI		45.91				3.01	3.01	0.2	10.9	9 SI	86.21	200	74.00	2.36	SI	50.00		1.68	SI	30.40	52.10	SI	8.98	8 SI
	P40		2 594.62	2 593.12	1.50		0.0301										0.00785							ш
	P40		2 594.62	2 593.12	1.50																			\vdash
		29.97				-1.80	0.50	0.2	10.9	19 SI	120.86	200	30.10	0.96	SI	50.00	7.88	0.89	SI	45.30	86.30	SI	2.22	2 SI
	P20		2 595.16	2 592.97	2.19		0.0050			-							0.00788							Ш
	P20		2 595.16	2 592.97	2.19																			\perp
		32.76				0.37	0.50	0.2	10.9	9 SI	121.16	200	30.10	0.96	SI	50.00		0.82	SI	47.40	92.30	SI	2.32	2 SI
	P21		2 595.04	2 592.80	2.24		0.0050										0.00793							

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO

ACANTARILLADO: SANITARIO SANITARIO SANITARIO SANITARIO SANITARIO SANITARIO PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA FEALIZADO POR: REVISADO POR: Ing. M. Sc. Jorge Guevara Robalino FECHA: Sep-22 DENSIDAD SIGNIFICA SENSIBLA SENSIBL

CALLE	POZO	LONGITUD		DATOS TOPO	OGRÁFICOS			GRADIE	NTE HIDRÁULICA (S)		DIAMET	RO		SECCIÓN A T	UBO LLEN	10		SECCIÓN	I A TUBO F	PARCIALMENTE LLE	NO		TENSIÓ	N
		ENTRE EJES		COTA		PENDIENTE	ASUMIDA		PERMISIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD		RADIO	CAUDAL	VELOCI	DAD	RADIO	CALA	DO	TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TLL}	Vπı	NOTA	HIRÁULICO	q _{PLL}	V _{PLL}	NOTA	HIRÁULICO	AGUA	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	lt/sg	m/sg		R _{TLL} (mm)	It/sg	m/sg		R PLL (mm)	h (mm)	-	pa	
	P21		2 595.04	2 592.80	2.24																		ı	
		42.28				1.02	0.50	0.2	10.99	SI	121.60	200	30.10	0.96	SI	50.00	8.01	1.15	SI	39.70	72.50	SI	1.9	S SI
	P22		2 594.61	2 592.59	2.02		0.005										0.00801						1	
	P22		2 594.61	2 592.59	2.02																		1	
		23.62				4.74	2.55	0.2	10.99	SI	89.81	200	68.10	2.17	SI	50.00	8.06	2.03	SI	28.50	48.40	SI	7.1	3 SI
	P23		2 593.49	2 591.99	1.50		0.0255										0.00806							
POZO CABECERA	P47		2 599.26	2 597.76	1.50																			
CALLE J-2		51.59				3.00	3.00	0.2	10.99	SI	87.32	200	73.90	2.35	SI	50.00	8.11	1.73	SI	31.70	54.70	SI	9.3	3 SI
	P48		2 597.71	2 596.21	1.50		0.0300										0.00811						<u></u>	
	P48		2 597.71	2 596.21	1.50																		<u></u>	
		11.95				-8.03	0.50	0.2	10.99	SI	122.48	200	30.10	0.96	SI	50.00	8.16	0.98	SI	46.00	88.40	SI	2.20	5 SI
	P45		2 598.67	2 596.15	2.52		0.0050										0.00816							\perp
POZO CABECERA	P41		2 600.97	2 599.47	1.50																			ш
CALLE J-1		16.52				0.18	0.50	0.2	10.99	SI	122.63	200	30.10	0.96	SI	50.00	8.19	0.61	SI	55.60	12.03	SI	2.7:	SI SI
	P42		2 600.94	2 599.39	1.55		0.0050										0.00819							\perp
	P42		2 600.94	2 599.39	1.55																			ш
		7.38				0.14	0.50	0.2	10.99	SI	122.71	200	30.10	0.96	SI	50.00	8.20	0.55	SI	57.90	13.13	SI	2.8/	4 SI
	P43		2 600.93	2 599.35			0.005										0.00820							-
	P43		2 600.93	2 599.35	1.58																			_
		44.69				2.80	2.80	0.2	10.99	SI	89.05	200	71.40	2.27	SI	50.00	8.26	1.70	SI	40.60	74.50	SI	11.15	SI
	P44		2 599.68	2 598.10			0.0280										0.00826							1
	P44		2 599.68	2 597.78	1.90																			\vdash
	P45	14.84	2 598.67	2 596.15	2.52	6.81	10.99 0.1099	0.2	10.99	SI	69.15	200	141.40	4.50	SI	50.00	8.33 0.00833	2.34	SI	26.90	45.20	SI	29.00	SI
	P45		2 598.67	2 596.15			0.1099										0.00833						i	+
	P45	49.77	2 598.07	2 590.15	2.52	10.41	10.00	0.2	10.99	SI	70.47	200	134.90	4,29	SI	50.00	8.36	2,72	SI	24.50	40.80	SI	24.03	
	P23	49.77	2 593.49	2 591.17	2.32	·	0.1	0.2	10.99	31	/0.4/	200	134.90	4.29	21	50.00	0.00836	2.12	21	24.50	40.80	21	24.0:	21
	P23		2 593.49				0.1										0.00836						i	\vdash
	P 23	22.70	2 593.49	2 591.17	2.32		0.11	0.2	10.00	-	72.20	200	424.50	2.07	-	F0.00	0.20	2.84	CI.	22.00	20.70	-	40.0	-
	P-PTAR	22.70	2 590.83	2 589.33	1.50	11.72	8.11 0.0811	0.2	10.99	SI	73.38	200	121.50	3.87	SI	50.00	8.39 0.00839	2.84	SI	23.90	39.70	SI	19.01	- 31
	P-PTAR		2 590.83	2 589.33			0.0011										5.13003						I	\Box

Cálculo de la red del sistema de alcantarillado pluvial

Periodo de diseño

Se determinó un periodo de diseño de 30 años.

Cálculo del coeficiente de escurrimiento

Longitud total del asfalto = 2174.45 m

Ancho de la via = 7.00 m

Área de construcción = 150.00 m^2

Ancho del area de aportación = 40.00 m

Tabla 93. Coeficiente de escurrimiento

TIPO DE SUELO	AREA (Ai) Ha	Ci	Ai x Ci	
Vía existente Asfaltada	1.52	0.85	1.29	
Cubierta (casa)	1.095	0.90	0.99	
Superficie no Pavimentada	8.70	0.15	1.30	
Área Total	11.31		3.58	0.3

Elaborado por: David Cruz y Yadira Pachucho

$$C = \frac{\sum_{j=1}^{n} (Ai * Ci)}{At}$$

$$C = \frac{3.58}{11.31}$$

$$C = 0.32$$

Tiempo de entrada (te)

Cota máxima (Cmax) = 2607.39

Cota mínima (Cmin) = 2599.68

Longitud máxima de pozo a pozo (L) =147.74 m

Ancho del area de aportación (LA)= 40.00 m

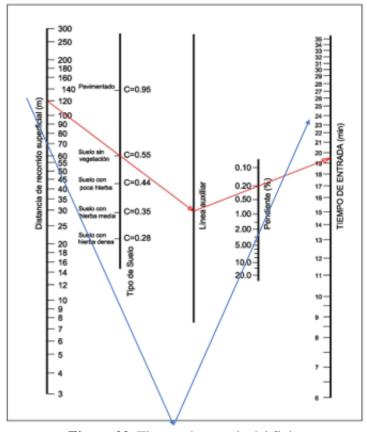
$$LT = LA + L$$

$$LT = 40.00 m + 147.74 m$$

$$LT = 187.74 m$$

$$D = Cmax - Cmin$$

$$D = 2607.39m - 2599.68m$$


$$D = 7.71m$$

$$j\% = \frac{D}{LT}$$

$$j\% = \frac{7.71 m}{187.74m}$$

$$j\% = 4.11$$

Con datos de la longitud total el factor de escurrimiento y la pendiente se determinó el tiempo de entrada del flujo en el siguiente monograma.

Figura 22. Tiempo de entrada del flujo **Elaborado por:** David Cruz y Yadira Pachucho

Tiempo de entrada (te) = 28 min

$$te = 28 min$$

Tiempo de flujo (tf)

Distancia media de la vía = 3.5 m

$$d = \frac{Dmv}{sen45^{\circ}}$$

$$d = \frac{3.5 m}{sen45^{\circ}}$$

$$d = 4.94 m \approx 5m$$

$$tf = \frac{e}{V}$$

$$tf = \frac{5 m}{0.6 m/seg^2}$$

$$tf = 8.33 seg$$

$$tf = 0.13 min$$

Tiempo de concentración

$$tc = te + tf$$

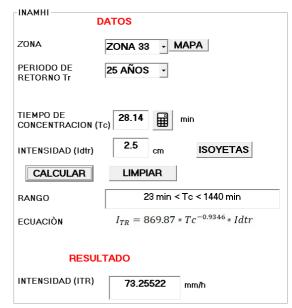
 $tc = 28 min + 0.13 min$
 $tc = 28.14 min$

Periodo de retorno

El periodo de retorno que se optó para el diseño de sistema es de 25 años ya que la zona de estudio es una área comercial y residencial, como se detalla en la tabla 47.

Intensidad diaria del periodo de retorno

Para el valor de la intensidad del periodo de retorno, se utilizó las isoyetas del INHAMI, por lo cual es valor es de 2.5 cm.


Figura 23. Intensidad diaria del periodo de retorno

Fuente: Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

Intensidad máxima (ITR)

Para el cálculo de la intensidad se utilizó el programa intensidad máxima de precipitación como se detalla a continuación.

Figura 24. Programa intensidad máxima de precipitación **Fuente:** Moya, D. 2018 [35]

Elaborado por: David Cruz y Yadira Pachucho

El valor de la intensidad máxima es de ITR= 73 mm/Ha.

Factor de reducción (% reducción)

El tiempo de concentración es de 28 minutos, por lo tanto, se encuentra dentro de la duración de 30 minutos, como se detalla en la tabla 49. Por ende, el % de reducción es del 99%.

Intensidad máxima corregida

$$Imax\ corregida = ITR*\%reducción$$
 $Imax\ corregida = 73\ mm/Ha*99\%$
 $Imax\ corregida = 72\ mm/Ha$

Parámetros hidráulicos pluvial

Cálculo del tramo 1 (P1 a P2)

Pendiente del terreno

$$i = \frac{CTi - CTf}{L} * 100$$

$$i = \frac{2623.89 \ m - 262074 \ m}{80 \ m} * 100$$

$$i = 3.94\%$$

Pendiente del proyecto

$$s = \frac{CPi - CPf}{L} * 100$$

$$s = \frac{2622.09 \, m - 2618.94 m}{80 \, m} * 100$$
$$s = 3.94\%$$

Pendiente mínima

$$Smin = \left[\frac{n * Vmin}{0.397 * D^{\frac{2}{3}}}\right]^{2} * 100$$

$$Smin = \left[\frac{0.010 * 0.6 \ m/seg}{0.397 * (0.25 \ m)^{\frac{2}{3}}}\right]^{2} * 100$$

$$Smin = 0.15\%$$

Pendiente máxima

$$Sm\acute{a}x = \left[\frac{n * Vm\acute{a}x}{0.397 * D^{\frac{2}{3}}}\right]^{2} * 100$$

$$Sm\acute{a}x = \left[\frac{0.010 * 5m/seg}{0.397 * 0.25^{\frac{2}{3}}}\right]^{2} * 100$$

$$Sm\acute{a}x = 10.07 \%$$

Diámetro de la tubería

$$\mathbf{D} = \left[\frac{Qd * n}{0.312 * S^{\frac{1}{2}}} \right]^{\frac{3}{8}}$$

$$\mathbf{D} = \left[\frac{0.01128 \, m3/seg * 0.010}{0.312 * 3.94\%^{\frac{1}{2}}} \right]^{\frac{3}{8}} * 1000$$

$$\mathbf{D} = 93.91 \, mm$$

Diámetro asumido = 250 mm

El diámetro mínimo para el alcantarillado pluvial es de 250 mm, para este caso. Cabe recalcar que dentro del diseño existen diferentes caudales por lo que se utilizó tuberías de diferentes diámetros.

Tabla 94. Cálculo de caudales pluviométricos

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ALCANTARILLADO: SANITARIO

PROYECTO: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA TESISTAS: DAVID CRUZ, NATALLY PACHUCHO

FECHA: sep-22 DENSIDAD = 1 000.00 kg/m3 TIPO DE TUBERÍA= PV-ROVALOC

CALLE	POZO	LONGITUD	COEFICIENTE	DRENAJE							CAUDAL	CAUDAL				
		m	ES CURR.	AREA	LONG. MÁX		PENDIENTE		TIEMPO	TIEMPO	TIEMPO	I max	%	I máx	PLUVIAL	PLUVIAL
			"C"	Ha	m	COTA MÁX	COTA MIN.	s	ENTRADA	FLUJO	CONCENT.		reducción	Corregido		ACUMULADO
									te	tf	tc=te+tf					lt/seg
P.Cabecera	D.I					msnm	msnm	m/m	mim	mim	min	mm/h		mm/h	lt/sg	
Caalle A	PI	80	0.32	0.17	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	1.13	1.13
Caalle A		80	0.32	0.17	147.74	2007.39	2399.08	4.1170	20	6.33	26.14	/3	99%	12	1.15	1.13
	P2															
		61.17	0.32	0.43	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	2.85	3.98
	P3															
		94	0.32	0.42	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	2.79	6.77
	P4															
		55.96	0.32	0.71	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	4.71	11.48
	P5															
		119.04	0.32	0.4	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	2.65	14.14
	P6															
	го	31.37	0.32	0.87	147.74	2607.39	2599.68	4.11%	28	8.33	28.14	73	99%	72	5.77	19.91
		31.37	0.52	0.87	147.74	2007.39	2399.06	4.1170	20	6.33	26.14	/3	99%	12	3.77	19.91
	P7															
												•				
CALLE 3A	P8															
		80	0.32	0.17	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	1.13	21.04
	P9															
		100	0.32	0.42	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	2.79	23.83
	P10															
	P10	49.86	0.32	0.71	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	4.71	28.54
		49.80	0.32	0.71	147.74	2007.39	2399.06	0.00%	20	6.33	26.14	/3	99%	12	4.71	28.34
	P11															
	_	68.58	0.32	0.39	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	2.59	31.13
	P12															
		27.37	0.32	0.52	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	3.45	34.58
	P13															
		99.61	0.32	0.22	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	1.46	36.04
	D14															
	P14															
		l														

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ALCANTARILLADO:	SANITARIO							
PROYECTO:	DISEÑO DEL ALCANTARIL	LADO SANITARIO Y PLUVIAL Y PTAR PARA EL CA	SERÍO SIGS	IPAMBA I	DE LA PARROQUIA DE PI	CAIHUA DEL CANTÓN	AMBATO PI	ROVINCIA
REALIZADO POR:	TESISTAS: DAVID CRUZ, NATAL	REVISADO POR:	Ing. M. Sc. Jorg	ge Guevara				
FECHA:	sep-22	DENSIDAD =	1 000 00	kg/m3	TIPO DE TUBERÍA=	PVC -NOVALOC		

CALLE	POZO	LONGITUD	COEFICIENTE			DRENAJE INTENSIDAD MÁXIMA mm/n							CAUDAL	CAUDAL		
		m	ES CURR.	AREA	LONG. MÁX		PENDIENTE		TIEMPO	TIEMPO	TIEMPO	I max	%	I máx	PLUVIAL	PLUVIAL
			"C"	Ha	m	COTA MÁX	COTA MIN.	S	ENTRADA	FLUJO	CONCENT.		reducción	Corregido		ACUMULADO
									te	tf	tc=te+tf					lt/seg
						msnm	msnm	m/m	mim	mim	min	mm/h		mm/h	lt/sg	
CALLE 3B	P15															
		119.85	0.32	0.24	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	1.59	37.63
	Disc															
	P16	28.08	0.32	0.93	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	6.17	43.81
		20.00	0.32	0.93	147.74	2007.39	2399.08	0.00%	20	0.33	20.14	13	9970	12	0.17	43.01
	P17															
		42.98	0.32	0.2	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	1.33	45.13
	P18															
		129.08	0.32	0.34	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	2.26	47.39
	P19	62.6	0.22	1.03	147.74	2607.20	2500.68	0.000/	28	0.22	20.14	72	99%	70	12.67	61.06
		63.6	0.32	1.03	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	13.67	61.06
	P20															
	1 20	85.8	0.32	0.47	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	6.24	67.30
	P21												0%			
		25.2	0.32	0.68	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	9.03	76.33
	P22		0.22	0.0	147.74	2607.20	2500.60	0.000/	20	0.00	20.14	72	000/	70	2.65	70.00
		92.23	0.32	0.2	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	2.65	78.98
	P23															
	- 25	147.74	0.32	0.73	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	9.69	88.67
				*****										, –	,,,,,	
	P14															
		90.57	0.32	1.81	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	24.03	112.70

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ALCANTARILADO : SANITARIO

PROYECTO: DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA

REALIZADO POR: TESISTAS: DAVID CRUZ, NATALY PACHUCHO

FECHA: sep-22 DENSIDAD = 1 000.00 kg/m3 TIPO DE TUBERÍA= PVC -NOVALOC

CALLE	POZO	LONGITUD	COEFICIENTE	DRENAJE							CAUDAL	CAUDAL				
		m	ES CURR.	AREA	LONG. MÁX		PENDIENTE		TIEMPO	TIEMPO	TIEMPO	I max	%	I máx	PLUVIAL	PLUVIAL
			"C"	Ha	m	COTA MÁX	COTA MIN.	S	ENTRADA	FLUJO	CONCENT.		reducción	Corregido		ACUMULADO
									te	tf	tc=te+tf					lt/seg
						msnm	msnm	m/m	mim	mim	min	mm/h		mm/h	lt/sg	
CALLE G	P24															
		101.73	0.32	0.54	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	7.17	119.87
	P7															
		74.15	0.32	0.82	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	10.89	130.75
	P25															
		45.04	0.32	0.51	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	6.77	137.52
	P26															
		46.16	0.32	0.39	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	5.18	142.70
	D.0.5															
	P27	70.54	0.22	0.26	147.74	2607.20	2500.50	0.000/	20	0.00	20.14	72	000/	72	4.70	1.47.40
		70.54	0.32	0.36	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	/2	4.78	147.48
	P28															
	P28	49.33	0.32	0.56	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	7.43	154.91
		49.55	0.32	0.30	147.74	2007.39	2399.08	0.00%	20	0.33	20.14	13	99%	12	7.43	134.91
	P29															
	12)	33.72	0.32	0.39	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	5.18	160.09
		33.72	0.32	0.57	147.74	2007.37	2377.00	0.0070	20	0.33	20.14	73	77/0	12	3.10	100.07
	P30															
	- 50	27.12	0.32	0.28	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	3.72	163.81
		27.12	3.32	0.20	2.7.74	2007.59	20,7,00	0.0070	20	0.00	20.14	13	2270	,,,	3.72	103.01
	P31															
		34.57	0.32	0.21	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	1.39	165.20
			0.0													
	PTAR															
		0	0.32	0.069	147.74	2607.39	2599.68	0.00%	28	8.33	28.14	73	99%	72	4.58	169.78

Condiciones hidráulicas

Tubería totalmente llena

Cálculo del caudal

$$Qtll = \frac{0.312}{n} * D^{\frac{8}{3}} * S^{\frac{1}{2}}$$

$$Qtll = \frac{0.312}{0.010} * 0.25 m^{\frac{8}{3}} * 3.94\%^{\frac{1}{2}}$$

$$Qtll = 0.1536 \frac{m^3}{seg}$$

$$Qtll = 153.60 \frac{lt}{seg}$$

Cálculo del área mojada

$$Atll = \frac{\pi * D}{4}$$

$$Atll = \frac{\pi * 0.25}{4}$$

$$Atll = 0.196 m2$$

Cálculo del perímetro mojado

$$Ptll = \pi * D$$

$$Ptll = \pi * 0.25 m$$

$$Ptll = 0.785 m$$

Cálculo de la velocidad

$$Vtll = \frac{0.397}{n} * D^{\frac{2}{3}} * S^{\frac{1}{2}}$$

$$Vtll = \frac{0.397}{0.010} * 0.25 m^{\frac{2}{3}} * 3.94\%^{\frac{1}{2}}$$

$$Vtll = 3.13 \frac{m3}{seg}$$

Cálculo del radio hidráulico

$$Rtll = \frac{D}{4}$$

$$Rtll = \frac{250 \text{ } mm}{4}$$

$$Rtll = 62.50 \text{ } mm$$

Tubería parcialmente llena

Para el cálculo de la velocidad, radio hidráulico y el calo del agua se ocupó la aplicación HCANALES para mayor facilidad y rapidez al momento de obtener dichos resultados. Las opciones que se utilizó dentro del programa fueron tirante normal y sección circular como se presenta a continuación.

Figura 25. Pantalla de inicio del programa HCANALES

Fuente: HCANALES

En la siguiente ventana del programa ingresamos dos como: caudal diseño, diámetro, rugosidad de la tubería y la pendiente del proyecto.

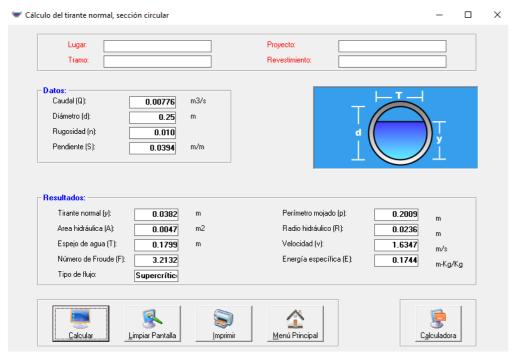


Figura 26. Condición de la tubería parcialmente llena

Fuente: HCANALES

Verificación del calado del flujo

El flujo tiene que ser $h = \le 0.75D$

$$h = \le 0.75D$$

$$38.20mm = \le 0.75(250mm)$$

$$38.20 \ mm = \le 187.50 \ mm \rightarrow \mathbf{0k}$$

Cálculo de la tensión tractiva

$$\tau = \rho * g * Rh * S$$

$$\tau = 1000 kg/m3 * 9.81m/s2 * 0.0236m * 3.94\%$$

$$\tau = 9.12 Pa$$

$$\tau > 1 Pa$$

$$9.12 Pa > 1.5 Pa \rightarrow \mathbf{0}K$$

Tabla 95. Cálculo de los parámetros hidráulicos de la red de alcantarillado

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO NUEVO

ALCANTARIL	LADO:	PLUVIAL					_						I KLD DL AI				-									
PROYECTO:						Y PTAR PARA EL	CASERÍO SIG	SIPAMBA DE I	LA PARROQUI	A DE P	ICAIHUA DEL C	CANTÓN AME														
REALIZADO	POR:			ATALY PACHU	СНО								REVISADO POR		_	1. Sc. Jorge Gu							0.010			
FECHA:		sep	-22			DENSIDAD =	1 000.00	kg/m3	TIPO DE TUB	ERIA=	PVC -NOVALO	oc	Vmin=	0.60	m/sg.	Vmáx=	5.00	m/sg.		COEFICIENTE	MANNING (n)=	0.010	HOJA No	o:	
CALLE	POZO	LONGITUD		DATOS TO	POGRÁFICOS		GR/	ADIENTE HIDR			DIAM			CCIÓN A TUB	O LLEN	10		SECCIÓN A TU	BO PAI	RCIALMENTE LI	LENO		RELACIÓN		TENSIÓN	
		ENTRE EJES		COTA		PENDIENTE	ASUMIDA	PERM	ISIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD		RADIO	CAUDAL	VELOCID	AD	RADIO	CALAD	0	CAUDALE	:S	TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TLL}	V _{TLL}	NOTA	HIRÁULICO	q _{PLL}	V PLL	NOTA	HIRÁULICO	AGUA	NOTA	q PLL/ Q TLL	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	It/sg	m/sg		R _{TLL} (mm)	lt/sg	m/sg		R _{PLL} (mm)	h (mm)		%		pa	
P.Cabecera	P1		2 623.89	2 622.09	1.80																					
Calle 2		80.00				3.94	3.94	0.15	10.07	SI	32.70	250	153.60	3.13	SI	62.50	1.13	1.63	SI	23.60	38.20	SI	0.73	SI	9.12	SI
			2 620.74	2 618.94	1.80		0.0394										0.00113							\vdash		
	P2		2 620.74	2 618.94	1.80																					
		61.17				12.26	9.67	0.15	10.07	SI	44.34	250	139.90	2.85	SI	62.50	3.98	2.21	SI	42.27	75.00	SI	2.85	NO	13.56	SI
			2 618.74	2 616.94	1.80		0.0967																			
	P3		2 618.74	2 613.18	5.56																					
		94.00				3.27	3.27	0.15	10.07	SI	66.30	250	240.60	4.90	SI	62.50	6.77	3.57	SI	44.00	77.70	SI	2.81	NO	41.74	SI
			2 607.22	2 604.09	1.95		0.0327										0.00677									
	P4		2 607.22	2 604.09	1.95																			-		
		55,96				4.63	4,63	0.15	10.07	SI	75,72	250	166.50	3.39	SI	62.50	11.48	4.34	SI	61.30	12.12	SI	6.90	NO	27.84	SI
			2 604.63	2 601.50	1.80		0.0463										0.01148									
	P5		2 604.63	2 601.50	1.80																					_
		119.04	2 004.03	2 001.50	1.00	3.68	3.68	0.15	10.07	SI	85.47	250	148.40	3.02	2 SI	62.50	14.14	3.22	S1	68.80	147.60	SI	9.53	NO	24.84	SI
		113.04	2 600.25	2 597.12	1.80		0.0368	0.13	10.07	31	05.47	230	148.40	3.02	31	02.30	0.01414	3.22	31	08.80	147.00	31	9.33	NO	24.04	
	P6		2 600.25		1.80		0.0508										0.01414							-+		_
	P6		2 600.25	2 597.12	1.80		2.49												SI					SI		SI
		31.37	2 599,47	2 596.34	1.80	2.49	0.0249	0.15	10.07	SI	104.56	250	122.10	2.49	SI	62.50	19.91 0.01991	3.03	SI	84.40	176.90	SI	16.31	SI	20.62	SI
							0.0249										0.01991							-+	-	_
	P7		2 599.47	2 596.34	5.09	1																				_
						1		1	·	1	1				_				_	1		_	1	$\overline{}$	_	_
CALLE 3A	P8		2 624.03	2 622.23	1.80					_									_					-+	+	_
		80.00				2.36	2.36	0.15	10.07	SI	107.83	250	118.80	2.42	SI	62.50	21.04	3.01	SI	86.80	186.64	SI	17.71	SI	20.10	SI
	P9		2 622.14 2 622.14	2 620.34 2 619.98	1.80 2.16		0.0236										0.02104									
	P9	100.00	2 622.14	2 619.98	2.16	8.61	8.25	0.15	10.07	SI	89.35	250	222.20	4.53	S SI	62.50	23.83	4.97	SI	72.21	137.80	SI	10.72	SI	58.44	SI
		100.00	2.612.62	2 611.73	1.80		0.0825	0.15	10.07	31	89.35	250	222.20	4.53	5 51	62.50		4.97	51	72.21	137.80	- 51	10.72	31	58.44	- 31
			2 613.53				0.0825										0.02							-+	+	_
	P10		2 613.53	2 611.73	1.80																			\vdash		_
		49.86				5.03	5.03	0.15	10.07	SI	104.89	250	173.50	3.53	SI SI	62.50	28.54	4.32	SI	84.70	177.80	SI	16.45	SI	41.79	SI
	P11		2 611.02 2 611.02	2 609.22 2 609.22	1.80 1.80		0.0503										0.03							-+		
	PII	68,58	2 611.02	2 609.22	1.80	2.96	2.96	0.15	10.07	SI	119.69	250	133.10	2.71	L SI	62,50	31.13	3.55	SI	94.10	227.00	SI	23,39	SI	27.32	SI
		68.58	2 608.99	2 607.19	1.80		0.0296	0.15	10.07	31	119.69	250	133.10	2.73	51	62.50	0.03	3.55	31	94.10	227.00	- 51	23.39	31	27.32	- 31
							0.0296										0.03							\vdash	-	_
	P12		2 608.99	2 607.19	1.80					<u>.</u>									-			L		-		
		27.37				2.59	2.59	0.15	10.07	SI	127.66	250	124.50	2.54	SI	62.50	34.58	3.54	SI	103.20	210.50	SI	27.78	SI	26.22	SI
			2 608.28	2 606.48	1.80		0.0259			-	 						0.03							\dashv		_
	P13		2 608.28	2 606.48	1.80					-					-									\vdash	\longrightarrow	
		99.61				3.91	3.91	0.15	10.07	SI	120.02	250	153.00	3.12	2 SI	62.50	36.04	4.09	SI	94.30	228.30	SI	23.56	SI	36.17	SI
			2 604.39	2 602.59	1.80		0.0391			<u> </u>									_			_		\vdash		
	P14		2 604.39	2 602.59	1.80												0.04									

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO NUEVO

ALCANTARILLADO:

PROYECTO:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO PROVINCIA DE TUNGURAHUA

REALIZADO POR:

FECHA:

Sep-22

DENSIDAD = 1000.00 kg/m3 TIPO DE TUBERÍA= PVC-NOVALOC Vmin= 0.60 m/sg. Vmáx= 5.00 m/sg. COEFICIENTE MANNING (n)= 0.010 HOJA No:

								_																-		
CALLE	POZO	LONGITUD		DATOS TO	POGRÁFICOS		GR/	DIENTE HIDR			DIAN		SE	CCIÓN A TUB	O LLEI	NO	S	ECCIÓN A TUB	O PAF	RCIALMENTE L	LENO		RELACIÓN		TENSIÓ	
		ENTRE EJES		COTA		PENDIENTE	ASUMIDA	PERMI	SIBLES	NOTA	CALCULADO	ASUMIDO	CAUDAL	VELOCIDAD	<u> </u>	RADIO	CAUDAL	VELOCIDA	D	RADIO	CALAD	0	CAUDAL	ES	TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TIL}	V _{TLL}	NOT	A HIRÁULICO	q _{PLL}	V _{PLL}	NOTA	HIRÁULICO	AGUA	NOTA	q_{PLL}/Q_{TLL}	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	lt/sg	m/sg		R _{TLL} (mm)	lt/sg	m/sg		R _{PLL} (mm)	h (mm)		%		pa	
CALLE 3B	P15		2 614.41	2 612.61	1.80																					
		119.85				6.07	6.08	0.15	10.07	SI	112.29	250	190.80	3.88	SI	62.50	37.63	4.94	SI	89.90	200.30	SI	19.72	SI	53.62	SI
			2 607.13	2 605.32	1.81		0.0608										0.03763									
	P16		2 607.13	2 605.32	1.81																					
		28.08				2.46	2.45	0.15	10.07	SI	140.96	250	121.10	2.47	SI	62.50	43.81	3.65	SI	113.10	249.00	SI	36.17	SI	27.18	SI
			2 606.44	2 604.64	1.80		0.0245										0.04381									
	P17		2 606,44	2 604.64	1.80																					
		42,98				2.93	2.93	0.15	10.07	SI	137.85	250	132,40	2.70	SI	62,50	45.13	3.95	SI	110.90	239.50	SI	34.09	SI	31.88	SI
		12.50	2 605.18	2 603.38	1.80		0.0293	0.13	20.07	-	257.05	250	202.10	2.70	<u> </u>	02.50	0.04513	5.55	<u> </u>	110.50	200.00	J.	5 1105	J.	52.00	<u> </u>
	P18		2 605.18	2 603.38	1.80																					
		129.08				0.93	1.00	0.15	10.07	SI	171.74	250	77.30	1.58	SI	62.50	47.39	2.65	SI	137.10	310.10	SI	61.31	SI	13.45	SI
			2 603.98	2 602.09	1.89		0.01										0.04739									
	P19		2 603,98	2 602.09																						
	. 25	63,60	2 003.70	2 002:03	2.03	1,10	1.00	0.15	10.07	CI	188.87	250	77.30	1 59	SI	62.50	61.06	2.72	SI	142.00	342.90	CI CI	78.99	SI.	13.93	SI
		03.00	2 603.28	2 601.45	2.10		0.01	0.13	10.07	JI	100.07	230	77.30	1.30	, Ji	02.30	0.06106	2.72	Ji	142.00	342.30	31	76.55	31	13.33	31
	P20		2 603.28	2 601.45																						
		85,80				2.37	1.92	0.15	10.07	SI	173.34	250	118.10	2.40	SI	62.50	67.30	3.85	SI	127.10	266.10	SI	56.99	SI	29.05	SI
		65.66	2 601.25	2 599.45	1.80		0.0192	0.13	20.07	-	175.51	250	110/10	2.10	<u> </u>	02.50	0.06730	5.05	<u> </u>	127,120	200.10	J.	30.33	J.		- J.
	P21		2 601.25	2 599.45			0.0132										0.00750									_
	121	25.20	2 001.23	2 333.43	1.60	2.98	2.98	0.45	10.07	CI.	167.34	250	133.50	2.77	SI	62.50	76.33	4.31	-	425.00	285.40	C 1	57.18	61	36.54	-
		25.20	2 600,50	2 598.70	1.80		0.0298	0.15	10.07	31	167.34	250	133.50	2.12	31	62.50	0.07633	4.31	31	125.00	285.40	31	57.18	31	36.54	31
	P22		2 600.50	2 598.70			0.0230										2.27000									
	1 22	92.23	2 000.30	2 330.70	2.00	0.89	1.00	0.15	10.07	ÇI.	208.01	250	77.30	1 50	SI	62.50	78.98	2.85	ÇI	152.50	347.80	CI	102.18	SI.	14.96	SI SI
		32.23	2 599.68	2 597.78	2.31		0.01	0.15	10.07	31	200.01	230	77.30	1.50) 31	02.50	0.07898	2.83	ЭІ	132.50	347.80	31	102.10	31	14.90	31
	D22						0.01										0.07898							\vdash		\vdash
	P23		2 599.68	2 597.78	2.31					_					-									 		
		147.74				-3.19	1.00	0.15	10.07	SI	217.23	250	77.30	1.58	SI	62.50	88.67	2.89	SI	155.50	367.30	SI	114.71	SI	15.25	SI

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TABLA DE CÁLCULO

DE LOS PARAMETROS HIDRÁULICOS DE UN RED DE ALCANTARILLADO NUEVO

ALCANTARI	LLADO :	PLUVIAL					1																			
PROYECTO:			ALCANTARILL	ADO SANITAR	IO Y PLUVIAL	Y PTAR PARA E	L CASERÍO SIG	SIPAMBA DE	LA PARROQUI	A DE P	ICAIHUA DEL (CANTÓN AME	BATO PROVINC	IA DE TUNGUE	RAHUA											
REALIZADO	POR:	TESISTAS: DA	AVID CRUZ, N	ATALY PACHU	CHO								REVISADO PO	R:	Ing. M	l. Sc. Jorge Gue	evara									
FECHA:		sep	p-22			DENSIDAD =	1 000.00	kg/m3	TIPO DE TUB	ERÍA=	PVC -NOVAL	ос	Vmin=	0.60	m/sg.	Vmáx=	5.00	m/sg.		COEFICIENTE	MANNING (n)=	0.010	HOJA N	0:	
CALLE	POZO	LONGITUD		LONGITUD DATOS TOPOGRÁFICOS		C.P.	GRADIENTE HIDRÁULICA (S)			DIAMETRO		l c=	SECCIÓN A TUBO LLENO				SECCIÓN A TUBO PARCIALMENTE LLENO					RELACIÓN DE T		TENSIÓ	NAI.	
CALLE	P020	ENTRE EJES		COTA	POGRAFICOS	PENDIENTE	ASUMIDA			NOTA	CALCULADO		CAUDAL	VELOCIDAD	LLEIN	RADIO	CAUDAL	VELOCID		RADIO	CALAD	0	CAUDALI		TRÁCTIV	
		POZOS	TERRENO	PROYECTO	ALTURA	TERRENO	S(%)	MÍNIMO	MAXIMA				Q _{TIL}	V _{TIL}	NOTA	HIRÁULICO	q _{PLL}			HIRÁULICO		NOTA	q _{PLI} /Q _{TLL}	NOTA	τ	NOTA
			msnm	mnsm	POZO(m)	i(%)	%	%	%		mm	mm	It/sg	m/sg		R _{TLL} (mm)	It/sg	m/sg		R _{PLL} (mm)	h (mm)		%		pa	
CALLE G	P14		2 604.39	2 596.30	8.09																, ,					
		90.57				2.83	2.00	0.15	10.07	SI	208.70	250	109.40	2.23	SI	62,50	112.70	3.01	SI	165.55	388.90	SI	103.02	SI	32.48	⊰ SI
			2 601.83	2 594.49	7.34		0.0200)									0.11270		-							Ť
	P24		2 601.83	2 594.49	7.34																					\top
		101.73	2 001.03	233 11 13	7.51	2.32	2.00	0.15	10.07	SI	213.59	250	109.40	2 23	SI	62,50	119.87	3.03	SI	167.20	402.40	SI	109.57	SI	32.80	SI
		101.75	2 599.47	2 592.45	7.02		0.02	0.23	20.07	, .	215.55	250	203110	2.23	J.	02.50	0.11987	5.05	-	107.20	102.10	J.	103.57	<u> </u>	52.00	<u> </u>
CALLE 2	P7		2 599.47	2 592.45	7.02																					
		74.15				1.36	2.00	0.15	10.07	SI	220.66	250	109.40	2.23	SI	62.50	130.75	3.11	SI	173.60	393.90	SI	119.52	SI	34.06	SI
			2 598.46	2 590.97	7.49		0.02										0.13075									
	P25		2 598.46	2 590.97	7.49																					
		45,04				0.91	2,00	0.15	10.07	SI	224.88	250	109.40	2.23	SI	62.50	137.52	3.10	SI	172,28	423.30	SI	125.71	SI	33.80	SI
			2 598.05	2 590.07	7.98		0.02	2									0.13752									
	P26		2 598.05	2 590.07	7.98																					
		46.16				2.90	2.00	0.15	10.07	SI	245.75	250	109.40	2.23	SI	62.50	142.70	3.11	SI	173.60	433.30	SI	130.44	SI	34.06	SI
			2 596.71	2 589.14	7.57		0.02	2									0.14270									
	P27		2 596.71	2 589.14	7.57																					
		70.54				2.20			10.07	SI	230.85	250	109.40	2.23	SI	62.50	147.48	3.14	SI	176.70	412.90	SI	134.81	SI	34.67	/ SI
			2 595.16	2 587.73	7.43		0.02	2									0.14748							\Box		
	P28		2 595.16	2 587.73	7.43																					
		49.33				0.10	2.00	0.15	10.07	SI	235.15	250	109.40	2.23	SI	62.50	154.91	3.18	SI	179.40	433.30	SI	141.60	SI	35.20	SI
			2 595.11	2 586.75	8.36		0.02	2									0.15491									
	P29		2 595.11	2 586.75	8.36																					
		33.72				2.40			10.07	SI	245.34	250	109.40	2.23	SI	62.50	160.09	3.19	SI	180.30	442.30	SI	146.34	SI	35.37	SI
			2 594.30	2 586.07	8.23		0.0200)									0.16009							-		
	P30		2 594.30	2 586.07	8.23						-													\vdash		_
		27.12				8.11		0.15	10.07	SI	218.98	250	139.90	2.85	SI	62.50	163.81	5.08	SI	148.90	329.30	SI	117.09	SI	47.77	7 SI
			2 592.10	2 585.18	6.92		0.0327	7									0.16381							\vdash		₩
	P31		2 592.10	2 585.18	6.92																			\vdash		<u> </u>
		34.57				25.83		0.15	10.07	SI	234.65	250	393.20	8.01	SI	62.50	165.20	11.13	SI	102.50	208.10	SI	42.01	SI	259.73	, SI
	PTAR		2 583.17	2 576.25	6.92		0.2583	3									0.16520									

Elaborado por: David Cruz y Yadira Pachucho

Diseño de planta de tratamiento de aguas residuales

Para el diseño de la Planta de Tratamiento de Aguas Residuales se realizó un análisis de las aguas residuales en los laboratorios de la UNACH (Universidad Nacional de Chimborazo), Anexo 3 dicho análisis fue tomado de varias casas tipo del sector en diferentes horas del día para asumir como base del análisis y determinar varios parámetros de diseño de la planta de tratamiento

Relación entre el DBO₅/DQO

Los valores de la relación DBO₅ /DQO en aguas residuales municipales no tratadas oscilan entre 0.3 y 0.8.

Tabla 96. Parámetros de la dificultad de tratabilidad del agua

DBO ₅ /DQO	Tratabilidad
< a 0.3	Difícil
0.3 - 0.5	Tratable
> 0.5	Fácil de tratar

Fuente: Crites, y otros, 2000 [61]

Elaborado por: David Cruz y Yadira Pachucho

Cálculo de la relación del DBO₅/DQO

$$DBO5 = 293mg/l$$

$$DQO = 464 mg / l$$

$$\frac{DBO5}{DQO} = \frac{293mg/l}{464mg/l}$$

$$\frac{DBO5}{DQO} = 0.63$$

Como la relación entre DBO5/DQO es mayor que 0.5 por consiguiente las aguas son fácil de tratar y de aplicará procesos biológicos.

Por lo cual, la decisión en conjunto con el GAD Parroquial de Picaihua fue en realizar la planta de tratamiento de aguas residuales con tanque séptico y filtros biológico.

Parámetro de Diseño de la Planta de Tratamiento.

Para el diseño de la planta se toma en cuenta los siguientes parámetros:

Pf = Población futura (hab)

 $Qdiseño = Caudal de diselo \left(\frac{l}{seg}\right)$

El sumatorio total de los caudales sanitario de la red de alcantarillado del Caserío Sigsipamba fue de **Qd = 8.39Lts/seg.**

Tratamiento preliminar o preparatorio

Diseño preliminar

Dimensión del Canal de Entrada

La dimensión del ancho de canal no necesariamente debe ser calculada, pero se tomará en consideración que deberá ser asumida con correspondencia a las dimensiones del área de tubería final de sistema de alcantarillado.

Por lo cual se asume un ancho de canal de 0.5 m.

Base = 0.5 m

Al igual que el caudal de diseño se tomará en cuenta la velocidad final de todo el sistema.

V= 3.87 m/seg: velocidad final del flujo

$$A = \frac{Q}{V}$$

$$A = \frac{0.00836 \, m3/seg}{3.87 \, m/seg}$$

$$A=0.0022\ m2$$

$$y = \frac{A}{b}$$

$$y = \frac{0.0022 \ m2}{0.5 \ m}$$

$$y = 0.004 m \approx 0.1$$

El y calculado es muy bajo por lo que se asume un y = 0.3 m.

Además, se considera 10 cm adicionales para q no trabaje en la condición a canal lleno por lo atoy = 0.4 m.

Se consideró una longitud de canal de 1.50 m.

Tabla 97. Medidas del canal de entrada

Medidas Canal de entrada									
Base	50	cm							
Altura	40	cm							
Longitud	150	cm							

Elaborado por: David Cruz y Yadira Pachucho

Dimensionamiento de la Rejilla

Datos:

b = ancho total de la rejilla = 0.5 m

 $\emptyset = diámetro de las varillas = 12 mm$

e = espaciemiento sugerido = 2.5 cm (NORMA CO 10.7 - 602)

y = altura del canal

Número de barrotes

$$N = \frac{b + \emptyset}{e + \emptyset}$$

$$N = \frac{b + \emptyset}{e + \emptyset}$$

$$N = \frac{0.5m + 0.012m}{0.025m + 0.012m}$$

$$N = 9.35 \ varillas$$

$$N = 10 \ varillas$$

Ancho libre entre barrotes

$$e = \frac{b + \emptyset}{N} - \emptyset$$

$$e = \frac{0.5m + 0.012m}{10} - 0.012$$

$$e = 24mm \approx 2.5cm$$

Longitud de barras de rejilla

$$L = \frac{y}{Sen\theta}$$

$$L = \frac{0.40m}{Sen(45)}$$

$$L = 0.57mm$$

Tabla 98. Características de las rejillas

CARACTERISTICAS REJILLA								
Ancho de rejilla	50	cm						
Alto de rejilla	40	cm						
Diam varilla	20	mm						
Inclinación	45	grados						
Numero de varillas	10	varillas						
Espaciado de varilla	2.5	cm						

Elaborado por: David Cruz y Yadira Pachucho

Diseño del Desarenador

$$Tr = 60 seg$$

Volumen del desarenador

$$Vdes = Qdis \ x \ Tiempo \ de \ reteencion$$

$$Vdes = 0.00839 \frac{m3}{seg} \ x \ 60 \ seg$$

$$Vdes = 0.5 \ m3$$

Dimensionamiento del Desarenador

$$A = \frac{Qdis}{Vflujo}$$

Vflujo = 0.1m/seg (Velocidad Recomendada para desarenador)

$$A = \frac{0.00839 \ m3/seg}{0.1 \ m/seg}$$

$$A = 0.0839m2$$

Ancho de la cámara

$$B = \frac{A}{H \ asumido}$$

Hasumido = 0.4 m = 40cm (Altura del Desarenador)

$$B = \frac{0.0839m2}{0.4 m}$$
$$B = 0.21$$

Debido al mantenimiento del desarenador, y a la altura de seguridad se tomará un alto de:

$$B = 0.5 \, m$$

Longitud del desarenador

$$Vdes = Hasum \ x \ B \ x \ L$$

$$L = \frac{Vdes}{Hasum \ x \ B}$$

$$L = \frac{0.5 \, m3}{0.4m \, x \, 0.5m}$$

$$L = 2.5 \, m$$

Tabla 99. Dimensiones del desarenador

DIMENSIONES DEL DESARENADOR									
Tr =	60	seg							
L =	2.5	m							
B =	0.5	m							
H =	0.4	m							

Elaborado por: David Cruz y Yadira Pachucho

Tratamiento primario

Tanque Séptico

Tiempo de Retención hidráulica de volumen de sedimentación

$$Pr = 1.5 - 0.3 * \log(P x q)$$

Caudal de aporte unitario

$$q = C \times Dmf$$

Coeficiente de retorno C = 0.6

Dotación media futura Dmf = 95 lt/hab/día

Población futura Pd = 374 hab

$$q = 0.6 x 95 lt/hab/dia$$
$$q = 57 lt/hab/dia$$
$$Pr = 1.5 - 0.3 * log(P x q)$$

$$Pr = 1.5 - 0.3 * \log(374hab \times 57 lt/hab/dia)$$

 $Pr = 0.20 dias$

El tiempo de retención es muy bajo por lo que se asume un tiempo de 0.25 días = 6 horas.

$$Pr = 0.25 \, dias = 6 \, horas$$

Volumen de sedimentación

$$Vs = 10^{-3} x (P x q) x Pr$$

 $Vs = 10^{-3} x (0.25 dias x57 lt/hab/dia)$
 $Vs = 0.00533 m3$

Volumen de almacenamiento de lodos

Volumen de lodos que se producen dependiendo del clima

$$Vd = G \times P \times N \times 10^{-3}$$

$$G = 50 \frac{lt}{hab} / dia$$

$$Vd = 50 \frac{\frac{lt}{hab}}{dia} \times 374 hab \times 1 \times 10^{-3}$$

$$Vd = 18.7 m3$$

Volumen de natas

Valor mínimo de Natas en Tanques Sépticos es recomendable un valor es 0.7 m3

$$Vn = 0.7 \, m3$$

Espacio de Seguridad

El espacio de seguridad que se asume es un valor de 0.10 m desde la parte inferior del ramal hasta la superficie

Volumen de tanque séptico

$$VT = Vs + Vd + Vn$$

 $VT = 0.00533m3 + 18.7me + 0.7m3$
 $VT = 19.49 m3$

Dimensionamiento interno de Tanque Séptico

Área de Tanque Séptico

$$AT = \frac{VT}{h \ asum}$$

h asumido = 1.50 m

$$AT = \frac{19.49m3}{1.50m}$$
$$AT = 12.93 m2$$

Ancho de Tanque Séptico

$$A = b \times L$$

$$L = 2.5b$$

$$A = b \times 2.5b$$

$$b = \sqrt{\frac{A}{2.5}}$$

$$b = \sqrt{\frac{12.93m^2}{2.5}}$$

$$b = 2.27m \ calculado$$

 $b = 2.50 \ m$

Longitud de Tanque Séptico

$$L = \frac{AT}{b}$$

$$L = \frac{12.73m2}{2.50m}$$

$$L = 5.2m \ calculado$$

$$L = 5.50m$$

Las medidas del Tanque a diseñar tienen que cumplir con la condición:

$$2 < \frac{L}{b} < 5$$

$$2 < \frac{5.50m}{2.50m} < 5$$

$$2 < 2.2 < 5 OK CUMPLE$$

Profundidad de Natas

$$He = \frac{Vn}{AT}$$

$$He = \frac{0.7m3}{12.93 m2}$$

$$He = 0.054m$$

Profundidad de Sedimentación

$$Hs = \frac{Vs}{AT}$$

$$Hs = \frac{0.0533m3}{12.93 m2}$$

$$Hs = 0.00041m$$

Profundidad de Almacenamiento de Lodos

$$Hd = \frac{Vd}{AT}$$

$$Hd = \frac{18.70m3}{12.93 m2}$$

$$Hd = 1.45m$$

Profundidad Neta de Tanque Séptico

$$Hn = He + Hs + Hd + Hseguridad$$

$$H \ seguridad = 0.30 \ m$$

$$Hn = 0.054m + 0.00041m + 1.45m + 0.30m$$

$$Hn = 1.80 \ m \ calculado$$

$$Hn = 2.0 \ m$$

Tabla 100. Dimensiones del tanque séptico

DIMENSION DEL TANQUE SEPTICO									
Tr =	6	horas							
L	5.5	m							
В	2.5	m							
Hn	2.0	m							

Elaborado por: David Cruz y Yadira Pachucho

Diseño de secado de lodos

El método más elemental para el secado de los lodos es el Deshidratado de lodos (Lodos diferidos). Ideal para plantas.

Carga de Solidos

$$C = \frac{Pf(hab)x\ contribucion\ percapita\ (gr.\frac{SShab}{día})}{1000}$$

Debido a que la zona de estudio no contiene alcantarillado la contribución per cápita será:

$$90 gr. \frac{SShab}{dia}$$

$$C = \frac{374 habx 90 gr. \frac{SShab}{dia}}{1000}$$

$$C = 33.66 Kg de DD/dia$$

Masa de Solidos que conforman los Lodos

$$Msd = (0.5 \times 0.7 \times 0.5 \times C) + (0.5 \times 0.3 \times C)$$

 $Msd = (0.5 \times 0.7 \times 0.5 \times 33.66 Kg \ de \ DD/dia)$
 $+ (0.5 \times 0.3 \times 33.66 Kg \ de \ DD/dia)$
 $Msd = 10.93 \ Kg \ de \ DD/dia$

Volumen diario de Lodos Digeridos

$$Vl. d. = \frac{Msd}{plado \ x \ (\%de \frac{solidos}{100})}$$

$$Vl. d. = \frac{10.93 \ Kg \ de \ DD/día}{plado \ x \ (\%de \frac{solidos}{100})}$$

$$Densidad \ de \ lodos = \frac{1.04kg}{lt}$$

$$\%solidos \ de \ lodos = 10\%$$

$$Vl. d. = \frac{10.93 \ Kg \ de \ DD/día}{\frac{1.04kg}{lt} \ x \ (\frac{10}{100})}$$

Vl. d. = 105.18 lt/día

Volumen de lodos a extraer en el tanque

$$Vel = \frac{Vl. d. x Td}{1000}$$

$$Vel = \frac{105lt/dia \times 40}{1000}$$
$$Vel = 4.20 m3$$

Área de Lecho de Secado de Lodos

 $Ha\ asumida = 1.00\ m$

$$Als = \frac{Vel}{Ha}$$

$$Als = \frac{4.20 \text{ } m3}{1.0 \text{ } m}$$

$$Als = 4.20 \text{ } m3$$

El ancho de Lecho de Secado tiene que tener de 3 a 6 metros = 3 m

$$Als = B \times L$$

$$L = \frac{4.20 \text{ m3}}{3.0 \text{ m}}$$

$$L = 1.40m \text{ calculado}$$

$$L = 1.50m$$

Tabla 101. Dimensión del lecho de secado

DIMENSION DEL LECHO DE SECADO								
На	1.0	m						
L	1.5	m						
В	3	m						
Tiempo de secado	40	días						

Elaborado por: David Cruz y Yadira Pachucho

Tratamiento secundario

Filtro Biológico de Flujo Ascendente

Se recomienda una forma circular para que los sedimentos retenidos no se adhieran a las esquinas.

Función: Retener los sólidos inertes en las aguas

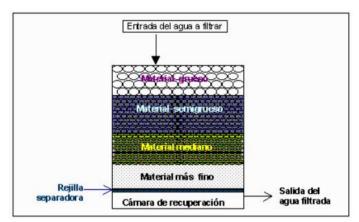


Figura 27. Esquema de Filtro Biológico Ascendente

Fuente: Bing imágenes. 2022 [47].

Elaborado por: David Cruz y Yadira Pachucho

Tiempo de Retención

$$Pr = 0.25 \, dias = 6 \, horas$$

$$Tr = 80\% \ x \ Pr$$
 $Tr = 80\% \ x \ 0.25 \ días$
 $Tr = 0.2 \ días = 4.8 horas$

Caudal estimado para el Filtro Biológico

$$QF.B = 0.524 \times Df \times Pf \times Tr$$

$$QF.B = 0.524 \times 95 \frac{lt}{hab} \times 372hab \times 0.20dias$$

$$QF.B = 3723 \frac{lt}{dia}$$

$$QF.B = 3.72 \frac{m3}{dia}$$

Área del Filtro Biológico

Tasa de Aplicación Hidráulica:
$$TAH=1.5\frac{m3}{día}$$
. $m2$

$$Afiltro=\frac{3.72m3/d}{1.5\frac{m3}{día}$$
. $m2$

$$Afiltro = 2.48 m2$$

Diámetro del Filtro Biológico

$$D = \sqrt{\frac{4 \times Afiltro}{\pi}}$$

$$D = \sqrt{\frac{4 \times 2.48m2}{\pi}}$$

$$D = 1.77 \text{ m calculado}$$

$$D = 2.0 \text{ m}$$

Volumen del Filtro Biológico

H asumido = 1.50 m

$$Vfiltro = \left(\pi x \frac{D^2}{4}\right) x h asum$$

$$Vfiltro = \left(\pi x \frac{2.0^2}{4}\right) x 1.50 m$$

$$Vfiltro = 4.71 m3$$

Periodo de Retención

$$Tr \ cal = rac{Vtotal}{QF.B}$$
 $Tr \ cal = rac{4.71m3}{3.72 \ m3/día}$
 $Tr \ cal = 1.26 \ días$

Condición: Tr cal > Tr asum 1.26 > 0.2 OK CUMPLE

Chequeo de Tasa de Aplicación Hidráulica

$$TAH\ Cal = rac{V\ total}{Afiltro}$$
 $TAH\ Cal = rac{4.71\ m3}{2.48\ m2}$
 $TAH\ Cal = 1.90\ m$
 $Condición$:
 $1 < TAH < 5$
 $1 < 1.90 < 5$

Tabla 102. Dimensión del filtro biológico

DIMENSION DEL FILTRO BIOLOGICO										
Tr	4.8	horas								
Н	1.5	m								
Diam	2	m								

Elaborado por: David Cruz y Yadira Pachucho

Modulación de las unidades que comprenden el sistema de tratamiento de las aguas residuales

En base al proyecto y a los parámetros de las aguas servidas en el sector, las unidades principales son (Tanque séptico y Filtro Biológico) para depurar sus aguas residuales. Además, es un sistema relativamente simple de ejecutar.

El sistema va a reducirá un en un 77% de la contaminación de DQO y un 81% de la contaminación de DBO5, por lo que disminuye efectivamente el DBO5 y el DQO, a valores admisibles a cuerpos de agua dulce [70].

Tabla 103. Limites admisibles para verter en cuerpos de Agua Dulce

Parámetros	Expresado como	Unidad	Límite máximo permisible		
Aceites y Grasas.	Sust, solubles en hexano	mg/l	30,0		
Alkil mercurio		mg/l	No detectable		
Aluminio	Al	mg/l	5,0		
Arsénico total	As	mg/l	0,1		
Bario	Ba	mg/l	2,0		
Boro Total	В	mg/l	2,0		
Cadmino	Cd	mg/l	0,02		
Cianuro total	CN-	mg/l	0,1		
Cine	Zn	mg/l	5,0		
Cloro Activo	Cl	mg/l	0,5		
Cloroformo	Est. carbón cloroformo ECC	mg/l	0,1		
Cloruros	Cl	mg/l	1 000		
Cobre	Cu	mg/l	1,0		
Cobalto	Co	mg/l	0,5		
Coliformes Fecales	NMP	NMP/100 ml	10000		
Color real 1	Color real	unidades de color	Inapreciable en dilución: 1/20		
Compuestos fenólicos	Fenol	mg/l	0,2		
Cromo hexavalente	Cr+s	mg/l	0,5		
Demanda Bioquímica de Oxígeno (5 días)	DBO,	mg/l	100		
Demanda Química de Oxígeno	DQO	mg/l	200		
Estaño	Sn	mg/l	5,0		
Fluoruros	F	mg/l	5,0		
Fósforo Total	P	mg/l	10,0		
Hierro total	Fe	mg/l	10,0		
Hidrocarburos Totales de Petróleo	ТРН	mg/l	20,0		
Manganeso total	Mn	mg/l	2,0		
Materia flotante	Visibles		Ausencia		
Mercurio total	Hg	mg/l	0,005		
Níquel	Ni	mg/l	2,0		
Nitrógeno amoniacal	N	mg/l	30,0		
Nitrógeno Total Kjedahl	N	mg/l	50,0		
Compuestos Organoclorados	Organoclorados totales	mg/l	0,05		
Compuestos Organofosforados	Organofosforados totales	mg/l	0,1		
Plata	Ag	mg/l	0,1		
Plomo	Pb	mg/l	0,2		
Potencial de hidrógeno	pH		6-9		
Selenio	Se	mg/l	0,1		
Sólidos Suspendidos Totales	SST	mg/l	130		
Sólidos totales	ST	mg/l	1 600		
Sulfatos	SO ₄ -2	mg/l	1000		
Sulfuros	S-2	mg/l	0,5		
Γemperatura	°C		Condición natural ± 3		
Tensoactivos	Activas al azul de metileno	mg/l	0,5		
l'etracloruro de carbono	Tetracloruro de carbono	mg/l	1,0		

Fuente: Texto Unificado de Legislación Secundaria [70].

Los factores más relevantes son:

$$DBO5 = 293mg/l$$

$$DQO = 464 mg/l$$

Si los reducimos a un 77% de DQO como valor permisible, y se reducen a:

$$DQO \ red = \frac{464mg}{l}x (1 - 0.77)$$
 $DQO \ red = 106.72 \ mg/l$

Condición:

 $DQO \ red > 200mg/l$

$106.72 \, mg/l > 200 \, m/l \, OK \, CUMPLE$

Si los reducimos a un 81% de DBO5 como valor permisible, y se reducen a:

$$DBO5 \ red = rac{293mg}{l}x \ (1-0.81)$$
 $DBO5 \ red = 55.67 \ mg/l$
 $Condici\'on$:

 $DB05 \ red > 100 mg/l$ 55.67 $mg/l > 100 \ m/l \ \textit{OK CUMPLE}$

Tabla 104. Parámetros analizados del agua residual sin tratar

PARÁMETROS	UNIDADES	RESULTADOS
Aceites y Grasas	mg/l	46.45
PH(agua residual)	UpH	6.46
Demanda Bioquímica de	mg/l	293
Oxigeno DBO ₅		
Demanda Química de	mg/L	464
Oxigeno DQO		

Fuente: Laboratorios de UNACH Anexo 3 **Elaborado por:** David Cruz y Yadira Pachucho

3.2.6 Resumen de dimensionamiento de cada Unidad de la PTAR.

Tabla 105. Dimensiones de Canal de Entrada

DIMENSIONES CANAL DE ENTRADA				
Base	50 cm			
Altura	40 cm			

Elaborado por: David Cruz y Yadira Pachucho

Tabla 106. Dimensiones del tanque desarenador

CARACETERISITCAS DE REJILLA					
Ancho de Rejilla	50 cm				
Alto de Rejilla	40 cm				
Diámetro varilla	12 mm				
Inclinación	45 grados				
Espaciado de varilla	2.5 cm				

Número de barras	9 varillas	
------------------	------------	--

Elaborado por: David Cruz y Yadira Pachucho

Tabla 107. Dimensiones del tanque desarenador

	DIMENSIONES DESARENADOR				
L		2.5 m			
В		0.5 m			
Н		0.4 m			

Elaborado por: David Cruz y Yadira Pachucho

Tabla 108. Dimensiones del tanque séptico

DIMENSIONES TANQUE SÉPTICO				
Tiempo de retención	6 horas			
L	5.5 m			
В	2.5 m			
Hn	2.0 m			

Elaborado por: David Cruz y Yadira Pachucho

Tabla 109. Lecho de secado

DIMENSIONES FILTRO BILÓGICO				
Ha	1.0 m			
L	1.5 m			
В	3.0 m			

Elaborado por: David Cruz y Yadira Pachucho

Tabla 110. Dimensiones del filtro biológico ascendente

DIMENSIONES FILTRO BILÓGICO				
Tiempo de retención	4.8 horas			
D	2.0 m			
Н	1.5 m			

Elaborado por: David Cruz y Yadira Pachucho

También se determinó que el DQO se redujo en un 77% y mientras que la DBO₅% seredujo en un 81% por los cual se determinó que si hubo mejoría en el agua residual tratada.

Tabla 111. Presupuesto referencial universidad técnica de ambato facultad de ingeniería civil y necánica carrera de ingeniería civil

PRESUPUESTO REFERENCIAL

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

Elaborado por: Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly

TABLA DE DESCRIPCIÓN DE RUBROS, UNIDADES, CANTIDADES Y PRECIOS					
Ítem	Rubro/Descripción	Unidad	Cantidad	Precio Unitario	Precio Total
1	PRIMERA ETAPA: RED DE ALCANTARILLADO SANITARIO 433 26				
1.1	OBRAS PRELIMINARES				986.84
	Replanteo y Nivelación con equipo topográfico en		0.4714	240.54	
1.1.1	alcantarillado	km	3.6746	268.56	986.84
1.2	DERROCAMIENTO Y REPOSICIÓN				19 586.14
1.2.1	Rotura de carpeta Asfáltica	m2	3307.1	5.33	17 624.26
1.2.2	Reposición de carpeta asfaltica e>=5 cm	m3	165	11.86	1 961.88
1.3	POZOS DEL SISTEMA DE ALCANTARILLADO				24 231.25
1.3.1	s.c Pozo revisión h=1.00-2.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	57.00	327.40	18 661.76
1.3.2	s.c Pozo revisión h=2.51-3.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	9.00	390.99	3 518.91
1.3.3	s.c Pozo revisión h=3.51-4.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	1.00	444.68	444.68
1.3.4	s.c Pozo revisión h=4.51-5.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	1.00	494.70	494.70
1.3.5	s.c Pozo revisión h=5.51-6.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	1.00	533.69	533.69
1.3.6	s.c Pozo revisión h=6.51-7.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	1.00	577.51	577.51
1.4	MOVIMIENTOS DE TIERRA				236 238.30
1.4.1	Excavación mecánica con retroexcavadora, zanja	m3			
1.4.2	(1.00-2.50) m, material sin clasificar Excavación mecánica con retroexcavadora, zanja	m3	3 307.50	5.35	8 037.23
1.4.3	(2.51-3.50) m, material conglomerado Excavación mecánica con retroexcavadora, zanja	m3	1 211.95	5.35	2 945.04
	(3.51-4.50) m, material conglomerado Excavación mecánica con retroexcavadora, zanja		231.08	5.35	561.53
1.4.4	(4.51-5.50) m, material conglomerado Excavación mecánica con retroexcavadora, zanja	m3	241.34	5.35	586.44
1.4.5	(5.51-6.50) m, material conglomerado Excavación mecánica con retroexcavadora, zanja	m3	346.57	5.35	842.17
1.4.6	(6.51-7.50) m, material conglomerado	m3	404.33	5.35	982.53
1.4.7	Excavación Manual	m3	100.00	48.53	4 852.83
1.4.8	Entibado de zanjas h > 2 m	m2	750.91	14.97	11 238.45
1.4.9	Rasanteo de zanja	m2	1 968.88	4.34	8 551.28
1.4.10	Colchón de arena e=10 cm	m3	146.49	15.64	2 291.10
1.4.11	Relleno compactado mecánico (Material de excavación)	m3	5 742.77	33.91	194 724.83
1.4.12	Desalojo de materiales sobrante hasta 5km. Cargado a máquina	m3	184.90	3.38	624.86
1.5	OBRAS HIDRÁULICAS				24 098.24
1.5.1	Pozo de revisión de H.S, h= (1.00-2.5) m. Incluye tapa de HF	u	57.00	341.10	19 442.87
1.5.2	Pozo de revisión de H.S, h= (2.51-3.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	9.00	348.87	3 139.83
1.5.3	Pozo de revisión de H.S, h= (3.51-4.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	1.00	362.77	362.77
1.5.4	Pozo de revisión de H.S, h= (4.51-5.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	1.00	372.53	372.53
1.5.5	Pozo de revisión de H.S, h= (5.51-6.50) m. Incluye tana de HF (Incluve Pozos de resalto)	u	1.00	383.75	383.75
1.5.6	Pozo de revisión de H.S, h= (6.51-7.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	1.00	396.49	396.49
1.6	TUBERÍAS Y ACCESORIOS				103 214.59
1.6.1	Suministro e Instalación de tuberías PVC. DNI=200 mm	m	3 660.61	24.06	88 076.23
1.6.2	Acometida domiciliaria de alcantarillado, incluye accesorios y caja de revisión	u	73	207.37488	15 138.37
2		D DE ALCANTARILLADO	PLIVIAL	1	384 694.30
2.1	OBRAS PRELIMINARES	DE ALCANTAKILLADO	LECTIAL		587.51
2.1.1	Replanteo y Nivelación con equipo topográfico en	km	2.18765	268.56	587.51
2.2	DERROCAMIENTO Y REPOSICIÓN				11 956.70
2.2.1	Rotura de carpeta Asfáltica	m2	1968.89	5.93	11 673.79

2.2.2	Reposición de carpeta asfaltica e>=5 cm	m3	984.44	11.86	282.91
	POZOS DEL SISTEMA DE	ni.	704.44	11.00	202.71
2.3	ALCANTARILLADO				11 011.89
2.3.1	s.c Pozo revisión h=1.00-2.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	23.00	327.40	7 530.18
2.3.2	s.c Pozo revisión h=3.51 - 4.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	4.00	390.99	1 563.96
2.3.3	s.c Pozo revisión h=4.50 - 5.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm	u	2.00	444.68	889.36
2.3.4	s.c Pozo revisión h=5.50 - 6.50m f'c=210 kg/cm2	u	1.00	494.70	494.70
2.3.5	(Diámetro interior 0.9m) pared 30cm s.c Pozo revisión h=7.50 - 8.50m fc=210 kg/cm2	u	1.00	533.69	533.69
2.4	(Diámetro interior 0.9m) pared 30cm MOVIMIENTOS DE TIERRA				101 690.03
	Excavación mecánica con retroexcavadora, zanja		205415		
2.4.1	(1.00-2.50) m, material sin clasificar Excavación mecánica con retroexcavadora, zanja	m3	3 956.47	5.35	21 161.74
2.4.2	(3.51- 4.50) m, material conglomerado	m3	733.58	5.35	3 923.64
2.4.3	Excavación mecánica con retroexcavadora, zanja (4.50 - 5.50) m, material conglomerado	m3	451.49	5.35	2 414.86
2.4.4	Excavación mecánica con retroexcavadora, zanja (5.51 - 6.50) m, material conglomerado	m3	529.83	5.35	2 833.90
2.4.5	Excavación mecánica con retroexcavadora, zanja (7.50 -8.50) m, material conglomerado	m3	1 130.21	5.35	6 045.10
2.4.6	Excavación Manual	m3	17.72	48.53	859.92
2.4.7	Entibado de zanjas h > 2 m	m2	1 772.00	21.50	38 105.07
2.4.8	Rasanteo de zanja	m2	984.44	4.34	4 275.65
2.4.9	Colchón de arena e=10 cm	m3	17.72	187.75	3 326.92
2.4.10	Relleno compactado mecánico (Material de excavación)	m3	100.00	181.18	18 118.37
2.4.11	Desalojo de materiales sobrante hasta 5km. Cargado a máquina	m3	184.90	3.38	624.86
2.5	OBRAS HIDRÁULICAS				10 806.10
2.5.1	Pozo de revisión de H.S, h= (1.00-2.5) m. Incluye tapa de HF	u	23.00	341.10	7 845.37
2.5.2	Pozo de revisión de H.S, h= (3.51-4.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	4.00	348.87	1 395.48
2.5.3	Pozo de revisión de H.S, h= (4.50- 5.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	2.00	404.49	808.98
2.5.4	Pozo de revisión de H.S, h= (5.50 - 6.50) m. Incluye tapa de HF (Incluye Pozos de resalto)	u	1.00	372.53	372.53
2.5.5	Pozo de revisión de H.S, h= (7.50 - 8.50) m. Incluye tapa de HF (Incluve Pozos de resalto)	u	1.00	383.75	383.75
2.6	TUBERÍAS Y ACCESORIOS				24 259.56
2.6.1	Suministro e Instalación de tuberías PVC. DNI=250 mm	m	410.17	29.71	12 187.19
2.6.2	Acometida domiciliaria de alcantarillado, incluye accesorios y caja de revisión	u	73.00	165.37	12 072.37
2.7	CERRAMIENTO				24 913.56
2.7.1	Replanteo y nivelación de cerramiento	ml	352.00	1.05	369.10
2.7.2	Excavación a máquina sin clasificar	m3	15.84	1.40	22.18
2.7.3	Desalojo a máquina (Retro+volqueta) hasta 5km	m3	15.84	3.91	61.91
2.7.4	Hormigón simple f'c= 180kg/cm2. (para cimientos Incluye encofrado)	m3	2.11	142.77	301.54
2.7.5	Hormigón simple f'c= 180kg/cm2. (para cadenas Incluye encofrado)	m3	13.73	309.96	4 255.11
2.7.6	Hormigón simple f'c= 180kg/cm2. (para columnas Incluye encofrado)	m3	0.70	311.06	218.99
2.7.7	S.c Acero de refuerzo fy=4200 kg/cm2	Kg	2 732.28	4.14	11 319.28
2.7.8	S.C. Cerramiento de malla H=2.00	m	343.20	14.74	5 057.37
2.7.9	S.C. Tubería galvanizada para poste (Diámertro=2")	m	167.20	13.76	2 300.78
2.7.10	S.C. Puerta de acceso de tubo H.G. y malla de diseño	u	2.00	503.65	1 007.30
3	TERCERA ETAPA: PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES			127 016.27	
3.1.1	OBRAS CIVILES GENERALES PLANTA DE TRATAMIENTO				127016.2735
3.1.2	Replanteo y nivelación	m2	3072	5.19	15934.24
3.1.3	Excavación a máquina sin clasificar	m3	87.694	3.58	314.29
3.1.4	Desalojo a máquina (Retro+volqueta) hasta 5km	m3	87.69	7.56	663.06

3.1.5	Replantillo hormigón simple fc=180 Kg/cm2 e=10cm	m2	807.08	19.446576	15694.94256
3.1.6	s.c. geomembrana	m2	1325.4	8.081616	10711.37385
3.1.7	Tubería PVC-P 110mm corrugada perforada drenaje	m	48.4	9.56202	462.801768
3.1.8	s.c. Tubería PVC-P 160mm 1.00Mpa U. sello elastomérico prueba	m	15.76	31.33	493.79
3.1.9	Hormigón simple f´c= 210kg/cm2. (Incluye encofrado)	m3	86.29	323.76	27 938.20
3.1.10	Acero de refuerzo Fy=4200kg/cm2	kg	8 125.34	4.14	33 661.63
3.1.11	Grava graduada	m3	344.70	11.22	3 867.87
3.1.12	Rejilla de hierro (D= 150mm)	u	2.00	5.63	11.27
3.1.13	Válvula de compuerta H.F (D=200mm, incluye accesorios)	u	4.00	853.46	3 413.85
3.1.14	Cajas de revisión de 1.00x1.00x1.20 (incluye tapa)	u	14.00	222.94	3 121.15
3.1.15	Tee de PVC (D= 110 mm)	u	4.00	8.13	32.54
3.1.16	Plantación de totoras	m2	1 089.00	3.10	3 378.96
3.1.17	Tubería PVC (D=200 mm, prueba)	m	250.82	20.29	5 089.01
3.1.18	Tubo de 4" de acero inoxidable L= 1.00m (Aireadores)	ml	4.00	21.21	84.84
3.1.19	Bomba centrifuga autocebante	u	2.00	1 057.77	2 115.55
3.1.20	Codo PVC (D=160mm)	u	2.00	13.45	26.90
SUBTOTAL	_				745 510.57
IVA				12 %	89 461.27
TOTAL					834 971.84

Son: OCHOCIENTOS TREINTA Y CUATRO MIL NOVECIENTOS SETENTA Y UN CON OCHENTA Y CUATRO DÓLARES AMERICANOS

Elaborado por: David Cruz y Yadira Pachucho

CAPÍTULO IV. CONCLUSIONES Y RECOMENDACIONES

Conclusiones:

- Se realizó el levantamiento topográfico del Caserío Sigsipamba, lo que permitió determinar 2.57 hectáreas de área de proyecto con un área destinada a la PTAR correspondiente a 352.45 m2. Para la obtención de coordenadas de realizó el levantamiento con estación total, con un total de 1136 puntos topográficos, donde el punto inicial corresponde a las coordenadas E770806.6101-N9860630.44 y el punto final E771382.9134 N9861658.77, tomando como referencias al ancho y eje de la vía, para después exportar esos datos al programa de Ingeniería Civil 3D.
- Se diseñó el sistema de alcantarillado sanitario y pluvial en base a las normativas de diseño de alcantarillado, EMAAP-Q, SENAGUA, normas nacionales e internacionales y guías de diseño para un óptimo funcionamiento del sistema. Para el diseño de la PTAR se aplicaron normativas vigentes proporcionada por la OPS y CONAGUA.
- Se diseñó el sistema de alcantarillado sanitario el cual comprende una red de 3.67 km con un caudal de diseño acumulado de 8,39 lt/seg. El sistema consta de 2 redes principales y 12 ramales que se conectan a través de 70 pozos de diferentes alturas con tuberías de PVC de 200mm de diámetro.
- Se diseñó el sistema de alcantarillado pluvial el cual comprende una red de 2.18 km con un caudal de diseño acumulado de 164.78 lt/seg. El sistema consta de varias redes de tuberías de PVC de 250mm de diámetro, que se conectan a través de 31 pozos de diferentes alturas.
- Se realizó el diseño de la PTAR, con sus correspondientes componentes como: el canal de entrada, rejilla (cribado), desarenador, tanque séptico, lecho de saco de lodos, y filtro biológico. El cual es un sistema sumamente indispensable para el tratamiento y evacuación de las aguas residuales.
- Mediante el correspondiente estudio se determinó el periodo de diseño para cada sistema de alcantarillado y la PTAR, tomando en cuenta cada componente que interviene en los distintos diseños propuestos en el proyecto.

- El análisis químico de las aguas residuales que se realizó en el sector arrojo que la relación de la DBO⁵/BQO fue de 0.63 lo que indica que el agua residual es de fácil tratabilidad.
- Se realizó el análisis de precios unitarios de los componentes y materiales que se utilizarán en el diseño del proyecto, obteniendo un presupuesto de la obra de USD 834 971.84 dólares.

Recomendaciones

- Se recomienda que la Municipalidad de Ambato realice el presente proyecto ya que el sector no cuenta con un sistema de alcantarillado. Ya que la correcta evacuación de las aguas residuales dará un mejoramiento a la calidad de vida a los habitantes del Caserío Sigsipamba.
- Se recomienda que la operación y el mantenimiento del sistema de alcantarillado sanitario, pluvial y planta de tratamiento sea ejecutado por una persona calificada lo cual garantizara su óptimo funcionamiento.
- Se recomienda concientizar a los moradores del sector, la importancia de mantener limpias las áreas de tratamiento de las aguas residuales, para su correcto funcionamiento.

BIBLIOGRAFÍA

- [1] Gobierno Autónomo Descentralizado Parroquial Rural de Picaihua, Actualizació del Plan de Desarrollo y Ordenamiento Territorial de la parroquia Picaihua.
 Cantón Ambato, Provincia de Tungurahua, Ambato: GADPR de Picaihua, 2020.
- [2] R. Pérez, Diseño y construcción de alcantarillados de aguas residuales, pluvial y drenaje en carreteras, Bogotá: Ecoe Ediciones, 2013.
- [3] E. Gordillo, «Diseño de los sistemas de alcantarillado sanitario, pluvial y tratamiento de aguas servidas del barrio el Paraíso del Distrito Metropolitano de Quito,» Quito, 2011.
- [4] E. Otalora, «Propuesta De Alcantarillado Pluvial Para Garantizar El Drenaje Para Escorrentía Superficial-Barrio San Vicente Suroriental, Localidad San Cristobal-Bogotá D.C.,» Bogotá D.C., 2018.
- [5] Asamblea Nacional de la República del Ecuador, Constitución de la República d Ecuador, Montecristi: Lexis, 2008.
- [6] Consejo Nacional de Planificación, Plan Nacional para el Buen Vivir 2017-2021
 Quito: Secretaría Nacional de Planificación y Desarrollo Senplades, 2017.
- [7] EMPAS S.A., Manual para el cálculo de alcantarillados, Santander: Empresa Pública de Alcantarillado de Santander S.A. E.S.P, 2019.
- [8] SIAPA, Criterios y lineamientos técnicos para factibilidades. Alcantarillado Sanitario., Jalisco: SIAPA, 2014.
- [9] Comisión Nacional del Agua de México, Manual de Agua Potable, Alcantarillad y Saneamiento. Sistemas Alternativos de Alcantarillado Sanitario, México, D.F.: Secretaría de Medio Ambiente y Recursos Naturales, 2016.
- [10] W. Zhao, T. Beach y Y. Rezgui, «Automated Model Construction for Combined Sewer Overflow Prediction Based on Efficient LASSO Algorithm,» IEEE transactions on systems, man, and cybernetics: systems, vol. 49, nº 6, pp. 1254-1269, 2017.
- [11] L. Penagos, «Componentes del sistema de alcantarillado para la vía secundaria sector grival municipio de Mosquera,» Bogotá, 2015.
- [12] D. Bravo y E. Solis, «Diseño del sistema de alcantarillado sanitario para el barrio

- Los Laureles, comunidad de Nero, de la parroquia Baños, cantón Cuenca,» Cuenca, 2018.
- [13] P. Silvestre, «Comprobación de diseños tipo para captaciones de agua superficial en ríos para consumo humano,» Manabí, 2021.
- [14] M. Fuentes y L. Díaz, «Diseño de red de agua y alcantarillado considerando diversos métodos de cálculo de dotación para el sector las Lomas de San Isidro e Jicamarca, Huarochiri, Lima,» Lima, 2020.
- [15] D. Manco, J. Guerrero y T. Morales, «Estimación de la Demanda de Agua en Centros Educativos: Caso de Estudio Facultad de Ciencias Ambientales de la Universidad Tecnológica de Pereira, Colombia,» Revista Luna Azul, nº 44, pp. 153-164, 2017.
- [16] Instituto Ecuatoriano de Normalización, Código Ecuatoriano de la Construcción. C.E.C. Normas para Estudio y Diseño de Sistemas de Agua Potable y Disposició de Aguas Residuales para Poblaciones Mayores a 1000 Habitantes, Quito: CPE INEN 5, 1992.
- [17] B. Lárraga, «Diseño del Sistema de Agua Potable para Augusto Valencia, cantór Vinces, Provincia de los Ríos,» Quito, 2016.
- [18] M. Salas, Informe de diagnóstico de servicios de agua, saneamiento e higiene (WASH por sus siglas en inglés) de cuatro instituciones educativas beneficiarias del Proyecto WASH ejecutado por Plan International, financiado por JNO Grant (BP # 362), Quito: Unidad Educativa Municipal Calderón, 2021.
- [19] Gobierno del Ecuador, Memoria de Cálculo del Sistema de Agua Potable. Componente Red de Distribución, Ecuador Estrategico EP, 2017.
- [20] N. López, «Diseño de alcantarillados sanitario y pluvial y planta de tratamiento c aguas residuales, para la comunidad Metzankin del cantón Limón Indanza, provincia de Morona Santiago,» Cuenca, 2016.
- [21] Empresa Metropolitana de Alcantarillado y Agua Potable, Normas de Diseño de Sistemas de Alcantarillado para la EMAAP-Q, Quito: V&M Gráficas, 2009.
- [22] W. Arévalo, J. Pardo y D. Real, «Diseño del sistema de alcantarillado sanitario d la Vereda Altamar en el municipio de la Calera Cundinamarca,» Bogota, 2015.
- [23] A. Granja y D. Núñez, «Determinación del coeficiente de retorno de aguas

- servidas para el área de aporte de la planta de tratamiento de aguas residuales de Quitumbe, Distrito Metropolitano de Quito,» Quito, 2016.
- [24] Alcaldía de Manta, II etapa de reconstrucción de sistemas hidrosanitarios afectados por el teremoto del 16 de abril del 2016, Manta: Aguas de Manta, 2017
- [25] A. Barros, «Automatización de herramientas informáticas para el diseño de sistemas de alcantarillado,» Cuenca, 2015.
- [26] I. Luviano, «Revisión y determinación de los coeficientes de variación del cauda en alcantarillado sanitario para zonas rurales,» Morelia, 2015.
- [27] D. Moya, Metodología de diseño del drenaje urbano, Ambato: Universidad Técnica de Ambato, 2018.
- [28] Compras públicas, «Memoria técnica del sistema de alcantarillado sanitario y pluvial de la comunidad de Cielo Verde, parroquia Garcia Moreno, cantón Cotacachi, provincia de Imbabura,» 2011. [En línea]. Available: https://www.compraspublicas.gob.ec/ProcesoContratacion/compras/PC/bajarArcivo.cpe?Archivo=U0VCBnk_--MF8nOOickeB_KhKyn7PLk9E23zb-uYdpE,#:~:text=di%C3%A1metro%20m%C3%ADnimo%20que%20deber%C3A1%20usarse,pluvial%20y%20300%20para%20combinado.. [Último acceso: 5 noviembre 2022].
- [29] P. Cortez, V. Tzachkov, J. Rodríguez, I. Caldiño, J. Figueroa y F. Pellegrini, Proyecto "Estudio del coeficiente de rugosidad de tuberías etapa II" CLAVE HC1610.1. Informe final, México: Subcoordinación de hidráulica urbana, 2016.
- [30] J. Analuisa, «Diseño del sistema de alcantarillado sanitario y del tratamiento de sus aguas residuales con el método Doyoo Yookasoo para el Barrio El Cristal, parroquia Totoras, cantón Ambato, provincia de Tungurahua,» Ambato, 2016.
- [31] F. Castro y E. La Motta, «Herramientas gráficas de diseño para determinar la pendiente mínima de autolimpieza en tuberías de alcantarillado sanitario de pequeño diámetro,» Ingeniería del agua, vol. 24, nº 1, pp. 49-63, 2020.
- [32] Compras públicas, «Memoria técnica del sistema de alcantarillado (componente red de aguas residuales y aguas lluvias),» 2018. [En línea]. Available: https://www.compraspublicas.gob.ec/ProcesoContratacion/compras/PC/bajarArcivo.cpe?Archivo=JKzeQynW66llRWsjSdj2WZF1meMhlvNFVwtyAcDAMdM,

- [Último acceso: 8 noviembre 2022].
- [33] C. Salazar, «Análisis comparativo de los criterios de diseño de redes de alcantarillado entre normas latinoamericanas y su contraste con la ecuatoriana,» Machala, 2021.
- [34] O. Jiménez, «Fórmulas generales para los coeficientes de Chézy y de Manning,» vol. 6, nº 3, pp. 33-38, 2015.
- [35] C. Salamanca, J. Rodríguez y C. Ruiz, «Diseño del alcantarillado pluvial de la parcelación residencial San Carlos ubicada en el Municipio de Villavicencio-Meta,» Villavicencio, 2018.
- [36] C. Bonilla, J. Ramón y J. Ramón, Sistemas de drenaje urbano. Sumideros de captación de aguas lluvias, Pamplona: Universidad de Pamplona, 2022.
- [37] D. Pérez, «Diseño de la red de alcantarillado sanitario y pluvial de los sectores la Florida, Reina del Tránsito y Jesús del Gran Poder, cantón Cevallos, provincia de Tungurahua,» Ambato, 2022.
- [38] Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura, Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017. Aguas residuales: El recurso desaprovechado., París: UNESCO, 2017.
- [39] M. Sánchez, «Tratamiento de aguas residuales,» INCYTU, nº 28, pp. 1-6, 2019.
- [40] M. Quispe, L. Piñas, J. Del Valle y F. Aguirre, Aplicaciones tecnológicas de tratamiento de aguas residuales, Primera ed., Ciudad de México: Nosótrica Ediciones, 2020.
- [41] F. Jacobo, «Aguas residuales urbanas y sus efectos en la comunidad de Paso Blanco, municipio de Jesús María, Aguascalientes,» Revista de El Colegio de Sa Luis, vol. 8, nº 6, pp. 267-293, 2018.
- [42] M. Osorio, W. Carrillo, J. Negrete, X. Loor y E. Riera, «La calidad de las aguas residuales domésticas,» Polo del Conocimiento, vol. 6, nº 3, pp. 228-245, 2021.
- [43] G. Cárdenas y I. Sánchez, «Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública,» Universidad y Salud, vol. 15, nº 1, pp. 72-88, 2013.
- [44] H. Ayuntamiento de Xalapa, Descripción del proceso del tratamiento de aguas

- residuales en las plantas de tratamiento I y II, Xalapa: Comisión Municipal de Agua Potable y Saneamiento de Xalapa, 2018.
- [45] B. Tibán, «Diseño del alcantarillado sanitario, para mejorar la calidad de vida de la comunidad de Hualcanga la dolorosa, del cantón quero, provincia de Tungurahua,» Ambato, 2021.
- [46] M. Aguaguiña, «Diseño del sistema de alcantarillado sanitario para mejorar la calidad de vida de los caseríos Chumaqui, Sigualo, Pamatug y Chambiato de la parroquia García Moreno, cantón Pelileo, provincia de Tungurahua,» Ambato, 2022.
- [47] Bing Imágenes, «Mapa político del Ecuador,» 2022. [En línea]. Available: mapa politico del ecuador Bing images. [Último acceso: 28 noviembre 2022].
- [48] Organización de las Naciones Unidas para la Alimentación y la Agricultura, «Perfil General de Ecuador,» 2022. [En línea]. Available: https://www.fao.org/3/ad670s/ad670s03.htm#:~:text=Localizaci%C3%B3n%3A%20El%20Ecuador%20est%C3%A1%20ubicado,Per%C3%BA%20y%20el%20Oc%C3%A9ano%20Pac%C3%ADfico.. [Último acceso: 28 noviembre 2022].
- [49] Educar Plus, «Ecuador,» 2022. [En línea]. Available: https://educarplus.com/ecuador. [Último acceso: 29 noviembre 2022].
- [50] Trenandinosaa.com, «Ecuador.- División Administrativa provincias del Ecuador 2019. [En línea]. Available: https://www.trenandinosaa.com/ecuador-division-administrativa-provincias-del-ecuador/. [Último acceso: 29 noviembre 2022].
- [51] Bing images, «Mapa de Tungurahua,» 2022. [En línea]. Available: mapa detungurahua Bing images. [Último acceso: 29 noviembre 2022].
- [52] EcuRed. Enciclopedia Cubana, «Provincia de Tungurahua (Ecuador),» 2022. [Er línea]. Available: https://www.ecured.cu/Provincia_de_Tungurahua_(Ecuador). [Último acceso: 29 noviembre 2022].
- [53] Gobierno de la Provincia de Tungurahua, «Pueblo indígena de Kisapincha,» 202 [En línea]. Available: https://tungurahuaturismo.com/es-ec/tungurahua/ambato/culturas-nacionalidades/pueblo-indigena-kisapincha-a44jftpvd. [Último acceso: 29 noviembre 2022].
- [54] F. Díaz, «La difusion de productos comunicacionales mediante el uso de las tic's

- y el desarrollo turistico de la parroquia Picaihua del canton Ambato en la provincia de Tungurahua,» Ambato, 2017.
- [55] I. Abad, «Norma urbana para estudios y disenos,» 2022. [En línea]. Available: https://www.academia.edu/7838872/Norma_urbana_para_estudios_y_disenos. [Último acceso: 19 noviembre 2022].
- [56] L. Tirado, «Diseño de la red alcantarillado sanitario y planta de tratamiento de la aguas residuales de la comunidad 12 de Octubre, parroquia Yanayacu, cuidad de Quero, provincia de Tungurahua,» Ambato, 2016.
- [57] A. Bernal, «Sistemas de Alcantarillado,» 2001. [En línea]. Available: https://es.scribd.com/document/538787618/Reglamento-Tecnico-de-Diseno-Para Sistemas-de-Alcantarillado. [Último acceso: 18 noviembre 2022].
- [58] R. López, Elementos de Diseño para Acueductos y Alcantarillados, Bogotá: Escuela Colombiana de Ingeniería, 2000.
- [59] Universidad Autónoma Juan Misael Saracho, «NB 688 Instalaciones Sanitarias Y Alcantarillado,» 2019. [En línea]. Available: https://www.studocu.com/bo/document/universidad-autonoma-juan-misael-saracho/ing-sanitaria-y-ambiental/nb-688-instalaciones-sanitarias-y-alcantarillado/5534589. [Último acceso: 18 noviembre 2022].
- [60] P. Tippens, Física. Conceptos y aplicaciones, México D. F.: Mc Graw Hill, 2011
- [61] R. Crites, G. Tchobanoglous, M. Camargo, L. Pardo y G. Mejía, Tratamiento de aguas residuales en pequeñas poblaciones, Bogotá: McGraw-Hill, 2000.
- [62] Metcalf & Eddy INC., Ingeniería de aguas residuales, Madrid: McGraw-Hill, 1995.
- [63] INEN, Implementación de plantas potabilizadoras prefabricadas en sistemas públicos de agua potable, Quito: Norma Técnica Ecuatoriana NTE INEN 2655:2012, 2012.
- [64] D. Macloni, «Diseño de planta de tratamiento de aguas residuales para el municipio de San Juan Chamelco, Alta Verapaz,» Guatemala de la Asunción, 2014.
- [65] M. Paguay, «Las aguas residuales y su incidencia en la calidad de vida de los habitantes de la lotización del colegio de ingenieros civiles del sector Huamurco

- del cantón Tena, provincia del Napo,» Ambato, 2011.
- [66] Organización Panamericana de la Salud, Guía para el diseño de tanques sépticos tanques Imhoff y lagunas de estabilización, Lima: OPS/CEPIS/05.163, 2005.
- [67] D. Villamarín, «Estudio de un filtro biológico para el control de efluentes generados en una quesera en la parroquia Mulaló - cantón Latacunga, a base de piedra caliza, canutillos de cerámica, zeolita y carbón activado granular de cásca de coco.,» 2017.
- [68] M. Ortiz, «Disposición de las aguas servidas y su influencia en la condición sanitaria de los moradores del barrio La Merced, de la parroquia La Matriz, del cantón Santiago de Píllaro, de la provincia de Tungurahua,» 2016.
- [69] INEN, Código Ecuatoriano de la Construcción. (C.E.C). Diseño de Instalaciones Sanitarias: código de practica para el diseño de sistemas de abastecimiento de agua potable, disposición de excretas y residuos líquidos en el área rural, CPE INEN 5, 1997.
- [70] M. Barreros, «Diseño del sistema de alcantarillado sanitario con la depuración de las aguas residuales del sector San Isidro Nuevo, parroquia Mulliquindil Santa Ana, provincia de Cotopaxi,» 2017.

ANEXOS

Anexo N° 1: Fotografías

Fotografía N° 1	Fotografía N° 2
SIGSIPAMEA CHOUCHA	
Visita al Caserio Sigsipamba	Implantación del equipo topográfico
Fotografía N° 3	Fotografía N° 5
Medición de los puntos topográficos	Señalización de los cambios de estación
	realizados en el levantamiento
Fotografía N° 6	Fotografía N° 7
Reconocimiento de sitio para realizar	Área destinada para la PTAR
cambio de estación	

Anexo N°2: Datos topográficos

Levant	amiento topo	ográfico del	Proyecto	
<u>Punto</u>	<u>Este</u>	<u>Norte</u>	Elevación	Descripción
1	770806.6101	9860630.44	2624.159	E100
2	770799.567	9860632.13	2624.242	P101
3	770807.0825	9860628.78	2623.977	BI
4	770809.9055	9860626.4	2623.985	Е
5	770811.1497	9860624.34	2623.943	BD
6	770811.5281	9860624.02	2623.969	ВО
7	770809.8366	9860629.87	2623.969	BI
8	770811.5684	9860627.71	2623.927	Е
9	770813.0075	9860625.65	2623.84	BD
10	770813.5197	9860625.46	2623.856	ВО
11	770823.8757	9860640.24	2623.157	ВО
12	770824.2706	9860639.96	2623.012	BI
13	770825.5402	9860638.33	2623.126	Е
14	770827.2964	9860636.15	2623.073	BD
15	770827.7131	9860635.64	2623.215	ВО
16	770837.0917	9860650.24	2622.285	ВО
17	770837.4688	9860649.67	2622.146	BI
18	770838.7796	9860648.04	2622.174	Е
19	770840.4444	9860646.33	2622.129	BD
20	770840.9121	9860645.78	2622.263	ВО
21	770852.3231	9860660.75	2621.447	BI
22	770853.7527	9860658.85	2621.515	Е
23	770855.2145	9860657.01	2621.446	BD
24	770863.7344	9860671.68	2621.691	A
25	770864.6947	9860669.08	2621.125	BI
26	770866.1231	9860667.36	2621.167	Е
27	770867.4405	9860665.54	2621.143	BD
28	770877.1117	9860677.38	2620.654	BI
29	770878.5156	9860675.3	2620.722	Е
30	770879.5229	9860674.46	2620.712	BD
31	770890.5598	9860689.12	2619.588	BI
32	770892.4842	9860686.96	2619.603	Е

33	770894.1024	9860684.73	2619.514	BD
34	770906.1368	9860701.07	2617.674	BI
35	770907.8542	9860699.01	2617.733	Е
36	770909.8588	9860697.22	2617.599	BD
37	770912.8591	9860706.1	2616.757	VA1
38	770923.068	9860713.9	2615.265	CE1
39	770840.9902	9860641.26	2622.702	P
40	770854.1372	9860651.36	2621.034	CN
41	770876.4934	9860667.62	2620.452	P
42	770876.238	9860668.16	2620.414	CN
43	770902.0708	9860664.31	2617.526	CN
44	770896.2376	9860682.16	2619.169	CN
45	770912.7528	9860694.13	2617.266	P
46	770914.5885	9860691.18	2616.63	A
47	770913.0501	9860695.03	2616.846	CN
48	770912.8339	9860699.21	2617.177	BD
49	770911.4509	9860701.48	2617.225	E
50	770909.7258	9860703.52	2617.178	BI
54	770934.0482	9860703.13	2614.197	P
55	770945.3792	9860698.83	2612.851	BI
56	770943.8535	9860697.02	2613.008	BD
57	770943.6565	9860696.55	2613.001	CN
58	770960.834	9860688.39	2611.924	Α
59	770958.4771	9860685.52	2611.869	BD
60	770960.0989	9860687.17	2611.852	BI
61	770958.2765	9860685.28	2611.923	CN
62	770974.6639	9860673.61	2611.014	P
63	770989.1263	9860662.76	2609.503	BD
64	770990.4287	9860664.52	2609.501	BI
65	770988.4888	9860662.11	2609.98	CN
66	771013.6914	9860645.13	2609.281	P
67	771048.0916	9860621.17	2607.93	BI
68	771047.6492	9860620.6	2607.878	CN
69	771079.8117	9860562.46	2608.408	A

70	770948.1708	9860720.54	2612.811	P
71	770947.3021	9860721.28	2612.674	CN
72	770945.2094	9860723.91	2612.901	BD
73	770943.6787	9860726.1	2612.942	Е
74	770942.5188	9860728.16	2612.86	BI
75	770965.5589	9860745.6	2610.242	BI
76	770967.5215	9860744.05	2610.239	Е
77	770969.5722	9860742.27	2610.102	BD
78	770984.5268	9860747.55	2608.489	P
79	770983.6682	9860748.4	2608.691	CN
80	770996.0017	9860768.1	2607.386	BI
81	770997.9232	9860766.34	2607.429	Е
82	770999.5459	9860764.02	2607.348	BD
85	771135.0333	9860675.27	2604.644	BI
86	771131.482	9860672.75	2604.78	BD
87	771139.9006	9860641.09	2605.657	A
88	771175.6002	9860692.23	2605.061	A
89	771058.1184	9860726.35	2604.71	BD
90	771059.5593	9860728.58	2604.673	BI
91	771016.5178	9860771.26	2605.647	Р
92	771026.3476	9860790.01	2605.335	BI
93	771029.644	9860785.72	2605.357	BD
94	771028.365	9860788.11	2605.43	Е
95	771046.9056	9860804.28	2604.49	BI
96	771051.7097	9860797.93	2604.213	P
97	771048.9679	9860802.42	2604.542	Е
98	771050.5851	9860800.35	2604.468	BD
99	771049.7588	9860795.99	2604.008	CN
100	771047.6569	9860798.23	2604.589	VA2
101	771059.5427	9860806.53	2604.159	CE2
102	771047.741	9860798.29	2604.595	VA2_
103	771044.9126	9860803.3	2604.655	P
104	771054.092	9860795.31	2603.901	A
105	771062.0729	9860803.75	2603.502	CN

106	771065.6375	9860786.84	2603.701	A
107	771074.931	9860797.17	2603.534	A
108	771077.1686	9860783.22	2603.577	BD
109	771078.674	9860784.81	2603.42	BI
110	771090.4425	9860780.02	2603.278	A
111	771090.2966	9860770.27	2603.498	A
112	771100.3926	9860771.22	2603.283	BI
113	771098.4752	9860769.3	2603.41	BD
114	771073.9052	9860812.87	2603.27	CN
115	771059.8289	9860823.45	2603.919	A
116	771081.0694	9860818.32	2602.671	P
117	771076.0901	9860825.44	2603.178	BI
118	771077.8924	9860823.39	2603.265	E
119	771079.6332	9860821.24	2603.19	BD
120	771108.7636	9860849.5	2601.909	BI
121	771110.6547	9860847.41	2601.879	E
122	771113.067	9860842.17	2601.609	P
123	771112.1946	9860845.35	2601.758	BD
124	771134.8162	9860870.19	2600.481	BI
125	771137.8513	9860865.9	2600.465	BD
126	771136.3504	9860868.17	2600.494	E
127	771141.7462	9860865.57	2600.709	P
128	771141.1499	9860868.4	2600.301	VA3
129	771138.055	9860872.35	2600.301	CE3
130	771141.1065	9860868.45	2600.278	VE3_
131	771146.4139	9860869.63	2600.071	BI
132	771144.0802	9860867.41	2600.2	BD
133	771177.2387	9860844.63	2600.118	BI
134	771176.1086	9860842.34	2600.23	BD
135	771211.3692	9860821.82	2600.853	BI
136	771210.0306	9860819.74	2600.901	BD
137	771220.3195	9860818.57	2602.594	P
138	771234.9828	9860804.23	2601.329	BI
139	771233.4368	9860801.93	2601.503	BD

140	771242.1627	9860799.6	2601.705	VA4
141	771244.5586	9860793.14	2602.258	CE4
142	771242.808	9860807.32	2601.596	A
143	771242.4313	9860799.63	2601.517	CN
144	771260.9808	9860788.66	2602.366	P
145	771259.8232	9860786.57	2602.565	BI
146	771261.5306	9860793.23	2602.403	A
147	771258.7202	9860784.61	2602.65	BD
148	771269.3609	9860785.18	2603.027	A
149	771288.0771	9860765.81	2604.518	BI
150	771286.8652	9860763.57	2604.479	BD
151	771288.7475	9860766.78	2604.223	CN
152	771302.2992	9860758.39	2605.043	P
153	771298.0052	9860754.39	2605.143	BD
154	771299.8035	9860756.34	2605.199	BI
155	771334.0721	9860775.43	2604.454	A
156	771308.3669	9860745.93	2605.6	BI
157	771306.5144	9860744.05	2605.624	BD
158	771314.7719	9860730.86	2606.233	BI
159	771312.3515	9860729.86	2606.044	BD
160	771318.6896	9860716.88	2606.314	BI
161	771315.9272	9860715.43	2606.021	BD
162	771311.5501	9860714.06	2606.062	A
163	771211.6518	9860821.79	2600.587	CN
164	771228.1236	9860822.37	2600.729	A
165	771208.7899	9860830.74	2600.445	A
166	771177.6751	9860845.27	2599.897	P
167	771224.5951	9860788.02	2601.916	A
168	771141.1377	9860868.41	2600.288	VE3
169	771148.8972	9860881.06	2599.904	BI
170	771151.9259	9860877.1	2599.854	BD
171	771150.4103	9860879.44	2599.951	Е
172	771160.7738	9860883.88	2599.575	BD
173	771155.5695	9860887.08	2599.646	BI

174	771158.1631	9860885	2599.705	E
175	771158.3438	9860891.32	2599.502	BI
176	771156.4857	9860896.13	2599.478	BI
177	771164.9397	9860887.53	2599.482	BD
178	771162.4844	9860898.58	2599.361	BD
179	771165.4128	9860891.4	2599.503	E
180	771172.2113	9860893.37	2599.322	BD
181	771165.5035	9860897.33	2599.363	ВІ
182	771170.3087	9860895.5	2599.377	E
183	771168.6112	9860897.95	2599.293	ВІ
184	771174.8797	9860893.17	2599.676	P
185	771190.6186	9860914.91	2598.918	BI
186	771194.5073	9860911.48	2598.913	BD
187	771192.7358	9860913.22	2598.936	E
188	771214.0119	9860923.68	2599.77	P
189	771210.5337	9860926.37	2598.614	BD
190	771209.4451	9860928.37	2598.698	E
191	771210.2473	9860923.43	2598.529	A
192	771224.1982	9860943.38	2598.52	BI
193	771225.8074	9860941.42	2598.436	E
194	771227.5589	9860935.54	2598.255	A
195	771227.7578	9860939.63	2598.292	BD
196	771254.0246	9860954.91	2598.902	P
197	771248.8801	9860962.17	2598.204	BI
198	771250.2747	9860960.32	2598.246	Е
199	771251.7198	9860958.28	2598.15	BD
200	771256.514	9860969.76	2598.126	VA5
201	771267.6121	9860971.55	2597.958	CE5
202	771265.4077	9860965.59	2598.469	A
203	771294	9860985.39	2597.133	P
204	771280.117	9860983.27	2597.61	BI
205	771281.4481	9860981.27	2597.562	E
206	771282.8547	9860979.05	2597.384	BD
207	771298.8457	9860996.72	2596.392	BI

208 771301.8475 9860992.8 2596.341 BD 209 771300.301 9860994.77 2596.44 E 211 771280.2649 9860976.08 2597.752 CN 214 771306.2683 9860987.38 2596.722 P 215 771328.1284 9860958.19 2598.309 BD 216 771326.5011 9860951.27 2599.172 P 218 771337.6467 9860951.27 2599.172 P 218 771349.9237 9860921.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860900.26 2602.322 A 222 771371.866 9860918.91 2601.164 A 223 771373.8922 9860918.91 2601.164 A 224 771370.2003 986093.5 2600.436 A 225 771370.2003					
211 771280.2649 9860976.08 2597.752 CN 214 771306.2683 9860987.38 2596.722 P 215 771328.1284 9860960.29 2598.313 BI 216 771326.5011 9860958.19 2598.309 BD 217 771337.6467 9860951.27 2599.172 P 218 771351.3438 9860931.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771376.9864 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860901.8 2602.499 BI 223 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860931.89 2595.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698	208	771301.8475	9860992.8	2596.341	BD
214 771306,2683 9860987,38 2596,722 P 215 771328,1284 9860960,29 2598,313 BI 216 771326,5011 9860958,19 2598,309 BD 217 771337,6467 9860951,27 2599,172 P 218 771351,3438 9860931,34 2599,879 BI 219 771349,9237 9860929,84 2600,01 BD 220 771373,8455 9860908,69 2602,181 P 221 771376,9864 9860905,05 2602,332 A 222 771371,866 9860900,26 2602,567 BD 223 771378,892 9860918,91 2601,164 A 224 771370,2003 9860930,5 2600,436 A 225 771370,2003 9860930,78 2599,485 A 227 771305,0276 9860991,69 2596,376 CN 228 771314,34343 9861007,32 2595,524 BD 229 771316,369	209	771300.301	9860994.77	2596.44	E
215 771328.1284 9860960.29 2598.313 BI 216 771326.5011 9860958.19 2598.309 BD 217 771337.6467 9860951.27 2599.172 P 218 771351.3438 9860931.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771371.578	211	771280.2649	9860976.08	2597.752	CN
216 771326.5011 9860958.19 2598.309 BD 217 771337.6467 9860951.27 2599.172 P 218 771351.3438 9860931.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.516 BI 230 771316.3698 9861010.86 2595.616 BI 231 771329.0391	214	771306.2683	9860987.38	2596.722	P
217 771337.6467 9860951.27 2599.172 P 218 771351.3438 9860931.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.516 BI 230 771316.3698 9861010.86 2595.616 BI 231 771329.0391 986109.92 2595.392 A 233 771324.6138 </td <td>215</td> <td>771328.1284</td> <td>9860960.29</td> <td>2598.313</td> <td>BI</td>	215	771328.1284	9860960.29	2598.313	BI
218 771351.3438 9860931.34 2599.879 BI 219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860930.5 2600.436 A 227 771305.0276 9860991.69 2596.376 CN 228 771316.3698 9861007.32 2595.524 BD 229 771316.3698 9861009.22 2595.616 BI 230 771317.5782 9861009.22 2595.612 P 231 771329.0391 9861009.92 2595.392 A 233 771324.6138 </td <td>216</td> <td>771326.5011</td> <td>9860958.19</td> <td>2598.309</td> <td>BD</td>	216	771326.5011	9860958.19	2598.309	BD
219 771349.9237 9860929.84 2600.01 BD 220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.62 P 231 771324.6138 9861014.61 2595.862 P 232 771334.1972 9861015.9 2595.562 CN 234 771341.121 <td>217</td> <td>771337.6467</td> <td>9860951.27</td> <td>2599.172</td> <td>P</td>	217	771337.6467	9860951.27	2599.172	P
220 771373.8455 9860908.69 2602.181 P 221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860930.5 2600.436 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.682 P 231 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861015.9 2595.562 CN 234 771334.1972 9861035.3 2595.224 VA6 235 771349.7759 </td <td>218</td> <td>771351.3438</td> <td>9860931.34</td> <td>2599.879</td> <td>BI</td>	218	771351.3438	9860931.34	2599.879	BI
221 771376.9864 9860905.05 2602.332 A 222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771329.0391 9861009.92 2595.392 A 232 771329.0391 9861015.9 2595.562 CN 233 771324.6138 9861015.9 2595.562 CN 234 771341.121 9861030.373 2595.224 VA6 235 771341.7579	219	771349.9237	9860929.84	2600.01	BD
222 771371.866 9860900.26 2602.567 BD 223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771329.0391 9861009.92 2595.392 A 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861015.9 2595.562 CN 234 771341.121 9861030.56 2595.224 VA6 235 771341.7579 9861033.73 2595.444 CE6 237 771349.775	220	771373.8455	9860908.69	2602.181	P
223 771373.8922 9860901.8 2602.499 BI 224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860930.5 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.682 P 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861035.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771349.7759 9861040.76 2595.169 BD 238 771347.4596	221	771376.9864	9860905.05	2602.332	A
224 771378.299 9860918.91 2601.164 A 225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861015.9 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771328.2226 9861057.38 2594.593 BD 240 771328.945	222	771371.866	9860900.26	2602.567	BD
225 771370.2003 9860930.5 2600.436 A 226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771349.7759 9861040.76 2595.444 CE6 237 771349.7759 9861087.38 2594.593 BD 240 771328.2226 9861057.38 2594.543 BI 241 771287	223	771373.8922	9860901.8	2602.499	BI
226 771364.5933 9860939.78 2599.485 A 227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771327.4596 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 7712	224	771378.299	9860918.91	2601.164	A
227 771305.0276 9860991.69 2596.376 CN 228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771	225	771370.2003	9860930.5	2600.436	A
228 771319.3463 9861007.32 2595.524 BD 229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 7712	226	771364.5933	9860939.78	2599.485	A
229 771316.3698 9861010.86 2595.616 BI 230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861082.44 2595.972 BD 241 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	227	771305.0276	9860991.69	2596.376	CN
230 771317.5782 9861009.22 2595.613 E 231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	228	771319.3463	9861007.32	2595.524	BD
231 771331.6914 9861014.61 2595.682 P 232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	229	771316.3698	9861010.86	2595.616	BI
232 771329.0391 9861009.92 2595.392 A 233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	230	771317.5782	9861009.22	2595.613	E
233 771324.6138 9861019.67 2595.166 CN 234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	231	771331.6914	9861014.61	2595.682	P
234 771334.1972 9861015.9 2595.562 CN 235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	232	771329.0391	9861009.92	2595.392	A
235 771341.121 9861030.56 2595.224 VA6 236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	233	771324.6138	9861019.67	2595.166	CN
236 771355.7732 9861033.73 2595.444 CE6 237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	234	771334.1972	9861015.9	2595.562	CN
237 771349.7759 9861040.76 2595.169 BD 238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	235	771341.121	9861030.56	2595.224	VA6
238 771347.4596 9861038.8 2595.191 BI 239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	236	771355.7732	9861033.73	2595.444	CE6
239 771328.2226 9861057.38 2594.593 BD 240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	237	771349.7759	9861040.76	2595.169	BD
240 771330.8265 9861052.12 2594.543 BI 241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	238	771347.4596	9861038.8	2595.191	BI
241 771288.9454 9861082.44 2595.972 BD 242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	239	771328.2226	9861057.38	2594.593	BD
242 771287.7057 9861080.48 2595.895 BI 243 771291.9977 9861089.31 2595.531 A	240	771330.8265	9861052.12	2594.543	BI
243 771291.9977 9861089.31 2595.531 A	241	771288.9454	9861082.44	2595.972	BD
	242	771287.7057	9861080.48	2595.895	BI
244 771284.1884 9861071.6 2596.119 A	243	771291.9977	9861089.31	2595.531	A
	244	771284.1884	9861071.6	2596.119	A

	1		1	
245	771358.5804	9861044.67	2595.094	BI
246	771360.2766	9861043.48	2595.055	E
247	771361.8237	9861041.52	2594.994	BD
248	771364.9715	9861041.51	2595.186	Р
249	771368.8084	9861055.94	2594.687	CN
250	771366.5586	9861041.48	2595.179	CN
251	771373.5364	9861058.01	2595.008	BI
252	771376.3987	9861054.11	2594.976	BD
253	771374.8398	9861056.28	2595.032	E
254	771383.8569	9861057.05	2595.128	CN
255	771383.3285	9861069.7	2594.689	CN
256	771385.1689	9861068.89	2595.048	BI
257	771388.9642	9861065.54	2595.129	BD
258	771386.938	9861067.52	2595.129	E
259	771397.6833	9861082.8	2594.982	BI
260	771401.2525	9861079.58	2595.006	BD
261	771396.6915	9861083.41	2594.577	CN
262	771399.8561	9861080.93	2595.003	E
263	771410.3025	9861096.08	2594.25	BI
264	771413.9773	9861092.91	2594.252	BD
265	771409.1208	9861096.81	2594.139	CN
266	771412.1081	9861094.39	2594.292	E
267	771420.9939	9861108.7	2593.225	BI
268	771425.4503	9861106.13	2593.188	BD
269	771423.3137	9861107.22	2593.216	E
270	771416.1602	9861105.42	2593.527	CN
271	771422.1935	9861112.04	2592.84	BI
272	771427.1003	9861110.57	2592.711	BD
273	771424.725	9861111.66	2592.742	E
274	771416.4603	9861107.22	2593.991	BI
275	771419.361	9861109.89	2593.801	BD
276	771397.8082	9861124.53	2597.075	BI
277	771400.2193	9861127.14	2597.083	BD
278	771384.3889	9861137.65	2598.662	BI

279	771386.7925	9861140.06	2598.616	BD
280	771381.0477	9861139.7	2598.694	BD
281	771376.5073	9861132.33	2597.784	BI
282	771375.3998	9861134.91	2597.941	BD
283	771372.9738	9861131.72	2597.685	BD
284	771372.3841	9861134.39	2597.605	BI
285	771330.4745	9861163.32	2599.251	BI
286	771332.0392	9861165.19	2599.328	BD
287	771327.674	9861163.6	2599.235	A
288	771374.936	9861147.07	2599.472	BI
289	771377.3236	9861149.65	2599.422	BD
290	771376.1204	9861156	2600.101	BD
291	771372.4787	9861155.8	2599.987	BI
292	771377.6088	9861172.46	2600.948	ВІ
293	771380.282	9861171.37	2600.932	BD
294	771384.5176	9861195.99	2600.885	BI
295	771387.2068	9861194.9	2600.965	BD
296	771382.9547	9861199.37	2600.957	BI
297	771383.4584	9861203.17	2600.911	BD
298	771367.5721	9861210.78	2601.021	BI
299	771368.9176	9861212.72	2600.91	BD
300	771297.2518	9861265.14	2603.862	A
301	771426.2262	9861109.56	2592.864	VA7
302	771433.7933	9861117.99	2592.185	CE7
303	771434.1918	9861123.64	2591.159	PTAR
304	771435.9879	9861143.42	2588.737	PTAR
305	771456.846	9861126.62	2575.805	PTAR
306	771047.0057	9860619.13	2607.907	BD
307	771457.9841	9861149.38	2573.7715	PTAR
308	770806.5979	9860630.54	2650.2	RTK
309	771387.4612	9861659.8	0	RTK
500	770805.7933	9860619.24	2624.242	P101
501	770805.7933	9860619.24	2624.308	P102
502	770814.4099	9860625.93	2623.873	ВО

503	770808.5163	9860621.53	2624.114	ВО
504	770808.076	9860621.09	2624.258	ВО
505	770798.668	9860612.73	2624.553	ВО
506	770790.6949	9860605.08	2624.793	ВО
507	770784.8155	9860599.23	2624.942	ВО
508	770781.4976	9860595.54	2624.967	ВО
509	770777.8734	9860591.27	2624.984	ВО
510	770772.7799	9860584.74	2624.923	ВО
511	770755.1316	9860560.22	2624.038	ВО
512	770750.9782	9860554.11	2623.756	ВО
513	770750.785	9860553.92	2623.885	ВО
514	770741.0106	9860540.27	2622.993	ВО
515	770734.6373	9860532.05	2622.535	ВО
516	770730.9504	9860527.62	2622.18	ВО
517	770724.1907	9860530.45	2622.078	ВО
518	770734.5364	9860543.31	2623.035	ВО
519	770734.8038	9860543.7	2622.961	ВО
520	770738.7376	9860548.61	2623.297	ВО
521	770746.63	9860559.03	2623.969	ВО
522	770748.7054	9860561.73	2623.989	ВО
523	770759.8569	9860577.38	2624.585	ВО
524	770768.1819	9860588.88	2624.918	ВО
525	770773.2616	9860595.85	2624.997	ВО
526	770777.2298	9860600.29	2624.992	ВР
527	770782.086	9860605.4	2624.906	ВО
528	770786.9747	9860610.6	2624.786	ВО
529	770788.4643	9860612.71	2624.565	ВО
530	770791.1477	9860616.99	2624.502	ВО
531	770795.4218	9860623.81	2624.449	ВО
532	770795.5641	9860624.08	2624.33	ВО
533	770796.7614	9860626.35	2624.307	ВО
534	770796.9086	9860626.66	2624.395	ВО
535	770798.9517	9860630.69	2624.28	BP
536	770815.8976	9860627.61	2623.72	BD

537	770812.3103	9860631.6	2623.823	BI
538	770815.4361	9860630.77	2623.738	EJE
539	770807.4981	9860621.29	2624.094	BD
540	770801.5989	9860624.08	2624.244	EJE
541	770797.8509	9860627.6	2624.195	BI
542	770791.4902	9860617.21	2624.443	BI
543	770791.0789	9860609.91	2624.652	Е
544	770797.5219	9860612.25	2624.41	BD
545	770782.629	9860597.69	2624.808	BD
546	770776.7786	9860594.48	2624.882	E
547	770778.7201	9860601.34	2624.818	BI
548	770771.5843	9860593.21	2624.816	BI
549	770769.7773	9860586.08	2624.775	E
550	770775.8484	9860589.58	2624.811	BD
551	770766.9387	9860577.62	2624.552	BD
552	770761.0735	9860574.05	2624.448	Е
553	770762.4451	9860580.62	2624.557	BI
554	770752.1793	9860566.22	2624.124	BI
555	770751.3577	9860560.5	2623.967	Е
556	770756.9397	9860563.39	2624.055	BD
557	770747.7147	9860550.99	2623.521	BD
558	770742.6323	9860548.74	2623.358	Е
559	770743.4973	9860554.37	2623.576	BI
560	770734.1343	9860542.15	2622.815	BI
561	770732.7288	9860535.95	2622.581	Е
562	770738.7728	9860539.02	2622.851	BD
563	770731.574	9860530.04	2622.293	BD
564	770725.0993	9860526.87	2621.841	Е
565	770726.7231	9860532.96	2622.174	BI
566	770749.695	9860550.75	2622.632	CN
567	770746.8357	9860546.47	2622.646	CN
568	770743.4127	9860541.3	2622.668	CN
569	770741.3278	9860538.26	2622.66	CN
570	770739.3746	9860535.21	2622.672	CN

571	770737.1249	9860531.4	2622.663	CN
572	770787.5456	9860619.09	2624.165	A
573	770785.144	9860616.89	2624.23	A
574	770809.9209	9860622.48	2624.022	BD
575	770813.3628	9860624.89	2623.959	BI
576	770817.355	9860616.25	2624.398	BD
577	770820.2111	9860618.43	2624.302	BI
578	770843.8496	9860600.16	2624.42	BI
579	770842.9717	9860597.55	2624.495	BD
580	770852.7184	9860591.21	2624.476	BD
581	770854.5918	9860593.42	2624.366	BI
582	770863.747	9860587.67	2623.788	BI
583	770863.3333	9860582.18	2623.661	BD
584	770869.9815	9860577.37	2622.936	BD
585	770873.0797	9860582.26	2623.083	BI
586	770870.8469	9860585.59	2623.01	BI
587	770865.1774	9860581.01	2623.496	BD
588	770868.5924	9860584.82	2624.085	A
589	770836.9767	9860607.26	2624.033	P
590	770871.0947	9860586.19	2623.555	P
591	770753.4926	9860558.76	2623.919	C1
592	770755.5243	9860552.7	2624.446	BD
593	770756.975	9860554.75	2624.391	BI
594	770776.5778	9860541.49	2627.528	BI
595	770775.2785	9860539.22	2627.553	BD
596	770783.2158	9860541.84	2628.375	P
597	770803.9725	9860520.92	2630.709	BD
598	770805.1219	9860522.77	2630.718	BI
599	770819.0914	9860515.96	2633.144	P
600	770817.7223	9860514.13	2630.964	BI
601	770816.5524	9860512.31	2630.949	BD
602	770823.7977	9860507.44	2631.101	BD
603	770824.9835	9860508.94	2631.078	BI
604	770828.7518	9860509.97	2524.184	A

605	770725.6669	9860521.76	2621.552	ВО
606	770711.3506	9860507.51	2619.892	ВО
607	770698.1765	9860493.22	2617.783	ВО
608	770689.0476	9860484.1	2616.479	ВО
609	770680.3914	9860473.4	2615.182	ВО
610	770677.2397	9860468.55	2614.727	ВО
611	770680.0437	9860471.34	2615.189	A
612	770722.0189	9860527.97	2621.858	BI
613	770719.6869	9860530.68	2621.125	P
614	770677.7574	9860480.95	2615.676	ВО
615	770672.803	9860474.23	2614.972	BI
616	770666.8163	9860464.33	2613.988	BI
617	770656.4728	9860447.16	2612.456	BI
618	770649.5787	9860435.58	2611.492	ВО
619	770655.1968	9860443.79	2612.076	BI
620	770661.5804	9860455.02	2613.043	BI
621	770662.5629	9860451.56	2613.011	E
622	770669.6414	9860468.17	2614.221	BI
623	770669.97	9860463.61	2613.995	Е
624	770674.3104	9860465.56	2614.317	BD
625	770677.943	9860471.5	2614.907	BD
626	770674.467	9860471.04	2614.726	E
627	770674.2806	9860475.36	2615.001	BI
628	770677.7624	9860480.15	2615.495	BI
629	770678.3559	9860476.51	2615.288	Е
630	770683.8388	9860479.39	2615.777	BD
631	770694.3815	9860490.62	2617.332	BD
632	770689.9545	9860489.74	2616.945	Е
633	770706.4431	9860503.79	2619.263	BD
634	770702.6857	9860503.86	2619.017	Е
635	770717.112	9860521.78	2621.046	BI
636	770716.8931	9860517.75	2620.85	Е
637	770721.891	9860519.11	2621.203	BD
638	770730.071	9860528.4	2622.149	BD

639	770726.1841	9860528.19	2621.953	Е
640	770723.1704	9860556.56	2620.746	A
641	770679.7507	9860482.66	2615.785	CE2
642	770753.3558	9860558.66	2623.9	C1_
643	770704.4852	9860509.01	2619.629	ВО
644	770704.7935	9860508.72	2619.504	BI
645	770693.8532	9860498.07	2617.836	ВО
646	770691.2998	9860495.49	2617.444	ВО
647	770693.8193	9860497.28	2617.766	BI
648	770677.4631	9860469.31	2614.742	ВО
649	770669.7107	9860456.5	2613.645	ВО
650	770662.044	9860443.58	2612.511	ВО
651	770647.7331	9860419.07	2610.644	ВО
652	770647.0459	9860419.61	2610.6	BD
653	770643.5582	9860419.41	2610.455	Е
654	770642.6777	9860423.06	2610.575	BI
655	770643.6251	9860422.28	2610.563	POZO
656	770642.085	9860423.02	2610.676	ВО
657	770644.7892	9860427.48	2610.993	ВО
658	770644.9962	9860427.9	2610.936	ВО
659	770648.8696	9860433.68	2611.294	BI
660	770650.1773	9860430.83	2611.294	Е
661	770654.2286	9860431.8	2611.451	BD
662	770662.1143	9860444.85	2612.522	BD
663	770658.5869	9860444.46	2612.359	Е
664	770668.9306	9860456.99	2613.594	BD
665	770665.7594	9860457.25	2613.484	Е
666	770672.9413	9860463.55	2614.143	BD
667	770767.4136	9860577.49	2624.656	CE3
668	770829.4188	9860644.45	2622.74	ВО
669	770820.1098	9860637.74	2623.397	ВО
670	770810.4919	9860630.86	2623.977	ВО
671	770806.1395	9860633.13	2624.146	ВО
672	770807.6969	9860636.32	2624.036	ВО

673	770815.3812	9860648.81	2623.725	ВО
674	770823.2974	9860663.68	2623.38	ВО
675	770817.9662	9860665.79	2623.433	ВО
676	770803.818	9860618.13	2624.154	BD
677	770799.3663	9860621.31	2624.276	Е
678	770795.3692	9860623.29	2624.247	BI
679	770805.7194	9860633.18	2623.988	BD
680	770804.9527	9860635.97	2623.958	Е
681	770800.8594	9860634.08	2623.954	BI
682	770810.7849	9860641.98	2623.703	BD
683	770822.8268	9860663.77	2623.318	BD
684	770821.7575	9860667.13	2623.216	Е
685	770818.5896	9860666.12	2623.269	BI
686	770830.7096	9860679.17	2622.912	BD
687	770830.1633	9860683.25	2622.873	Е
688	770828.1191	9860684.48	2622.873	BI
689	770840.8836	9860699.88	2622.31	BD
690	770841.5703	9860706.15	2622.064	Е
691	770838.2786	9860704.31	2622.215	BI
692	770844.0037	9860715.64	2621.346	BI
693	770845.5735	9860714.33	2621.427	Е
694	770847.1374	9860712.23	2621.456	BD
695	770847.4971	9860702.12	2622.33	A
696	770845.6289	9860709.34	2621.699	CE4
697	770803.5262	9860640.53	2624.011	ВО
698	770804.3539	9860641.05	2623.856	BI
699	770809.5856	9860644.66	2623.734	Е
700	770811.2406	9860653.64	2623.744	ВО
701	770812.4327	9860654.92	2623.55	BI
702	770815.9487	9860656.06	2623.451	Е
703	770849.2999	9860716.65	2621.115	BD
704	770848.6004	9860720.66	2620.909	Е
705	770845.3992	9860719.02	2621.1	BI
706	770836.9098	9860708.06	2621.685	CN

709 770859.4058 9860743.35 2618.746 E 710 770854.878 9860740.22 2619.167 BI 711 770872.6129 9860766.79 2615.971 BD 712 770871.1458 9860769.36 2615.86 E 713 770867.9107 9860768.04 2616.059 BI 714 770874.8947 9860783.46 2614.558 BI 715 770874.337 9860783.81 2614.437 E 716 770878.8741 9860789.91 2614.355 A 718 770871.3673 9860789.91 2614.355 A 718 770872.306 9860785.55 2614.183 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118	700	550050 0021	005072005	2610 101	22
710 770854.878 9860740.22 2619.167 BI 711 770872.6129 9860766.79 2615.971 BD 712 770871.1458 9860769.36 2615.86 E 713 770867.9107 9860768.04 2616.059 BI 714 770874.8947 9860783.46 2614.558 BI 715 770874.337 9860780.94 2614.555 BD 716 770878.8741 9860780.94 2614.355 A 718 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770899.18	708	770859.9931	9860738.96	2619.101	BD
711 770872.6129 9860766.79 2615.971 BD 712 770871.1458 9860769.36 2615.86 E 713 770867.9107 9860768.04 2616.059 BI 714 770874.8947 9860783.46 2614.558 BI 715 770871.337 9860783.81 2614.437 E 716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860826.75 2611.522 BD 725 770899.4998 9860826.75 2611.522 BD 726 770895.0		770859.4058	9860743.35	2618.746	E
712 770871.1458 9860769.36 2615.86 E 713 770867.9107 9860768.04 2616.059 BI 714 770874.8947 9860783.46 2614.558 BI 715 770877.4337 9860780.94 2614.355 BD 716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860780.55 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.91 2613.196 E 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860828.71 2611.593 BI 724 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770895.0267 9860828.67 2611.522 BD 726 770895.02	710	770854.878	9860740.22	2619.167	BI
713 770867.9107 9860768.04 2616.059 BI 714 770874.8947 9860783.46 2614.558 BI 715 770877.4337 9860780.94 2614.377 E 716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.91 2613.196 E 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860828.67 2611.522 BD 726 770891.1963 9860828.67 2611.505 CE5 728 770877.	711	770872.6129	9860766.79	2615.971	BD
714 770874.8947 9860783.46 2614.558 BI 715 770877.4337 9860783.81 2614.437 E 716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770895.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 986081.37 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0	712	770871.1458	9860769.36	2615.86	Е
715 770877.4337 9860783.81 2614.437 E 716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.285 BD 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770895.118 9860826.75 2611.522 BD 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 77088	713	770867.9107	9860768.04	2616.059	BI
716 770878.8741 9860780.94 2614.555 BD 717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.	714	770874.8947	9860783.46	2614.558	BI
717 770871.3673 9860789.15 2614.355 A 718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770895.0474 9860828.75 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860828.67 2611.605 CE5 728 77087.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.69	715	770877.4337	9860783.81	2614.437	E
718 770872.306 9860786.55 2614.183 CN 719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770891.1963 9860826.75 2611.522 BD 726 770891.1963 9860828.67 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770905.6978 9860816.36 2612.447 A 732 770904.8	716	770878.8741	9860780.94	2614.555	BD
719 770871.307 9860783.63 2614.284 CN 720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860839.78 2611.091 BI 733 770904.	717	770871.3673	9860789.15	2614.355	A
720 770881.4154 9860798.61 2613.272 BI 721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860841.86 2610.963 BD 733 770904.8816 9860845.29 2610.818 BI 735 770904	718	770872.306	9860786.55	2614.183	CN
721 770884.0405 9860798.91 2613.196 E 722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770884.0299 9860876.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770905.564 9860845.29 2610.818 BI 735 770908.5	719	770871.307	9860783.63	2614.284	CN
722 770885.4997 9860796.52 2613.285 BD 723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770908.5639 9860845.29 2610.818 BI 736 770908.	720	770881.4154	9860798.61	2613.272	BI
723 770895.0474 9860828.71 2611.593 BI 724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770905.54 9860845.29 2610.818 BI 735 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860855.21 2610.277 BI 739 770915.57	721	770884.0405	9860798.91	2613.196	E
724 770898.118 9860830.26 2611.464 E 725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770904.0526 9860845.29 2610.818 BI 735 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.621	722	770885.4997	9860796.52	2613.285	BD
725 770899.4998 9860826.75 2611.522 BD 726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.3413 9860842.3 2610.749 BD 738 770915.579 9860855.21 2610.277 BI 739 770915.6219 9860851.88 2610.241 BD	723	770895.0474	9860828.71	2611.593	BI
726 770891.1963 9860831.37 2611.924 CN 727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 738 770915.579 9860855.21 2610.277 BI 739 770915.6219 9860851.88 2610.241 BD	724	770898.118	9860830.26	2611.464	E
727 770895.0267 9860828.67 2611.605 CE5 728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	725	770899.4998	9860826.75	2611.522	BD
728 770877.4285 9860768.81 2615.535 A 729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770904.0524 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770915.579 9860855.21 2610.277 BI 739 770915.6219 9860851.88 2610.241 BD	726	770891.1963	9860831.37	2611.924	CN
729 770884.0299 9860787.37 2614.112 A 730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	727	770895.0267	9860828.67	2611.605	CE5
730 770888.4349 9860796.76 2613.364 A 731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	728	770877.4285	9860768.81	2615.535	A
731 770896.9176 9860816.36 2612.447 A 732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	729	770884.0299	9860787.37	2614.112	A
732 770905.6978 9860838.74 2610.963 BD 733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	730	770888.4349	9860796.76	2613.364	A
733 770904.8816 9860841.86 2610.926 E 734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	731	770896.9176	9860816.36	2612.447	A
734 770900.554 9860839.78 2611.091 BI 735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	732	770905.6978	9860838.74	2610.963	BD
735 770904.0526 9860845.29 2610.818 BI 736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	733	770904.8816	9860841.86	2610.926	Е
736 770908.5639 9860846.93 2610.664 E 737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	734	770900.554	9860839.78	2611.091	BI
737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	735	770904.0526	9860845.29	2610.818	BI
737 770908.3413 9860842.3 2610.749 BD 738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	736	770908.5639	9860846.93	2610.664	Е
738 770912.2969 9860855.21 2610.277 BI 739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	737	770908.3413	9860842.3	2610.749	
739 770915.579 9860855.44 2610.22 E 740 770915.6219 9860851.88 2610.241 BD	738	770912.2969	9860855.21	2610.277	BI
740 770915.6219 9860851.88 2610.241 BD			9860855.44		Е
/41 //U95/.43U5 760U8/0.34 40U9.389 BD	741	770937.2503	9860876.32	2609.389	BD

742	770941.2572	9860867.72	2609.599	A
743	770933.3754	9860879.29	2609.284	BI
744	770937.0836	9860879.58	2609.293	E
745	770896.2419	9860847.52	2610.887	A
746	770937.9479	9860886.87	2608.915	P
747	770942.1078	9860889.82	2609.02	BI
748	770945.8365	9860890.94	2609.029	E
749	770946.1778	9860887.47	2609.07	BD
750	770948.8275	9860899.29	2608.813	BI
751	770952.7519	9860900.69	2608.825	E
752	770954.1539	9860898.48	2608.809	BD
753	770963.9269	9860916.07	2608.24	CE6
754	770957.036	9860921.51	2608.095	BD
755	770955.1105	9860918.44	2608.216	BI
756	770924.5249	9860944.44	2607.226	BD
757	770925.4253	9860946.93	2606.747	P
758	770923.257	9860941.85	2607.179	BI
759	770916.2338	9860944.68	2607.202	A
760	770939.0811	9860930.84	2607.433	BI
761	770940.8386	9860932.87	2607.322	BD
762	770953.6937	9860908.07	2608.495	CN
763	770960.161	9860909.57	2608.388	CN
764	770963.1393	9860910.54	2607.623	CN
765	770966.2003	9860919.2	2607.992	P
766	770989.3074	9860962.86	2606.625	BD
767	770990.2323	9860962.36	2606.483	P
768	770988.2704	9860966.24	2606.518	E
769	770984.8177	9860964.75	2606.574	BI
770	770982.216	9860942.96	2606.661	A
771	770985.7555	9860974.58	2606.989	A
772	771007.3204	9860998.43	2604.631	BD
773	771006.3602	9861001.73	2604.541	E
774	771002.528	9861000.22	2604.649	BI
775	771009.9126	9860999.71	2604.382	BD
· · · · · · · · · · · · · · · · · · ·	·			

	1		1	ı
776	771012.447	9861006.44	2604.148	BD
777	771014.2548	9861005.44	2604.096	P
778	771014.4019	9861005.01	2603.184	CN
779	771004.8565	9861009.47	2604.398	CN
780	771004.6646	9861009.78	2604.546	A
781	771012.1727	9861006.18	2604.174	CE7
782	771017.8305	9860995.23	2603.959	BD
783	771022.0367	9860995.52	2603.839	Е
784	771019.9253	9860999.91	2603.885	BI
785	771017.9938	9861002.53	2603.651	CN
786	771045.4071	9860975.66	2602.889	BD
787	771049.2546	9860976.46	2602.834	Е
788	771048.1724	9860980.37	2602.851	BI
789	771049.0167	9860980.87	2602.619	CN
790	771053.6583	9860978.3	2602.534	P
791	771080.1926	9860951	2601.767	BD
792	771084.8815	9860951.14	2601.778	Е
793	771083.0861	9860955.78	2601.762	BI
794	771084.0421	9860955.89	2601.486	CN
795	771085.7863	9860958.07	2601.579	A
796	771093.6114	9860949.71	2601.286	P
797	771128.7402	9860916.98	2600.214	BD
798	771132.5313	9860917.07	2600.196	Е
799	771131.1319	9860921.04	2600.231	BI
800	771135.313	9860920.09	2599.618	P
801	771134.9178	9860919.9	2599.852	CN
802	771146.337	9860913.48	2599.453	Α
803	771154.5188	9860898.01	2599.456	BD
804	771158.394	9860898.48	2599.42	Е
805	771157.8232	9860902.23	2599.43	BI
806	771164.5442	9860897.41	2599.275	BI
807	771162.0145	9860894.81	2599.403	В
808	771158.4809	9860893.16	2599.44	BD
809	771021.5294	9861024.86	2603.075	BD

811 771020.0393 9861026.97 2603.157 BI 812 771033.33 9861039.97 2602.248 P 813 771028.4557 9861055.59 2602.638 A 814 771054.6183 9861083.48 2600.556 BD 815 771057.105 9861082.34 2600.405 P 816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861081.4 2600.59 BI 819 771053.146 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861113.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771066.2898 9861163.41 2600.26 P 824 771095.0891 9861160.3 2599.407 BD 827 771095.0891	810	771020.6695	9861028.55	2603.049	Е
812 771033.33 9861039.97 2602.248 P 813 771028.4557 9861055.59 2602.638 A 814 771054.6183 9861083.48 2600.556 BD 815 771057.105 9861082.34 2600.405 P 816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861081.4 2600.59 BI 819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861113.77 2599.818 BD 822 771073.5564 986123.46 2599.772 E 823 771069.3494 9861123.41 2600.26 P 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861163.63 2599.407 BD 827 771095.0891					
813 771028.4557 9861055.59 2602.638 A 814 771054.6183 9861083.48 2600.556 BD 815 771057.105 9861082.34 2600.405 P 816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861083.13 2600.59 BI 819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861123.41 2600.26 P 825 771066.2898 9861132.41 2600.26 P 825 771066.2898 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282					
814 771054.6183 9861083.48 2600.556 BD 815 771057.105 9861082.34 2600.405 P 816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861081.3 2600.59 BI 819 771043.2552 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.5868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861162.01 2599.392 BI 828 771091.6282 9861190.13 2599.735 BD 830 771110.2398<					
815 771057.105 9861082.34 2600.405 P 816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861083.13 2600.59 BI 819 771049.2552 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.5664 9861123.46 2599.772 E 822 771073.5564 9861123.46 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861160.3 2599.407 BD 826 771095.0891 9861163.63 2599.407 BD 827 771095.0891 9861189.15 2599.735 BD 828 771091.6282 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
816 771056.9303 9861079.06 2600.321 A 817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861083.13 2600.59 BI 819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.5868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.0891 9861160.3 2599.407 BD 827 771095.0891 9861189.15 2599.735 BD 828 771091.6282 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771124.8435 986127.53 2600.493 BD 833 771124.8435 <td></td> <td>771054.6183</td> <td></td> <td>2600.556</td> <td>BD</td>		771054.6183		2600.556	BD
817 771053.1882 9861086.18 2600.57 E 818 771048.7618 9861083.13 2600.59 BI 819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.407 BD 828 771091.6282 9861162.01 2599.392 BI 829 771111.367 9861189.15 2599.735 BD 830 77110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 </td <td>815</td> <td>771057.105</td> <td>9861082.34</td> <td>2600.405</td> <td>P</td>	815	771057.105	9861082.34	2600.405	P
818 771048.7618 9861083.13 2600.59 BI 819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 77111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771124.8435 9861217.53 2600.493 BD 833 771124.8435<	816	771056.9303	9861079.06	2600.321	A
819 771053.416 9861081.4 2600.615 BD 820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861190.11 2599.735 BD 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771124.8435 9861217.96 2600.469 BI 834 771134.4	817	771053.1882	9861086.18	2600.57	Е
820 771049.2552 9861089.45 2600.833 A 821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861217.54 2600.647 E 834 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.192 CE8 837 771136.	818	771048.7618	9861083.13	2600.59	BI
821 771073.6868 9861118.77 2599.818 BD 822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771134.4739 9861237.79 2601.158 BD 835 771134.9	819	771053.416	9861081.4	2600.615	BD
822 771073.5564 9861123.46 2599.772 E 823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861217.54 2600.469 BI 834 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.359 E 837 771134.9	820	771049.2552	9861089.45	2600.833	A
823 771069.3494 9861120.86 2599.773 BI 824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771102.398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 837 771134.9534 9861239.04 2601.359 E 837 771106.358 9861006.29 2604.174 CE007 1001 771006.	821	771073.6868	9861118.77	2599.818	BD
824 771079.7256 9861123.41 2600.26 P 825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.367 9861189.15 2599.735 BD 830 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771134.4739 9861237.79 2601.158 BD 835 771134.4739 9861237.79 2601.158 BD 837 771134.9534 9861239.04 2601.359 E 837 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.679 A 1004 771117.1	822	771073.5564	9861123.46	2599.772	Е
825 771066.2898 9861132.22 2600.965 A 826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 77106.358 9861006.29 2604.174 CE007 1001 77106.2538 9861175.3 2599.468 A 1003 77109	823	771069.3494	9861120.86	2599.773	BI
826 771095.9548 9861160.3 2599.407 BD 827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 77106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771	824	771079.7256	9861123.41	2600.26	P
827 771095.0891 9861163.63 2599.431 E 828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771134.4739 9861237.79 2601.158 BD 835 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.359 E 837 771134.9534 9861239.04 2601.359 E 837 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.679 A	825	771066.2898	9861132.22	2600.965	A
828 771091.6282 9861162.01 2599.392 BI 829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771134.9534 9861239.04 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1004 771171.082 9861194.73 2599.679 A	826	771095.9548	9861160.3	2599.407	BD
829 771111.1367 9861189.15 2599.735 BD 830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	827	771095.0891	9861163.63	2599.431	Е
830 771110.2398 9861193.33 2599.862 E 831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	828	771091.6282	9861162.01	2599.392	BI
831 771105.9196 9861190.11 2599.731 BI 832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	829	771111.1367	9861189.15	2599.735	BD
832 771124.8435 9861217.53 2600.493 BD 833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	830	771110.2398	9861193.33	2599.862	Е
833 771123.8999 9861221.54 2600.647 E 834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	831	771105.9196	9861190.11	2599.731	BI
834 771119.6748 9861217.96 2600.469 BI 835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	832	771124.8435	9861217.53	2600.493	BD
835 771134.4739 9861237.79 2601.158 BD 836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	833	771123.8999	9861221.54	2600.647	Е
836 771133.4239 9861241.89 2601.359 E 837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	834	771119.6748	9861217.96	2600.469	BI
837 771134.9534 9861239.04 2601.192 CE8 1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	835	771134.4739	9861237.79	2601.158	BD
1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	836	771133.4239	9861241.89	2601.359	Е
1000 771006.358 9861006.29 2604.174 CE007 1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	837	771134.9534	9861239.04	2601.192	CE8
1001 771080.115 9861126.72 2598.828 A 1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	1000	771006.358	9861006.29		CE007
1002 771106.2538 9861175.3 2599.468 A 1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A	1001	771080.115	9861126.72	2598.828	A
1003 771090.0154 9861171.94 2599.611 A 1004 771117.1082 9861194.73 2599.679 A					
1004 771117.1082 9861194.73 2599.679 A					

1006	771106.9563	9861200.6	2600.097	A
1007	771125.6829	9861210.55	2599.911	A
1008	771116.903	9861215.88	2600.466	BI
1009	771121.2892	9861213.71	2600.458	BD
1010	771119.8782	9861216.5	2600.55	E
1011	771129.5843	9861228.08	2600.846	BD
1012	771127.123	9861229.4	2600.965	E
1013	771124.9924	9861230.05	2600.948	BI
1014	771136.9622	9861233.54	2601.096	P
1015	771138.4408	9861246.35	2601.645	BD
1016	771134.2953	9861248.8	2601.62	BI
1017	771136.2984	9861247.84	2601.643	В
1018	771143.1546	9861250.73	2601.731	CN
1019	771135.4482	9861257.04	2602.378	CN
1020	771151.93	9861269.25	2602.406	A
1021	771147.8092	9861277.79	2602.532	CN
1022	771149.4459	9861275.57	2602.436	BI
1023	771153.4534	9861272.91	2602.433	BD
1024	771151.5688	9861274.71	2602.52	E
1025	771162.5531	9861298.3	2602.956	BI
1026	771166.8371	9861295.47	2602.947	BD
1027	771164.6762	9861297.23	2603.002	E
1028	771175.1599	9861331.53	2603.443	A
1029	771182.1494	9861327.68	2603.508	BD
1030	771177.728	9861330.13	2603.44	BI
1031	771180.0802	9861329.03	2603.541	E
1032	771188.1369	9861351.13	2603.492	BI
1033	771192.3488	9861347.87	2603.651	BD
1034	771190.1823	9861349.32	2603.655	Е
1035	771198.1463	9861372.43	2603.929	BI
1036	771202.7053	9861370.18	2604.022	BD
1037	771200.4785	9861371.55	2603.994	E
1038	771211.1455	9861390.42	2604.181	BD
1039	771203.998	9861379.7	2604.074	Е

1040 771201.9641 9861381.1 2604.079 CE9 1041 771206.2887 9861378.87 2604.123 VA9 1042 771165.8568 9861378.87 2604.123 VA9 1043 771191.4314 9861339.5 2604.952 P 1044 771188.7118 9861334.06 2603.875 CN 1045 771183.0134 9861321.71 2603.711 CN 1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771229.6723 9861400.03 2604.265 BI 1049 771214.3465 9861399.21 2604.265 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861442.34 2604.277 A 1053 771224.4475 9861442.97 2604.286 BI 1054 771225.8929 9861441.71 2604.26 BD 1055					
1042 771165.8568 9861287.79 2602.816 A 1043 771191.4314 9861339.5 2604.952 P 1044 771188.7118 9861334.06 2603.875 CN 1045 771183.0134 9861321.71 2603.711 CN 1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861441.71 2604.26 BD 1055 771230.6227 9861441.71 2604.26 BD 1056 <t< td=""><td>1040</td><td>771201.9641</td><td>9861381.1</td><td>2604.079</td><td>CE9</td></t<>	1040	771201.9641	9861381.1	2604.079	CE9
1043 771191.4314 9861339.5 2604.952 P 1044 771188.7118 9861334.06 2603.875 CN 1045 771183.0134 9861321.71 2603.711 CN 1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771230.6227 9861455.76 2604.179 CN 1058 <	1041	771206.2887	9861378.87	2604.123	VA9
1044 771188.7118 9861334.06 2603.875 CN 1045 771183.0134 9861321.71 2603.711 CN 1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861442.97 2604.286 BI 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861452.66 2604.315 E 1057 771239.4506 9861454.97 2604.279 BI 1059	1042	771165.8568	9861287.79	2602.816	A
1045 771183.0134 9861321.71 2603.711 CN 1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861442.97 2604.286 BI 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861454.97 2604.26 BD 1057 771229.4506 9861454.97 2604.279 BI 1059 771230.798 9861454.97 2604.279 BI 1060	1043	771191.4314	9861339.5	2604.952	P
1046 771205.8857 9861397.33 2604.251 A 1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861442.97 2604.286 BI 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861452.76 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771233.004 9861454.97 2604.279 BI 1060 771233.2864 9861454.97 2604.279 BI 1060	1044	771188.7118	9861334.06	2603.875	CN
1047 771207.7531 9861378.33 2604.298 P 1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.379 CN 1058 771223.8004 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771233.4548 9861454.05 2604.819 P 1062	1045	771183.0134	9861321.71	2603.711	CN
1048 771209.6723 9861400.74 2604.265 BI 1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771238.004 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771239.4548 9861453.65 2604.42 BD 1062 771238.0708 9861470.49 2604.819 P 1063 <	1046	771205.8857	9861397.33	2604.251	A
1049 771211.9524 9861400.03 2604.306 E 1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 9861454.97 2604.279 BI 1060 771233.2864 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771239.4548 9861453.65 2604.42 BD 1062 771239.4548 9861470.49 2604.819 P 1063	1047	771207.7531	9861378.33	2604.298	P
1050 771214.3465 9861399.21 2604.275 BD 1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.379 CN 1058 771223.8004 986145.66 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771235.4843 9861454.66 2604.396 E 1061 771235.4843 9861454.05 2604.42 BD 1062 771239.4548 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 <	1048	771209.6723	9861400.74	2604.265	BI
1051 771220.5675 9861402.32 2604.336 A 1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771228.4382 9861455.76 2604.179 CN 1058 771223.8004 9861455.76 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.97 2604.279 BI 1061 771235.4843 9861454.05 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771242.3627 9861470.49 2604.731 BD 1064 771242.3627 9861471.98 2604.672 E 1066 <	1049	771211.9524	9861400.03	2604.306	E
1052 771227.9181 9861425 2604.277 A 1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.379 CN 1058 771223.8004 9861416.56 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861470.49 2604.819 P 1063 771242.3627 9861470.49 2604.562 BI 1064 771242.8963 9861471.98 2604.672 E 1065 771248.9801 9861488.27 2604.917 CN 1067 <	1050	771214.3465	9861399.21	2604.275	BD
1053 771224.4475 9861443.34 2604.078 CN 1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 986145.65 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771243.80708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.572 E 1065 771240.1673 9861471.98 2604.672 E 1066 771248.9801 9861486.17 2605.077 BD 1068	1051	771220.5675	9861402.32	2604.336	A
1054 771225.8929 9861442.97 2604.286 BI 1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 9861455.76 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771248.9801 9861488.27 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069	1052	771227.9181	9861425	2604.277	A
1055 771230.6227 9861441.71 2604.26 BD 1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 9861455.76 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861487.77 2605.09 E 1070	1053	771224.4475	9861443.34	2604.078	CN
1056 771228.4382 9861442.84 2604.315 E 1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 9861416.56 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771253.2765 9861505.91 2605.536 BI 1071	1054	771225.8929	9861442.97	2604.286	BI
1057 771229.4506 9861455.76 2604.179 CN 1058 771223.8004 9861416.56 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771257.8981 9861503.57 2605.55 BD	1055	771230.6227	9861441.71	2604.26	BD
1058 771223.8004 9861416.56 2604.339 P 1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1056	771228.4382	9861442.84	2604.315	E
1059 771230.798 9861454.97 2604.279 BI 1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1057	771229.4506	9861455.76	2604.179	CN
1060 771233.2864 9861454.66 2604.396 E 1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1058	771223.8004	9861416.56	2604.339	P
1061 771235.4843 9861453.65 2604.42 BD 1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1059	771230.798	9861454.97	2604.279	BI
1062 771239.4548 9861454.05 2604.819 P 1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1060	771233.2864	9861454.66	2604.396	E
1063 771238.0708 9861472.82 2604.562 BI 1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1061	771235.4843	9861453.65	2604.42	BD
1064 771242.3627 9861470.49 2604.731 BD 1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1062	771239.4548	9861454.05	2604.819	P
1065 771240.1673 9861471.98 2604.672 E 1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1063	771238.0708	9861472.82	2604.562	BI
1066 771242.8963 9861488.27 2604.917 CN 1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1064	771242.3627	9861470.49	2604.731	BD
1067 771248.9801 9861486.17 2605.077 BD 1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1065	771240.1673	9861471.98	2604.672	E
1068 771244.3245 9861488.22 2605.006 BI 1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1066	771242.8963	9861488.27	2604.917	CN
1069 771246.6609 9861487.77 2605.09 E 1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1067	771248.9801	9861486.17	2605.077	BD
1070 771253.2765 9861505.91 2605.536 BI 1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1068	771244.3245	9861488.22	2605.006	BI
1071 771259.2373 9861502.05 2605.564 P 1072 771257.8981 9861503.57 2605.55 BD	1069	771246.6609	9861487.77	2605.09	Е
1072 771257.8981 9861503.57 2605.55 BD	1070	771253.2765	9861505.91	2605.536	BI
	1071	771259.2373	9861502.05	2605.564	P
1073 771255.6073 9861505.19 2605.59 E	1072	771257.8981	9861503.57	2605.55	BD
	1073	771255.6073	9861505.19	2605.59	Е

1074	771056 026	0061407.41	2605 417	
1074	771256.936	9861497.41	2605.417	A
1075	771264.5486	9861516.7	2606.045	VA10
1076	771259.7608	9861519.1	2605.934	CE10
1077	771262.0596	9861518.24	2606.054	Е
1078	771270.6644	9861522.78	2606.215	A
1079	771265.8891	9861529.62	2606.356	BI
1080	771270.2119	9861526.47	2606.336	BD
1081	771267.9965	9861528.39	2606.425	E
1082	771265.5785	9861533.12	2606.524	CN
1083	771277.0654	9861536.01	2606.631	BD
1084	771267.9559	9861538.45	2606.591	A
1085	771274.9475	9861537.98	2606.699	Е
1086	771272.8196	9861539.48	2606.608	BI
1087	771283.3589	9861538.81	2607.376	CN
1088	771277.8706	9861548.46	2607.064	P
1089	771279.0614	9861549.73	2606.903	CN
1090	771281.7126	9861549.81	2606.935	BI
1091	771283.8053	9861548.26	2607.046	E
1092	771285.8327	9861546.24	2607.004	BD
1093	771293.5843	9861565.5	2607.589	CN
1094	771298.6807	9861555.46	2607.802	CN
1095	771295.8205	9861568.31	2607.521	A
1096	771300.3754	9861568.67	2607.662	BI
1097	771302.1499	9861566.95	2607.687	E
1098	771303.8767	9861564.72	2607.642	BD
1099	771303.9307	9861575.21	2607.91	CN
1100	771305.7869	9861577.27	2608.175	Р
1101	771315.7313	9861583.79	2608.294	BI
1102	771319.4721	9861580.07	2608.288	BD
1103	771317.7386	9861582.08	2608.361	E
1104	771326.9917	9861582.75	2608.528	CN
1105	771319.4806	9861590.96	2608.249	CN
1106	771320.9439	9861592.2	2608.239	A
1107	771321.5553	9861588.66	2608.438	BI
1107	1021.0000		0.5	Δ.

1108	771325.3543	9861584.62	2608.484	BD
1109	771323.5669	9861586.9	2608.513	Е
1110	771333.077	9861605.18	2609.668	P
1111	771347.6324	9861604.45	2609.131	CN
1112	771335.2886	9861606.97	2609.622	CN
1113	771338.0606	9861610.37	2609.407	A
1114	771346.4134	9861603.47	2609.016	A
1115	771348.4917	9861615.11	2609.427	BI
1116	771352.0525	9861611.11	2609.357	BD
1117	771350.1641	9861613.31	2609.468	Е
1118	771362.3342	9861617.13	2609.505	A
1119	771350.4123	9861621.69	2609.868	A
1120	771353.8078	9861624.67	2610.208	CN
1121	771357.6598	9861628.88	2610.051	A
1122	771365.7737	9861625.82	2609.952	BD
1123	771363.8949	9861628.08	2610.007	E
1124	771361.3075	9861629.29	2609.975	BI
1125	771372.259	9861637.09	2610.486	Е
1127	771355.4854	9861622.69	2609.725	CE11
1128	771355.4854	9861622.69	2609.725	NO
1129	771361.8863	9861632.86	2610.166	P
1130	771364.224	9861637.78	2610.346	A
1131	771368.4247	9861641.71	2610.505	A
1132	771372.5044	9861627.08	2610.151	A
1133	771383.4956	9861630.39	2610.281	A
1134	771387.4456	9861659.76	2292.718	J1
1135	771388.8773	9861660.95	2291.962	TN
1136	771382.9134	9861658.77	2292.126	TN

Anexo N°3: Estudio del agua residual

LABORATORIO DE SERVICIOS AMBIENTALES

Laboratorio de ensayo acreditado por el SAE con acreditación No. SAE LEN 17-012

INFORME DE ANALISIS

NOMBRE: David Ernesto Cruz Andrade, Yadira Nataly Pachucho Chuquiana¹

INFORME N° 032 - 23

EMPRESA: Proyecto de Tesis Universidad Técnica de Ambato¹

N° SE: 032 - 23

DIRECCIÓN: Picaihua, Ambato1 TELÉFONO: 09604019061

FECHA DE RECEPCIÓN: 03/02/2023 FECHA DE INFORME: 08/02/2023

NÚMERO DE MUESTRAS: 2, Agua residual, Cacerio Sigsipamba – Picaihua - TUNGURAHUA¹ TIPO DE MUESTRA:

MA - 042-23 PTAR Entrada¹ MA - 043-23 PTAR Salida¹ IDENTIFICACIÓN:

Agua residual Agua residual

Condiciones	T máx:	25 °C
Ambientales	T min:	10°C

El laboratorio se responsabiliza solo del análisis, no de las muestras.

RESULTADO DE ANÁLISIS

MA - 035-22

PARÁMETROS	UNIDADES	MÉTODO/PROCEDIMIENTO	RESULTADO	U(K=2)	FECHA DE Análisis
* Aceltes y grasas	mg/L	EPA 418,1	163,45	N/A	03/02/2023
* Fósforo Total	mg/L	STANDARD METHODS 4500 P - E	8,50	N/A	03/02/2023
* DBO ₅	mg O₂/L	STANDARD METHODS 5210 - B	293	N/A	03/02/2023
*DQO	mg/L	STANDARD METHODS 5220 - D	464	N/A	03/02/2023
* Nitrogeno Total	mg/L	STANDARD METHODS 4500 N - B	87,5	N/A	03/02/2023
* Nitrogeno Amoniacai	mg/L	STANDARD METHODS 4500 - NH3 B&C	78,33	N/A	03/02/2023
pH	-	PE-LSA-01	6,46	+/- 0,08	03/02/2023
" Sólidos Suspendidos	mg/L	STANDARD METHODS 2540 - D	456	N/A	03/02/2023
* Detergentes	mg/L	STANDARD METHODS 5540 - C	23,3	N/A	03/02/2023
" Color Aparente	UPt-Co	STANDARD METHODS 2120 - C	2460	N/A	03/02/2023
* Coliformes fecales	NMP/100 ml	STANDARD METHODS 9221- B	45000	N/A	03/02/2023
* Sólidos Totales	mg/L	STANDARD METHODS 2540 - B	878	N/A	03/02/2023

FMC2101-01

Página1 de2

L.S.A. Campus Máster Edison Riera Km 1 1/2 vía a Guano Bioque Administrativo.

⁻Los resultados de este informe corresponden únicamente a la(s) muestra(s) analizada(s).

-Los ensayos marcados con (*) no se encuentran dentro del alcance de acreditación del SAE.

1. Información proporcionada por el ciliente. LSA no se responsabiliza de dicha información
-Se prolible la reproducción paceial de este informes sin la susorización del laboratorio.

-LSA libera su responsabilidad por la información proporcionada por el cliente y el uso que se le dará a los resultados

LABORATORIO DE SERVICIOS AMBIENTALES

Laboratorio de ensayo acreditado por el SAE con acreditación No. SAE LEN 17-012

MA - 036-22

PARÁMETROS	UNIDADES	MÉTODO/PROCEDIMIENTO	RESULTADO	U(K=2)	FECHA DE ANÁLISIS
* Aceltes y grasas	mg/L	EPA 418,1	186,56	N/A	03/02/2023
* Fósforo Total	mg/L	STANDARD METHODS 4500 P - E	7,50	N/A	03/02/2023
- DBO2	mg O₂/L	STANDARD METHODS 5210 - B	276	N/A	03/02/2023
, Dđo	mg/L	STANDARD METHODS 5220 - D	393	N/A	03/02/2023
* Nitrogeno Total	mg/L	STANDARD METHODS 4500 N - B	82,3	N/A	03/02/2023
* Nitrògeno Amoniacai	mg/L	STANDARD METHODS 4500 - NH3 B&C	78,5	N/A	03/02/2023
pН	•	PE-LSA-01	6,96	+/- 0,08	03/02/2023
* Sölldos Suspendidos	mg/L	STANDARD METHODS 2540 - D	290	N/A	03/02/2023
* Detergentes	mg/L	STANDARD METHODS 5540 - C	7,25	N/A	03/02/2023
"Color Aparente	UPt-Co	STANDARD METHODS 2120 - C	1940	N/A	03/02/2023
* Coliformes fecales	NMP/100 ml	STANDARD METHODS 9221- B	10750	N/A	03/02/2023
* Sólidos Totales	mg/L	STANDARD METHODS 2540 - B	711	N/A	03/02/2023

MÉTODOS UTILIZADOS: Métodos Normalizados para el Análisis de Aguas Potables y Residuales APHA, AWWA, WPCF, STANDARD METHODS 23º EDICIÓN y métodos HACH adaptados del STANDARD METHODS 23º EDICIÓN. REGLA DE DECISIÓN ACORDADA: No aplica

RESPONSABLES DEL ANÁLISIS:

Dr. Juan Carlos Lara Benito Mendoza T., Ph.D.

Dr. Juan Carlos Lara R. TECNICO L.S.A.

FMC2101-01

Página2 de2

L.S.A. Campus Máster Edison Riera Km 1 ½ vía a Guano Bloque Administrativo.

⁻Los resultados de este informe corresponden únicamente a la(s) muestra(s) analizada(s).

-Los ensayos marcados con (*) no se encuentran dentro del alcance de acreditación del SAE.

1. Información proporcionada por el cliente. LSA no se responsabiliza de dicha información
-Se prolíbe la reproducción paccial de este informes sin la sustrización del laboratorio.

-LSA libera su responsabilidad por la información proporcionada por el cliente y el uso que se le dará a los resultados

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.1.1

Detalle: Replanteo y Nivelación con equipo topográfico en alcantarillado Unidad:

EQUIPOS						
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
	A	В	C=A x B	R	D=C x R	
Herramienta manual y menor de construcción 5% MO					6.88	
Equipo de topográfico	1.00	9.00	9.00	8.5	76.50	
SUBTOTALM	-				83.38	

MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	8.68	33.24
Cadenero (Estr.Oc. D2)	2.00	3.87	7.74	8.68	67.18
Topógrafo (Estr Oc. C1)	1.00	4.29	4.29	8.68	37.24
SUBTOTAL N					137.66

MATERIALES					
Descripción Unidad Cantidad Precio unitario Costo					
		A	В	C=A x B	
Estaca de madera (0.50x0.05) m	u	5.00	0.40	2.00	
Clavos	kg	1.00	0.75	0.75	

SUBTOTAL O				2.75
TRANSI	PORTE			
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	С=АхВ

SUBTOTAL P 0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	(M+N+O+P)	223.80
INDIRECTOS	20 %	44.76
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		268.56
VALOR OFERTADO		268.56

km

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.2.1

Detalle: Rotura de carpeta Asfáltica Unidad: m2

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		0.06
Retroexcavadora	1.00	20.00	20.00	0.10	2.00
Máquina cortadora de asfalto	1.00	10.00	10.00	0.10	1.00
SUBTOTALM					
MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	0.10000	0.38
Operador de Retroexcavadora (Estr. Oc. C1)	1.00	4.29	4.29	0.10000	0.43
Operador de equipo liviano (Estr Oc. D2)	1.00	3.87	3.87	0.10000	0.39
SUBTOTAL N					1.20
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Disco de corte		u	0.07	2.60	0.18
SUBTOTAL O					0.18
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
	_				
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

 TOTAL COSTO DIRECTO (M+N+O+P)
 4.44

 INDIRECTOS
 20 %
 0.89

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 5.33

 VALOR OFERTADO
 5.33

Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly

Realizado por:

m2

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.2.2

Detalle: Reposición de carpeta asfaltica e>=5 cm **Unidad:**

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		0.05
Distribuidora de asfalto	0.30	65.00	19.50	0.04	0.78
Rodillo vibratorio liso	0.30	30.00	9.00	0.04	0.36
Planta asfáltica	0.20	30.00	6.00	0.04	0.24
Volqueta 8 m3	0.20	25.00	5.00	0.04	0.20
SUBTOTALM					1.63
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A		C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	2.00	3.83	7.66	0.04	0.30
Operador responsable de la planta asfáltica (Est	1.00	4.09	4.09	0.04	0.16
Operador Rodillo autopropulsado (Estr.Oc. C2)	1.00	4.09	4.09	0.04	0.16
CHOFER: Volquetas (Estr.Oc.C1)	1.00	5.62	5.62	0.04	0.22
Operador de distribuidor de asfalto (Estr.Oc. C2	1.00	4.09	4.09	0.04	0.16
SUBTOTALN					1.00
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Asfalto RC-250 para imprimación (1.5 lt/m2)		m2	1.10	0.50	0.55
Hormigón asfáltico mezclado en planta		m2	1.10	6.10	6.71
SUBTOTAL O					7.26
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
CIRTOTALD					0.00
SUBTOTALP					0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	(M+N+O+P)	9.89
INDIRECTOS	20 %	1.98
UTILIDAD	%	
COSTO TOTAL DEL RUBE	RO	11.86
VALOR OFERTADO		11.86

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.1

Detalle: s.c Pozo revisión h=1.00-2.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					4.14
Concretera 1 saco	1.00	6.00	6.00	3.50	21.00
Vibrador	1.00	2.35	2.35	3.50	8.23
SUBTOTALM					33.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	3.50	67.03
Albañil	1.00	4.29	4.29	3.50	15.02
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	1.70	0.73
SUBTOTALN					
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Arena		m3	0.85	8.73	7.42
Cemento		kg	440.85	0.15	66.13
Ripio triturado		m3	1.60	12.97	20.75
Agua		m3	0.40	1.25	0.50
Encofrado metálico para pozos		m	2.00	26.00	52.00
Escalones diámetro=16mm		u	6.00	1.65	9.90
SUBTOTAL O					156.70
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTALP		•			0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO (M+N+O+P)		272.83
INDIRECTOS	20 %	54.57
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		327.40
VALOR OFERTADO		327.40

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.2

Detalle: s.c Pozo revisión h=2.51-3.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

Cantidad A 1.00 1.00 MANO DE Cantidad A	Tarifa B 6.00 2.35 OBRA Jornal/hr	Costo hora C=A x B 6.00 2.35	Rendimiento R 3.80 3.80	22.80	
1.00 1.00 MANO DE Cantidad	6.00 2.35 OBRA	6.00	3.80	4.38 22.80	
MANO DE Cantidad	2.35 OBRA		0.00		
MANO DE Cantidad	2.35 OBRA		0.00		
MANO DE	OBRA	2.35	3.80	0.00	
Cantidad				8.93	
Cantidad				36.11	
	Iornal/hr				
A I		Costo hora	Rendimiento	Costo	
	В	C=A x B	R	D=C x R	
5.00	3.83	19.15	3.70	70.86	
1.00	4.29	4.29	3.70	15.87	
0.10	4.29	0.43	1.90	0.82	
SUBTOTALN					
MATERIALES					
	Unidad			Costo	
		A	В	C=A x B	
	m3	1.00	8.73	8.73	
	kg	520.16	0.15	78.02	
	m3	1.80	12.97	23.35	
	m3	0.70	1.25	0.88	
	m	3.00	26.00	78.00	
	u	8.00	1.65	13.20	
				202.18	
TRANSPO					
	Unidad	Cantidad		Costo	
		A	В	C=A x B	
				0.00	
	5.00 1.00 0.10 MATERIA	5.00 3.83 1.00 4.29 0.10 4.29 MATERIALES Unidad m3 kg m3 m3 m u TRANSPORTE	S.00 3.83 19.15	5.00 3.83 19.15 3.70 1.00 4.29 4.29 3.70 0.10 4.29 0.43 1.90 MATERIALES Unidad Cantidad Precio unitario A B m3 1.00 8.73 kg 520.16 0.15 m3 1.80 12.97 m3 0.70 1.25 m 3.00 26.00 u 8.00 1.65 TRANSPORTE Unidad Cantidad Tarifa	

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

 TOTAL COSTO DIRECTO (M+N+O+P)
 325.83

 INDIRECTOS
 20 %
 65.17

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 390.99

 VALOR OFERTADO
 390.99

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.3

Detalle: s.c Pozo revisión h=3.51-4.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					4.62
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTALM				36.35	
	MANO DE				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	3.90	74.69
Albañil	1.00	4.29	4.29	3.90	16.73
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.10	0.90
SUBTOTAL N	MATERIA	TEX			92.32
Descripción	MATERIA	Unidad	Cantidad	Precio unitario	Costo
Description		Ullidad	A	B	C=A x B
Arena		m3	1.25	8.73	10.91
Cemento		kg	532.16	0.15	79.82
Ripio triturado		m3	2.40	12.97	31.13
Agua		m3	0.95	1.25	1.19
Encofrado metálico para pozos		m	4.00	26.00	104.00
Escalones diámetro=16mm		u	9.00	1.65	14.85
SUBTOTAL O					241.90
	TRANSPO	PRTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				L	0.00
		TOTAL COS	TO DIRECTO	(M+N+O+P)	370.56
		INDIRECTO	S	20 %	74.11
Cruz Andrade David Ernesto		UTILIDAD %			
Pachucho Chuquiana Yadira Nataly COSTO TOTAL DEL RUBRO		RO	444.68		
Realizado por:		VALOR OFERTADO			444.68

194

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.4

Detalle: s.c Pozo revisión h=4.51-5.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					4.97
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTALM	SUBTOTALM				36.70
	MANO DE				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	4.20	80.43
Albañil	1.00	4.29	4.29	4.20	18.02
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.20	0.94
SUBTOTALN		- 30			99.39
Dogovinským	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario B	Costo
Arana		m3	A 1.60	8.73	C=A x B 13.97
Arena Compania		_		0.15	81.90
Cemento		kg	546.00		
Ripio triturado		m3	2.55	12.97	33.07
Agua		m3	1.10	1.25	1.38
Encofrado metálico para pozos		m	5.00	26.00	130.00
Escalones diámetro=16mm		u	9.60	1.65	15.84
SUBTOTAL O					276.16
	TRANSPO				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				L	0.00
		TOTAL COS	TO DIRECTO	(M+N+O+P)	412.25
		INDIRECTOS 20 %		82.45	
Cruz Andrade David Ernesto)	UTILIDAD %			
Pachucho Chuquiana Yadira Nat	aly	COSTO TOTAL DEL RUBRO			494.70
Realizado por:		VALOR OFERTADO			494.70

195

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.5

Detalle: s.c Pozo revisión h=5.51-6.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO) C			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
Descripcion					
	A	В	C=A x B	R	D=C x R
Herramientas Menor 5% de M.O.					5.09
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTAL M					36.82
	MANO DE				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	4.30	82.35
Albañil	1.00	4.29	4.29	4.30	18.45
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.30	0.99
SUBTOTAL N					101.78
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.75	8.73	15.28
Cemento		kg	550.00	0.15	82.50
Ripio triturado		m3	2.65	12.97	34.37
Agua		m3	1.20	1.25	1.50
Encofrado metálico para pozos		m	6.00	26.00	156.00
Escalones diámetro=16mm		u	10.00	1.65	16.50
SUBTOTAL O					306.15
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	$C=A \times B$
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

 TOTAL COSTO DIRECTO (M+N+O+P)
 444.75

 INDIRECTOS
 20 %
 88.95

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 533.69

 VALOR OFERTADO
 533.69

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.3.6

Detalle: s.c Pozo revisión h=6.51-7.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					5.33
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTAL M					37.06
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	4.50	86.18
Albañil	1.00	4.29	4.29	4.50	19.31
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.40	1.03
SUBTOTAL N					106.51
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.85	8.73	16.15
Cemento		kg	552.00	0.15	82.80
Ripio triturado		m3	2.85	12.97	36.96
Agua		m3	1.30	1.25	1.63
Encofrado metálico para pozos		m	7.00	26.00	182.00
Escalones diámetro=16mm		u	11.00	1.65	18.15
SUBTOTAL O					337.69
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P				_	0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	481.26	
INDIRECTOS	20 %	96.25
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		577.51
VALOR OFERTADO		577.51

5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 1.4.1

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.				=	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David Ernesto	o	UTILIDAD		%	
Pachucho Chuquiana Yadira Na	ataly	COSTO TOTAL DEL RUBRO			5.35

Realizado por:

VALOR OFERTADO

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.2

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	S			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.30
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTAL N					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.3

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTALM					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O			<u> </u>		0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=АхВ
SUBTOTAL P	•				0.00
ESTE PRECIO NO INCLUYEN IVA.				ı	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David Ernesto	O	UTILIDAD %		%	
Pachucho Chuquiana Yadira Na	ntaly	COSTO TOTAL DEL RUBRO		5.35	

VALOR OFERTADO

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.4

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	PRTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IV.	Α.			-	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David I	Ernesto	UTILIDAD %			
Pachucho Chuquiana Yao	dira Nataly	COSTO TOTAL DEL RUBRO			5.35
Realizado por	:	VALOR OFERTADO			5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.5

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M		•			2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	$C=A \times B$	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN		•			2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	(M+N+O+P)	4.46
INDIRECTOS	20 %	0.89
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		5.35
VALOR OFERTADO		5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

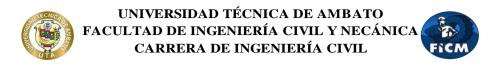
ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.6

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
SUBTOTAL O					0.00
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	$C=A \times B$
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN	IVA.			_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade Dav	id Ernesto	UTILIDAD %			
Pachucho Chuquiana	Yadira Nataly	COSTO TO	TAL DEL RUBE	RO .	5.35
Realizado p	or:	VALOR OFE	RTADO		5.35

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"


ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 1.4.7

Detalle: Excavación Manual **Unidad:** m3

	EQUIPO	os			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					1.93
SUBTOTALM					1.93
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	2.00	38.30
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	0.50	0.21
SUBTOTALN					38.51
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECT	O (M+N+O+P)	40.44
		INDIRECTO	S	20 %	8.09
Cruz Anrade David Ernesto		UTILIDAD		%	
Pachucho Chuquiana Yadira Nataly		COSTO TOTAL DEL RUBRO			48.53
Realizado por: VALOR OFERTADO					

204

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.8

Detalle: Entibado de zanjas h > 2 m Unidad: m2

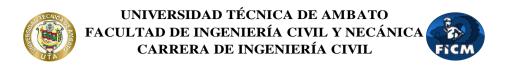
	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.36
SUBTOTAL M					0.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	0.45	5.17
Carpintero	1.00	3.87	3.87	0.45	1.74
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	0.45	0.19
SUBTOTAL N					7.11
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
clavos de 2 a 8"		kkg	0.05	1.96	0.10
Tablas de monte		U	1.30	2.20	2.86
pingos D=10cm		m	0.90	1.05	0.95
Alfajia		U	0.33	3.36	1.11
SUBTOTAL O	•				5.01
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
			1 %	ь	C-rr R D
			11	В	C-IIA D

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO (M+N+O+P)		12.47
INDIRECTOS	20 %	2.49
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		14.97
VALOR OFERTADO		14.97

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS


Rubro: 1.4.9

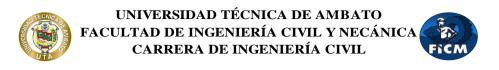
Detalle: Rasanteo de zanja Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					0.17
SUBTOTAL M					0.17
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	0.18	3.45
SUBTOTALN	,	•			3.45
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
SUBTOTAL O	SUBTOTAL O				
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=АхВ
SUBTOTALP	•	•	•		0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO (M+N+O+P)		3.62
INDIRECTOS	20 %	0.72
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		4.34
VALOR OFERTADO		4.34

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"


ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.10

Detalle: Colchón de arena e=10 cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					6.35
SUBTOTALM		'			6.35
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	5.40	103.41
Albañil	1.00	4.29	4.29	5.40	23.17
Maestro mayor en ejecución de obras civiles (Es	0.03	4.29	0.13	3.10	0.40
SUBTOTALN					126.97
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	2.65	8.73	23.13
SUBTOTAL O					23.13
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00

TOTAL COSTO DIRECT	156.46	
INDIRECTOS	31.29	
UTILIDAD		
COSTO TOTAL DEL RUI	187.75	
VALOR OFERTADO		187.75

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.11

Detalle: Relleno compactado mecánico (Material de excavación) **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.58
Compactador mecanico	1.00	3.75	3.75	3.80	14.25
SUBTOTALM					14.83
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	2.00	3.83	7.66	1.00	7.66
Operador del compactador mecánico	1.00	3.87	3.87	1.00	3.87
SUBTOTALN					11.53
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Agua		m3	1.90	1.00	1.90
SUBTOTAL O					1.90
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				L	0.00
		TOTAL COS	TO DIRECT	O (M+N+O+P)	28.26
		INDIRECTO	S	20 %	5.65
Cruz Anrade David Ernes	ito	UTILIDAD		%	
Pachucho Chuquiana Yadira N	Nataly	соѕто то	TAL DEL RUI	BRO	33.91
Realizado por:		VALOR OFE	RTADO		33.91

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.4.12

Detalle: Desalojo de materiales sobrante hasta 5km. Cargado a máquina Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					0.02
Cargadora frontal	1.00	40.00	40.00	0.04	1.60
Volqueta 8 m3	1.00	20.00	20.00	0.04	0.80
SUBTOTAL M					2.42
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador de equipo pesado OPC1	1.00	4.29	4.29	0.04	0.17
Chofer de volqueta CHC1	1.00	5.62	5.62	0.04	0.22
SUBTOTALN					0.40
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECT	O (M+N+O+P)	2.82
		INDIRECTO	Q	20 %	0.56
		INDIRECTO	ь	20 70	0.30
Cruz Anrade David Erne	sto	UTILIDAD	5	%	0.30
Cruz Anrade David Erne Pachucho Chuquiana Yadira l		UTILIDAD	TAL DEL RUI	%	3.38

TOTAL COSTO DIRECT	$\Gamma O (M+N+O+P)$	2.82
INDIRECTOS	20 %	0.56
UTILIDAD	%	
COSTO TOTAL DEL RU	COSTO TOTAL DEL RUBRO	
VALOR OFERTADO		3.38

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.5.1

Detalle: Pozo de revisión de H.S, h= (1.00-2.5) m. Incluye tapa de HF

Unidad:

	EQUIPOS					
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
	A	В	$C=A \times B$	R	$D=C \times R$	
Herramienta manual y menor de construcción	5%MO		0.00		2.94	
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85	
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25	
SUBTOTALM					8.04	
MANO DE OBRA						
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo	
	A	В	C=A x B	R	D=C x R	
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.50	28.73	
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.50	19.35	
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.50	10.73	
SUBTOTALN		-			58.80	
MATERIALES				_		
Descripción		Unidad	Cantidad	Precio unitario	Costo	
			A	В	$C=A \times B$	
Cemento Fuerte Tipo GU Saco 50 Kg	Cemento Fuerte Tipo GU Saco 50 Kg		1.80	8.15	14.67	
Agua en obra (incluye instalaciones provisionales	s)	lt	60.00	0.05	3.00	
Arena fina		m3	0.15	20.00	3.00	
Piedra	iedra		0.10	22.00	2.09	
Arena gruesa		m3	0.68	20.00	13.60	
Grava		m3	0.96	20.00	19.20	
Aditivo impermeabilizante para hormigón		gal	0.01	7.50	0.05	
Encofrado metálico pozos de revisión h=1.00-2.5	50 m	u	1.00	15.00	15.00	
Tapa de Hierro Fundido		u	1.00	95.00	95.00	
Cerco de Hierro Fundido		u	1.00	40.00	40.00	
Peldaño de Hierro Fundido		u	3.00	3.50	10.50	
Puntal		u	1.30	1.00	1.30	
SUBTOTALO					217.41	
	TRANSPO	RTE		_		
Descripción		Unidad	Cantidad	Tarifa	Costo	
			A	В	C=A x B	
SUBTOTAL P					0.00	
ESTE PRECIO NO INCLUYEN IVA.				_		

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	(M+N+O+P)	284.25
INDIRECTOS	20 %	56.85
UTILIDAD	%	
COSTO TOTAL DEL RUBR	RO .	341.10
VALOR OFERTADO		341.10

210

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.5.2

Detalle: Pozo de revisión de H.S, h= (2.51-3.50) m. Incluye tapa de HF (Incluye Pozos de Unidad:

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		2.94
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTAL M					8.04
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.50	28.73
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.50	19.35
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.50	10.73
SUBTOTAL N			-		58.80
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	С=А х В
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.00	8.15	16.30
Agua en obra (incluye instalaciones provisionales	s)	1t	65.00	0.05	3.25
Arena fina		m3	0.20	20.00	4.00
Piedra		m3	0.15	22.00	3.30
Arena gruesa		m3	0.75	20.00	15.00
Grava		m3	1.00	20.00	20.00
Aditivo impermeabilizante para hormigón		gal	0.02	7.50	0.14
Aditivo impermeabilizante para hormigón				15.00	15.00
Aditivo impermeabilizante para hormigón Encofrado metálico pozos de revisión h=2.51-3.5	0 m	u	1.00	15.00	15.00
	0 m	u u	1.00	95.00	
Encofrado metálico pozos de revisión h=2.51-3.5	0 m	-			95.00 40.00
Encofrado metálico pozos de revisión h=2.51-3.5 Tapa de Hierro Fundido	0 m	u	1.00	95.00	95.00

TRANSPORTE				
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	С=А х В
SUBTOTAL P	•			0.00

ESTE PRECIO NO INCLUYEN IVA.

SUBTOTAL O

0.00

223.89

TOTAL COSTO DIRECTO	TOTAL COSTO DIRECTO (M+N+O+P)	
INDIRECTOS	20 %	58.15
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		348.87
VALOR OFERTADO		348.87

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 1.5.3

Detalle: Pozo de revisión de H.S, h= (3.51-4.50) m. Incluye tapa de HF (Incluye Pozos de

Unidad:

u

resalto)

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.18
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					8.28
MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.70	31.02
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.70	20.90
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.70	11.58
SUBTOTALN					63.50
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.20	8.15	17.93
Agua en obra (incluye instalaciones provisionales)		lt	70.00	0.05	3.50
Arena fina		m3	0.25	20.00	5.00
Piedra		m3	0.19	22.00	4.18
Arena gruesa		m3	0.79	20.00	15.80
Grava		m3	1.10	20.00	22.00
Aditivo impermeabilizante para hormigón		gal	0.023	7.50	0.17
Encofrado metálico pozos de revisión h=3.51-4.5	50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.45	1.00	1.45
SUBTOTAL O					230.53
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B

 $\ \, \textbf{ESTE PRECIO NO INCLUYEN IVA.} \\$

SUBTOTALP

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	302.31	
INDIRECTOS	60.46	
UTILIDAD	%	
COSTO TOTAL DEL RUBE	362.77	
VALOR OFERTADO	VALOR OFERTADO	

0.00

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.5.4

SUBTOTAL O

Detalle: Pozo de revisión de H.S, h= (4.51-5.50) m. Incluye tapa de HF (Incluye Pozos de

resalto)

Unidad:

236.20

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.29
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					8.39
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.80	32.17
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.80	21.67
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.80	12.01

SUBTOTALN				65.86
MATE	RIALES			
Descripción	Unidad	Cantidad	Precio unitario	Costo
		A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg	saco (50kg)	2.30	8.15	18.75
Agua en obra (incluye instalaciones provisionales)	1t	75.00	0.05	3.75
Arena fina	m3	0.30	20.00	6.00
Piedra	m3	0.22	22.00	4.84
Arena gruesa	m3	0.83	20.00	16.60
Grava	m3	1.20	20.00	24.00
Aditivo impermeabilizante para hormigón	gal	0.028	7.50	0.21
Encofrado metálico pozos de revisión h=4.51-5.50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido	u	1.00	95.00	95.00
Cerco de Hierro Fundido	u	1.00	40.00	40.00
Peldaño de Hierro Fundido	u	3.00	3.50	10.50
Puntal	u	1.55	1.00	1.55

TRANSPORTE				
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	С=АхВ
SUBTOTAL P				0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO (M+N+O+P)		310.44
INDIRECTOS	62.09	
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		372.53
VALOR OFERTADO		372.53

u

Unidad:

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.5.5

Detalle: Pozo de revisión de H.S, h= (5.51-6.50) m. Incluye tapa de HF (Incluye Pozos de

resalto)

EQUIPOS Descripción Cantidad Tarifa Costo hora Rendimiento Costo $C=A \times B$ В $D=C \times R$ R Herramienta manual y menor de construcción 5%MO 0.00 3.41 0.70 5.50 3.85 1.00 Concretera 1 saco 3.85 Vibrador para concreto, potencia 5.50HP 0.50 2.50 1.25 1.00 1.25

SUBTOTAL M 8.51

MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.90	33.32
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.90	22.45
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.90	12.44
SUBTOTALN					68.21

SUBTOTALN				68.21
MATE	RIALES			
Descripción	Unidad	Cantidad	Precio unitario	Costo
		A	В	С=АхВ
Cemento Fuerte Tipo GU Saco 50 Kg	saco (50kg)	2.50	8.15	20.38
Agua en obra (incluye instalaciones provisionales)	lt	80.00	0.05	4.00
Arena fina	m3	0.40	20.00	8.00
Piedra	m3	0.26	22.00	5.72
Arena gruesa	m3	0.88	20.00	17.60
Grava	m3	1.25	20.00	25.00
Aditivo impermeabilizante para hormigón	gal	0.030	7.50	0.23
Encofrado metálico pozos de revisión h=5.51-6.50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido	u	1.00	95.00	95.00
Cerco de Hierro Fundido	u	1.00	40.00	40.00
Peldaño de Hierro Fundido	u	3.00	3.50	10.50

 Puntal
 u
 1.65
 1.00
 1.65

 SUBTOTALO
 243.07

TRANSPO	ORTE			
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	C=A x B

SUBTOTAL P 0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COS TO DIRECTO (M+N+O+P)		319.79
INDIRECTOS	NDIRECTOS 20 %	
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		383.75
VALOR OFERTADO		383.75

 \mathbf{u}

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 1.5.6

Detalle: Pozo de revisión de H.S, h= (6.51-7.50) m. Incluye tapa de HF (Incluye Pozos de

Unidad:

resalto)

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.53
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					8.63
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	3.00	34.47
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	3.00	23.22
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	3.00	12.87
SUBTOTALN					70.56
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.80	8.15	22.82
Agua en obra (incluye instalaciones provisionales	s)	lt	85.00	0.05	4.25
Arena fina		m3	0.50	20.00	10.00
Piedra		m3	0.30	22.00	6.60
Arena gruesa		m3	0.90	20.00	18.00
Grava		m3	1.35	20.00	27.00
Aditivo impermeabilizante para hormigón		gal	0.040	7.50	0.30
Encofrado metálico pozos de revisión h=6.51-7.5	50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.75	1.00	1.75
SUBTOTAL O					251.22
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B

ESTE PRECIO NO INCLUYEN IVA.

SUBTOTAL P

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO (M+N+O+P)		330.41	
INDIRECTOS	DIRECTOS 20 %		
UTILIDAD	%		
COSTO TOTAL DEL RUBRO		396.49	
VALOR OFERTADO		396.49	

0.00

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.6.1

Detalle: Suministro e Instalación de tuberías PVC. DNI=200 mm

Unidad: m

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.04
SUBTOTALM					0.04
MA	NO DE OBRA	\			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	2.00	3.83	7.66	0.060	0.46
Plomero (Estr. D2)	1.00	3.87	3.87	0.060	0.23
Maestro mayor ejecución de obras civiles (Estr.Oc. C1)	0.20	4.29	0.86	0.060	0.05
SUBTOTALN					0.74
M	ATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Tubería sanitaria d=200 mm		m	1.00	18.00	18.00
Grasa vegetal		kg	0.10	2.30	0.23
Anillo caucho 1 novafort d=200 mm		U	0.20	5.20	1.04
SUBTOTALO					19.27
TI	RANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	TOTAL COSTO DIRECTO (M+N+O+P)		
INDIRECTOS	20 %		
UTILIDAD	%		
COSTO TOTAL DEL RUBE	RO	24.06	
VALOR OFERTADO		24.06	

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 1.6.2

Detalle: Acometida domiciliaria de alcantarillado, incluye accesorios y caja de revisión

Pachucho Chuquiana Yadira Nataly

Realizado por:

Unidad:

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.06
Máquina cortadora	0.20	12.00	2.40	1.30	3.12
Retroexcavadora	0.20	8.50	1.70	1.30	2.21
Compactador mecánico	0.20	6.70	1.34	1.30	1.74
concretera 1 saco	0.20	5.50	1.10	1.30	1.43
Vibrador para concreto, potencia 5.50 HP	0.20	2.50	0.50	1.30	0.65
SUBTOTALM	•				2.21
	IANO DE OBR				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
Defer (Ester E2)	A 2.00	B 2.92	C=A x B	R 1.20	D=C x R
Peón (Estr. E2)	3.00	3.83	11.49	1.30	14.94
Albañil (Estr. D2)	1.00	3.87	3.87		5.03
Plomero (Estr. D2)	1.00	3.87	3.87	1.30	5.03
Operador de equipo liviano (Estr. D2)	1.00	3.87	3.87	1.30	5.03
Operador de retroexcavadora (Estr. C1)	1.00	4.29	4.29	1.30	5.58
Maestro mayor obras civiles (Estr. C1) SUBTOTAL N	0.20	4.29	0.86	1.30	1.12
SUBTOTALN	MATERIALES				36.72
Descripción	WEST EXCERTED	Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena fina		m3	0.60	9.20	5.52
Tubo PVC 160 mm x 3m		u	0.40	30.00	12.00
Silla tee		u	1.00	16.00	16.00
Codo desague PVC 9" x 160mm		u	1.00	34.00	34.00
Cemento tipo GU saco (50 Kg)		Saco (50kg)	3.00	7.80	23.40
Arena gruesa		m3	0.28	17.00	4.76
Grava		m3	0.20	16.00	3.20
Cerco H.F		u	1.00	35.00	35.00
SUBTOTALO					133.88
	TRANSPORTE				
Descripción	TRANSPORTE	Unidad	Cantidad	Tarifa	Costo
	FRANS PORTE	П	Cantidad A	Tarifa B	Costo C=A x B
	FRANS PORTE	П			
Descripción SUBTOTAL P	FRANSPORTE	П			
Descripción	TRANSPORTE	Unidad	A	В	C=A x B
Descripción SUBTOTAL P	TRANS PORTE	Unidad TOTAL COS	A TO DIRECTO	B (M+N+O+P)	C=A x B 0.00
Descripción SUBTOTAL P	TRANS PORTE	Unidad	A TO DIRECTO	В	C=A x B

COSTO TOTAL DEL RUBRO

VALOR OFERTADO

207.37

207.37

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.1.1

Detalle: Replanteo y Nivelación con equipo topográfico en alcantarillado Unidad:

EQUIPOS Descripción Cantidad Tarifa Costo hora Rendimiento Costo A В $C=A \times B$ $D=C \times R$ Herramienta manual y menor de construcción 5% MO 6.88 Equipo de topográfico 1.00 9.00 9.00 8.5 76.50

SUBTOTALM 83.38

MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	8.68	33.24
Cadenero (Estr.Oc. D2)	2.00	3.87	7.74	8.68	67.18
Topógrafo (Estr Oc. C1)	1.00	4.29	4.29	8.68	37.24

SUBTOTALN 137.66

MATERIALES				
Descripción	Unidad	Cantidad	Precio unitario	Costo
		A	В	С=АхВ
Estaca de madera (0.50x0.05) m	u	5.00	0.40	2.00
Clavos	kg	1.00	0.75	0.75
SUBTOTAL O				2.75

SUBTOTAL O				2.75
TRANSPOI	RTE			
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	C=A x B

SUBTOTAL P 0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Anrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	223.80	
INDIRECTOS	20 %	44.76
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		268.56
VALOR OFERTADO		268.56

km

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.2.1

Detalle: Rotura de carpeta Asfáltica **Unidad:** m2

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		0.06
Retroexcavadora	1.00	25.00	25.00	0.10	2.50
Máquina cortadora de asfalto	1.00	10.00	10.00	0.10	1.00
SUBTOTAL M					3.56
MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	0.10000	0.38
Operador de Retroexcavadora (Estr. Oc. C1)	1.00	4.29	4.29	0.10000	0.43
Operador de equipo liviano (Estr Oc. D2)	1.00	3.87	3.87	0.10000	0.39
SUBTOTALN	-				1.20
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Disco de corte		u	0.07	2.60	0.18
SUBTOTAL O					0.18
	TRANSPO	PRTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P		•			0.00

ESTE PRECIO NO INCLUYEN IVA.

 TOTAL COSTO DIRECTO (M+N+O+P)
 4.94

 INDIRECTOS
 20 %
 0.99

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 5.93

 VALOR OFERTADO
 5.93

Cruz Anrade David Ernesto Pachucho Chuquiana Yadira Nataly

Realizado por:

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.2.2

Detalle: Reposición de carpeta asfaltica e>=5 cm Unidad: m2

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		0.03
Distribuidora de asfalto	0.30	65.00	19.50	0.04	0.78
Rodillo vibratorio liso	0.30	30.00	9.00	0.04	0.36
Planta asfáltica	0.20	30.00	6.00	0.04	0.24
Volqueta 8 m3	0.20	25.00	5.00	0.04	0.20
SUBTOTALM					1.63
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A		С=А х В	R	D=C x R
Peón (Estr.Oc. E2)	2.00	3.83	7.66	0.04	0.30
Operador responsable de la planta asfáltica (Est	1.00	4.09	4.09	0.04	0.16
Operador Rodillo autopropulsado (Estr.Oc. C2)	1.00	4.09	4.09	0.04	0.16
CHOFER: Volquetas (Estr.Oc.C1)	1.00	5.62	5.62	0.04	0.22
Operador de distribuidor de asfalto (Estr.Oc. C2	1.00	4.09	4.09	0.04	0.16
SUBTOTALN					1.00
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Asfalto RC-250 para imprimación (1.5 lt/m2)		m2	1.10	0.50	0.55
Hormigón asfáltico mezclado en planta		m2	1.10	6.10	6.71
SUBTOTAL O					7.20
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	$C=A \times B$
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	9.89
		INDIRECTO	S	20 %	1.98
Cruz Anrade David Ernesto		UTILIDAD		%	

Pachucho Chuquiana Yadira Nataly

Realizado por:

COSTO TOTAL DEL RUBRO

VALOR OFERTADO

11.86

11.86

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.3.1

Detalle: s.c Pozo revisión h=1.50-2.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm Unidad:

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					4.14
Concretera 1 saco	1.00	6.00	6.00	3.50	21.00
Vibrador	1.00	2.35	2.35	3.50	8.23
SUBTOTALM					33.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	3.50	67.03
Albañil	1.00	4.29	4.29	3.50	15.02
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	1.70	0.73
SUBTOTAL N			82.77		
	MATERIA				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	0.85	8.73	7.42
Cemento		kg	440.85	0.15	66.13
Ripio triturado		m3	1.60	12.97	20.75
Agua		m3	0.40	1.25	0.50
Encofrado metálico para pozos		m	2.00	26.00	52.00
Escalones diámetro=16mm		u	6.00	1.65	9.90
SUBTOTAL O					156.70
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
CIMPOTAL D					
SUBTOTAL P ESTE PRECIO NO INCLUYEN IVA.				L	0.00
ESTE PRECIONO INCLUTENTIVA.		TOTALCOS	TO DIRECTO	(M+N+O+P)	272.83
		INDIRECTO		20 %	54.57
Cruz Anrade David Ernesto				%	54.57
Pachucho Chuquiana Yadira Nat	aly	COSTO TOTAL DEL RUBRO			327.40
75 11 1	-	VALOR OFFERTARO			

Realizado por:

TOTAL COSTO DIRECTO	272.83	
INDIRECTOS	20 %	54.57
UTILIDAD	%	
COSTO TOTAL DEL RUBE	327.40	
VALOR OFERTADO		327.40

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.3.2

Detalle: s.c Pozo revisión h=3.51 - 4.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					4.38
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTAL M					36.11
MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	3.70	70.86
Albañil	1.00	4.29	4.29	3.70	15.87
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	1.90	0.82
SUBTOTALN					87.54
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.00	8.73	8.73
Cemento		kg	520.16	0.15	78.02
Ripio triturado		m3	1.80	12.97	23.35
Agua		m3	0.70	1.25	0.88
Encofrado metálico para pozos		m	3.00	26.00	78.00
Escalones diámetro=16mm		u	8.00	1.65	13.20
SUBTOTAL O	-				202.18
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	325.83	
INDIRECTOS	20 %	65.17
UTILIDAD	%	
COSTO TOTAL DEL RUBE	390.99	
VALOR OFERTADO		390.99

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.3.3

Detalle: s.c Pozo revisión h=4.50 - 5.50m fc=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramientas Menor 5% de M.O.					4.62
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTAL M					36.35
	MANO DE	-			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	3.90	74.69
Albañil	1.00	4.29	4.29	3.90	16.73
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.10	0.90
SUBTOTAL N 92.3					
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.25	8.73	10.91
Cemento		kg	532.16	0.15	79.82
Ripio triturado		m3	2.40	12.97	31.13
Agua		m3	0.95	1.25	1.19
Encofrado metálico para pozos		m	4.00	26.00	104.00
Escalones diámetro=16mm		u	9.00	1.65	14.85
SUBTOTAL O					241.90
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SIDTOTAL D					0.00
SUBTOTAL P				L	0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Anrade David Ernesto
Pachucho Chuquiana Yadira Nataly

Realizado por:

TOTAL COSTO DIRECTO	370.56	
INDIRECTOS	20 %	74.11
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		444.68
VALOR OFERTADO		444.68

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 2.3.4

Detalle: s.c Pozo revisión h= 5.50 - 6.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	S			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramientas Menor 5% de M.O.					4.97
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTALM	-				36.70
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	4.20	80.43
Albañil	1.00	4.29	4.29	4.20	18.02
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.20	0.94
SUBTOTALN					99.39
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.60	8.73	13.97
Cemento		kg	546.00	0.15	81.90
Ripio triturado	Ripio triturado		2.55	12.97	33.07
Agua		m3	1.10	1.25	1.38
Encofrado metálico para pozos		m	5.00	26.00	130.00
Escalones diámetro=16mm		u	9.60	1.65	15.84
SUBTOTAL O					276.16
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
GARDINA DA					
SUBTOTAL P ESTE PRECIO NO INCLUYEN IVA.				_	0.00
ESTE PRECIONO INCLUTENTVA.	ı	TOTAL COS	TO DIRECTO	(M+N+O+P)	412.25
		INDIRECTO		20 %	82.45
Cruz Anrade David Ernesto		UTILIDAD %			02.40
Pachucho Chuquiana Yadira Nat	alv	COSTO TOTAL DEL RUBRO			494.70
Realizado por:		VALOR OFERTADO			494.70
iwanzauo poi.	l	,, LOR OFE			7,74.70

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.3.5

Detalle: s.c Pozo revisión h=7.50 - 8.50m f'c=210 kg/cm2 (Diámetro interior 0.9m) pared 30cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramientas Menor 5% de M.O.					5.09
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador	1.00	2.35	2.35	3.80	8.93
SUBTOTALM					36.82
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	4.30	82.35
Albañil	1.00	4.29	4.29	4.30	18.45
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	2.30	0.99
SUBTOTAL N					101.78
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Arena		m3	1.75	8.73	15.28
Cemento		kg	550.00	0.15	82.50
Ripio triturado		m3	2.65	12.97	34.37
Agua		m3	1.20	1.25	1.50
Encofrado metálico para pozos		m	6.00	26.00	156.00
Escalones diámetro=16mm		u	10.00	1.65	16.50
SUBTOTAL O					306.15
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTALP					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	444.75	
INDIRECTOS	20 %	88.95
UTILIDAD	%	
COSTO TOTAL DEL RUBE	533.69	
VALOR OFERTADO		533.69

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICA IHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.1

Detalle: Excavación mecánica con retroexcavadora, zanja (1.00-2.50) m, material sin clasificar **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTALM					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	$C=A \times B$	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
SUBTOTALO					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	$C=A \times B$
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David Ernesto	•	UTILIDAD %		%	
Pachucho Chuquiana Yadira Nat	taly	COSTO TOTAL DEL RUBRO			5.35
Realizado por:		VALOR OFE	RTADO		5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DEPRECIOS UNITARIOS

Rubro: 2.4.2

Detalle: Excavación mecánica con retroexcavadora, zanja (3.51-4.50) m, material conglomerado Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTALM		-	-		2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN I	VA.				
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David	l Ernesto	UTILIDAD %			
Pachucho Chuquiana Y	adira Nataly	COSTO TOTAL DEL RUBRO			5.35
Realizado po	VALOR OFERTADO			5.35	

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.3

Detalle: Excavación mecánica con retroexcavadora, zanja (4.50 - 5.50) m, material conglomerado Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTAL N					2.10
	MATERIA				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David Ernest	О	UTILIDAD %			
Pachucho Chuquiana Yadira Na	ataly	COSTO TOTAL DEL RUBRO			5.35
Realizado por:		VALOR OFERTADO			5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICA IHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.4

Detalle: Excavación mecánica con retroexcavadora, zanja (5.51 - 6.50) m, material conglomerado Unidad: m3

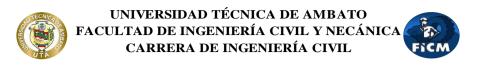
	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTAL M					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTAL N					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTALO					0.00
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David Err	nesto	UTILIDAD %		%	
Pachucho Chuquiana Yadira	a Nataly	COSTO TOTAL DEL RUBRO			5.35
Realizado por:		VALOR OFERTADO			5.35

5.35

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS


Rubro: 2.4.5

Detalle: Excavación mecánica con retroexcavadora, zanja (7.50 -8.50) m, material conglomerado Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.11
Retroescabadora	1.00	25.00	25.00	0.09	2.25
SUBTOTALM					2.36
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador maquinaria pesada OP C1	1.00	4.29	4.29	0.49	2.10
SUBTOTALN					2.10
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA	٠.			_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.46
		INDIRECTO	S	20 %	0.89
Cruz Andrade David E	rnesto	UTILIDAD		%	
Pachucho Chuquiana Yad	ira Nataly	соѕто то	TAL DEL RUBR	RO	5.35
•	-				

Realizado por:

VALOR OFERTADO

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.6

Detalle: Excavación Manual Unidad: m3

	EQUIPO)S			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
-	A	В	C=A x B	R	D=C x R
77	А		C=AXB	K	
Herramientas Menor 5% de M.O.					1.93
SUBTOTAL M					1.93
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	2.00	38.30
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	0.50	0.21
SUBTOTAL N	•				38.51
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTALO					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				-	
		TOTAL COS	TO DIRECT	O (M+N+O+P)	40.44
		INDIRECTO	S	20 %	8.09
Cruz Anrade David Ernesto		UTILIDAD %			
Pachucho Chuquiana Yadira Nataly COSTO TOTAL DEL RUBRO		BRO	48.53		

Realizado por:

VALOR OFERTADO

48.53

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.7

Detalle: Entibado de zanjas h > 2 m **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.61
SUBTOTALM					0.61
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	0.45	8.62
Carpintero	2.00	3.87	7.74	0.45	3.48
Maestro mayor en ejecución de obras civiles (Es	0.10	4.29	0.43	0.45	0.19
SUBTOTAL N					12,29
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
clavos de 2 a 8"		kkg	0.05	1.96	0.10
Tablas de monte		U	1.30	2.20	2.86
pingos D=10cm		m	0.90	1.05	0.95
Alfajia		U	0.33	3.36	1.11
SUBTOTAL O	•		•		5.01
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
				В	C=A x B
			A	В	C=AAB
SUBTOTALP			A	Б	С-АХВ

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECT	17.92	
INDIRECTOS	20 %	3.58
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		21.50
VALOR OFERTADO		21.50

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.8

Detalle: Rasanteo de zanja **Unidad:** m3

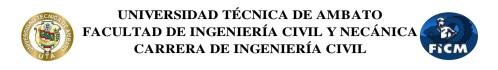
	EQUIPO	OS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
	A	В	С=АхВ	R	D=C x R	
Herramientas Menor 5% de M.O.					0.17	
SUBTOTALM					0.17	
	MANO DE	OBRA				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo	
	A	В	C=A x B	R	D=C x R	
Peón (Estr.Oc. E2)	5.00	3.83	19.15	0.18	3.45	
SUBTOTALN						
	MATERIA	LES				
Descripción		Unidad	Cantidad	Precio unitario	Costo	
			A	В	C=A x B	
SUBTOTALO					0.00	
	TRANSPO	ORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo	
			A	В	C=A x B	
SUBTOTAL P					0.00	
ESTE PRECIO NO INCLUYEN IVA.				·		
		TOTAL COS	TO DIRECT	O (M+N+O+P)	3.62	
		INDIRECTO	S	20 %	0.72	
Cruz Anrade David Ernesto		UTILIDAD %		%		
Pachucho Chuquiana Yadira Nati	aly COSTO TOTAL DEL RUBRO			4.34		

Realizado por:

VALOR OFERTADO

4.34

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"


ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.9

Detalle: Colchón de arena e=10 cm **Unidad:** m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					6.35
SUBTOTALM					6.35
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	5.00	3.83	19.15	5.40	103.41
Albañil	1.00	4.29	4.29	5.40	23.17
Maestro mayor en ejecución de obras civiles (Es	0.03	4.29	0.13	3.10	0.40
SUBTOTALN					126.97
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Arena		m3	2.65	8.73	23.13
SUBTOTALO					23.13
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	156.46		
		INDIRECTO	s	20 %	31.20

TOTAL COSTO DIRECT	156.46	
INDIRECTOS	20 %	31.29
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		187.75
VALOR OFERTADO		187.75

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.4.10

Detalle: Relleno compactado mecánico (Material de excavación) Unidad: m3

EQUIPO	OS			
Cantidad	Tarifa	Costo hora	Rendimiento	Costo
A	В	С=А х В	R	D=C x R
				6.22
1.00	4.76	4.76	3.80	18.09
				24.30
MANO DE OBRA				
Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
A	В	C=A x B	R	$D=C \times R$
5.00	3.83	19.15	5.40	103.41
1.00	3.87	3.87	5.40	20.90
				124.31
MATERIA	LES			
	Unidad	Cantidad	Precio unitario	Costo
		A	В	C=A x B
	m3	1.90	1.25	2.38
•				2.38
TRANSPO	RTE			
	Unidad	Cantidad	Tarifa	Costo
	Umaaa	Cantidad	1 41114	Costo
	Unidad	A	В	C=A x B
	Unidad			
	Unidad			
	Unidad			С=АхВ
	Cantidad A 1.00 MANO DE Cantidad A 5.00 1.00 MATERIA	A B	Cantidad Tarifa Costo hora A	Cantidad Tarifa Costo hora Rendimiento A

Cruz Anrade David Ernesto

Pachucho Chuquiana Yadira Nataly

Realizado por:

TOTAL COSTO DIRECT	150.99	
INDIRECTOS	20 %	30.20
UTILIDAD		
COSTO TOTAL DEL RUBRO		181.18
VALOR OFERTADO		181 18

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

m3

Rubro: 2.4.11

Detalle: Desalojo de materiales sobrante hasta 5km. Cargado a máquina Unidad:

	EQUIPO	os			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramientas Menor 5% de M.O.					0.02
Cargadora frontal	1.00	40.00	40.00	0.04	1.60
Volqueta 8 m3	1.00	20.00	20.00	0.04	0.80
SUBTOTALM					2.42
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador de equipo pesado OPC1	1.00	4.29	4.29	0.04	0.17
Chofer de volqueta CHC1	1.00	5.62	5.62	0.04	0.22
SUBTOTAL N					0.40
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
SUBTOTALO					0.00
	TRANSPO				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECT	O (M+N+O+P)	2.82
		INDIRECTO	S	20 %	0.56
Cruz Anrade David Ernesto		UTILIDAD %		%	
Pachucho Chuquiana Yadira Nataly COSTO TOTAL DEL RUBRO			3.38		
Faciliacilo Ciluquialia Tadira Nat	aiy	CO510 10	TAL DEL KUI	, in	3.30

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.5.1

Detalle: Pozo de revisión de H.S, h= (1.00-2.5) m. Incluye tapa de HF

Realizado por:

Unidad:

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		2.94
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					8.04
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.50	28.73
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.50	19.35
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.50	10.73
SUBTOTALN					58.80
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	С=А х В
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	1.80	8.15	14.67
Agua en obra (incluye instalaciones provisionales)		lt	60.00	0.05	3.00
Arena fina		m3	0.15	20.00	3.00
Piedra		m3	0.10	22.00	2.09
Arena gruesa		m3	0.68	20.00	13.60
Grava		m3	0.96	20.00	19.20
Aditivo impermeabilizante para hormigón		gal	0.01	7.50	0.03
Encofrado metálico pozos de revisión h=1.00-2.5	60 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.30	1.00	1.30
SUBTOTAL O	•				217.41
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECTO	(M+N+O+P)	284.25
		INDIRECTO	<u>s</u>	20 %	56.85
Cruz Anrade David Ernesto		UTILIDAD		%	
Pachucho Chuquiana Yadira Nat	aly	COSTO TO	ΓAL DEL RUBI	RO	341.10

VALOR OFERTADO

341.10

EOTIDOS

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.5.2

Detalle: Pozo de revisión de H.S, h= (2.51-3.50) m. Incluye tapa de HF (Incluye Pozos de Un

Unidad:

esalto

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		2.94
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTAL M					8.04
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	$D=C \times R$
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.50	28.73
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.50	19.35
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.50	10.73
SUBTOTAL N					58.80
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.00	8.15	16.30
Agua en obra (incluye instalaciones provisionales)		lt	65.00	0.05	3.25
Arena fina		m3	0.20	20.00	4.00
Piedra		m3	0.15	22.00	3.30
Arena gruesa		m3	0.75	20.00	15.00
Grava		m3	1.00	20.00	20.00
Aditivo impermeabilizante para hormigón		gal	0.02	7.50	0.14
Encofrado metálico pozos de revisión h=2.51-3.5	50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.40	1.00	1.40
SUBTOTAL O					223.89
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	290.73	
INDIRECTOS	20 %	58.15
UTILIDAD	%	
COSTO TOTAL DEL RUBE	348.87	
VALOR OFERTADO		348.87

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.5.3

Detalle: Pozo de revisión de H.S, h= (4.50-5.50) m. Incluye tapa de HF (Incluye Pozos de **Unidad:**

resalto)

EQUIPOS					
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.29
Concretera 1 saco	1.00	6.00	6.00	3.80	22.80
Vibrador para concreto, potencia 5.50HP	1.00	2.35	2.35	3.80	8.93
SUBTOTALM					35.02
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.80	32.17
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.80	21.67
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.80	12.01
SUBTOTALN					65.86
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.30	8.15	18.75
Agua en obra (incluye instalaciones provisionales)		lt	75.00	0.05	3.75
Arena fina		m3	0.30	20.00	6.00
Piedra		m3	0.22	22.00	4.84
Arena gruesa		m3	0.83	20.00	16.60
Grava		m3	1.20	20.00	24.00
Aditivo impermeabilizante para hormigón		gal	0.028	7.50	0.21
Encofrado metálico pozos de revisión h=4.51-5.5	50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.55	1.00	1.55
SUBTOTALO					236.20
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B

ESTE PRECIO NO INCLUYEN IVA.

SUBTOTAL P

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

TOTAL COSTO DIRECTO	337.07	
INDIRECTOS	20 %	67.41
UTILIDAD	%	
COSTO TOTAL DEL RUBE	404.49	
VALOR OFERTADO		404.49

0.00

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.5.4

Detalle: Pozo de revisión de H.S, h= (5.50 - 6.50) m. Incluye tapa de HF (Incluye Pozos de **Unidad:**

resalto)

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.29
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					8.39
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.80	32.17
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.80	21.67
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.80	12.01
SUBTOTALN					65.86
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.30	8.15	18.75
Agua en obra (incluye instalaciones provisionales	s)	lt	75.00	0.05	3.75
Arena fina		m3	0.30	20.00	6.00
Piedra		m3	0.22	22.00	4.84
Arena gruesa		m3	0.83	20.00	16.60
Grava		m3	1.20	20.00	24.00
Aditivo impermeabilizante para hormigón		gal	0.028	7.50	0.21
Encofrado metálico pozos de revisión h=4.51-5.5	50 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.55	1.00	1.55
SUBTOTAL O					236.20
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
BUDIOIALI				L	0.00

 $\ \, \textbf{ESTE PRECIO NO INCLUYEN IVA}. \\$

TOTAL COSTO DIRECTO	310.44	
INDIRECTOS	20 %	62.09
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		372.53
VALOR OFERTADO		372.53

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.5.5

Detalle: Pozo de revisión de H.S, h= (7.50 - 8.50) m. Incluye tapa de HF (Incluye Pozos de

Unidad:

esalto)

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta manual y menor de construcción	5%MO		0.00		3.41
Concretera 1 saco	0.70	5.50	3.85	1.00	3.85
Vibrador para concreto, potencia 5.50HP	0.50	2.50	1.25	1.00	1.25
SUBTOTALM					
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	$C=A \times B$	R	D=C x R
Peón (Estr.Oc. E2)	3.00	3.83	11.49	2.90	33.32
Albañil (Estr. Oc. D2)	2.00	3.87	7.74	2.90	22.45
Maestro mayor en ejecución de obras civiles (Es	1.00	4.29	4.29	2.90	12.44
SUBTOTALN					68.21
MATERIALES					
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento Fuerte Tipo GU Saco 50 Kg		saco (50kg)	2.50	8.15	20.38
Agua en obra (incluye instalaciones provisionales	s)	lt	80.00	0.05	4.00
Arena fina		m3	0.40	20.00	8.00
Piedra		m3	0.26	22.00	5.72
Arena gruesa		m3	0.88	20.00	17.60
Grava		m3	1.25	20.00	25.00
Aditivo impermeabilizante para hormigón		gal	0.030	7.50	0.23
Encofrado metálico pozos de revisión h=5.51-6.5	60 m	u	1.00	15.00	15.00
Tapa de Hierro Fundido		u	1.00	95.00	95.00
Cerco de Hierro Fundido		u	1.00	40.00	40.00
Peldaño de Hierro Fundido		u	3.00	3.50	10.50
Puntal		u	1.65	1.00	1.65
SUBTOTAL O					243.07
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	319.79	
INDIRECTOS	63.96	
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		383.75
VALOR OFERTADO		383.75

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.6.1

Detalle: Suministro e Instalación de tuberías PVC. DNI=250 mm

Realizado por:

Unidad: m

29.71

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.04
SUBTOTAL M					0.04
	NO DE OBRA				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	2.00	3.83	7.66	0.060	0.46
Plomero (Estr. D2)	1.00	3.87	3.87	0.060	0.23
Maestro mayor ejecución de obras civiles (Estr.Oc. C1)	0.20	4.29	0.86	0.060	0.05
SUBTOTALN					0.74
	IATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería sanitaria d=250 mm		m	1.00	22.45	22.45
Grasa vegetal		kg	0.10	2.30	0.23
Anillo caucho 1 novafort d=250 mm		U	0.25	5.20	1.30
SUBTOTAL O					23.98
T	RANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P				I	0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECTO	(M+N+O+P)	24.76
		INDIRECTO	<u>s</u>	20 %	4.95
		I IDINIEC I O		1	
Cruz Andrade David Ernesto		UTILIDAD	-	%	

VALOR OFERTADO

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.6.7

Detalle: Acometida domiciliaria de alcantarillado, incluye accesorios y caja de revisión

Realizado por:

Unidad:

u

165.37

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.06
M áquina cortadora	0.20	12.00	2.40	1.30	3.12
Retroexcavadora	0.20	8.50	1.70	1.30	2.21
Compactador mecánico	0.20	6.70	1.34	1.30	1.74
concretera 1 saco	0.20	5.50	1.10	1.30	1.43
Vibrador para concreto, potencia 5.50 HP	0.20	2.50	0.50	1.30	0.65
SUBTOTAL M	•				2,21
	MANO DE OBRA				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
D ((E + E2)	A 2.00	B 2.02	C=A x B	R 1.20	D=C x R
Peón (Estr. E2)	3.00	3.83	11.49	1.30	14.94
Albañil (Estr. D2)	1.00	3.87	3.87	1.30	5.03
Plomero (Estr. D2)	1.00	3.87	3.87	1.30	5.03
Operador de equipo liviano (Estr. D2)	1.00	3.87	3.87	1.30	5.03
Operador de retroexcavadora (Estr. C1)	1.00	4.29	4.29	1.30	5.58
Maestro mayor obras civiles (Estr. C1)	0.20	4.29	0.86	1.30	1.12
SUBTOTALN	3.5.4.0000000000000000000000000000000000				36.72
Descripción	MATERIALES	Unidad	Cantidad	Precio unitario	Costo
Description		Circau	A	B	C=A x B
Arena fina		m3	0.60	9.20	5.52
Tubo PVC 160 mm x 3m		u	0.40	30.00	12.00
Silla tee		u	1.00	16.00	16.00
Codo desague PVC 9" x 160mm		u	1.00	34.00	34.00
Cemento tipo GU saco (50 Kg)		Saco (50kg)	3.00	7.80	23.40
Arena gruesa		m3	0.28	17.00	4.76
Grava		m3	0.20	16.00	3.20
SUBTOTAL O		l .			98.88
	TRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECTO	(M+N+O+P)	137.81
		INDIRECTO	S	20 %	27.56
Cruz Andrade David Ernesto		UTILIDAD		%	
Pachucho Chuquiana Yadira Nataly COSTO TOTAL DEL RUBRO				165.37	

VALOR OFERTADO

FACULTAD DE INGENIERÍA CIVIL Y NECÁNICA CARRERA DE INGENIERÍA CIVIL

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.1

Detalle: Replanteo y nivelación de cerramiento Unidad: ml

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.02
Estación total Inc. Prisma, cinta, gps	1.00	8.50	8.50	0.05	0.43
SUBTOTALM					0.45
	MANO DE	OBRA		·	
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	0.05	0.19
Cadenero (Estr.Oc.D2)	1.00	4.29	4.29	0.05	0.21
Topógrafo (Estr.Oc.C1)	0.10	4.29	0.43	0.05	0.02
SUBTOTAL N		-			0.43
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	С=А х В
SUBTOTALO					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
S UBTOTAL P					0.00

Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly Realizado por:

TOTAL COSTO DIRECTO (M+N+O+P) 0.87 INDIRECTOS 20 % 0.17 UTILIDAD % COSTO TOTAL DEL RUBRO 1.05 VALOR OFERTADO 1.05

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICA IHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.2

Detalle: Excavación a máquina sin clasificar Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.04
Retroexcavadora	1.00	8.50	8.50	0.05	0.43
UBTOTALM					
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.Oc. E2)	1.00	3.83	3.83	0.087	0.33
Operador de equipo pesado (Ope. C1)	1.00	4.29	4.29	0.087	0.37
SUBTOTAL N	!				0.71
	MATERIA	LES			
Descripción Unidad Cantidad Precio unitario					
			A	В	C=A x B
SUBTOTALO					0.00
	TRANSPO				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				L	0.00
		TOTAL COS	TO DIRECTO	(M+N+O+P)	1.17
		INDIRECTO	S	20 %	0.23
Cruz Andrade David Err	nesto	UTILIDAD		%	
Pachucho Chuquiana Yadir	a Nataly	COSTO TO	TAL DEL RUBE	RO	1.40
Realizado por:	-	VALOR OFE	RTADO		1.40
•					

3.91

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.3

Detalle: Desalojo a máquina (Retro+volqueta) hasta 5km Unidad: m3

	EQUIPO	os			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.02
Cargadora frontal	1.00	35.10	35.10	0.08	2.81
Volqueta de 8 m3	1.00	25.50	25.50	0.08	2.04
SUBTOTAL M		•			2.83
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Chofer (Ch C1)	1.00	3.83	3.83	0.05	0.19
Operador de equipo pesado 1 (Ope. C1)	1.00	4.29	4.29	0.05	0.21
Peón (Estr. E2)	0.10	4.29	0.43	0.05	0.02
SUBTOTAL N		•			0.43
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
SUBTOTAL O					0.00
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	$C=A \times B$
SUBTOTAL P					0.00
	_				
ESTE PRECIO NO INCLUYEN IVA.			TO DIDECTO	(M.N.O.D)	2.26
ESTE PRECIO NO INCLUYEN IVA.		TOTAL COS	TO DIRECTO	(M+N+O+P)	3.26
ES TE PRECIO NO INCLUYEN IVA.		INDIRECTO:		20 %	3.26 0.65
ESTE PRECIO NO INCLUYEN IVA. Cruz Andrade David Ernest					

Realizado por:

VALOR OFERTADO

m3

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.4

Detalle: Hormigón simple f´c= 180kg/cm2. (para cimientos Incluye encofrado) Unidad:

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta menor 5% de M.O					2.47
Concretera 1 saco	1.00	5.50	5.50	1.60	8.80
Vibrador para concreto 5.50 HP	1.00	2.50	2.50	1.60	4.00
SUBTOTAL M					11.27
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	6.00	3.83	22.98	1.60	36.77
Albañil (Estr. D2)	2.00	3.87	7.74	1.60	12.38
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.08	0.34
SUBTOTALN					49.50
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento		Kg	185.00	0.20	37.00
Arena		m3	0.45	8.60	3.87
Ripio Triturado		m3	0.75	12.85	9.64
Agua		m3	0.22	1.25	0.28
Piedra de empedrado		m3	0.50	14.85	7.43
SUBTOTAL O					58.21
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	118.98
		INDIRECTO	S	20 %	23.80
Cruz Androdo Dovid Em	acto	LITH IDAD		0/	

TOTAL COSTO DIRECTO	118.98	
INDIRECTOS	20 %	23.80
UTILIDAD	%	
COSTO TOTAL DEL RUBE	RO	142.77
VALOR OFERTADO	VALOR OFERTADO	

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

2.7.5 Rubro:

Detalle: Hormigón simple f´c= 180kg/cm2. (para cadenas Incluye encofrado)

Unidad: m3

EQUIPOS Descripción Cantidad Tarifa Costo hora Rendimiento Costo A В $C=A \times B$ R $D=C \times R$ Herramienta menor 5% de M.O Concretera 1 saco 1.00 5.50 1.60 8.80 Vibrador para concreto 5.50 HP 2.50 1.00 2.50 1.60 4.00 SUBTOTAL M 12.85 MANO DE OBRA

Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	6.00	3.83	22.98	2.50	57.45
Albañil (Estr. D2)	2.00	3.87	7.74	2.50	19.35
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	1.00	4.29
Encofrador(Estr. D2)	1.00	3.87	3.87	2.50	9.68
SUBTOTALN					

SUBTOTALN				81.09		
MATERIALES						
Descripción	Unidad	Cantidad	Precio unitario	Costo		
		A	В	C=A x B		
Cemento	Kg	360.00	0.20	72.00		
Arena	m3	0.60	8.60	5.16		
Ripio triturado	m3	0.92	12.85	11.82		
Agua	m3	0.25	1.25	0.31		
Tabla de encofrado 0.35*2.50m	u	8.70	2.40	20.88		
Alfajías 6*6*250 cm	u	6.00	2.40	14.40		
Caña guadua	ml	30.00	1.10	33.00		
Clavos	Kg	1.80	3.10	5.58		
Alambre negro #18	Kg	0.80	1.50	1.20		
SUBTOTAL O				164.35		

TRANSPORTE						
Descripción	Unidad	Cantidad	Tarifa	Costo		
		A	В	С=АхВ		
SUBTOTAL P	•			0.00		

ESTE PRECIO NO INCLUYEN IVA.

0.00

Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly Realizado por:

TOTAL COSTO DIRECTO (M+N+O+P) 258.30 INDIRECTOS 20 % 51.66 UTILIDAD COSTO TOTAL DEL RUBRO 309.96 VALOR OFERTADO 309.96

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.6

Detalle: Hormigón simple f´c= 180kg/cm2. (para columnas Incluye encofrado)

Realizado por:

Unidad: m3

311.06

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta menor 5% de M.O					4.03
Concretera 1 saco	1.00	5.50	5.50	1.60	8.80
Vibrador para concreto 5.50 HP	1.00	2.50	2.50	1.60	4.00
SUBTOTAL M					12.85
D 11/	MANO DE				~ .
Descripción	Cantidad	Jornal/hr B	Costo hora C=A x B	Rendimiento R	Costo D=C x R
Peón (Estr. E2)	A 6.00	3.83	22.98	2.50	D=C X R 57.45
Albañil (Estr. D2)	2.00	3.87	7.74	2.50	19.35
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	1.00	4.29
Encofrador(Estr. D2)	1.00	3.87	3.87	2.50	9.68
SUBTOTAL N					81.09
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento		Kg	360.00	0.20	72.00
Arena		m3	0.60	8.60	5.16
Ripio triturado		m3	0.92	12.85	11.82
Agua		m3	0.25	1.25	0.31
Tabla de encofrado 0.35*2.50m		u	8.70	2.40	20.88
Alfajías 6*6*250 cm		u	6.00	2.40	14.40
Caña guadua		ml	30.00	1.10	33.00
Clavos		Kg	2.00	3.10	6.20
Alambre negro #18		Kg	1.00	1.50	1.50
SUBTOTAL O					165.27
	TRANSPO	ORTE		_	
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P ESTE PRECIO NO INCLUYEN IVA.					0.00
		TOTAL COS	TO DIRECTO	(M+N+O+P)	259.22
		INDIRECTO		20 %	51.84
Cruz Andrade David Er	nesto	UTILIDAD		%	
Pachucho Chuquiana Yadira Nataly			COSTO TOTAL DEL RUBRO		

VALOR OFERTADO

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.7

	EQUIPO	OS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo	
	A	В	C=A x B	R	D=C x R	
Herramienta menor 5% de M.O					0.04	
SUBTOTAL M	•				0.04	
	MANO DE OBRA					
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo	
	A	В	C=A x B	R	D=C x R	
Peón (Estr. E2)	1.00	3.83	3.83	0.098	0.38	
Albañil (Estr. D2)	1.00	3.87	3.87	0.098	0.38	
SUBTOTAL N	SUBTOTALN					
	MATERIA	LES				
Descripción		Unidad	Cantidad	Precio unitario	Costo	
			A	В	C=A x B	
Acero de refuerzo		Kg	1.00	2.60	2.60	
Alambre negro #18		Kg	0.04	1.50	0.06	
SUBTOTAL O					2.66	
	TRANSPO	ORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo	
			A	В	C=A x B	
SUBTOTALP					0.00	
ESTE PRECIO NO INCLUYEN IVA.				L	0.00	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	3.45	
		INDIRECTO	S	20 %	0.69	
Cruz Andrade David Erneste	О	UTILIDAD %				
Pachucho Chuquiana Yadira Na	ataly	COSTO TO	TAL DEL RUBE	RO	4.14	
Realizado por:		VALOR OFE	RTADO		4.14	

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.8

Detalle: S.C Cerramiento de malla H= 2 m **Unidad:**

	EQUIPO	os			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.17
Soldadora eléctrica	1.00	2.10	2.10	0.30	0.63
SUBTOTAL M	1				0.80
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	2.00	3.83	7.66	0.300	2.30
Albañil (Estr. D2)	1.00	3.87	3.87	0.300	1.16
Técnico Elec.(D2)	1.00	3.87	3.87	0.300	1.16
SUBTOTALN					3.46
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Malla electrosoldada 6mm		m2	1.00	6.50	6.50
Electrodos 6011		Kg	0.23	6.60	1.52
SUBTOTAL O					8.02
	TRANSPO	RTE		<u>.</u>	
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA	A.				
		TOTAL COS	TO DIRECTO	(M+N+O+P)	12.28

TOTAL COSTO DIRECTO	TOTAL COSTO DIRECTO (M+N+O+P)	
INDIRECTOS	20 %	2.46
UTILIDAD	%	
COSTO TOTAL DEL RUBE	RO	14.74
VALOR OFERTADO		14.74

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.10

Detalle: S.C. Tubería galvanizada para poste (Diámertro=2") **Unidad:** m

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.03
SUBTOTAL M	1				0.03
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.085	0.33
Instalador de revestimiento (Estr. D2)	1.00	3.87	3.87	0.085	0.33
SUBTOTAL N	•				0.65
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería galvanizada poste 2"		m	1.10	9.80	10.78
SUBTOTAL O					10.78
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.		TOTAL COS	TO DIRECTO	(M+N+O+P)	11.47
		INDIDECTO		20.0/	2.20

TOTAL COSTO DIRECTO (M+N+O+P)		11.47
INDIRECTOS	20 %	2.29
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		13.76
VALOR OFERTADO		13.76

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 2.7.10

SUBTOTAL P

Detalle: S.C. Puerta de acceso de tubo H.G. y malla de diseño

Unidad:

u

EQUIPOS Descripción Cantidad Tarifa Costo hora Rendimiento Costo C=A x B D=C x R Herramienta menor 5% de M.O 13 19 SUBTOTAL M 13.19 MANO DE OBRA Descripción Cantidad Jornal/hr Rendimiento Costo hora Costo D=C x R В C=A x B Α Maestro mayor obras civiles (Estr. C1) 1.00 4.29 4.29 22.000 94.38 85.14 1.00 3.87 3.87 22.000 Albañil (Estr. D2) Peón (Estr. E2) 1.00 3.83 3.83 22.000 84.26 SUBTOTAL N 263.78 MATERIALES Descripción Unidad Cantidad Precio unitario Costo C=A x B Tubo poste estructural galvanizado de 3" y E= 2mm 16.10 6.00 96.60 m Tubo poste estructural galvanizado de 1/2" y E= 2mm 11.00 28.60 2.60 m Pintura anticorrosiva gl 0.80 9.30 7.44 Thiñer 0.50 5.60 2.80 gl Electrodos 6011 Kg 1.00 6.60 6.60 0.70 0.70 Lija 1.00 plg SUBTOTAL O 142.74 TRANSPORTE Descripción Unidad Cantidad Tarifa Costo C=A x B В

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

 TOTAL COSTO DIRECTO (M+N+O+P)
 419.71

 INDIRECTOS
 20 %
 83.94

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 503.65

 VALOR OFERTADO
 503.65

0.00

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro:

Detalle: Replanteo y nivelación Unidad: m2

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.05
Estación total incluye prisma, cinta y gps	1.00	8.50	8.50	0.08	0.68
SUBTOTALM					0.73
	MANO DE OBRA				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Topógrafo	1.00	4.29	4.29	0.08	0.34
Cadenero	3.00	3.87	11.61	0.08	0.93
SUBTOTALN					1.27
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tiras 250cm		u	0.06	2.30	0.14
Clavos		Kg	0.06	3.10	0.19
Estacas 50*5 cm		u	4.00	0.45	1.80
Piola		Rollo	0.20	1.00	0.20
SUBTOTALO					2.32
	TRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly

Realizado por:

TOTAL COSTO DIRECTO	TOTAL COSTO DIRECTO (M+N+O+P)	
INDIRECTOS	20 %	0.86
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		5.19
VALOR OFERTADO		5.19

m3

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.1

Detalle: Excavación a máquina sin clasificar Unidad:

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.03
Retroexcavadora	1.00	25.00	25.00	0.08	2.00
SUBTOTAL M	•				2.03
	MANO DE OBRA				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Operador de equipo pesado (Estr. C1)	1.00	4.29	4.29	0.08	0.34
Peón (Estr. E2)	2.00	3.83	7.66	0.08	0.61
SUBTOTALN					0.96
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
	·	·	A	В	C=A x B

UBT		

TRANSPORTE				
Descripción	Unidad	Cantidad	Tarifa	Costo
		A	В	С=А х В
SUBTOTALP				0.00

ESTE PRECIO NO INCLUYEN IVA.

	TOTAL COSTO DIRECTO	TOTAL COSTO DIRECTO (M+N+O+P)	
	INDIRECTOS	20 %	0.60
Cruz Andrade David Ernesto	UTILIDAD	%	
Pachucho Chuquiana Yadira Nataly	COSTO TOTAL DEL RUB	RO	3.58
Realizado por:	VALOR OFERTADO		3.58

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.1

Detalle: Desalojo a máquina (Retro+volqueta) hasta 5km

Unidad: m3

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.02
Cargadora frontal	1.00	35.20	35.20	0.085	2.99
Volqueta 8 m3	1.00	25.00	25.00	0.085	2.13
SUBTOTALM					5.13
	MANO DE OBRA	1			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Chofer (Estr. C1)	4.00				
Chorer (Estr. C1)	1.00	5.62	5.62	0.085	0.48
Operador equipo pesado	1.00	5.62 4.29	5.62 4.29		
` '				0.085	
Operador equipo pesado	1.00	4.29	4.29	0.085	0.36
Operador equipo pesado Peón (Estr. E2)	1.00	4.29	4.29	0.085	0.36 0.33
Operador equipo pesado Peón (Estr. E2)	1.00	4.29	4.29	0.085	0.36 0.33

\mathbf{S}	UB	то	TA	LO
--------------	----	----	----	----

TRANSPORTE					
Descripción	Unidad	Cantidad	Tarifa	Costo	
		A	В	C=A x B	
SUBTOTALP					

ESTE PRECIO NO INCLUYEN IVA.

 TOTAL COS TO DIRECTO (M+N+O+P)
 6.30

 INDIRECTOS
 20 %
 1.26

 UTILIDAD
 %
 COS TO TOTAL DEL RUBRO
 7.56

 VALOR OFERTADO
 7.56

m2

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.4

Detalle: Replantillo hormigón simple fc=180 Kg/cm2 e=10cm Unidad:

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.16
Concretera 1 saco	1.00	5.00	5.00	1.10	5.50
SUBTOTALM	•				5.66
	MANO DE OBRA	1			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.65	2.49
Alabañil (Estr. D2)	1.00	3.87	3.87	0.11	0.43
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.06	0.26
SUBTOTALN					
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento		Kg	28.00	0.20	5.60
Arena		m3	0.06	8.60	0.52
Ripio Triturado		m3	0.10	12.85	1.22
Agua		m3	0.03	1.25	0.04
SUBTOTAL O					7.37
	TRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.				<u> </u>	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	16.21
		INDIRECTO	S	20 %	3.24
				 	

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

 TOTAL COSTO DIRECTO (M+N+O+P)
 16.21

 INDIRECTOS
 20 %
 3.24

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 19.45

 VALOR OFERTADO
 19.45

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.5

Detalle: s.c. geomembrana Unidad: m2

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.07
SUBTOTALM	•				0.07
M	ANO DE OBRA	4			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.18	0.69
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.18	0.77
SUBTOTALN					1.46
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Geomembrana PVC		m2	1.00	5.20	5.20
SUBTOTAL O					5.20
Т	RANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.		Г		T	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	6.73
		INDIRECTO	S	20 %	1.35
	Cruz Andrade David Ernesto		UTILIDAD %		
Cruz Andrade David Ernesto		UTILIDAD		%	
Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly			FAL DEL RUBE		8.08

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.6

Detalle: Tubería PVC-P 110mm corrugada perforada drenaje

Unidad: ml

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.18
SUBTOTAL M					0.18
	MANO DE OBRA	1			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.30	1.15
Plomero (Estr. D2)	1.00	3.87	3.87	0.30	1.16
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.30	1.29
SUBTOTALN					3.60
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería PVC 110mm Perforada		ml	1.00	3.95	3.95
Pegatubo		lt	0.07	3.45	0.24
SUBTOTALO					4.19
	TRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=АхВ
CYPTOTAL P					
SUBTOTAL P ESTE PRECIO NO INCLUYEN IVA.				L	0.00
ESTE PRECIONO INCLUTENIVA.	i	TOTAL COS	TO DIRECTO	(M . N . O . P)	7.05
				` '	7.97
		INDIRECTO	8	20 %	1.59
Cruz Andrade David Ernesto		UTILIDAD %			
Pachucho Chuquiana Yadira Nata	aly	COSTO TOTAL DEL RUBRO			9.50
Realizado por: VALOR OFERTADO			9.56		

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.7

Detalle: s.c. Tubería PVC-P 160mm 1.00M pa U. sello elastomérico prueba

Unidad: m

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
•	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.10
Bomba de prueba	1.00	3.10	3.10	0.02	0.05
SUBTOTAL M	•				0.15
N.	IANO DE OBRA	4			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.17	0.65
Plomero (Estr. D2)	1.00	3.87	3.87	0.17	0.66
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.17	0.73
SUBTOTALN					2.04
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería PVC U/Z d=160 mm		m	1.00	23.80	23.80
Lubricante		cc	3.90	0.03	0.12
SUBTOTAL O					23.92
	FRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00

ESTE PRECIO NO INCLUYEN IVA.

 TOTAL COSTO DIRECTO (M+N+O+P)
 26.11

 INDIRECTOS
 20 %
 5.22

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 31.33

 VALOR OFERTADO
 31.33

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

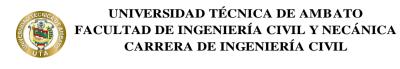
ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.8

Detalle: Hormigón simple f´c= 210kg/cm2. (Incluye encofrado)

Unidad: m3

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					4.56
Concretera 1 saco	1.00	5.50	5.50	1.60	8.80
Vibrador para concreto 5.50 HP	1.00	2.50	2.50	1.60	4.00
SUBTOTAL M					13.36
Descripción	MANO DE	_	Cartalan	D. P. J. J.	Conto
Descripcion	Cantidad A	Jornal/hr B	Costo hora C=A x B	Rendimiento R	Costo D=C x R
Peón (Estr. E2)	6.00	3.83	22.98	2.80	64.34
Albañil (Estr. D2)	2.00	3.87	7.74	2.80	21.67
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	1.20	5.15
Encofrador(Estr. D2)	1.00	3.87	3.87	2.80	10.84
SUBTOTAL N	1.00	3.07	3.07	2.00	91.16
	MATERIA	LES			, , , , ,
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Cemento		Kg	360.00	0.20	72.00
Arena		m3	0.60	8.60	5.16
Ripio triturado		m3	0.92	12.85	11.82
Agua		m3	0.25	1.25	0.31
Tabla de encofrado 0.35*2.50m		u	8.70	2.40	20.88
Alfajías 6*6*250 cm		u	6.00	2.40	14.40
Caña guadua		ml	30.00	1.10	33.00
Clavos		Kg	2.00	3.10	6.20
Alambre negro #18		Kg	1.00	1.50	1.50
SUBTOTAL O					165.27
	TRANSPO	RTE		<u> </u>	
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				<u>-</u>	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	269.80
		INDIRECTOS 20 %			53.96
Cruz Andrade David Erne	esto	UTILIDAD %			
Pachucho Chuquiana Yadira	Nataly	COSTO TO	RO	323.76	
Realizado por:		VALOR OFE	RTADO		323.76


Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.9

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.04
SUBTOTAL M	•				0.04
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.098	0.38
Albañil (Estr. D2)	1.00	3.87	3.87	0.098	0.38
SUBTOTAL N					0.75
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Acero de refuerzo		Kg	1.00	2.60	2.60
Alambre negro #18		Kg	0.04	1.50	0.06
SUBTOTAL O					2.66
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	3.45
		INDIRECTO	S	20 %	0.69
Cruz Andrade David Erneste	О	UTILIDAD %			
Pachucho Chuquiana Yadira Na	ataly	COSTO TOTAL DEL RUBRO			4.14
Realizado por:		VALOR OFE	RTADO		4.14

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.10

Detalle: Grava graduada **Unidad:** m3

FOITBOO

EQUIPO)S					
Cantidad	Tarifa	Costo hora	Rendimiento	Costo		
A	В	C=A x B	R	D=C x R		
				0.02		
				0.02		
MANO DE	OBRA					
Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo		
A	В	C=A x B	R	D=C x R		
1.00	3.83	3.83	0.025	0.10		
1.00	4.29	4.29	0.060	0.26		
SUBTOTAL N						
MATERIA	LES					
	Unidad	Cantidad	Precio unitario	Costo		
		A	В	C=A x B		
	m3	1.00	8.98	8.98		
				8.98		
TRANSPO	RTE					
	Unidad	Cantidad	Tarifa	Costo		
		A	В	C=A x B		
•				0.00		
_			_			
	TOTAL COS	TO DIRECTO	(M+N+O+P)	9.35		
	INDIRECTO	S	20 %	1.87		
o	UTILIDAD %					
Pachucho Chuquiana Yadira Nataly		COSTO TOTAL DEL RUBRO				
uary	COS 10 10.	TAE DEE RODI	Realizado por: VALOR OFERTADO			
	Cantidad A MANO DE Cantidad A 1.00 1.00 MATERIA	MANO DE OBRA Cantidad Jornal/hr A B 1.00 3.83 1.00 4.29 MATERIALES Unidad m3 TRANSPORTE Unidad TOTAL COS INDIRECTO UTILIDAD	Cantidad	Cantidad		

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.11

Detalle: Rejilla de hierro (D= 150mm) **Unidad:** u

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta menor 5% de M.O					0.11
SUBTOTAL M	•				0.11
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Albañil (Estr. D2)	1.00	3.87	3.87	0.550	2.13
SUBTOTALN					2.13
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Rejilla de hierro d=160 mm		U	1.00	2.10	2.10
Cemento Portland (saco= 50kg)		saco (50Kg)	0.03	7.60	0.23
Arena		m3	0.015	8.60	0.13
Agua		m3	0.003	1.25	0.004
SUBTOTAL O					2.46
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA.					
		TOTAL COS	TO DIRECTO	(M+N+O+P)	4.70
		TOTALCOS	TO DIRECTO	(1/11/11/11/11)	4.70

Cruz Andrade David Ernesto

Pachucho Chuquiana Yadira Nataly Realizado por:

TOTAL COSTO DIRECTO	4.70	
INDIRECTOS	20 %	0.94
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		5.63
VALOR OFERTADO		5.63

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.12

Detalle: Válvula de compuerta H.F (D=200mm, incluy e accesorios)

Unidad:

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					1.49
SUBTOTAL M	,	•			1.49
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	4.800	18.33
Plomero (Estr. D2)	1.00	3.87	3.87	2.600	10.00
Maestro mayor obras civiles (Estr.C1)	1.00	4.29	4.29	0.300	1.29
SUBTOTAL N	•				29.73
	MATERIA	ALES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Válvula compuerta H.F d=200 mm		U	1.00	680.00	680.00
SUBTOTAL O					680.00
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P					0.00
ESTE PRECIO NO INCLUYEN IVA	•				
		TOTAL COS	TO DIRECTO	(M+N+O+P)	711.22
		DIDIDECTO	C		

TOTAL COSTO DIRECTO	711.22	
INDIRECTOS	20 %	142.24
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		853.46
VALOR OFERTADO		853.46

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.13

Detalle: Cajas de revisión de 1.00x1.00x1.20 (incluye tapa)

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					4.23
SUBTOTALM	•				4.23
	MANO DE				
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	15.00	57.45
Albañil (Estr. D2)	1.00	3.87	3.87	5.00	19.35
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	1.80	7.72
SUBTOTALN	3.5.4 (F) Y 10.5.4	* ****			84.52
Donationifu	MATERIA		G (1.1.1	D	G 1
Descripción		Unidad	Cantidad A	Precio unitario B	Costo C=A x B
Communication 1		(501)		7.60	
Cemento portland		saco (50kg)	5.00		38.00
Arena		m3	0.65	8.60	5.59
Ripio		m3	0.75	9.00	6.75
Agua		m3	0.25	1.25	0.31
Tabla de encofrado 0.35*2.50m		u	4.85	2.40	11.64
Alfajías 6*6*250 cm		ml	1.80	1.10	1.98
Clavos 2 1/2"		Kg	0.40	3.16	1.26
Aditivo Sika 1		Kg	3.80	2.10	7.98
Acero de refuerzo		Kg	8.93	2.60	23.22
Alambre negro #18		Kg	0.20	1.50	0.30
SUBTOTALO					97.03
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTAL P		<u></u>			0.00

ESTE PRECIO NO INCLUYEN IVA

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

 TOTAL COSTO DIRECTO (M+N+O+P)
 185.78

 INDIRECTOS
 20 %
 37.16

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 222.94

 VALOR OFERTADO
 222.94

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.14

Detalle: Tee de PVC (D= 110 mm)

Unidad:

1

	EQUIPO	os			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.03
SUBTOTAL M	•				0.03
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Plomero (Estr. D2)	1.00	3.87	3.87	0.180	0.70
SUBTOTALN	•				0.70
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tee PVC d=110mm		U	1.00	6.00	6.00
Lubricante		lt	0.06	0.55	0.03
Agua		m3	0.01	1.25	0.01
SUBTOTALO					6.05
	TRANSPO	ORTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTALP					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	(M+N+O+P)	6.78
INDIRECTOS	20 %	1.36
UTILIDAD	%	
COSTO TOTAL DEL RUBE	8.13	
VALOR OFERTADO		8.13

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.15

Detalle: Plantación de totoras **Unidad:** m2

	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.03
SUBTOTAL M	'			•	0.03
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr.E2)	1.00	3.83	3.83	0.150	0.57
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.150	0.64
SUBTOTALN					0.64
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	$C=A \times B$
Totoras	m2	1.00	1.91	1.91	
SUBTOTAL O					1.91
	TRANSPO	RTE		_	
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTALP					0.00

ESTE PRECIO NO INCLUYEN IVA.

TOTAL COSTO DIRECTO	(M+N+O+P)	2.59
INDIRECTOS	20 %	0.52
UTILIDAD	%	
COSTO TOTAL DEL RUBR	RO	3.10
VALOR OFERTADO		3.10

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.16

Detalle: Tubería PVC (D=200 mm, prueba) **Unidad:** m

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.09
Compresor 1 HP	1.00	11.30	11.30	0.02	0.17
SUBTOTALM	•				0.26
	MANO DE OBRA	1			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.15	0.57
Plomero (Estr. D2)	1.00	3.87	3.87	0.15	0.58
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.15	0.64
SUBTOTALN					1.80
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería PVC 200 mm (Incluye caucho) Inen 2059		m	1.00	14.85	14.85
SUBTOTALO					
	TRANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В

SUBTOTAL P 0.00

Cruz Andrade David Ernesto
Pachucho Chuquiana Yadira Nataly
Realizado por:

ESTE PRECIO NO INCLUYEN IVA.

 TOTAL COSTO DIRECTO (M+N+O+P)
 16.91

 INDIRECTOS
 20 %
 3.38

 UTILIDAD
 %

 COSTO TOTAL DEL RUBRO
 20.29

 VALOR OFERTADO
 20.29

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.17

Detalle: Tubo de 4" de acero inoxidable L= 1.00m (Aireadores)

Unidad: n

	EQUIPOS				
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Herramienta menor 5% de M.O					0.13
SUBTOTALM	•				0.13
Ma	ANO DE OBRA	4			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.45	1.72
Instalador(Estr. D2)	1.00	3.87	3.87	0.25	0.97
SUBTOTALN					2.69
	MATERIALES				
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Tubería PVC 200 mm (Incluye caucho) Inen 2059 m 1.00 14.85				14.85	
SUBTOTAL O					14.85
Т	RANSPORTE				
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В
SUBTOTALP					0.00
ESTE PRECIO NO INCLUYEN IVA.				_	
		TOTAL COS	TO DIRECTO	(M+N+O+P)	17.68
		INDIRECTO	S	20 %	3.54
Cruz Andrade David Ernesto		UTILIDAD %			
Pachucho Chuquiana Yadira Nataly		COSTO TOTAL DEL RUBRO			21.21
Realizado por: VALOR OFERTADO			21,21		

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y NECÁNICA CARRERA DE INGENIERÍA CIVIL

Proyecto:

"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS

Rubro: 3.1.18

Detalle: Bomba centrífuga autocebante Unidad: m

	EQUIPO	S			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=А х В	R	D=C x R
Herramienta menor 5% de M.O					0.07
Bomba de prueba	1.00	3.10	3.10	0.02	0.06
SUBTOTALM					0.07
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Peón (Estr. E2)	1.00	3.83	3.83	0.16	0.61
Plomero (Estr. D2)	1.00	3.87	3.87	0.16	0.62
Maestro mayor obras civiles (Estr. C1)	1.00	4.29	4.29	0.017	0.07
SUBTOTALN					1.30
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Bomba centrífuga autocebante 2"		U	1.00	880.00	880.00
Lubricante		cc	3.60	0.03	0.11
SUBTOTALO					880.11
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	С=А х В

SUBTOTAL P

ES TE P RECIO NO INCLUYEN IVA.

Cruz Andrade David Ernesto Pachucho Chuquiana Yadira Nataly

Realizado por:

TOTAL COSTO DIRECTO (M+N+O+P)		881.48
INDIRECTOS	20 %	176.30
UTILIDAD	%	
COSTO TOTAL DEL RUBRO		1 057.77
VALOR OFERTADO		1 057.77

0.00

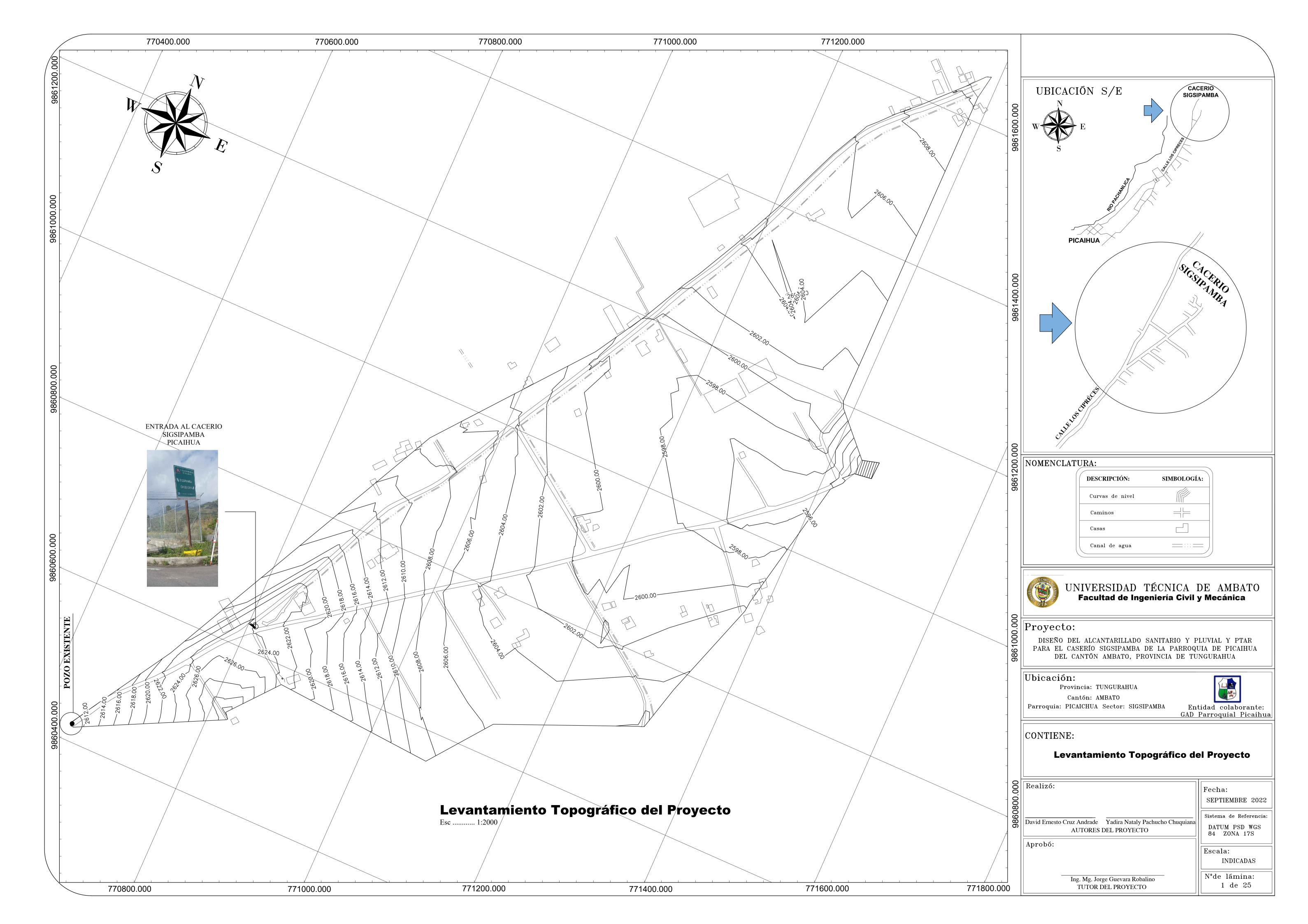
UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y NECÁNICA CARRERA DE INGENIERÍA CIVIL

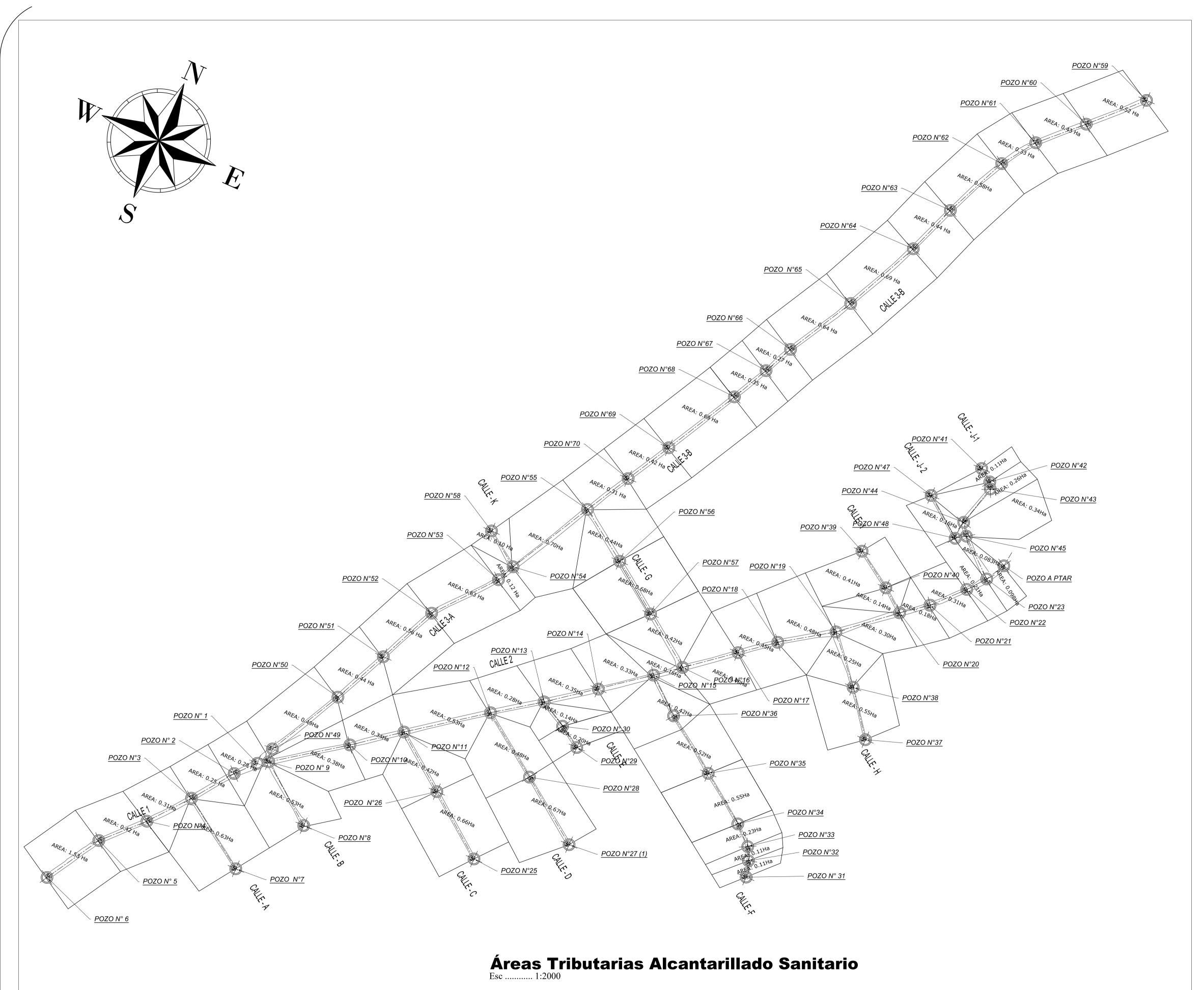
13.45

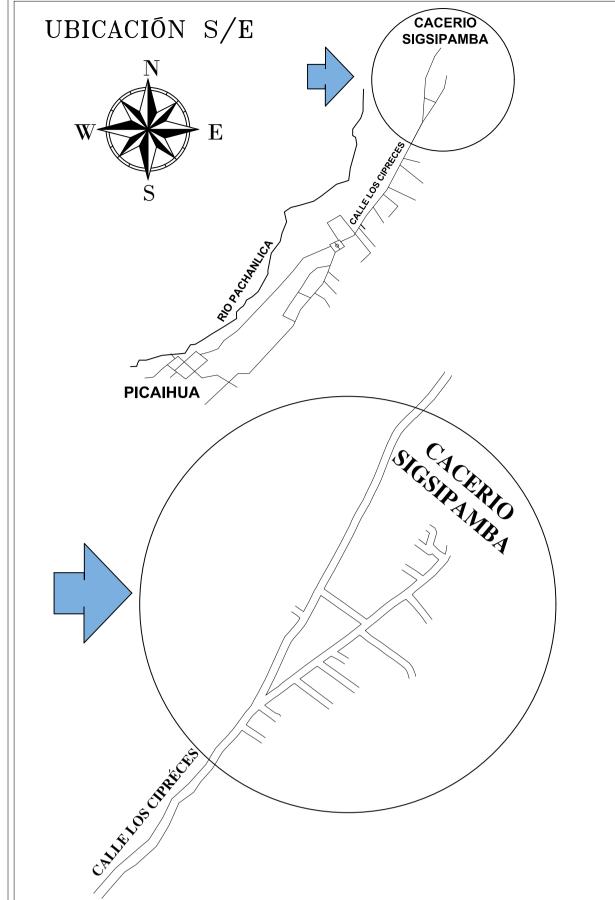
Proyecto:

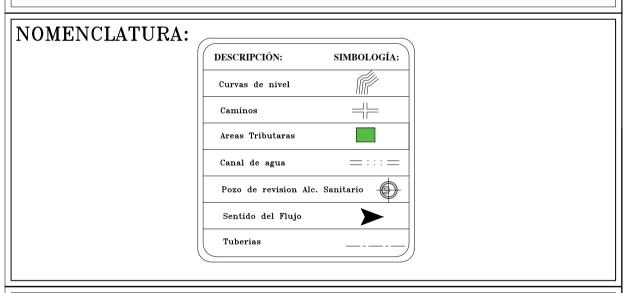
"DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERIO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTON AMBATO, PROVINCIA DE TUNGURAHUA"

ANÁLISIS DE PRECIOS UNITARIOS


Rubro: 3.1.19


Detalle: Codo PVC (D=160mm) Unidad: U


	EQUIPO	OS			
Descripción	Cantidad	Tarifa	Costo hora	Rendimiento	Costo
	A	В	С=АхВ	R	D=C x R
Herramienta menor 5% de M.O					0.03
SUBTOTAL M					0.03
	MANO DE	OBRA			
Descripción	Cantidad	Jornal/hr	Costo hora	Rendimiento	Costo
	A	В	C=A x B	R	D=C x R
Plomero (Estr. D2)	1.00	3.87	3.87	0.16	0.62
SUBTOTAL N	•	•			0.62
	MATERIA	LES			
Descripción		Unidad	Cantidad	Precio unitario	Costo
			A	В	C=A x B
Codo PVC d=160mm 90°		U	1.00	10.50	10.50
Lubricante		1t	0.07	0.60	0.04
Agua		m3	0.012	1.25	0.02
SUBTOTAL O					10.56
	TRANSPO	RTE			
Descripción		Unidad	Cantidad	Tarifa	Costo
			A	В	C=A x B
SUBTOTAL P ESTE PRECIO NO INCLUYEN IVA.				L	0.00
		TOTAL COS	TO DIRECTO	(M+N+O+P)	11.21
	ľ	INDIRECTO	S	20 %	2.24
Cruz Andrade David Ernesto		UTILIDAD		%	
Pachucho Chuquiana Yadira Nata	alv	COSTO TOTAL DEL RUBRO		13.45	


Realizado por:

VALOR OFERTADO

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

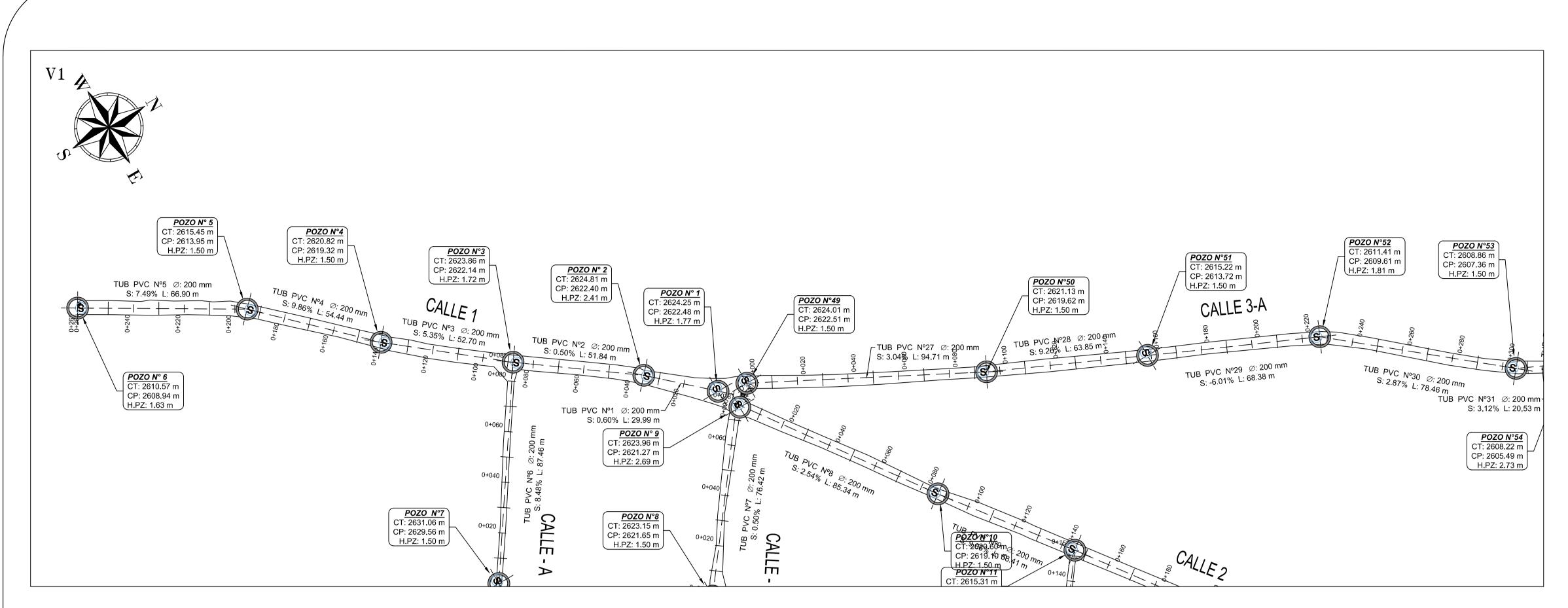
Ubicación:

Provincia: TUNGURAHUA

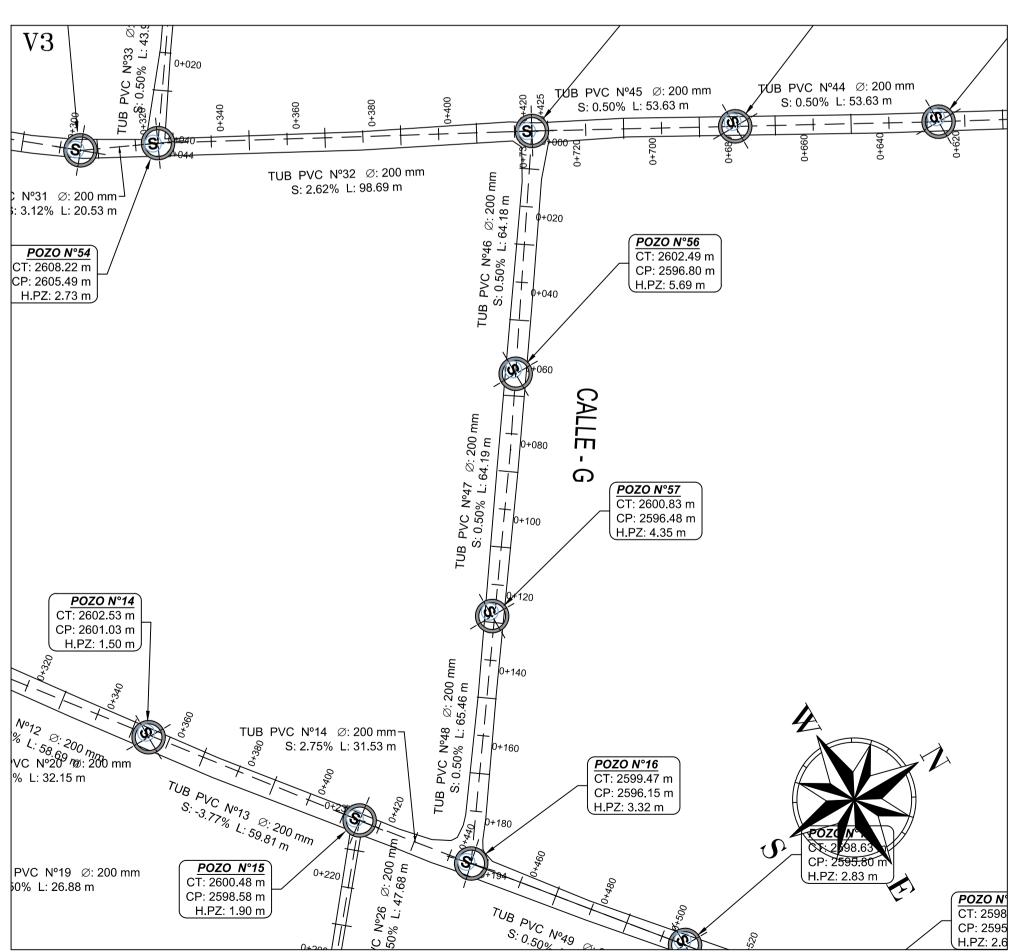
Ing. Mg. Jorge Guevara Robalino

TUTOR DEL PROYECTO

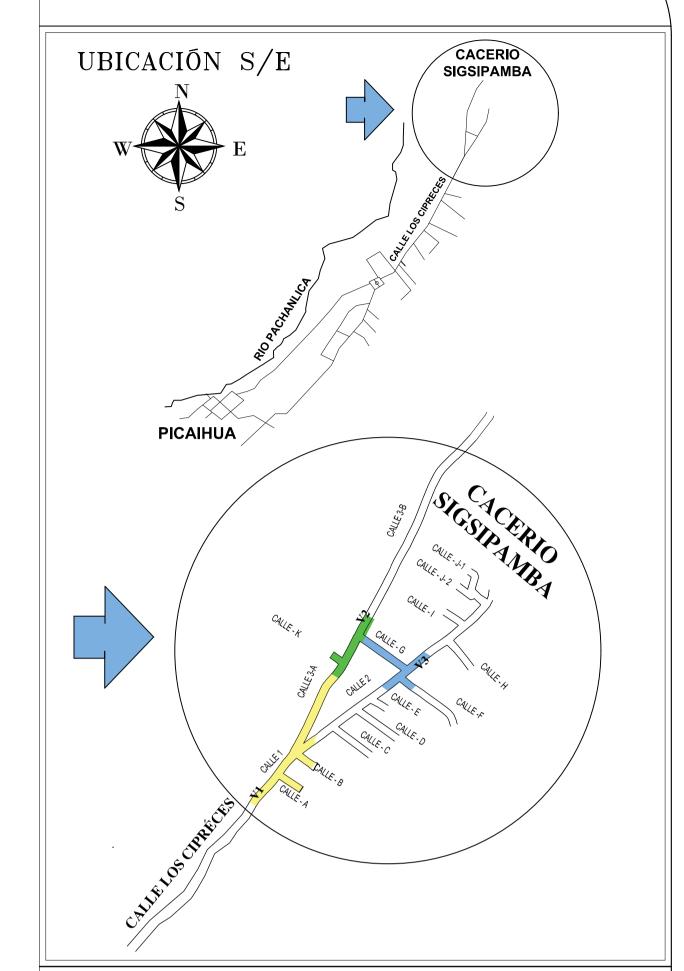
Cantón: AMBATO

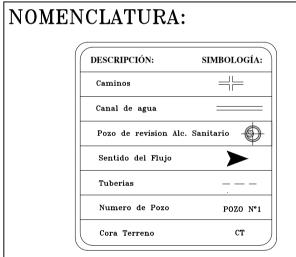

2 de 25

Parroquia: PICAICHUA Sector: SIGSIPAMBA Entidad colaborante: GAD Parroquial Picaihua


CONTIENE:

Áreas Trinutarias Alcantarillado Sanitario


Realizó: Fecha: SEPTIEMBRE 2022 Sistema de Referencia: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana DATUM PSD WGS AUTORES DEL PROYECTO 84 ZONA 17S | Aprobó: Escala: INDICADAS N°de lámina:



Esquema Alcantarillado Sanitario

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-I
Diametro de tuberia	Ø
Pendiente	s
Ubicación de la ventans	a V1-V2

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

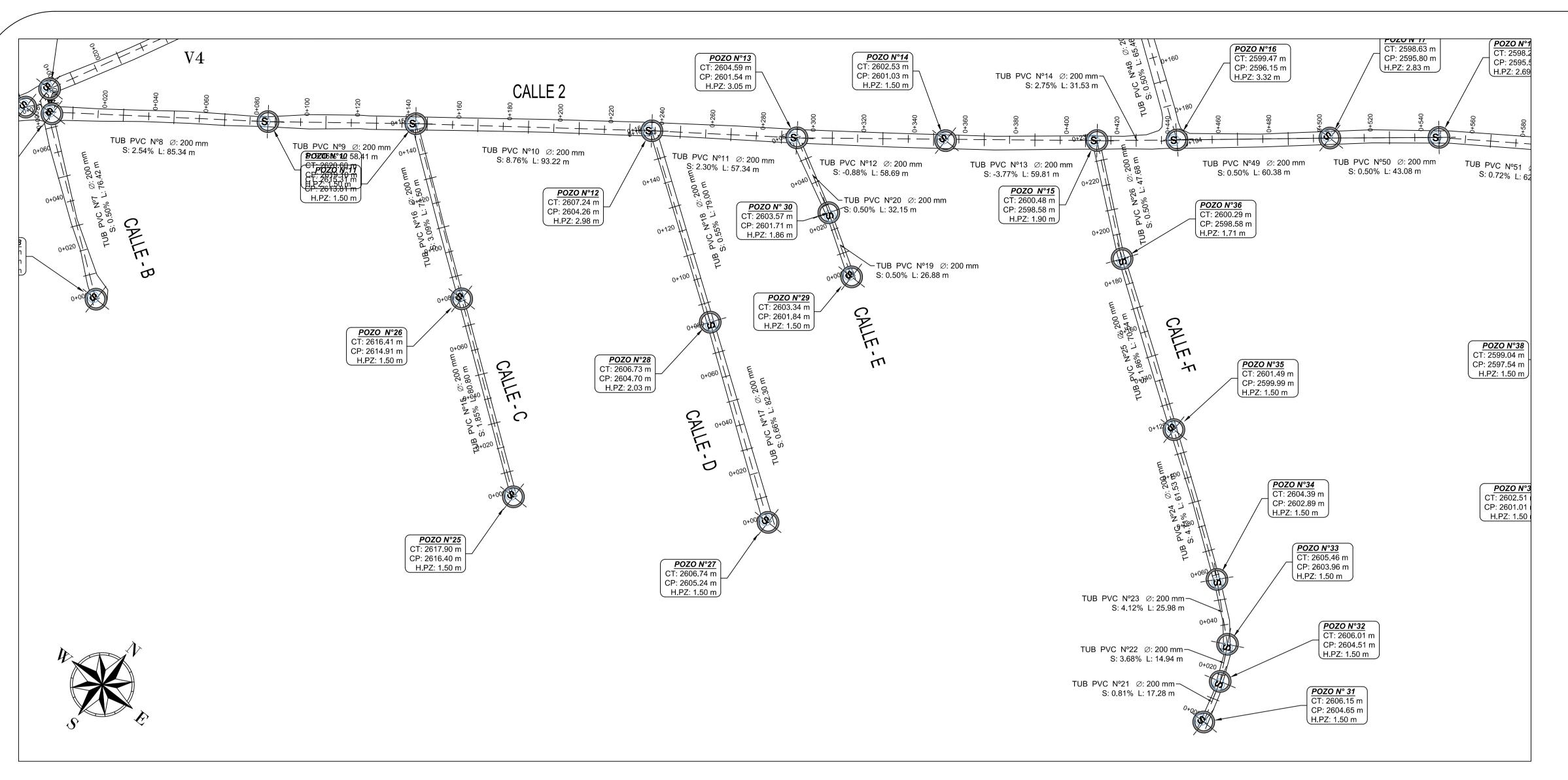
Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

GAD Parroquial Picaihua

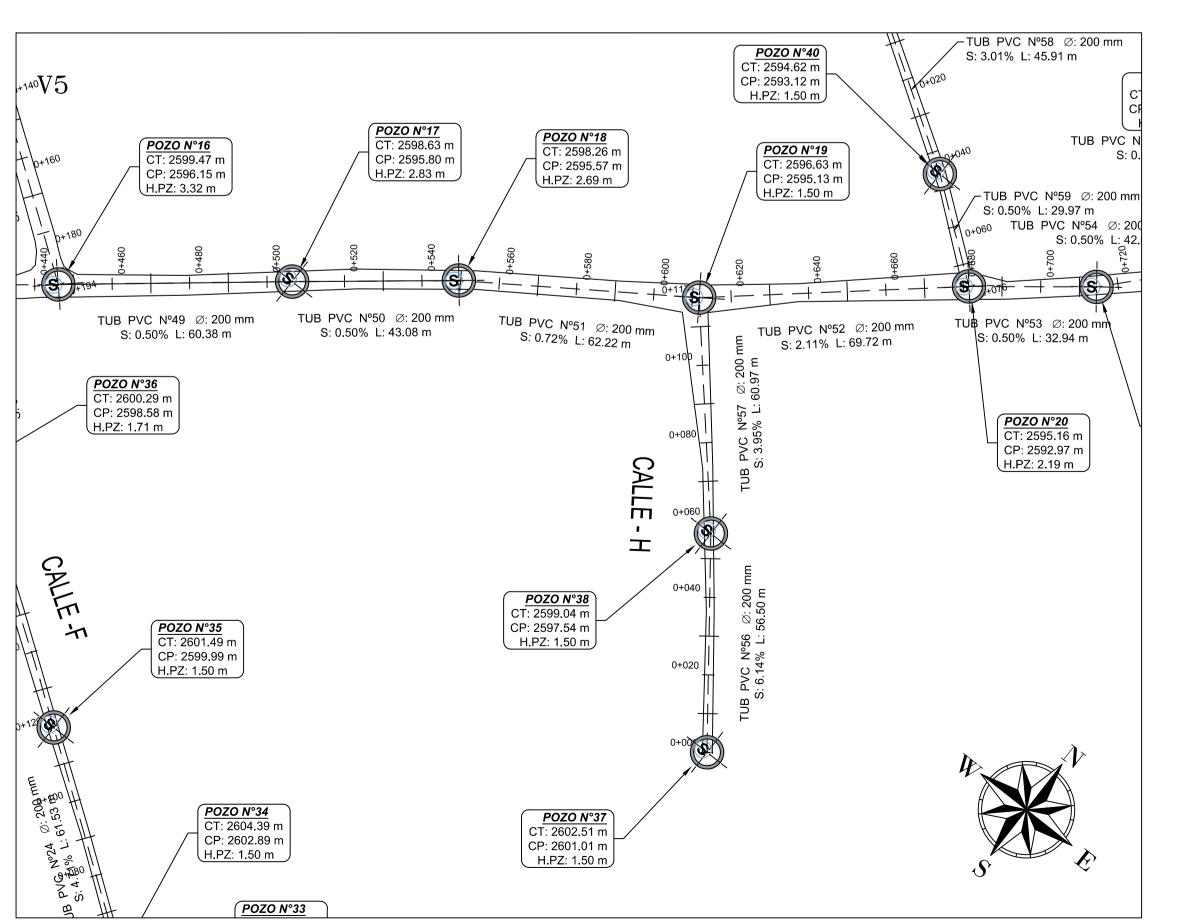
CONTIENE:

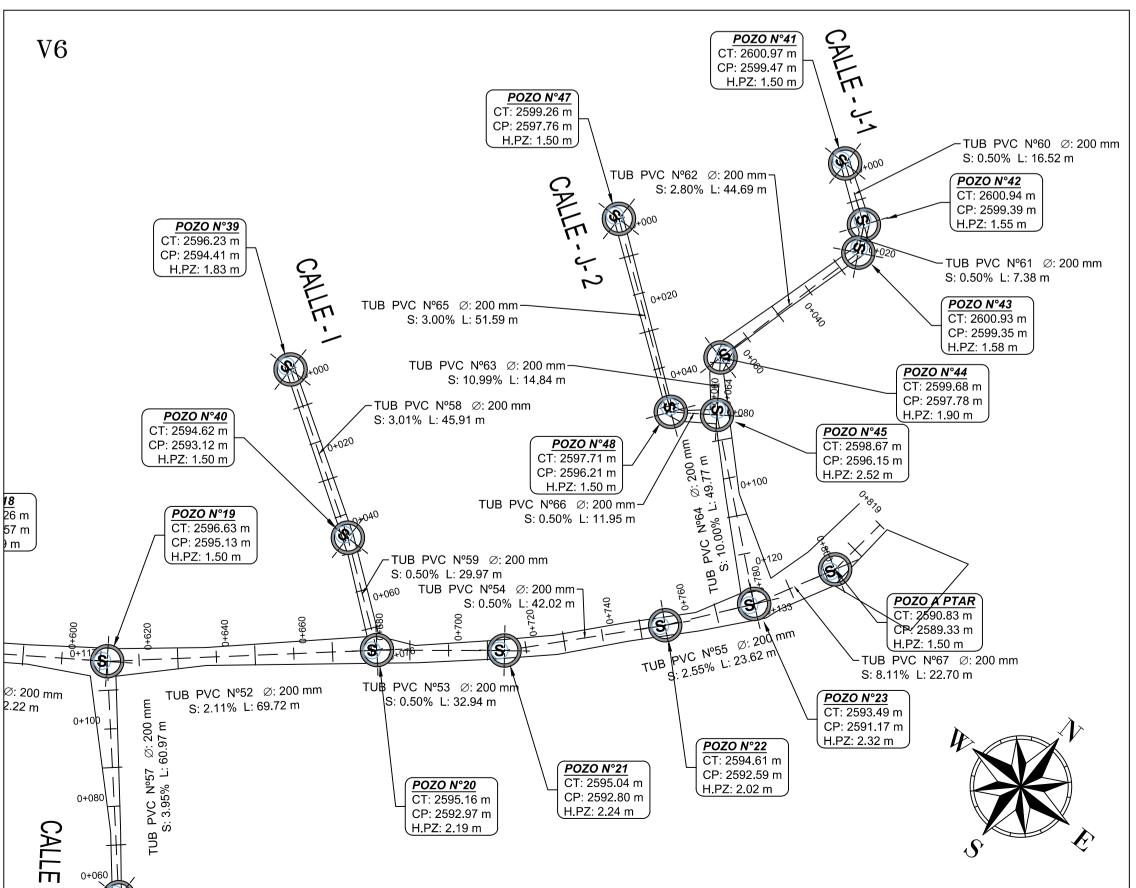
Esquema Alcantarillado Sanitario

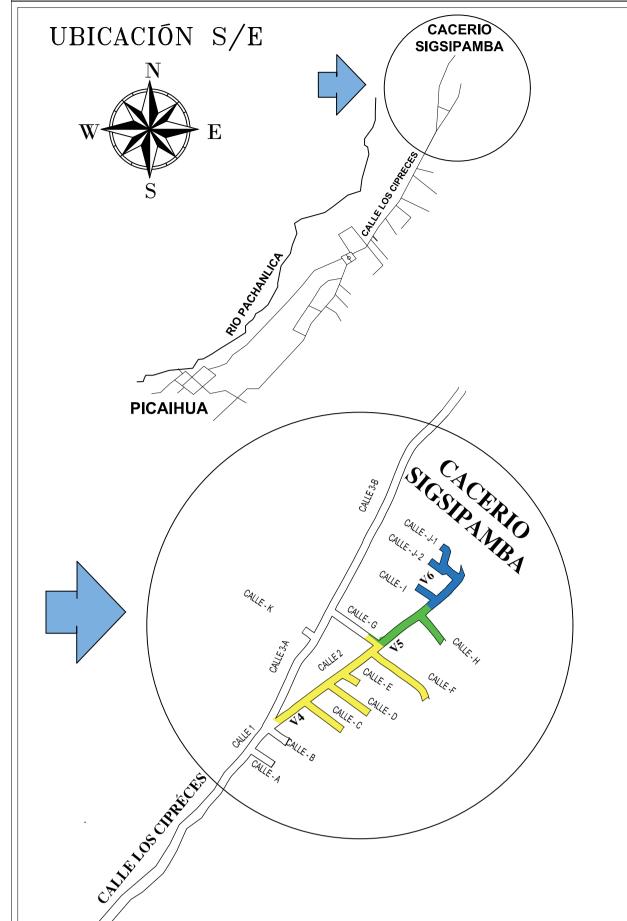

Realizó: Fecha: SEPTIEMBRE 2022 Sistema de Referencia: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana DATUM PSD WGS AUTORES DEL PROYECTO 84 ZONA 17S Aprobó: Escala:

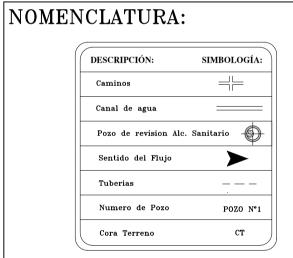
TUTOR DEL PROYECTO

INDICADAS Ing. Mg. Jorge Guevara Robalino


N°de lámina: 3 de 25


Esc 1:1000




Esquema Alcantarillado Sanitario

Esc 1:1000

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	$_{ m H.Pz}$
Longitud de tuberia	L
Material de tuberia	TUB. PVC-I
Diametro de tuberia	Ø
Pendiente	s
Ubicación de la ventana	a V1-V2

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

Entidad colaborante: GAD Parroquial Picaihua

Fecha:

Escala:

CONTIENE:

Esquema Alcantarillado Sanitario

Realizó:

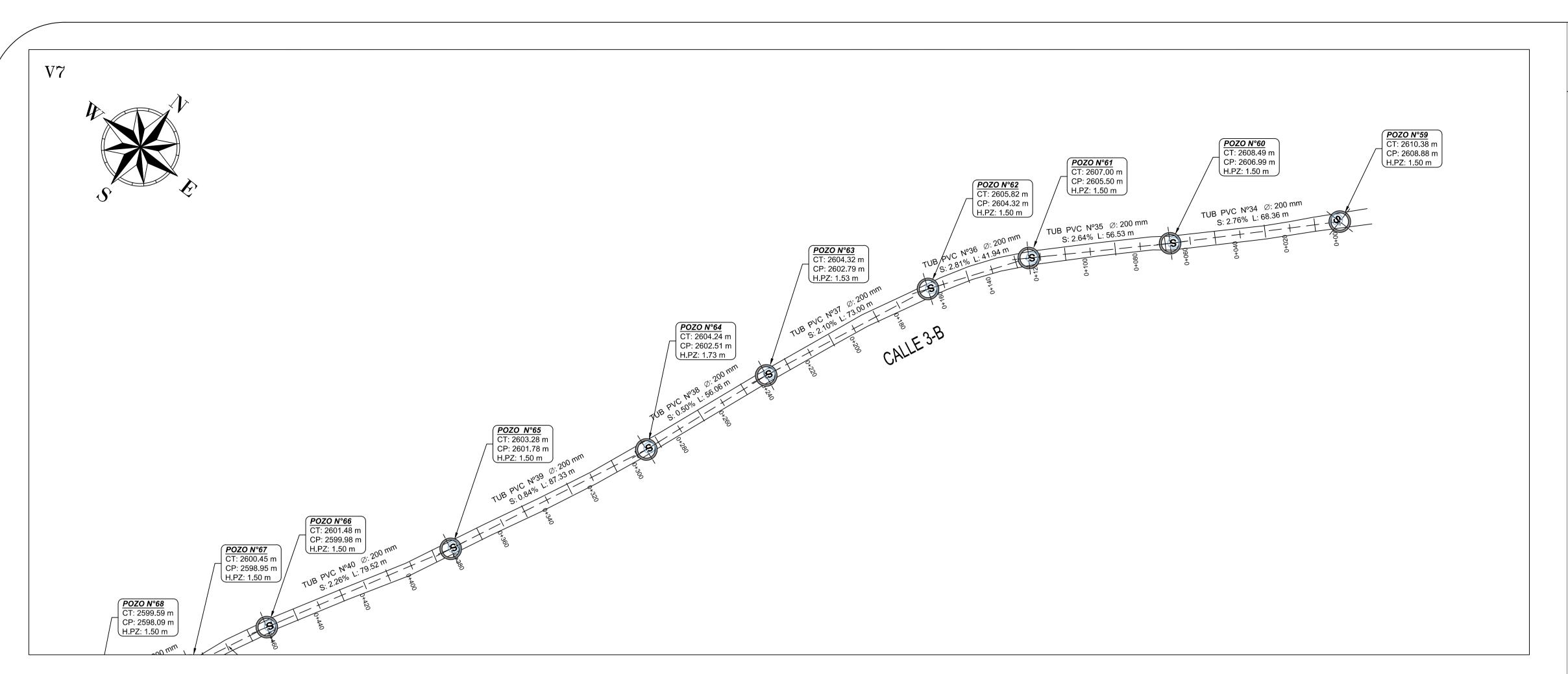
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana

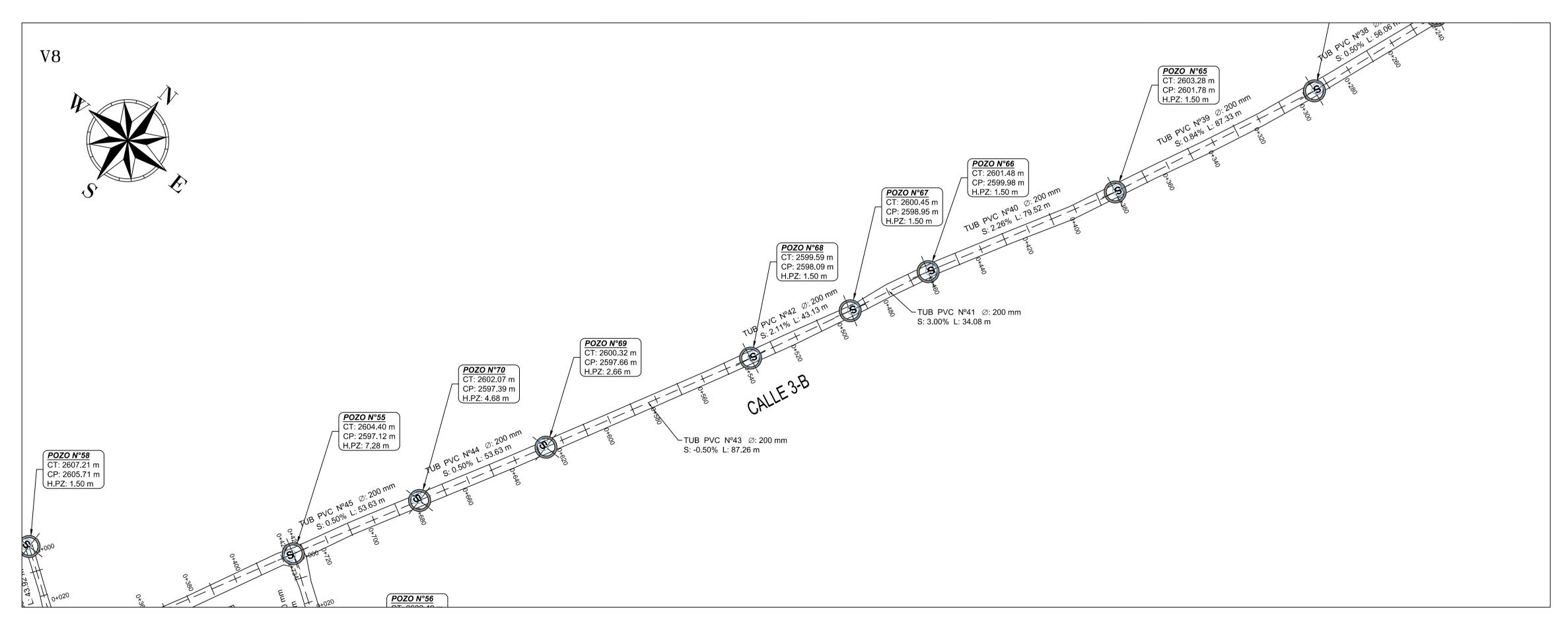
AUTORES DEL PROYECTO

Aprobó:

Ing. Mg. Jorge Guevara Robalino

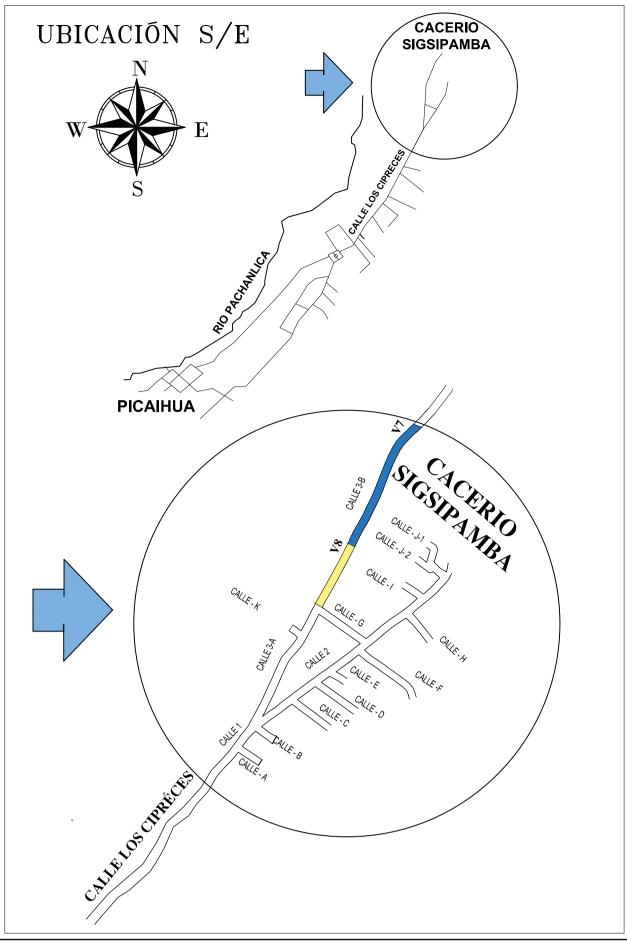
DATUM PSD WGS 84 ZONA 17S

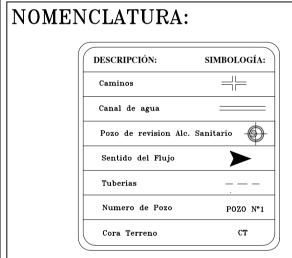

SEPTIEMBRE 2022


Sistema de Referencia:

N°de lámina: 4 de 25

INDICADAS


TUTOR DEL PROYECTO



Esquema Alcantarillado Sanitario

Esc 1:1000

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-D
Diametro de tuberia	Ø
Pendiente	s
Ubicación de la ventana	v1-V2

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO

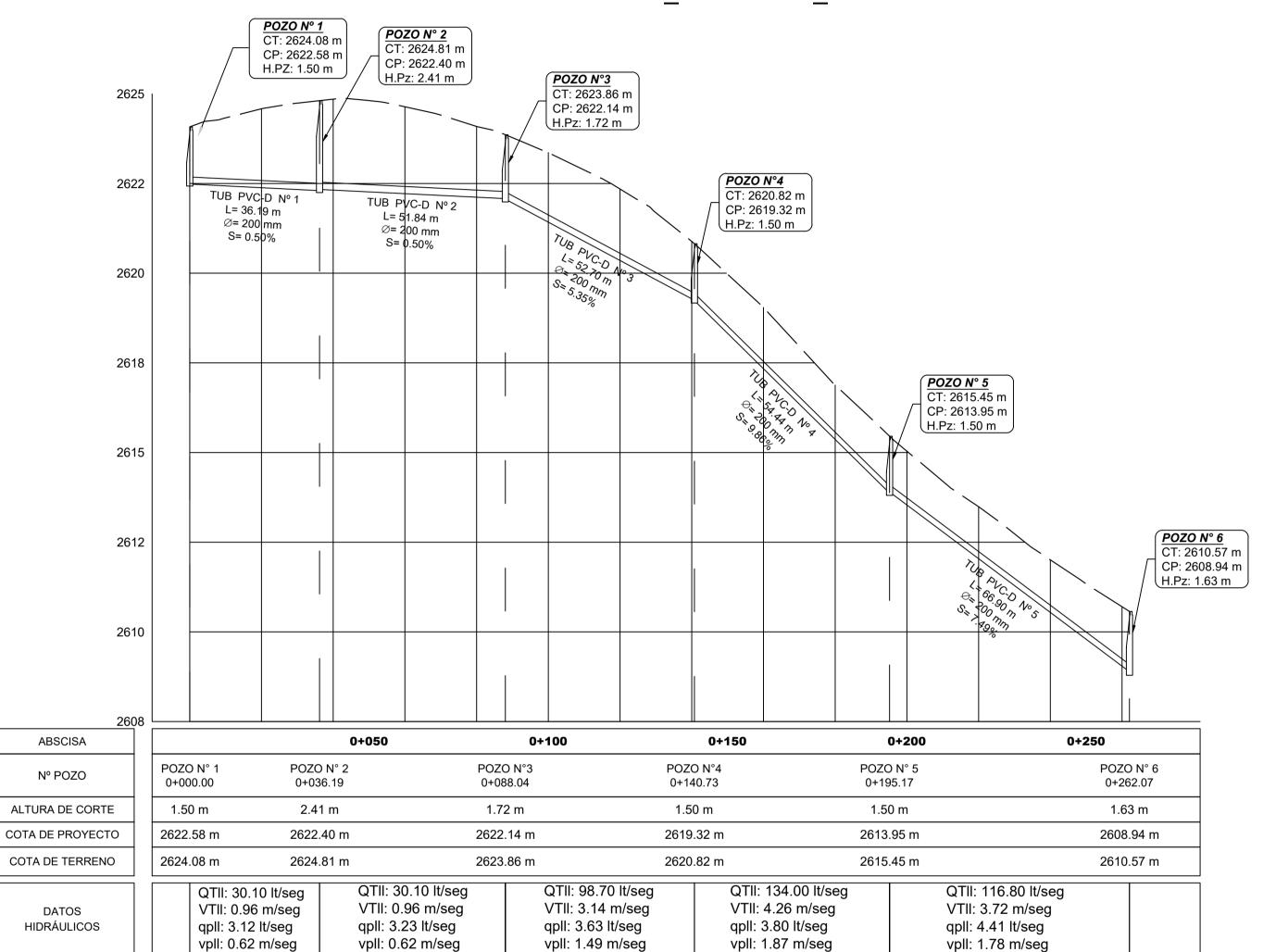
Parroquia: PICAICHUA Sector: SIGSIPAMBA

N°de lámina:

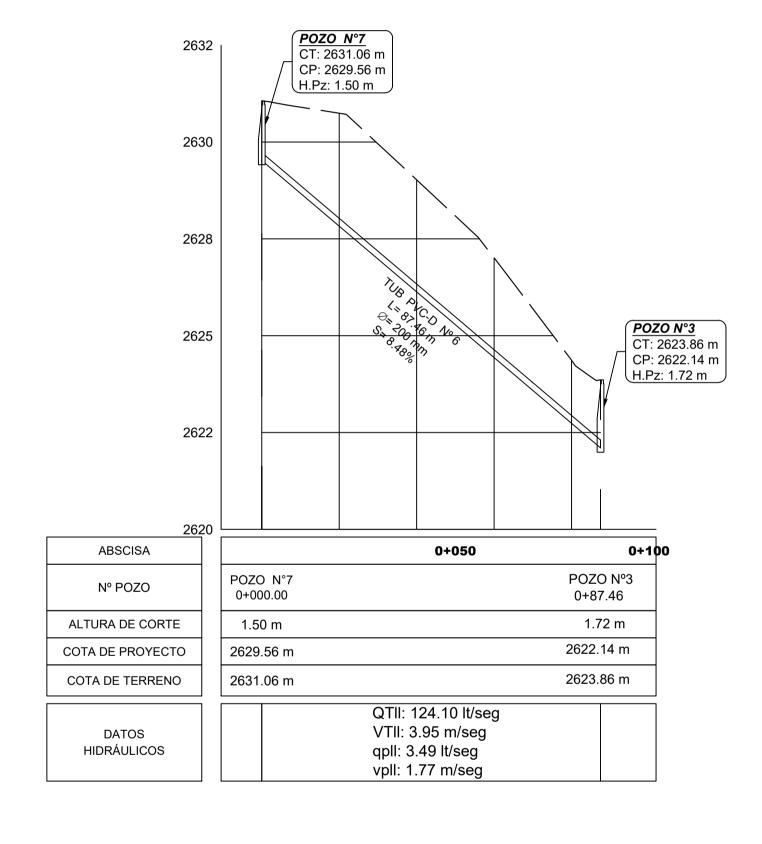
5 de 25

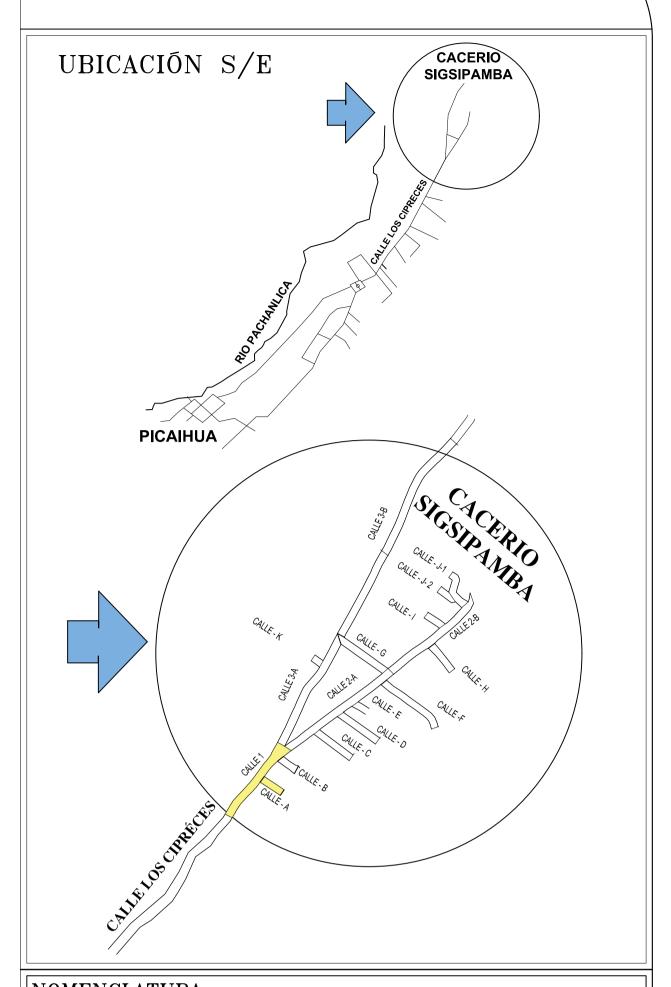
GAD I all'oquial I lealifua

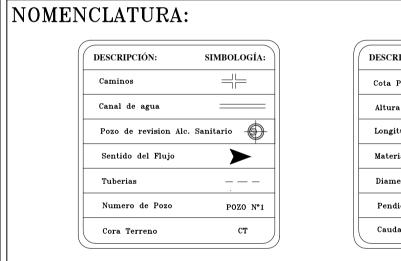
CONTIENE:

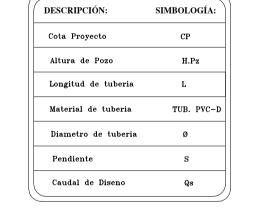

Esquema Alcantarillado Sanitario

Realizó: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO	Fecha: SEPTIEMBRE 202 Sistema de Reference DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala:
	INDICADAS


Ing. Mg. Jorge Guevara Robalino


TUTOR DEL PROYECTO


PERFIL ALC_SANITARIO_Calle 1



PERFIL ALC_SANITARIO_CALLE A

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

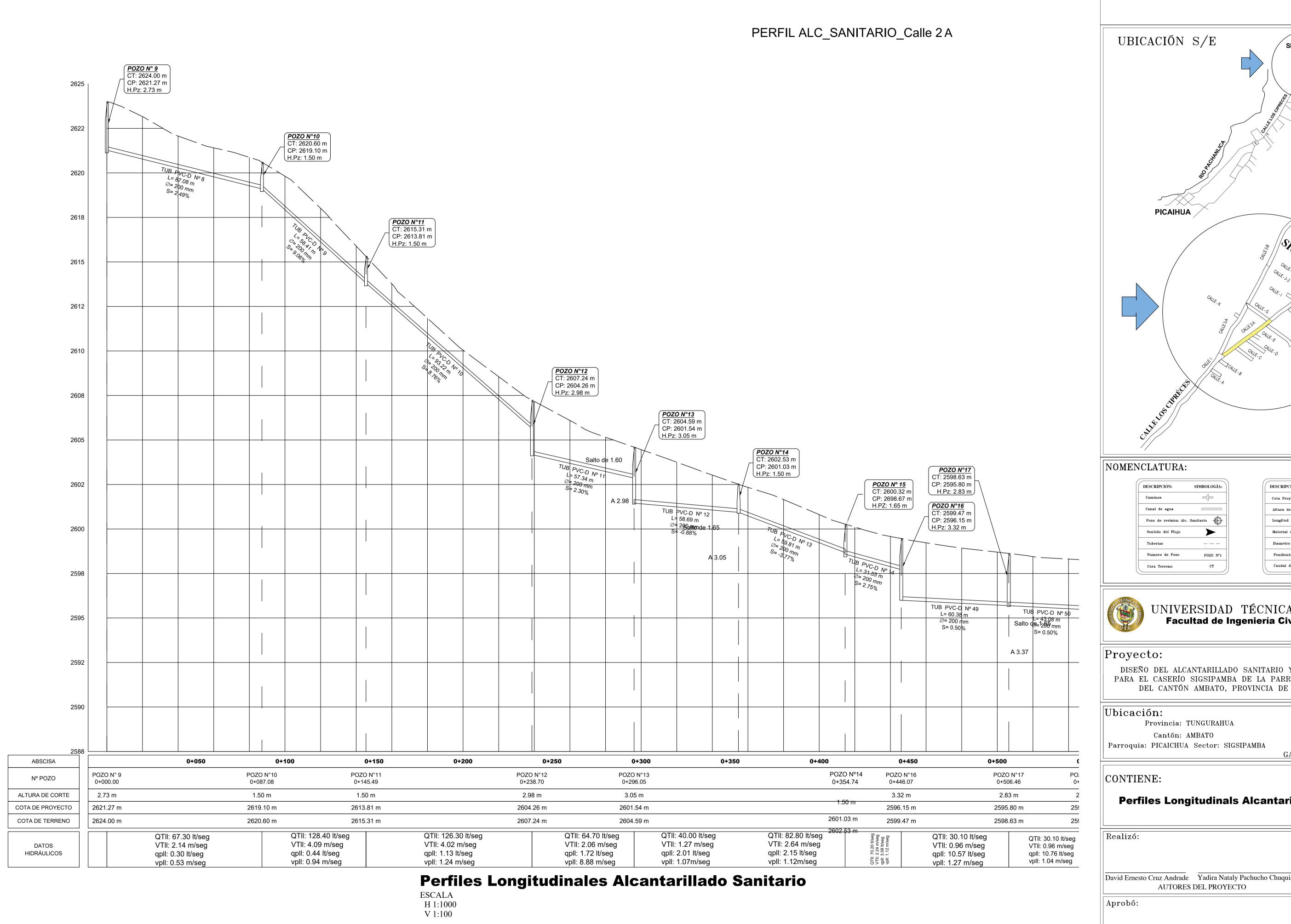
Cantón: AMBATO

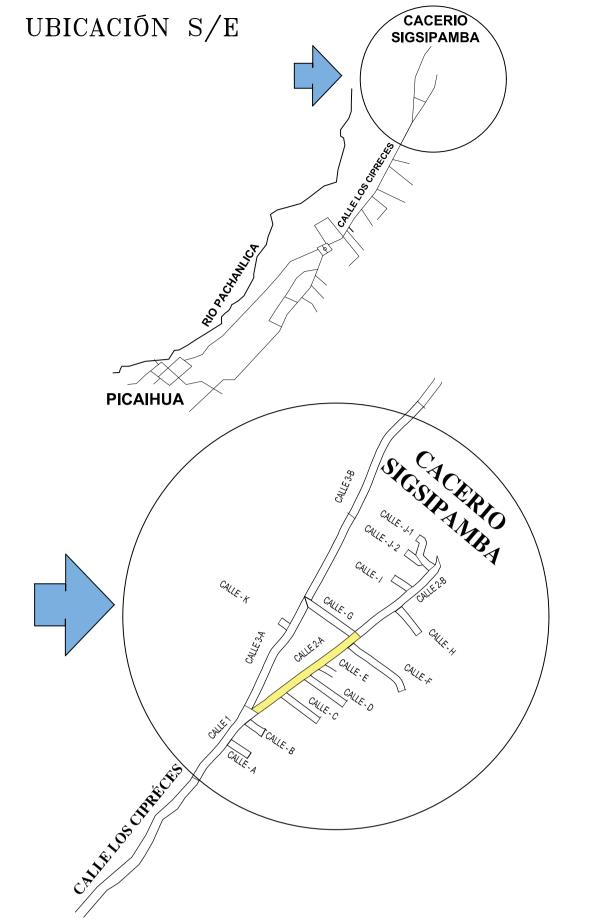
Parroquia: PICAICHUA Sector: SIGSIPAMBA

6 DE 25

GAD Parroquial Picaihua

CONTIENE:


Perfiles Longitudinals Alcantarillado Sanitario


Realizó: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO	Fecha: SEPTIEMBRE 2022 Sistema de Referencia: DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS
Ing Mg Jorge Guevara Robalino	N°de lámina:

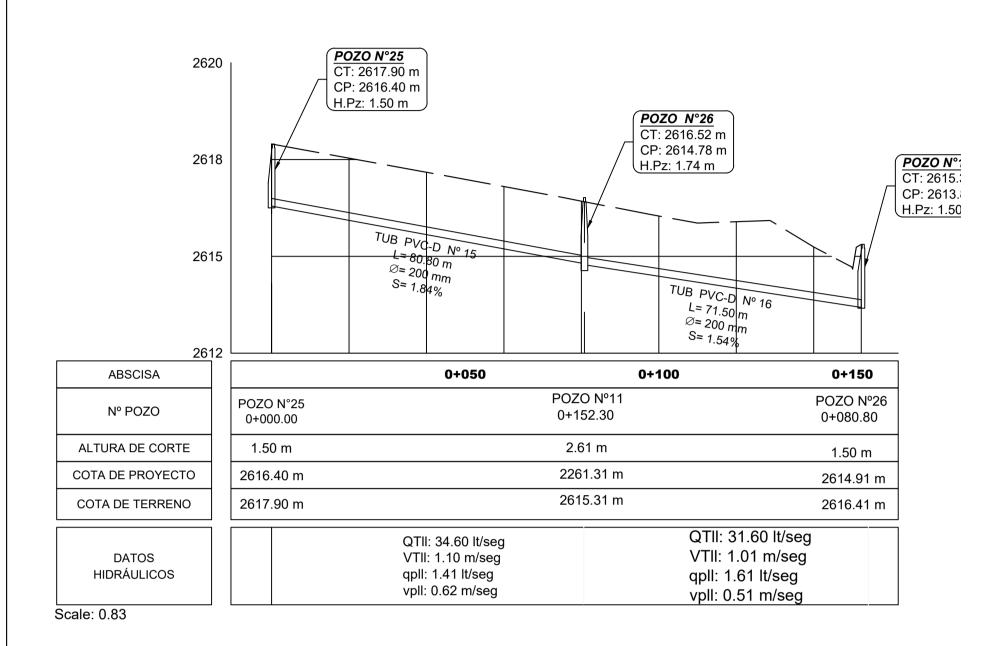
TUTOR DEL PROYECTO

Perfiles Longitudinales Alcantarillado Sanitario

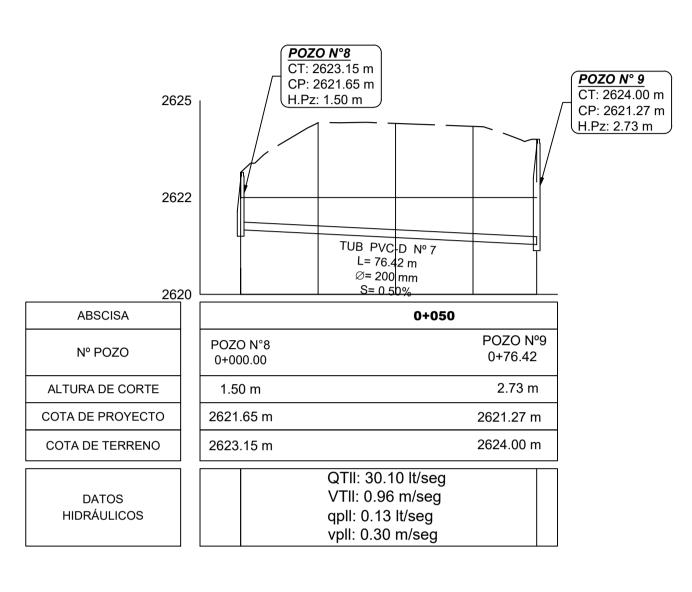
ESCALA H 1:1000 V 1:100

Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

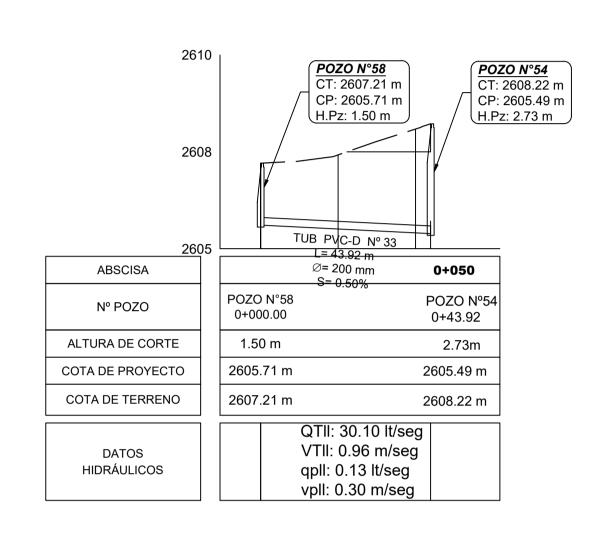
UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

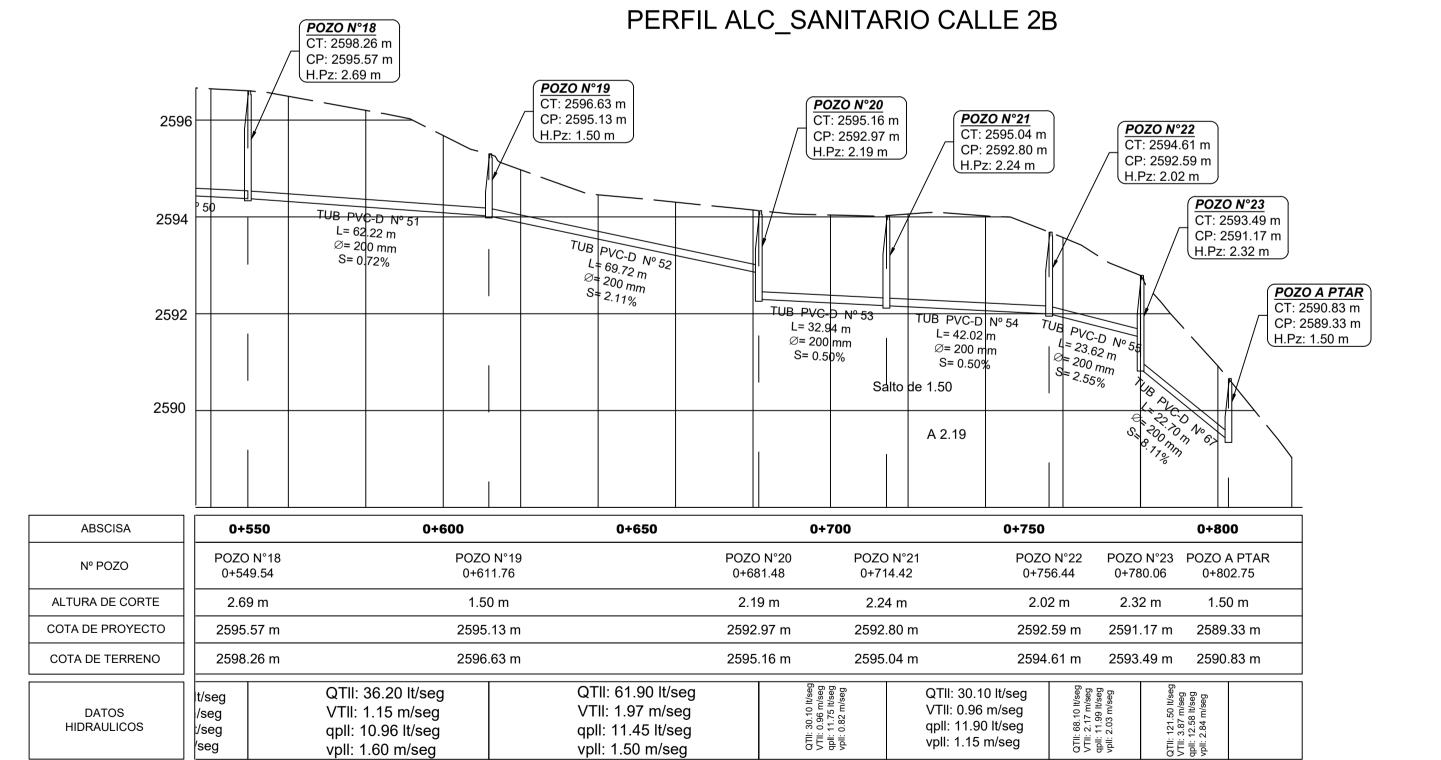

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

> Entidad colaborante: GAD Parroquial Picaihua


Perfiles Longitudinals Alcantarillado Sanitario

Realizó:				Fecha: SEPTIEMBRE 202
	Cruz Andrade AUTORES	Yadira Nataly Pac DEL PROYECTO	chucho Chuquiana	Sistema de Reference DATUM PSD WGS 84 ZONA 17S
Aprobó:				Escala: INDICADAS
-		ge Guevara Robalir DEL PROYECTO	10	N°de lámina: 7 de 25


PERFIL ALC_SANITARIO_Calle C



PERFIL ALC:SANITARIO CALLE B

PERFIL ALC_SANITARIO_Calle K

VTII: 1.97 m/seg

qpll: 11.45 lt/seg

vpll: 1.50 m/seg

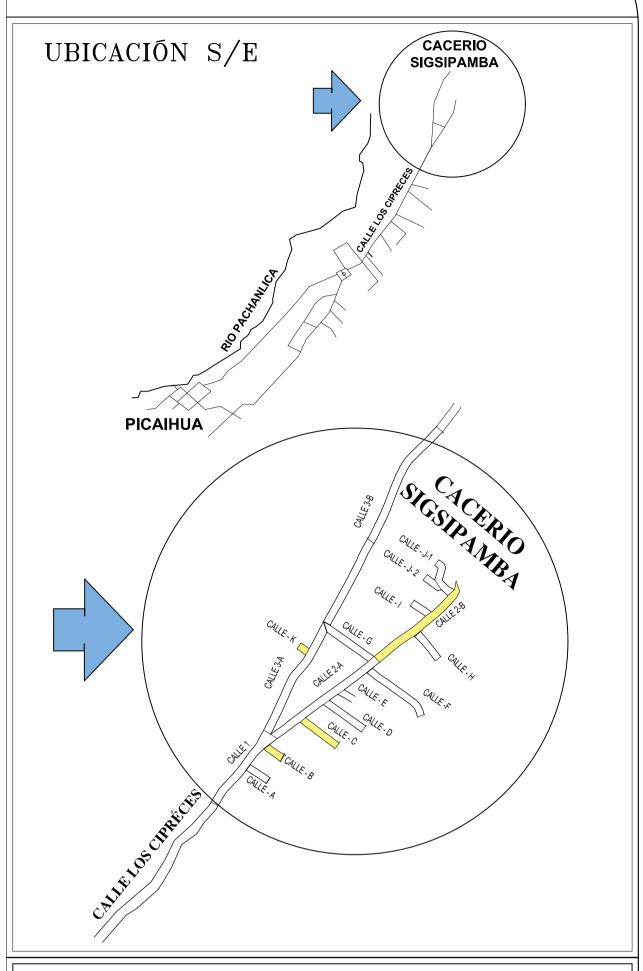
Perfiles Longitudinales Alcantarillado Sanitario

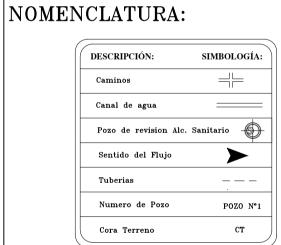
VTII: 0.96 m/seg

qpll: 11.90 lt/seg

vpll: 1.15 m/seg

ESCALA H 1:1000 V 1:100


VTII: 1.15 m/seg


qpll: 10.96 lt/seg

vpll: 1.60 m/seg

DATOS

HIDRAULICOS

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	$_{ m H.Pz}$
Longitud de tuberia	L
Material de tuberia	TUB. PVC-
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

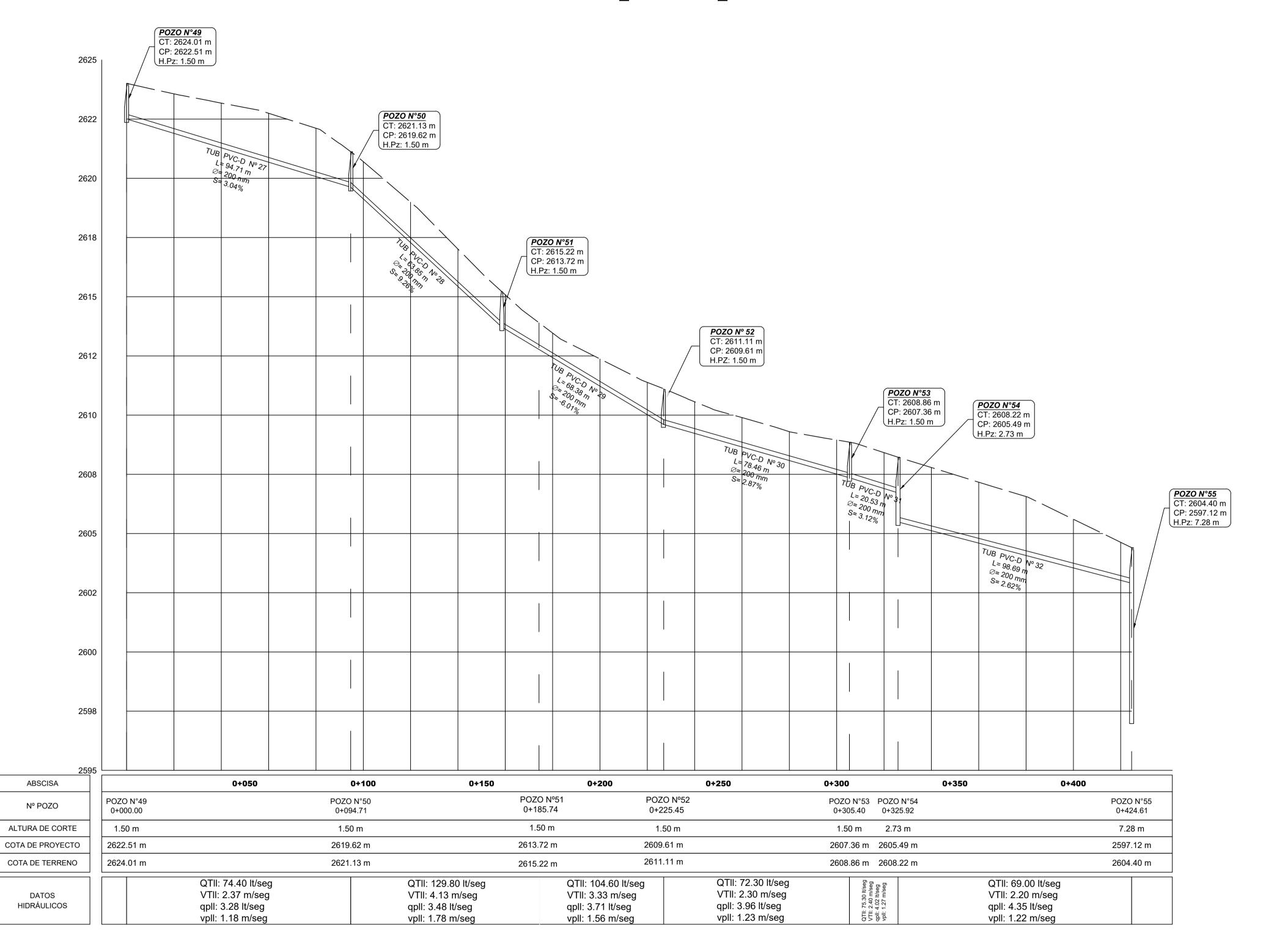
DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

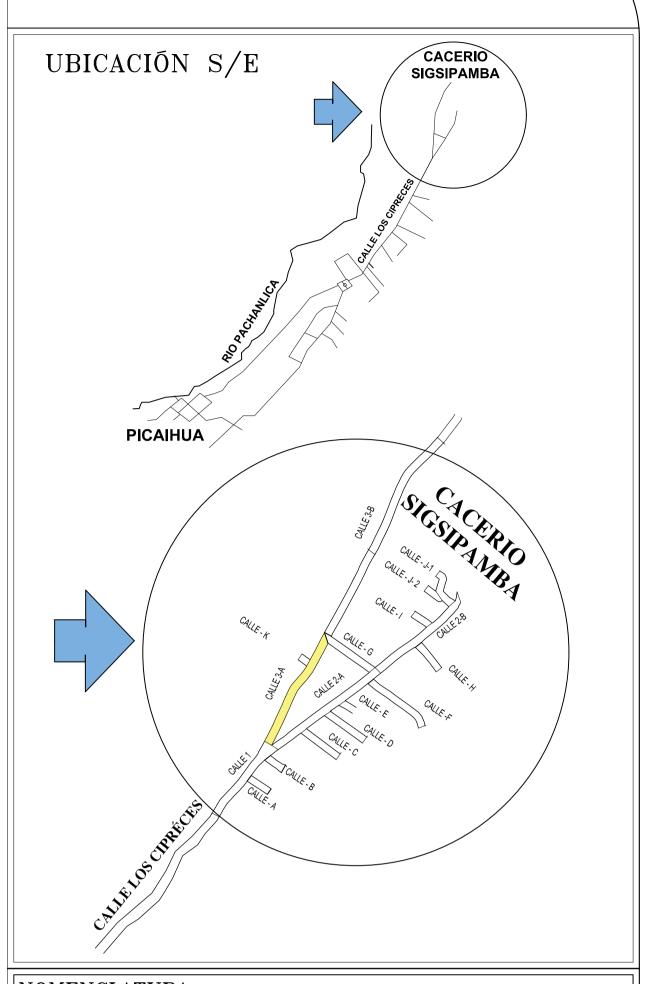
Cantón: AMBATO

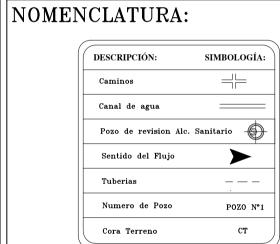
Parroquia: PICAICHUA Sector: SIGSIPAMBA

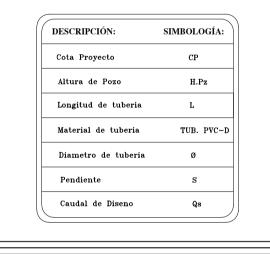

GAD Parroquial Picaihua

CONTIENE:

Perfiles Longitudinals Alcantarillado Sanitario


Realizó:	Fecha: SEPTIEMBRE 2022
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO	Sistema de Referencia DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS
Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO	N°de lámina: 8 de 25


PERFIL ALC_SANITARIO_Calle 3-A



Perfiles Longitudinales Alcantarillado Sanitario

ESCALA H 1:1000 V 1:100

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

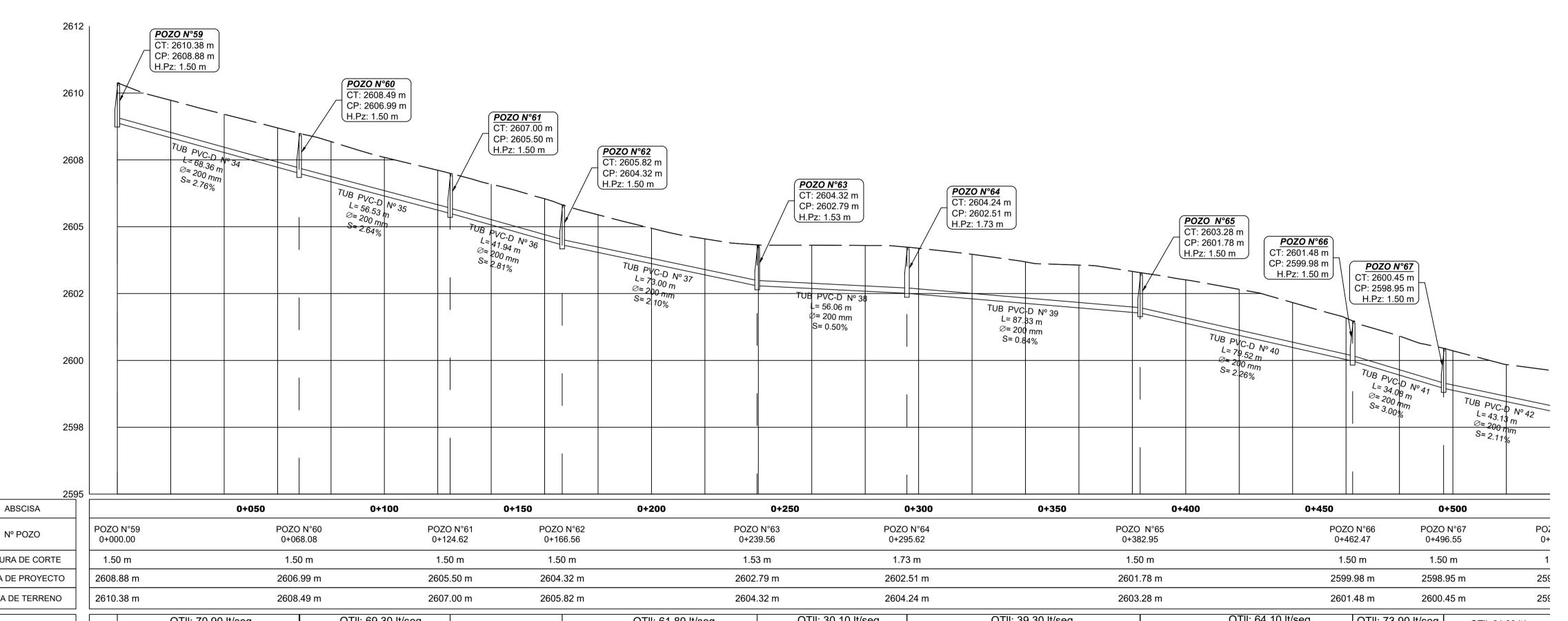
DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

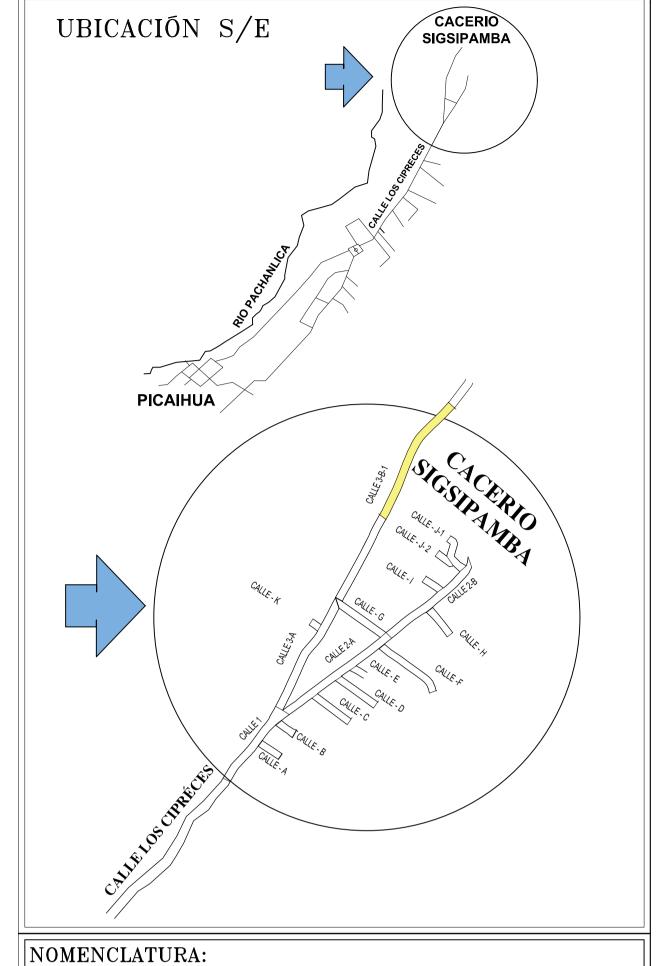
Provincia: TUNGURAHUA

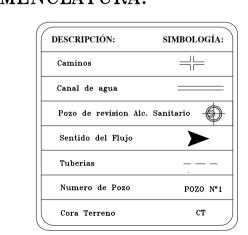
Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA



CONTIENE:


Perfiles Longitudinals Alcantarillado Sanitario


Realizó:	Fecha: SEPTIEMBRE 2022 Sistema de Referencia:
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO	DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS
Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO	N°de lámina: 9 de 25

PERFIL ALC_SANITARIO_Calle 3-B-1

Nº POZO	POZO N°59 0+000.00	POZO N' 0+068.0					POZO N°65 0+382.95	POZO N°60 0+462.47	
ALTURA DE CORTE	1.50 m	1.50 n	1.50	m 1.50 m	1.53 m	1.73 m	1.50 m	1.50 m	1.50 m 1
COTA DE PROYECTO	2608.88 m	2606.99	m 2605.	60 m 2604.32 m	2602.79 m	n 2602.51 m	2601.78 m	2599.98 n	n 2598.95 m 25§
COTA DE TERRENO	2610.38 m	2608.49	m 2607.0	0 m 2605.82 m	2604.32 m	n 2604.24 m	2603.28 m	2601.48 n	n 2600.45 m 259
DATOS HIDRÁULICOS		QTII: 70.90 lt/seg VTII: 2.26 m/seg qpII: 7.58 lt/seg vpII: 1.47 m/seg	QTII: 69.30 lt/seg VTII: 2.21 m/seg qpII: 7.78 lt/seg vpII: 1.45 m/seg	QTII: 71.40 lt/seg VTII: 2.27 m/seg qpII: 7.92 lt/seg vpII: 1.49 m/seg	QTII: 61.80 lt/seg VTII: 1.97 m/seg qpII: 8.18 lt/seg vpII: 1.34 m/seg	QTII: 30.10 lt/seg VTII: 0.96 m/seg qpII: 8.37 lt/seg vpII: 1.05 m/seg	QTII: 39.30 lt/seg VTII: 1.25 m/seg qpII: 8.65 lt/seg vpII: 1.10 m/seg	VTII: 2.04 m/seg VT qpII: 8.91 lt/seg qpI	III: 73.90 lt/seg III: 2.35 m/seg II: 9.02 lt/seg II: 1.59 m/seg VTII: 61.90 lt/seg VTII: 1.97 m/seg vpII: 9.17 lt/seg vpII: 1.41 m/seg

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-I
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

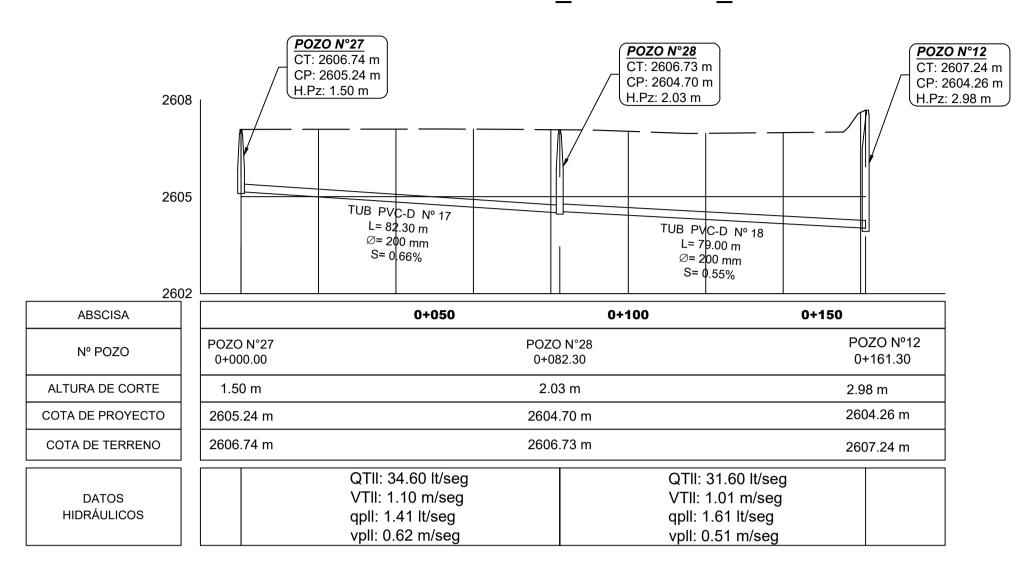
Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

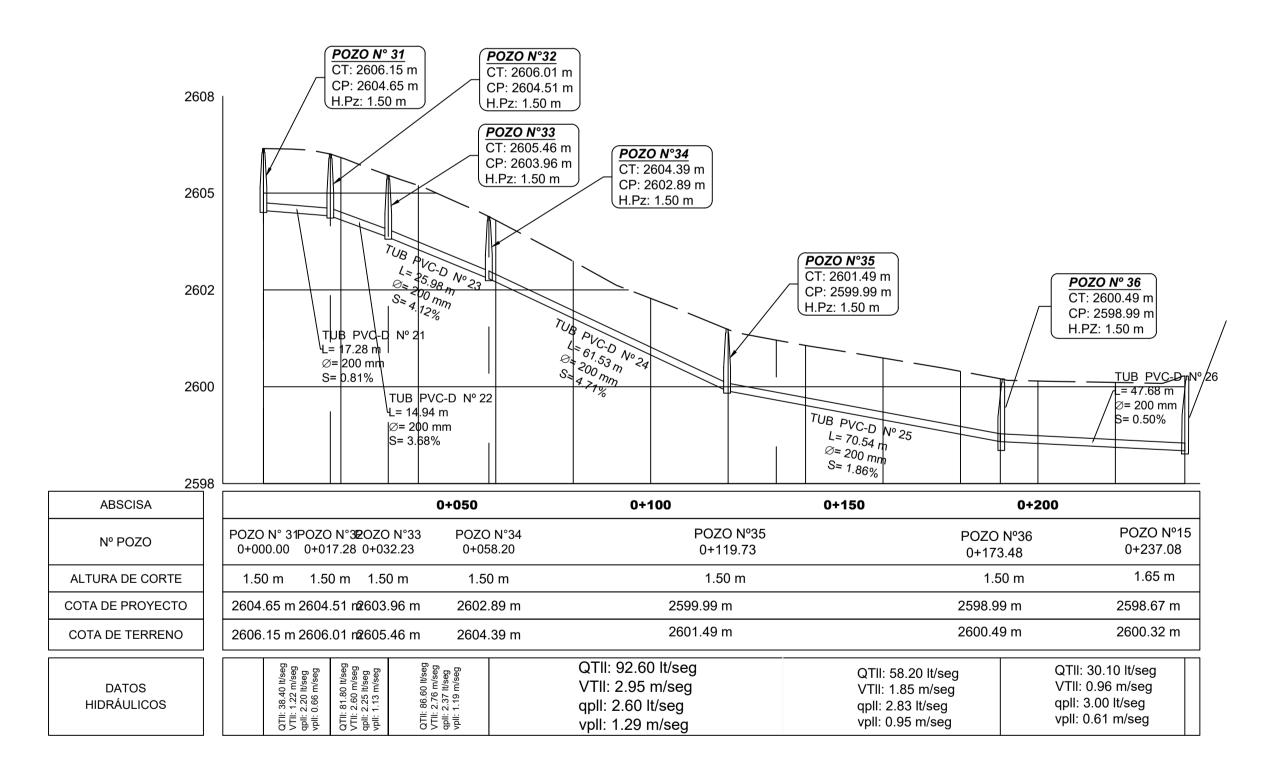
10 de 25

CONTIENE:

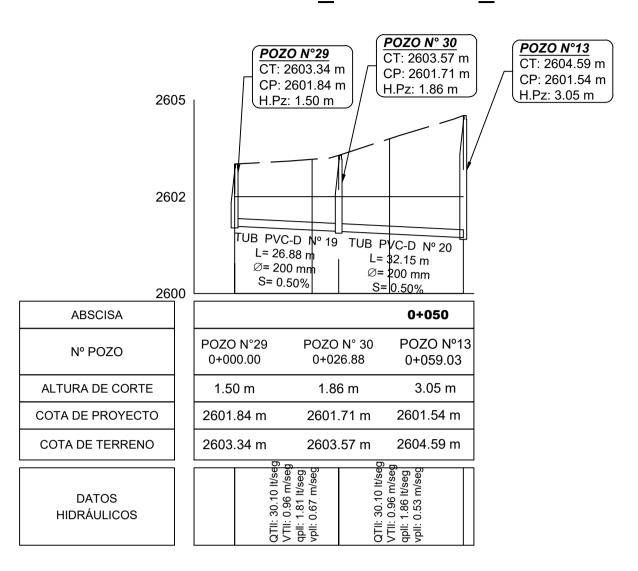
Perfiles Longitudinals Alcantarillado Sanitario

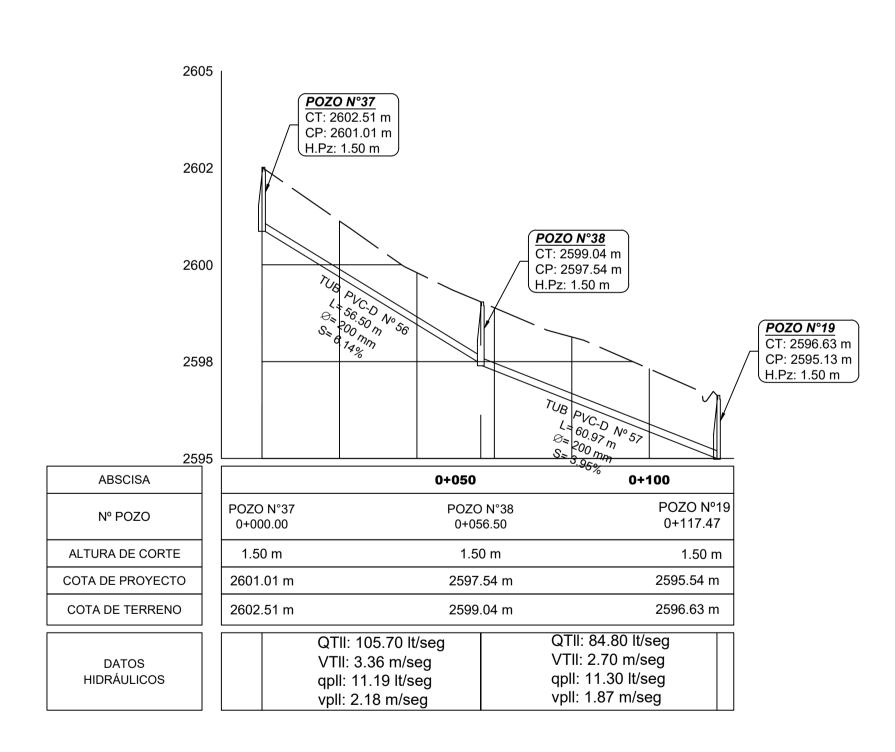

Realizó: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquian AUTORES DEL PROYECTO	Fecha: SEPTIEMBRE 2022 Sistema de Referencia DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS
Ing. Mg. Jorge Guevara Robalino	N°de lámina:

TUTOR DEL PROYECTO

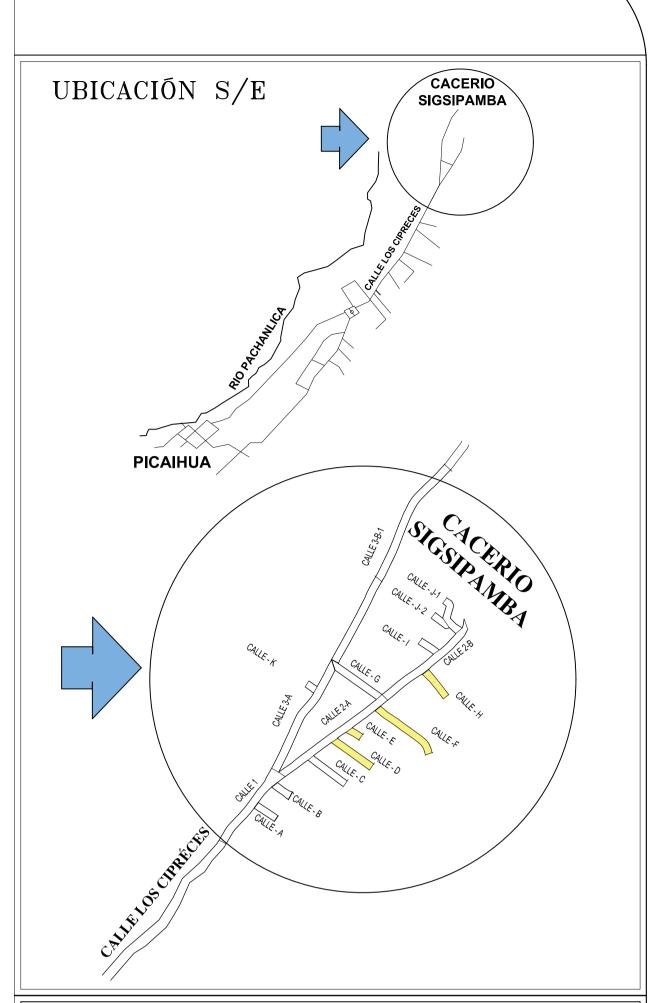

Perfiles Longitudinales Alcantarillado Sanitario

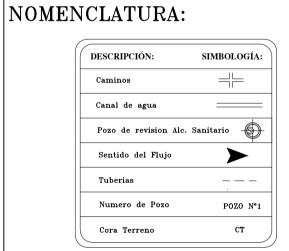
ESCALA H 1:1000 V 1:100

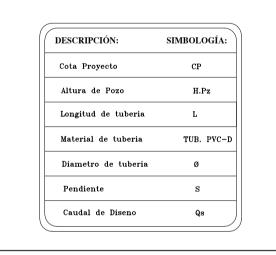

PERFIL ALC_SANITARIO_Calle D


PERFIL ALC_SANITARIO_Calle F

PERFIL ALC_SANITARIO_Calle E




PERFIL ALC_SANITARIO_Calle H



Perfiles Longitudinales Alcantarillado Sanitario

ESCALA H 1:1000 V 1:100

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

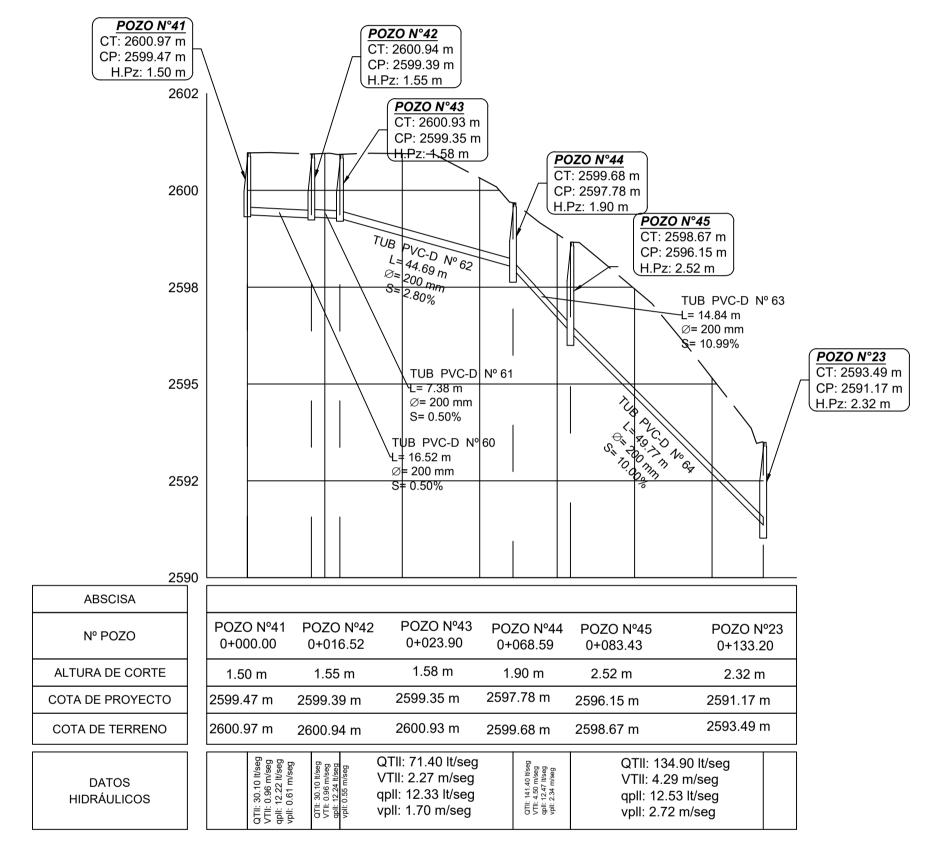
DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

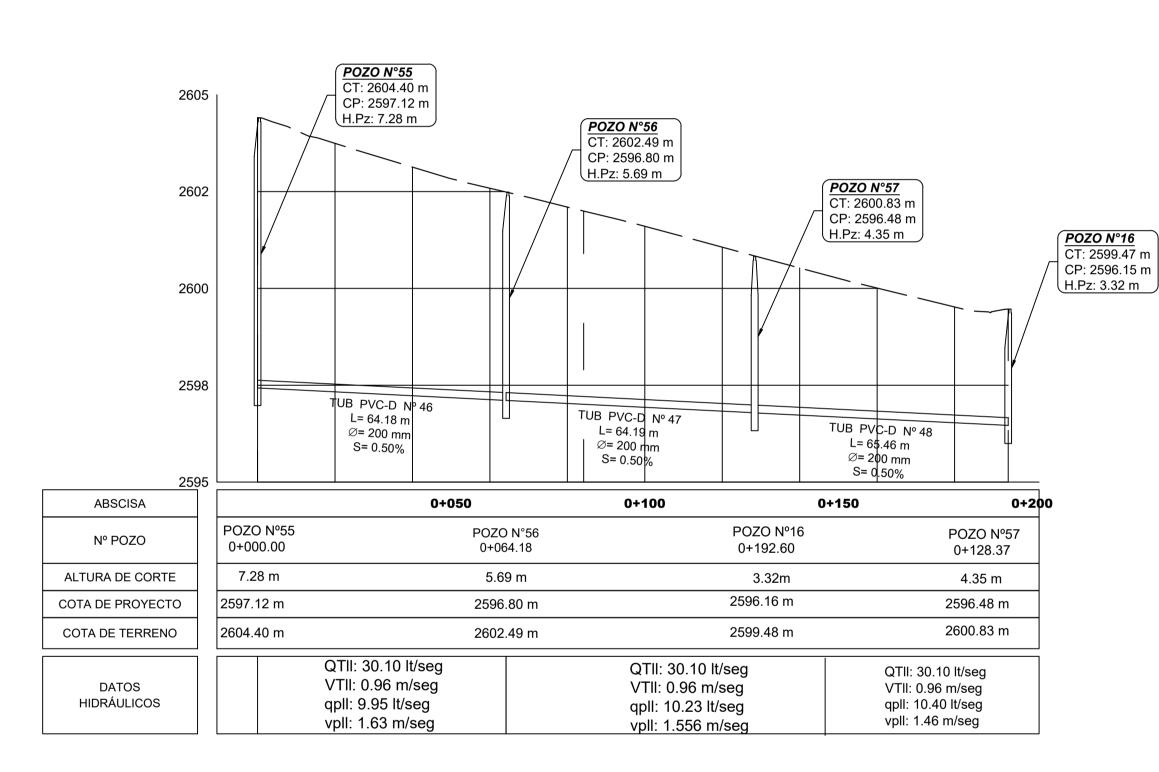
Provincia: TUNGURAHUA

Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

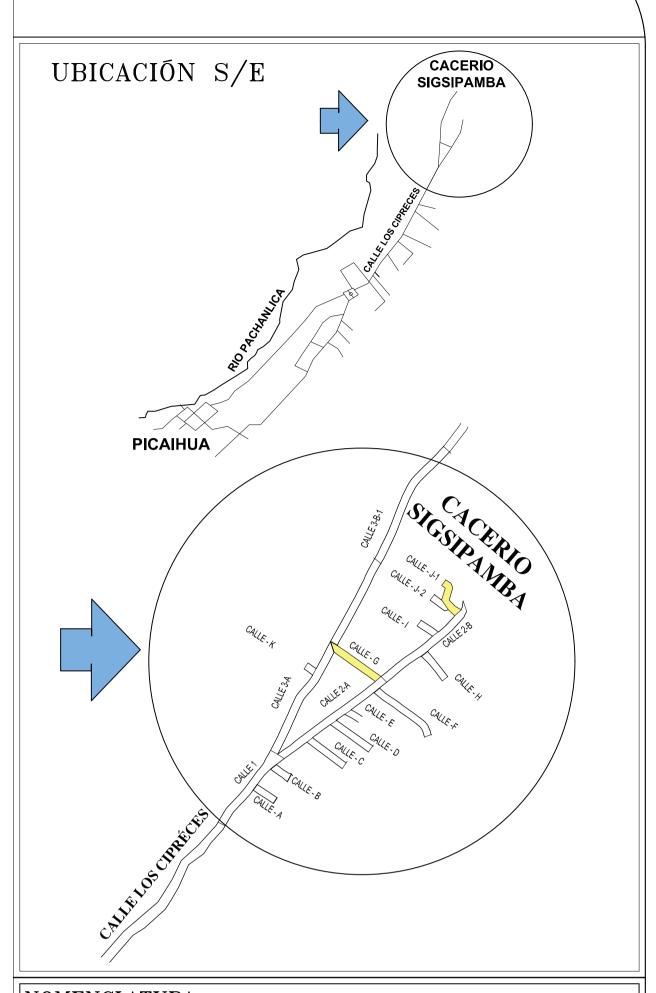


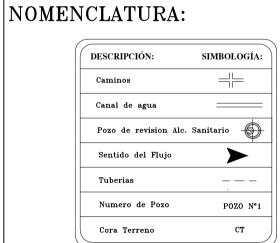
CONTIENE:


Perfiles Longitudinals Alcantarillado Sanitario

Realizó:	Fecha: SEPTIEMBRE 202
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana Approbás	Sistema de Referenci DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS
Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO	N°de lámina: 11 de 25

PERFIL ALC_SANITARIO_Calle J-1




PERFIL ALC_SANITARIO_Calle G

Perfiles Longitudinales Alcantarillado Sanitario

ESCALA H 1:1000 V 1:100

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	$_{ m H.Pz}$
Longitud de tuberia	L
Material de tuberia	TUB. PVC-
Diametro de tuberia	Ø
Pendiente	S
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

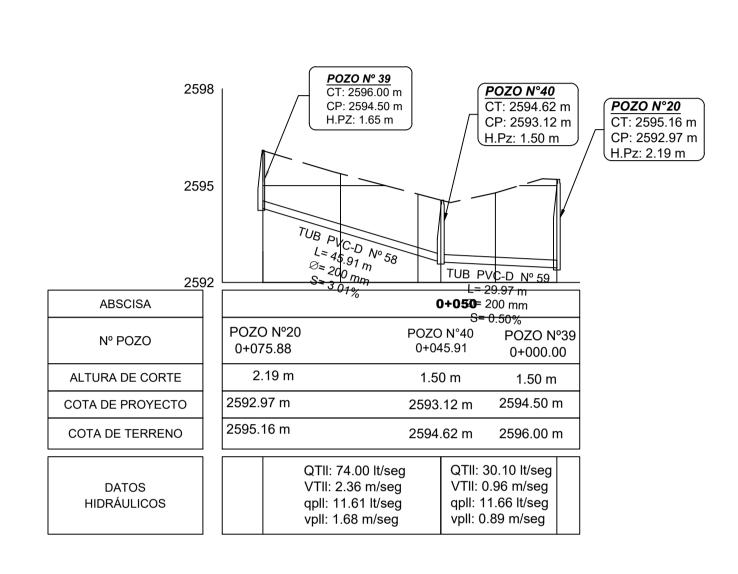
CONTIENE:

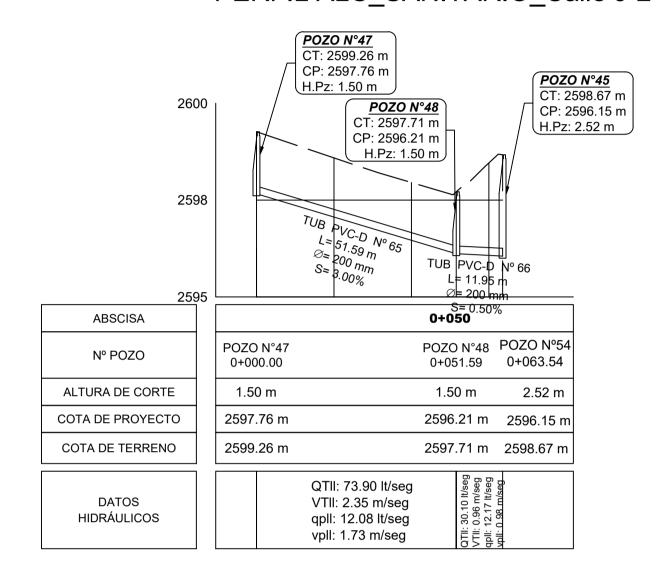
Perfiles Longitudinals Alcantarillado Sanitario

Realizó:

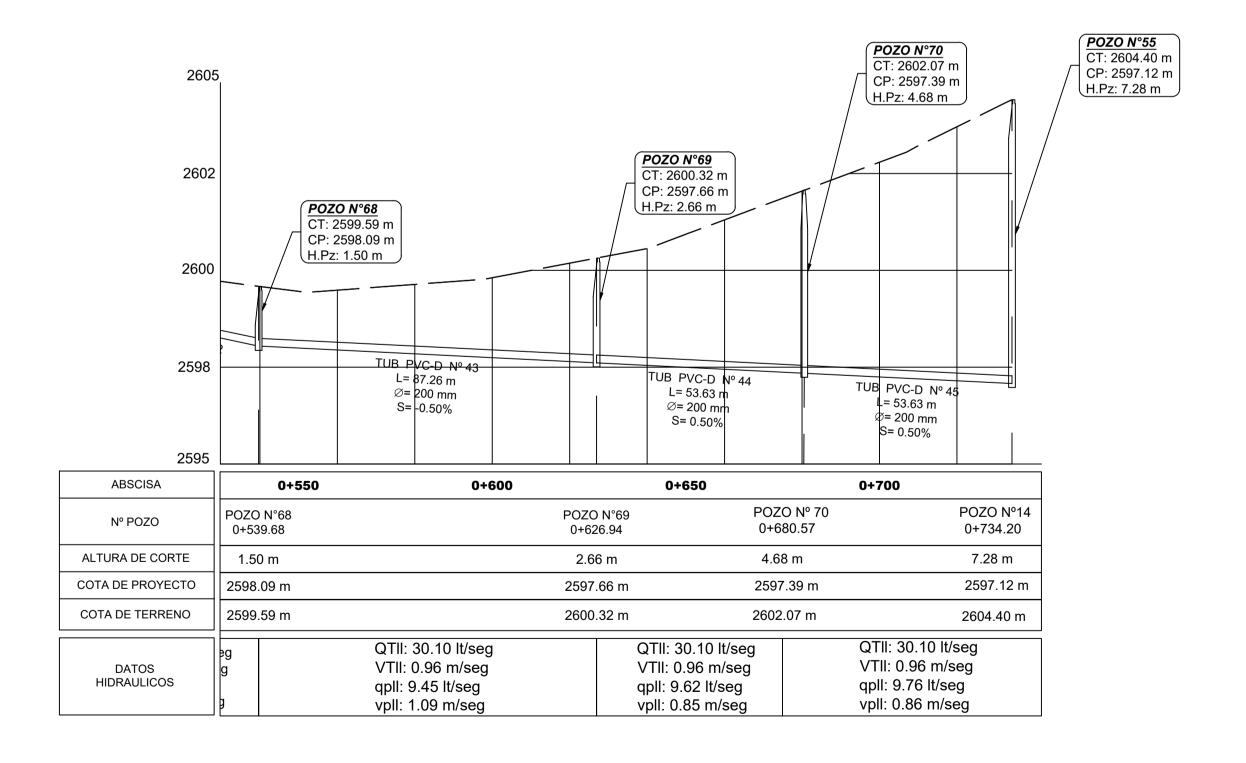
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

Aprobó:

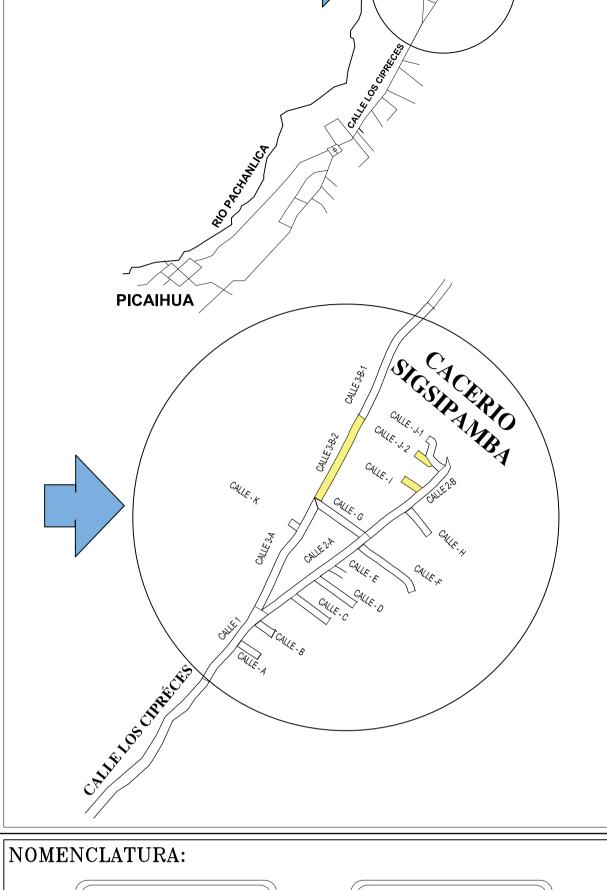

Escala:
INDICADAS


Ing. Mg. Jorge Guevara Robalino
TUTOR DEL PROYECTO

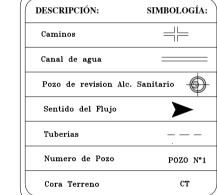
ra Robalino | N°de lámina:
12 de 25


PERFIL ALC_SANITARIO_Calle I

PERFIL ALC_SANITARIO_Calle J-2



PERFIL ALC_SANITARIO CALLE 3-B-2


Perfiles Longitudinales Alcantarillado Sanitario

ESCALA H 1:1000 V 1:100

UBICACIÓN S/E

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-D
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

CACERIO SIGSIPAMBA

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO

Parroquia: PICAICHUA Sector: SIGSIPAMBA

GAD Parroquial Picaihua

Fecha:

Escala:

SEPTIEMBRE 2022

Sistema de Referencia:

DATUM PSD WGS

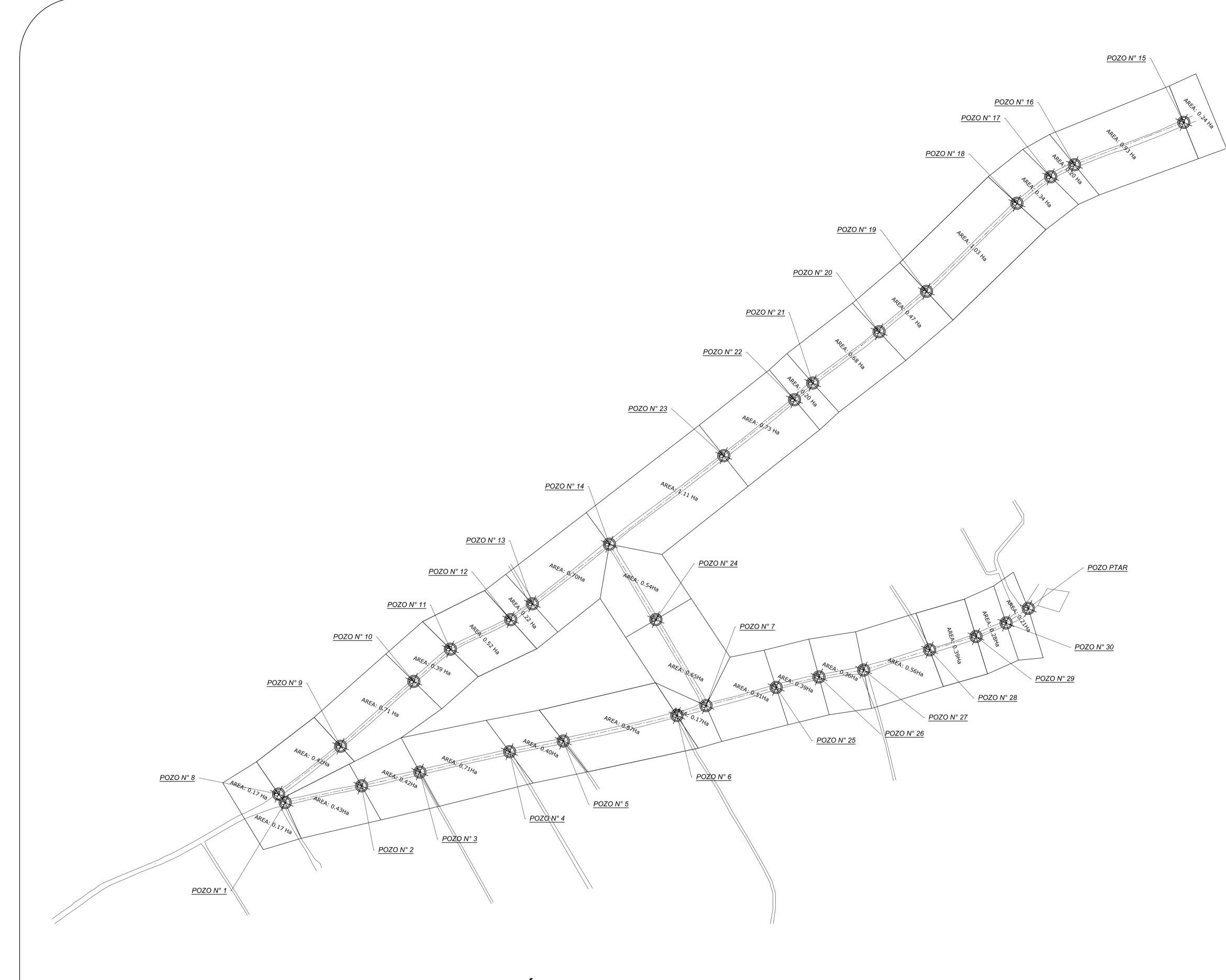
INDICADAS

13 de 25

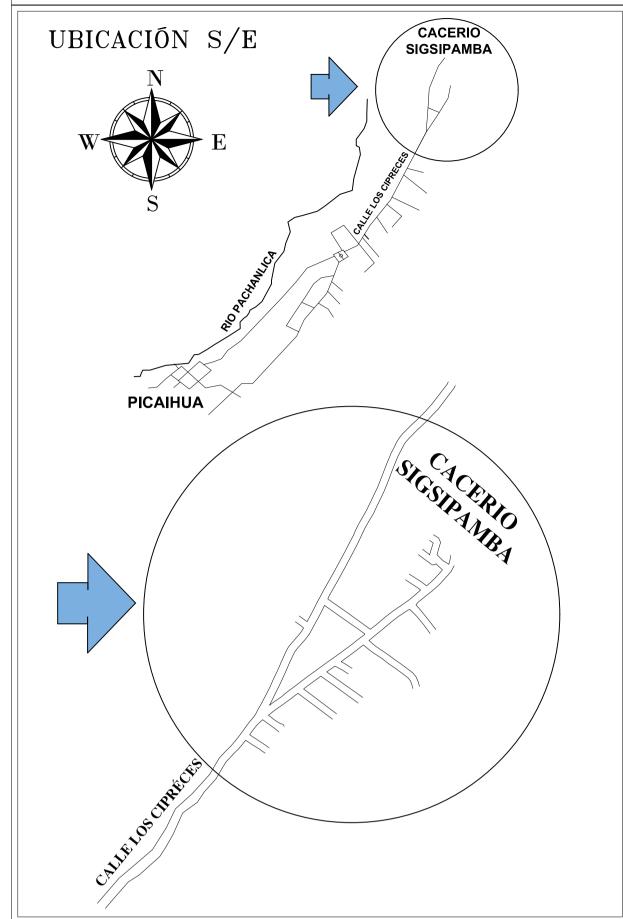
84 ZONA 17S

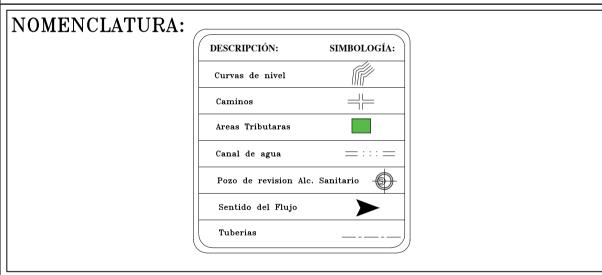
CONTIENE:

Perfiles Longitudinals Alcantarillado Sanitario


David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

|| Aprobó:


Realizó:


N°de lámina:

Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO

Áreas Tributarias Alcantarillado Pluvial Esc......1:2000

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

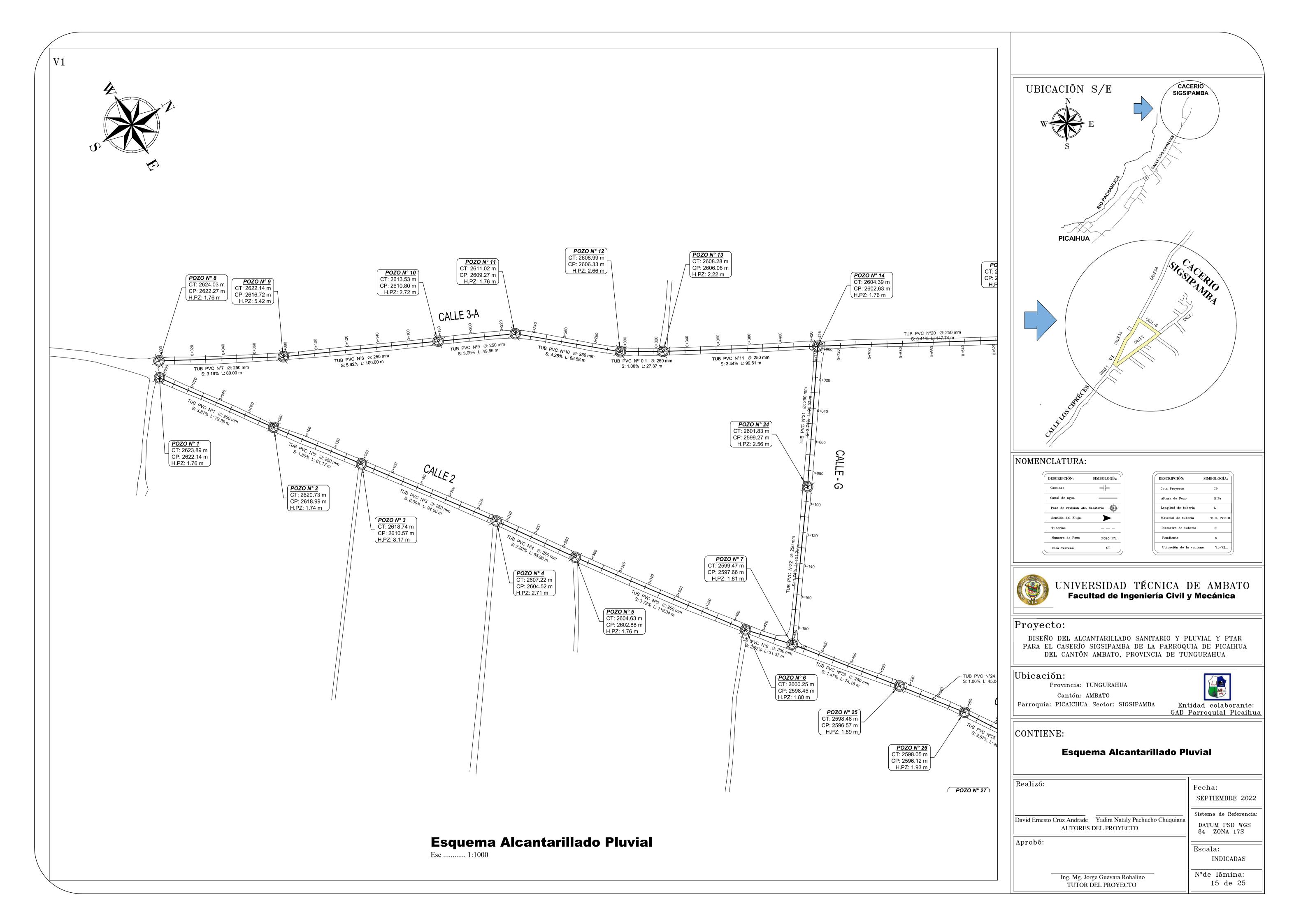
DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

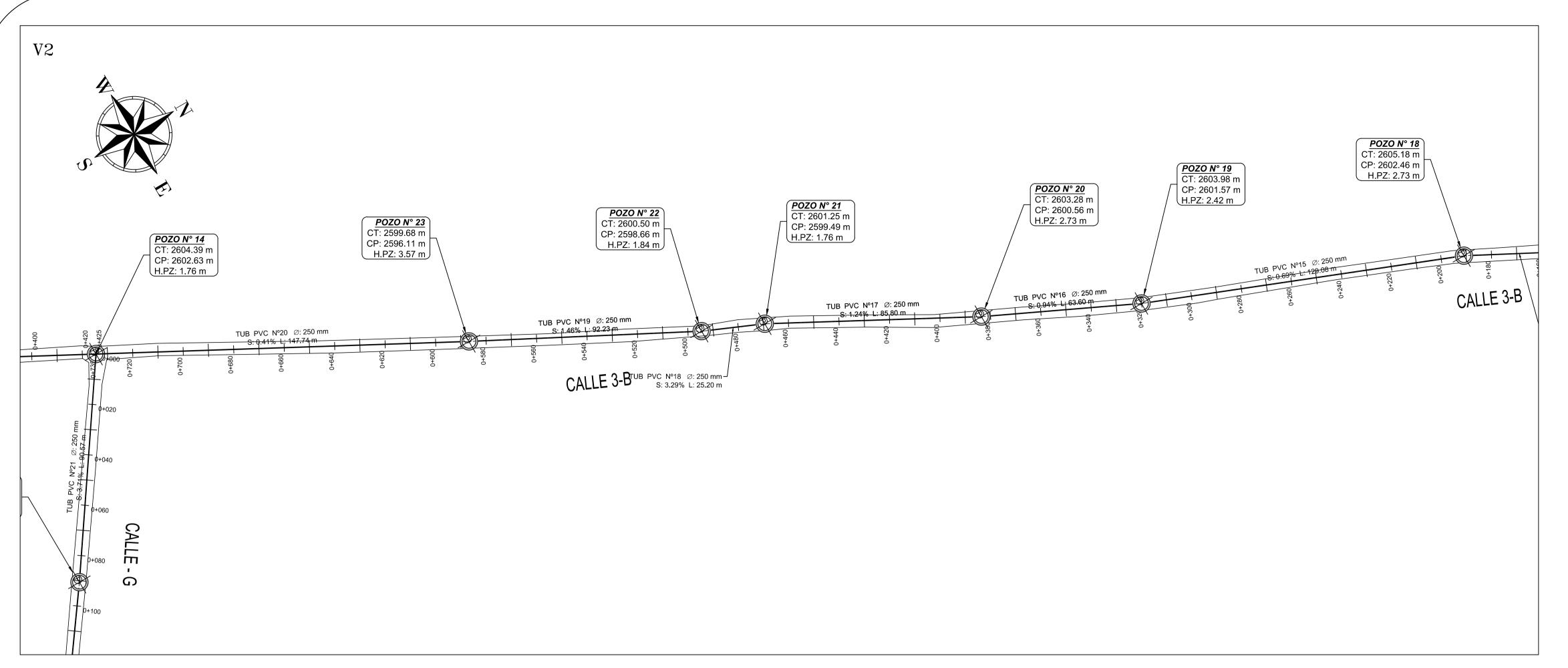
Ubicación:

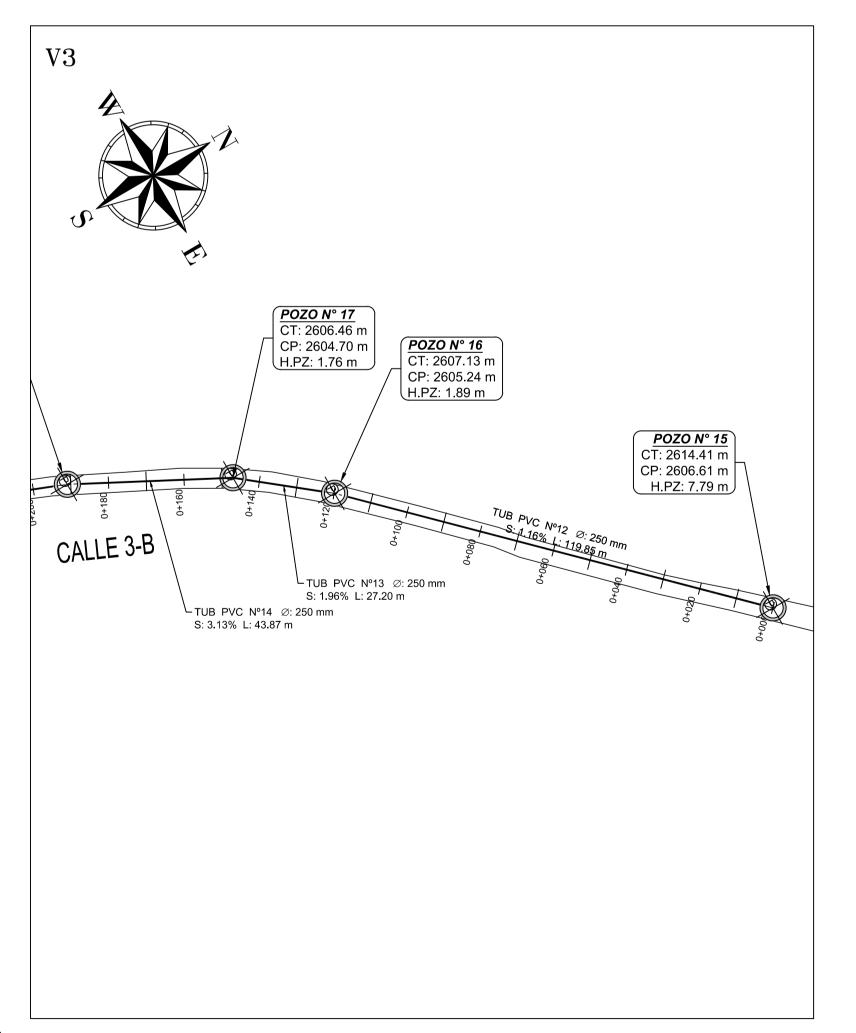
Provincia: TUNGURAHUA

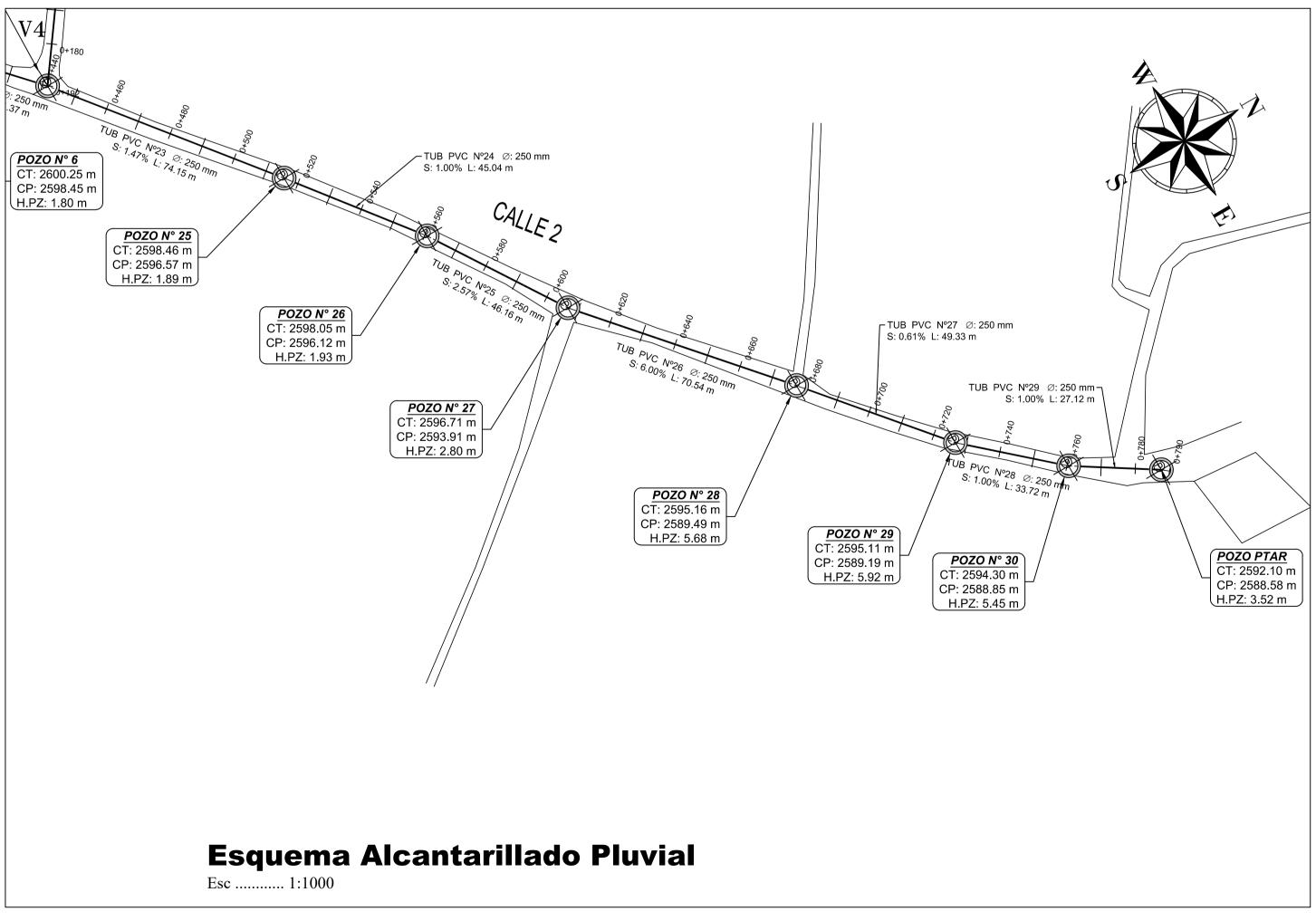
Cantón: AMBATO

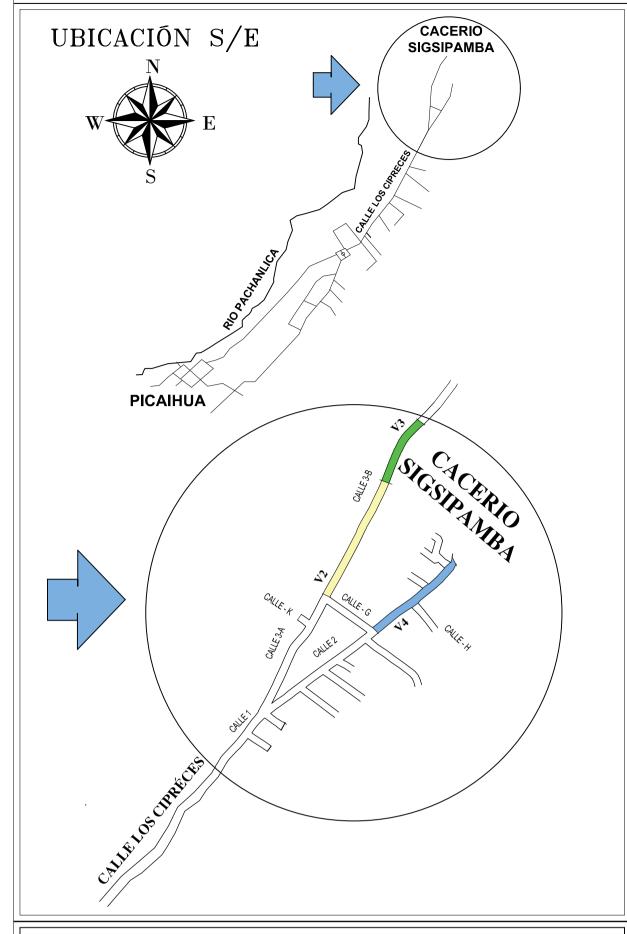
Parroquia: PICAICHUA Sector: SIGSIPAMBA Entidad colaborante: GAD Parroquial Picaihua

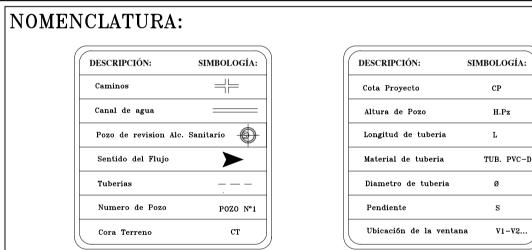

CONTIENE:


Áreas Trinutarias Alcantarillado Pluvial


Realizó: Fecha: SEPTIEMBRE 2022 Sistema de Referencia: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana DATUM PSD WGS 84 ZONA 17S AUTORES DEL PROYECTO Aprobó: Escala:


> N°de lámina: Ing. Mg. Jorge Guevara Robalino 14 de 25 TUTOR DEL PROYECTO


INDICADAS



UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Parroquia: PICAICHUA Sector: SIGSIPAMBA

Cantón: AMBATO

Entidad colaborante: GAD Parroquial Picaihua

CONTIENE:

Esquema Alcantarillado Pluvial

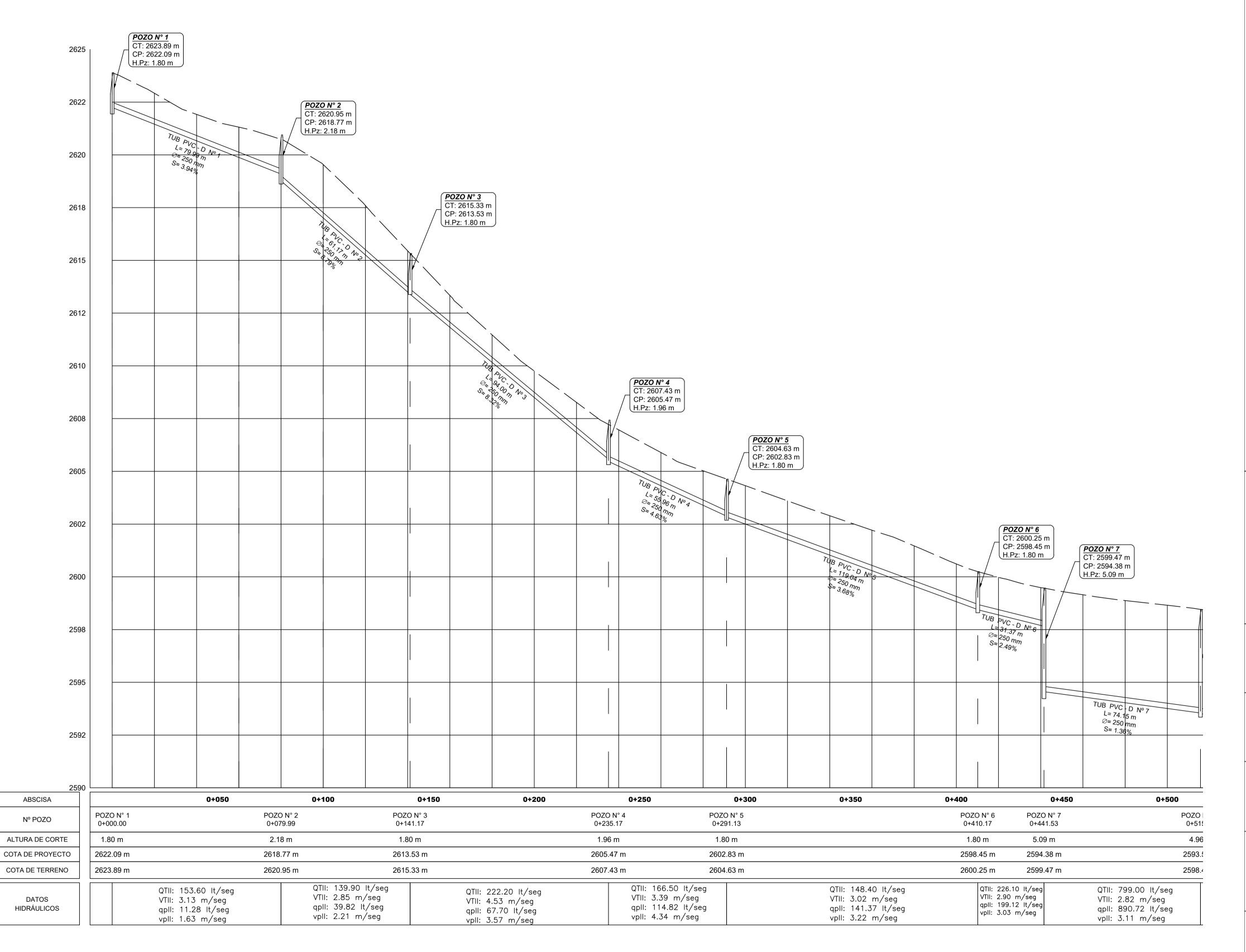
Realizó:

David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana
AUTORES DEL PROYECTO

Aprobó:

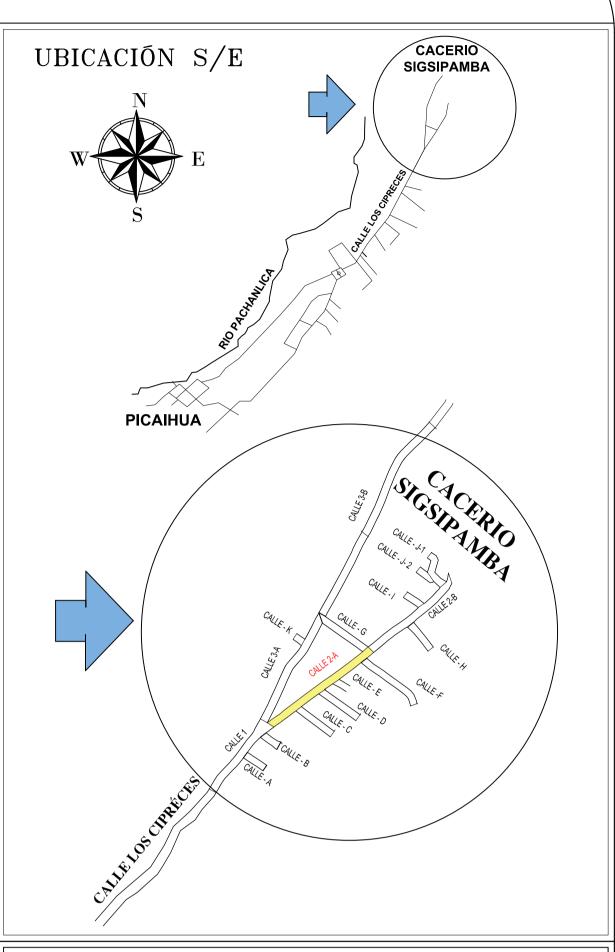
Fecha:
SEPTIEMBRE 2022

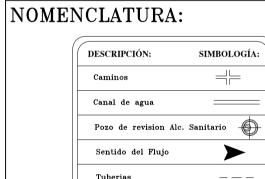
Sistema de Referencia:
DATUM PSD WGS
84 ZONA 17S


Escala:

Ing. Mg. Jorge Guevara Robalino
TUTOR DEL PROYECTO

N°de lámina: 16 de 25


INDICADAS


PERFIL ALCANTARILLADO PLUVIAL CALLE 2-A

Perfiles Longitudinales Alcantarillado Pluvial

ESCALA H 1:1000 V 1:100

Cora Terreno

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-I
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Ing. Mg. Jorge Guevara Robalino

TUTOR DEL PROYECTO

POZO N°1

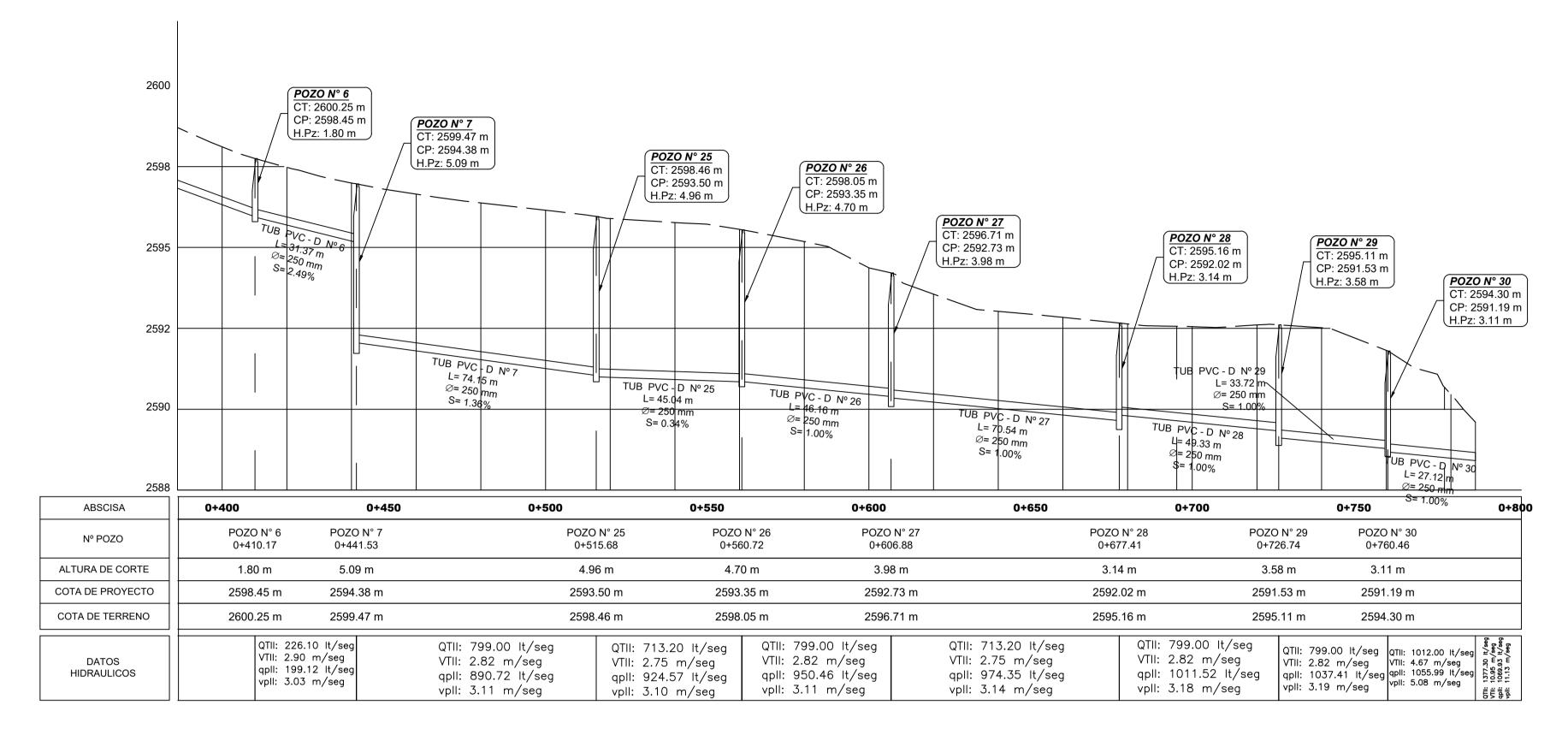
Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

N°de lámina:

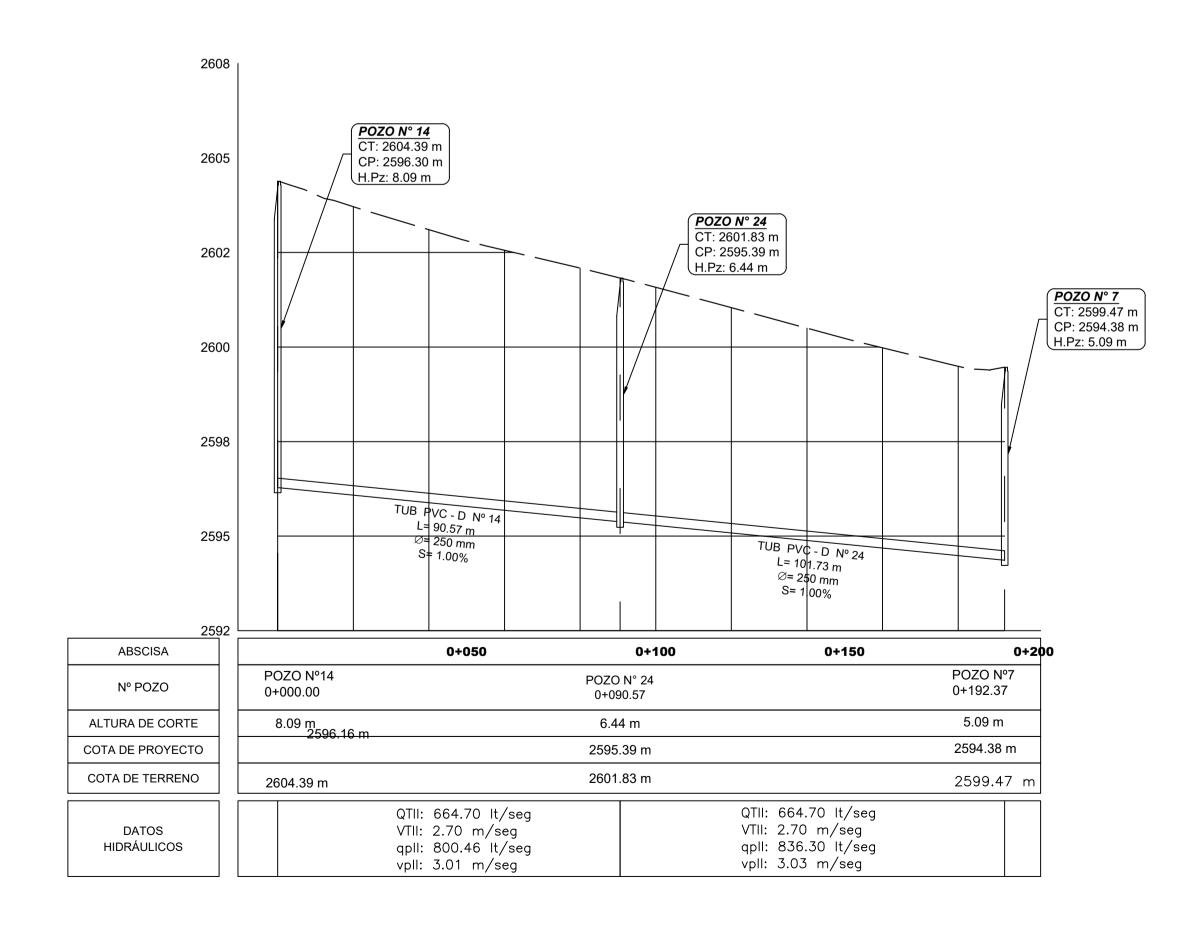
17 de 25

CONTIENE:

Perfiles Longitudinals Alcantarillado Pluvial

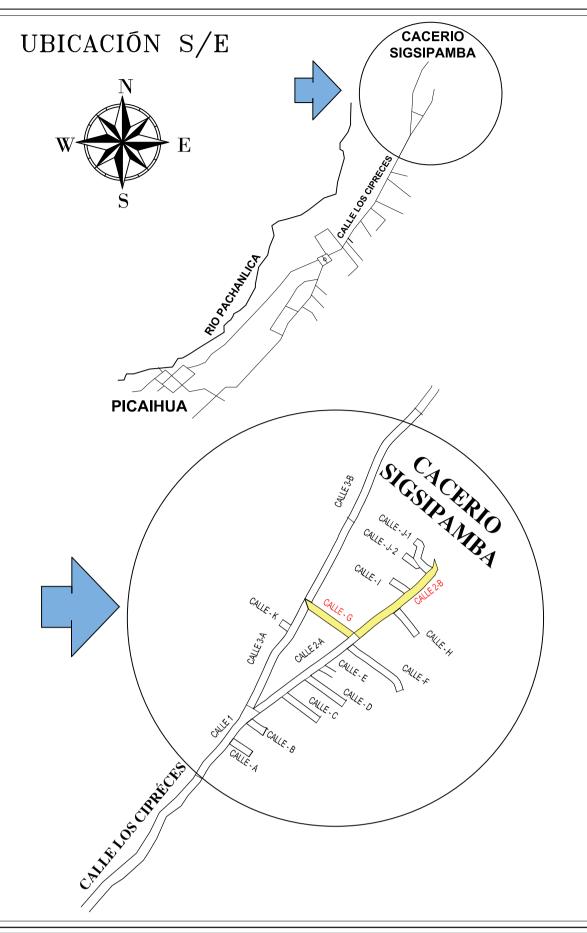

Realizó:

David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO


Aprobó:

Escala:
INDICADAS

PERFIL ALCANTARILLADO PLUVIAL CALLE 2-B



PERFIL ALCANTARILLADO PLUVIAL CALLE -G

Perfiles Longitudinales Alcantarillado Pluvial

ESCALA H 1:1000 V 1:100

DESCRIPCIÓN:	SIMBOLOGÍA:
Caminos	=======================================
Canal de agua	
Pozo de revision Alc.	Sanitario 💮
Sentido del Flujo	>
Tuberias	
Numero de Pozo	POZO N°1
Cora Terreno	CT

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-D
Diametro de tuberia	Ø
Pendiente	s
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

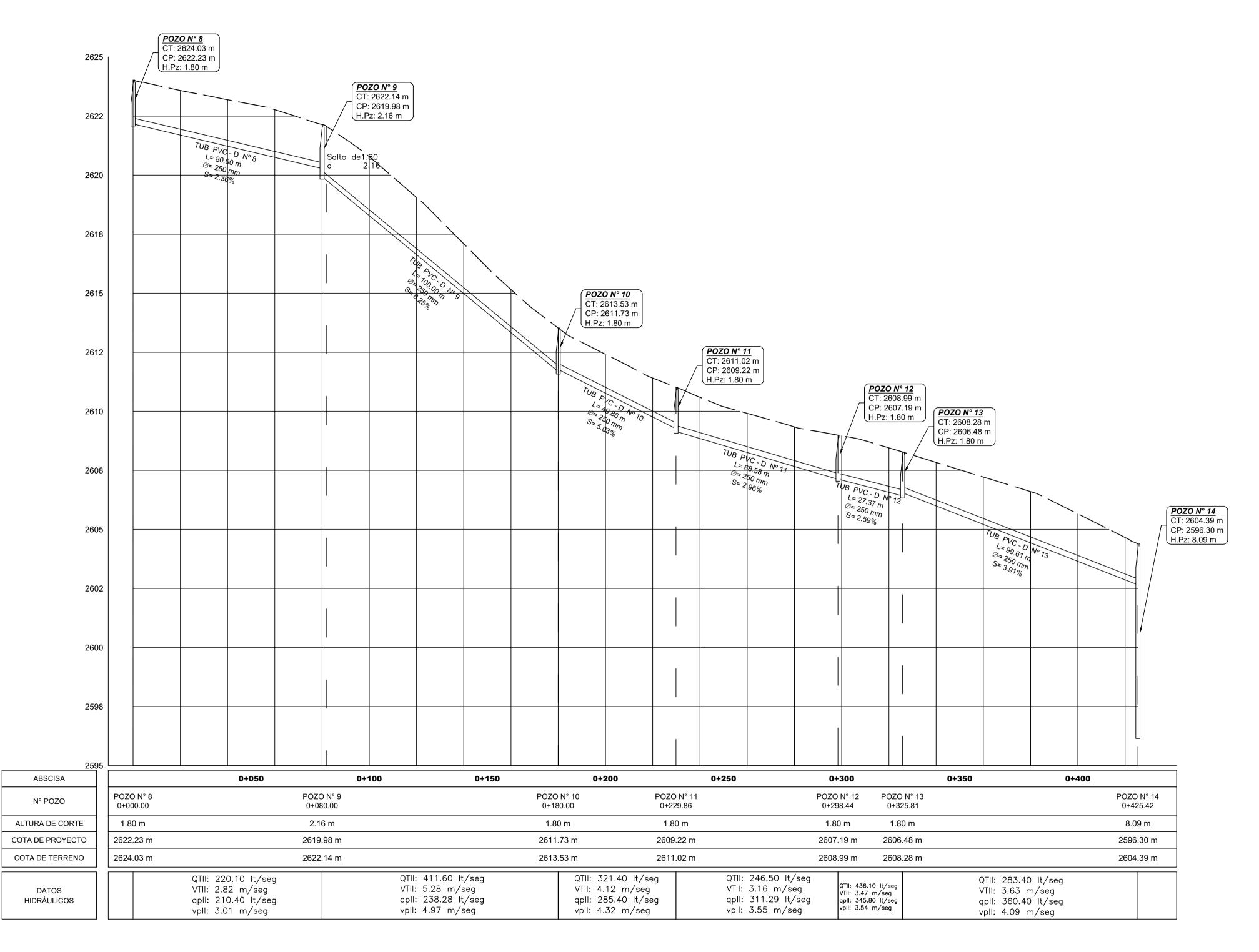
Provincia: TUNGURAHUA

Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

N°de lámina:

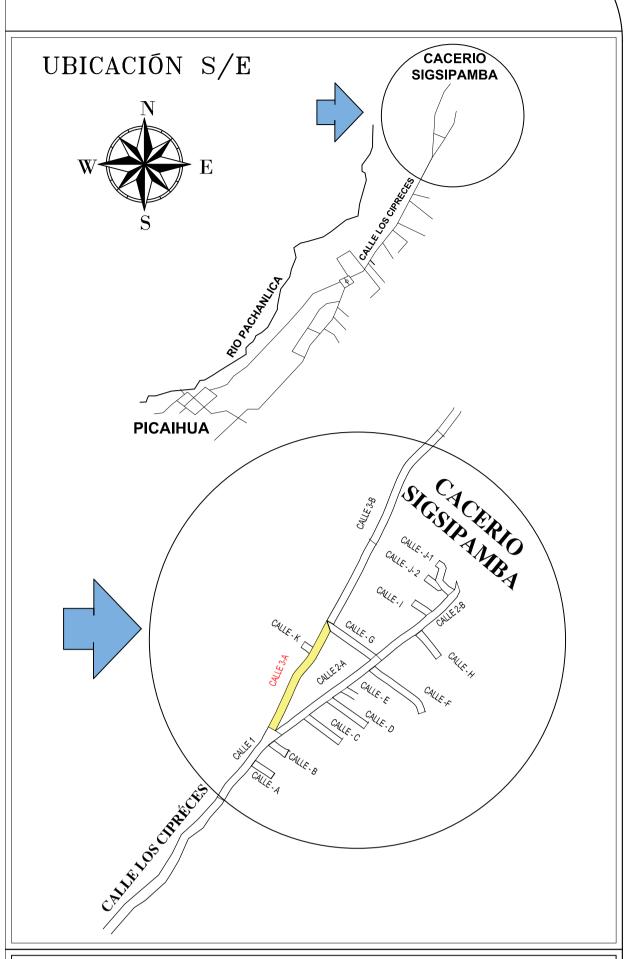
18 de 25

CONTIENE:


Perfiles Longitudinals Alcantarillado Pluvial

Realizó:	Fecha: SEPTIEMBRE 2022
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO	Sistema de Referencia: DATUM PSD WGS 84 ZONA 17S
Aprobó:	Escala: INDICADAS

Ing. Mg. Jorge Guevara Robalino


TUTOR DEL PROYECTO

PERFIL ALCANTARILLADO PLUVIAL CALLE 3-A

Perfiles Longitudinales Alcantarillado Pluvial

ESCALA H 1:1000 V 1:100

DESCRIPCIÓN:	SIMBOLOGÍA
Caminos	
Canal de agua	
Pozo de revision Alc.	Sanitario 🛑
Sentido del Flujo	>
Tuberias	
Numero de Pozo	POZO N°1
Cora Terreno	CT

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-D
Diametro de tuberia	Ø
Pendiente	S
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

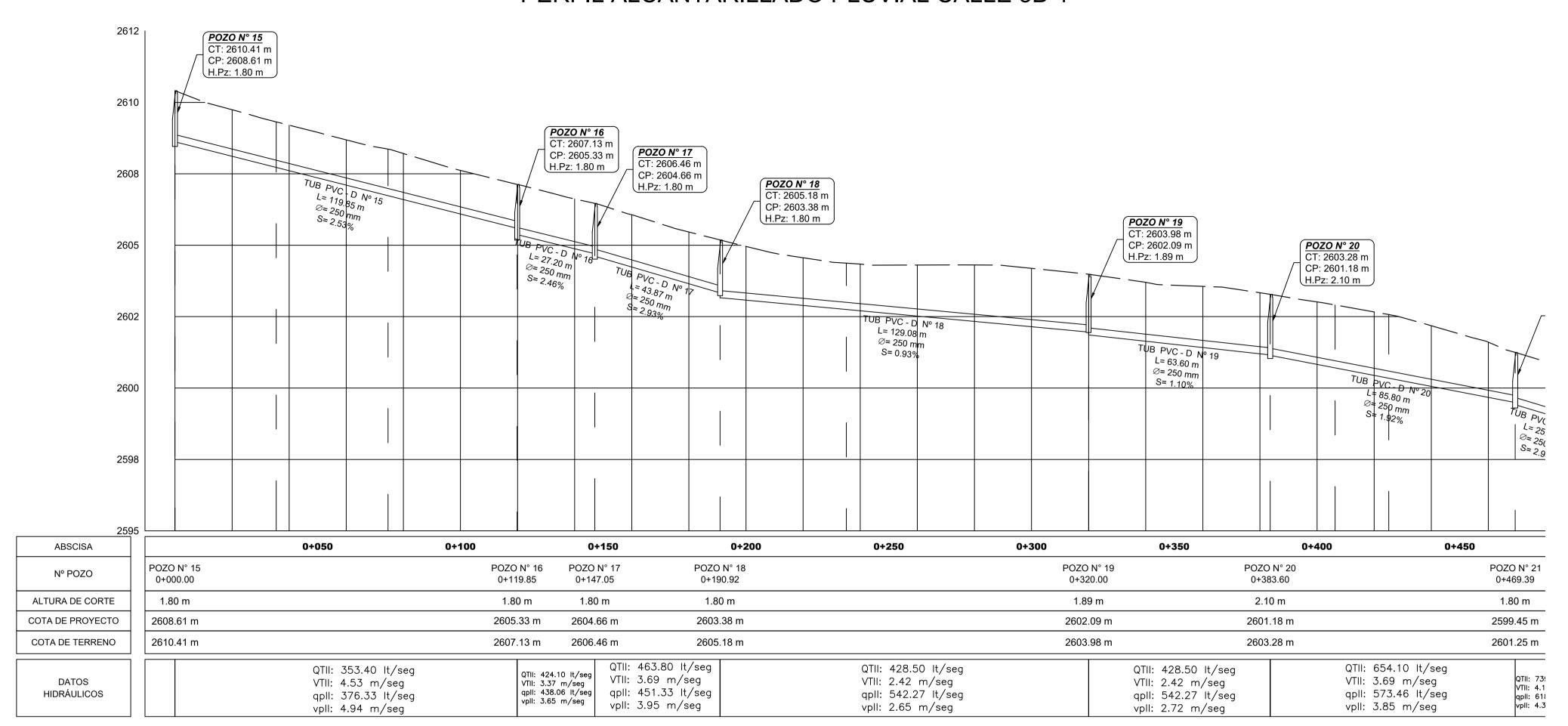
CONTIENE:

Perfiles Longitudinals Alcantarillado Pluvial

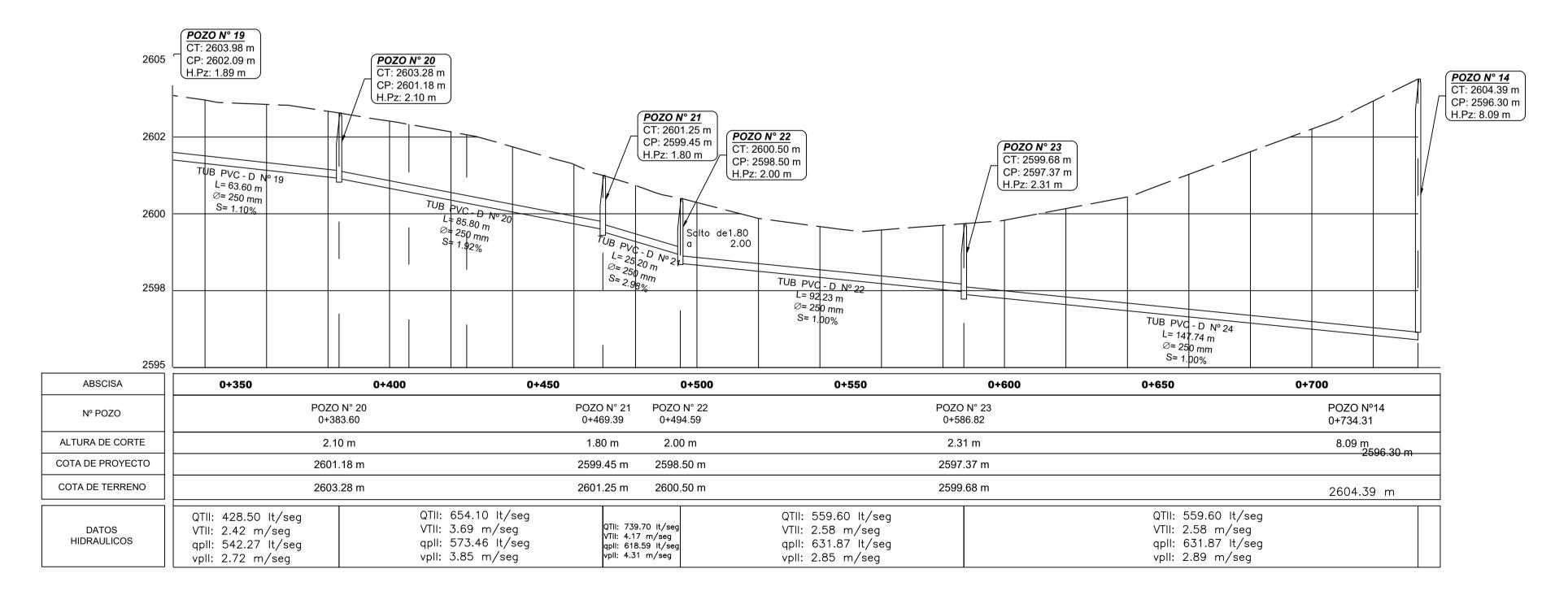
Realizó:

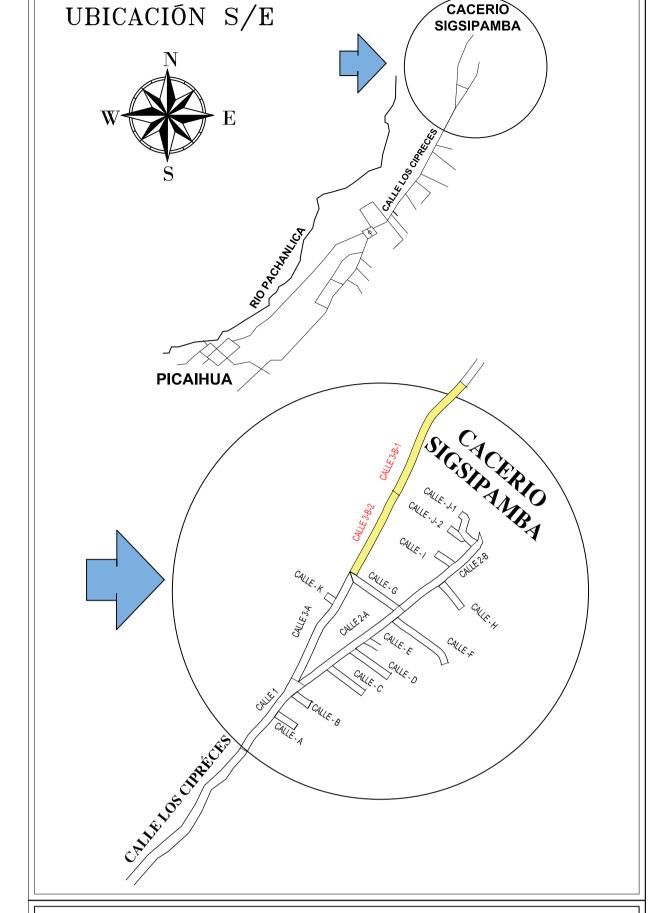
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

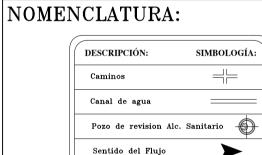
Aprobó:


Fecha:
SEPTIEMBRE 2022

Sistema de Referencia:
DATUM PSD WGS 84 ZONA 17S


Escala:
INDICADAS


Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO N°de lámina: 19 de 25


PERFIL ALCANTARILLADO PLUVIAL CALLE 3B-1

PERFIL ALCANTARILLADO PLUVIAL CALLE 3B-2

Cora Terreno

DESCRIPCIÓN:	SIMBOLOGÍA:
Cota Proyecto	CP
Altura de Pozo	H.Pz
Longitud de tuberia	L
Material de tuberia	TUB. PVC-D
Diametro de tuberia	Ø
Pendiente	S
Caudal de Diseno	Qs

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

POZO Nº1

CT

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

N°de lámina:

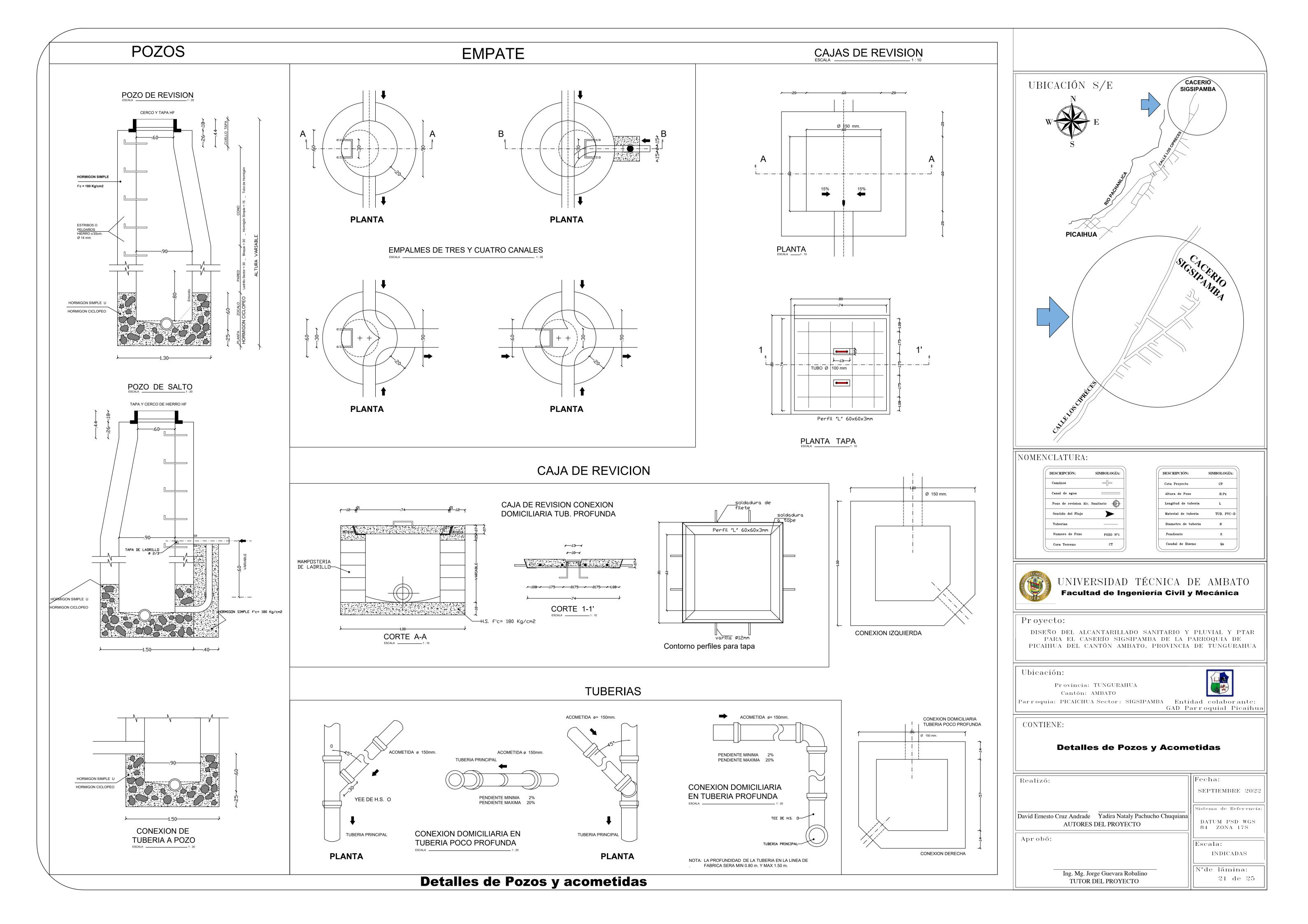
20 de 25

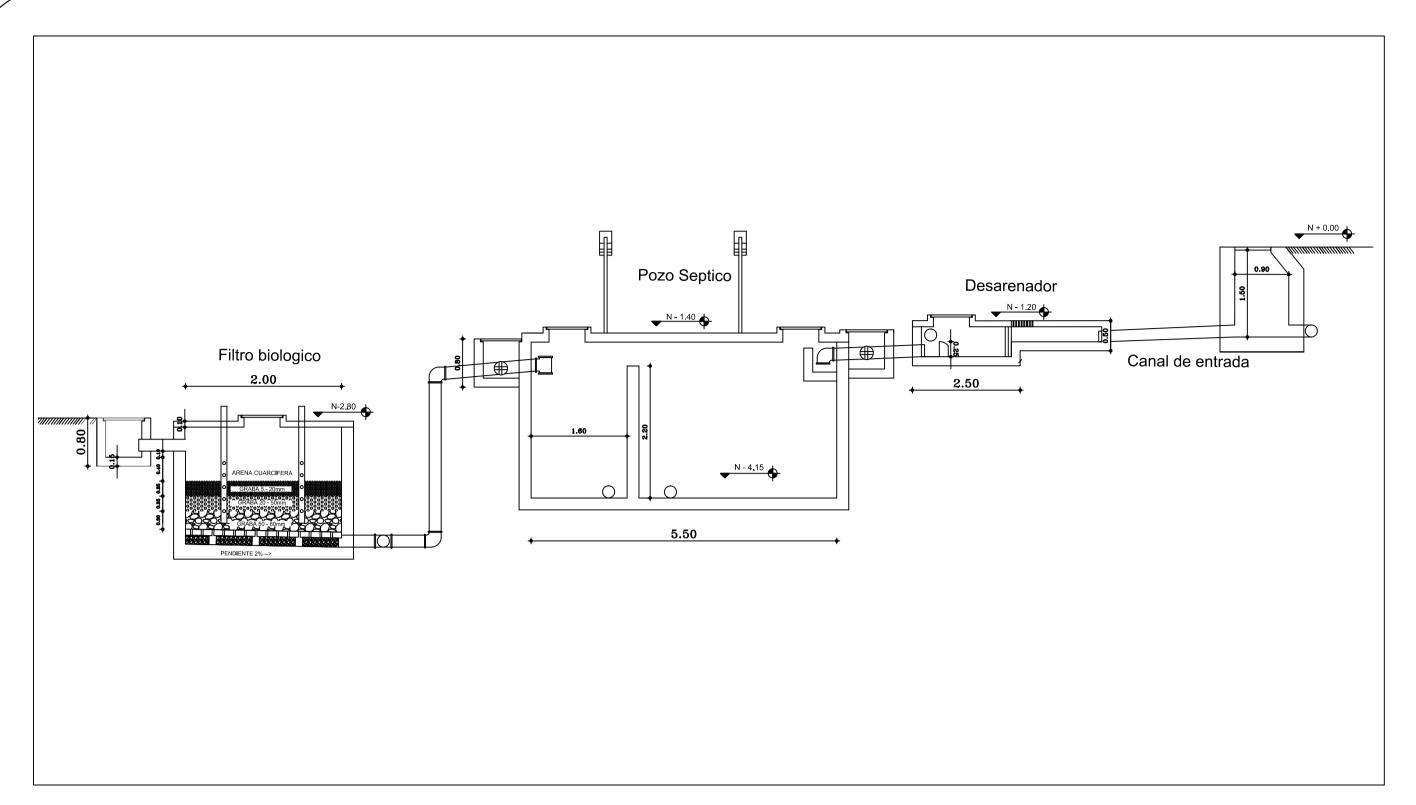
CONTIENE:

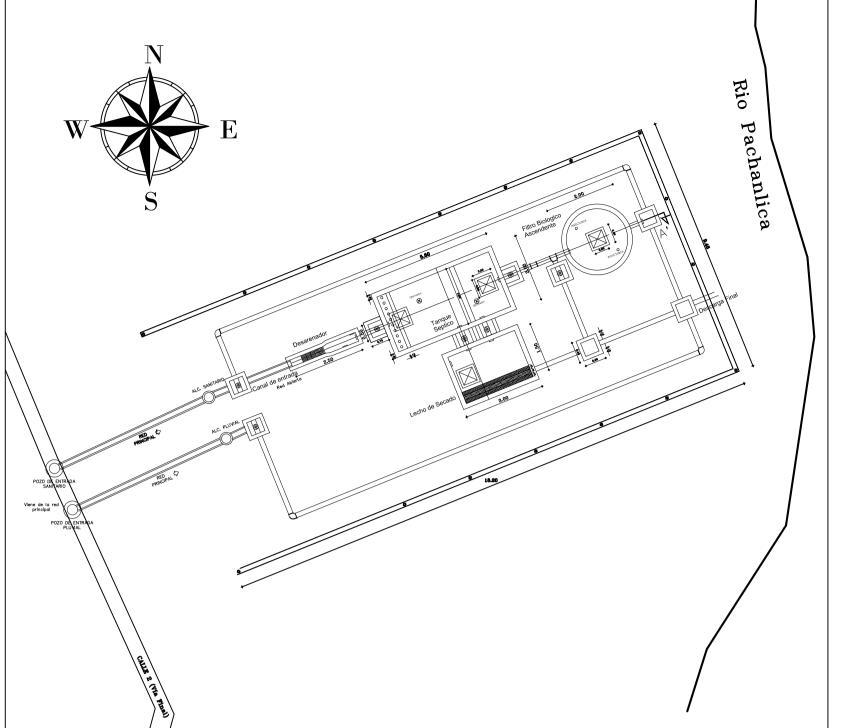
Perfiles Longitudinals Alcantarillado Pluvial

Realizó:
David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

Aprobó:

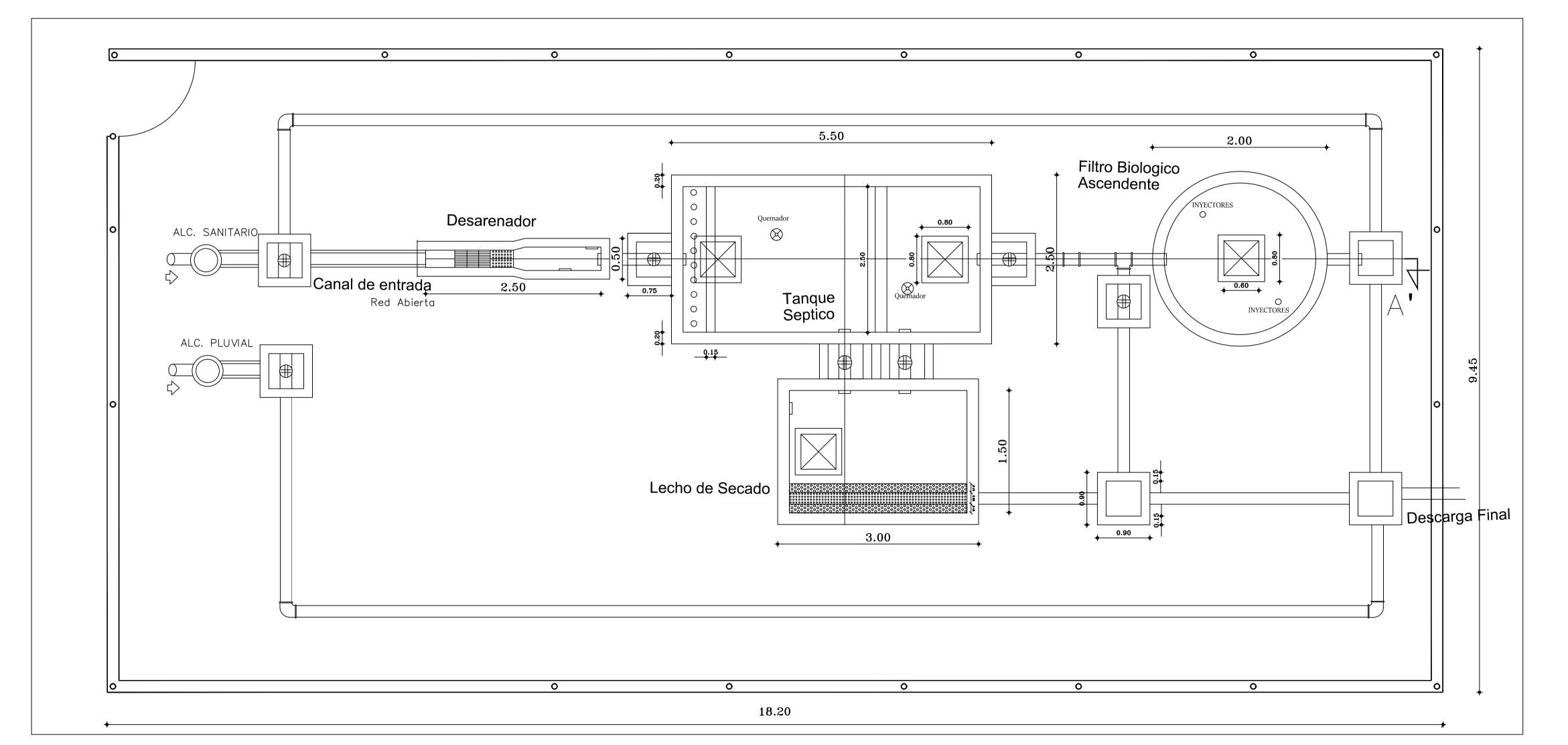

Escala:
INDICADAS

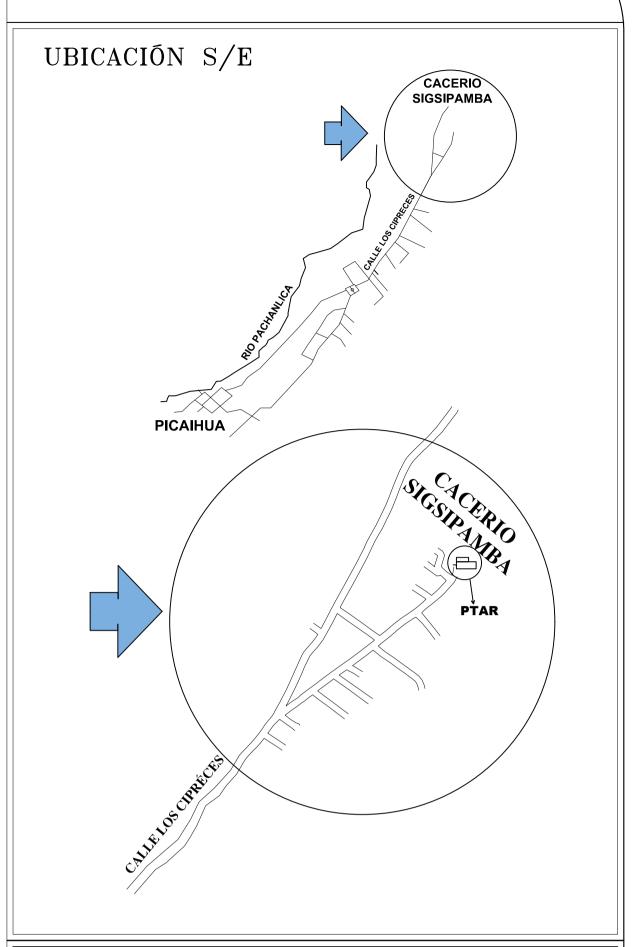

Ing. Mg. Jorge Guevara Robalino

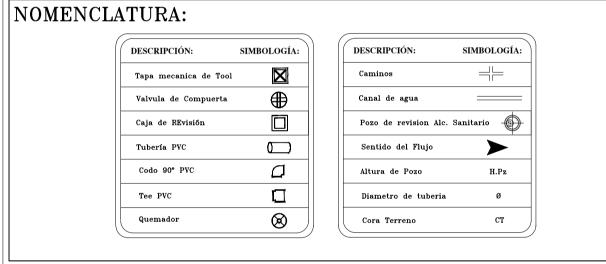

TUTOR DEL PROYECTO

Perfiles Longitudinales Alcantarillado Pluvial

ESCALA H 1:1000 V 1:100




Planta de Tratamiento Corte A-A'


ESCALA 1:50

Ubicación PTAR
ESCALA S/N

Implantacion Planta de Tratamiento de aguas Residuales ESCALA 1:30

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

Entidad colaborante: GAD Parroquial Picaihua

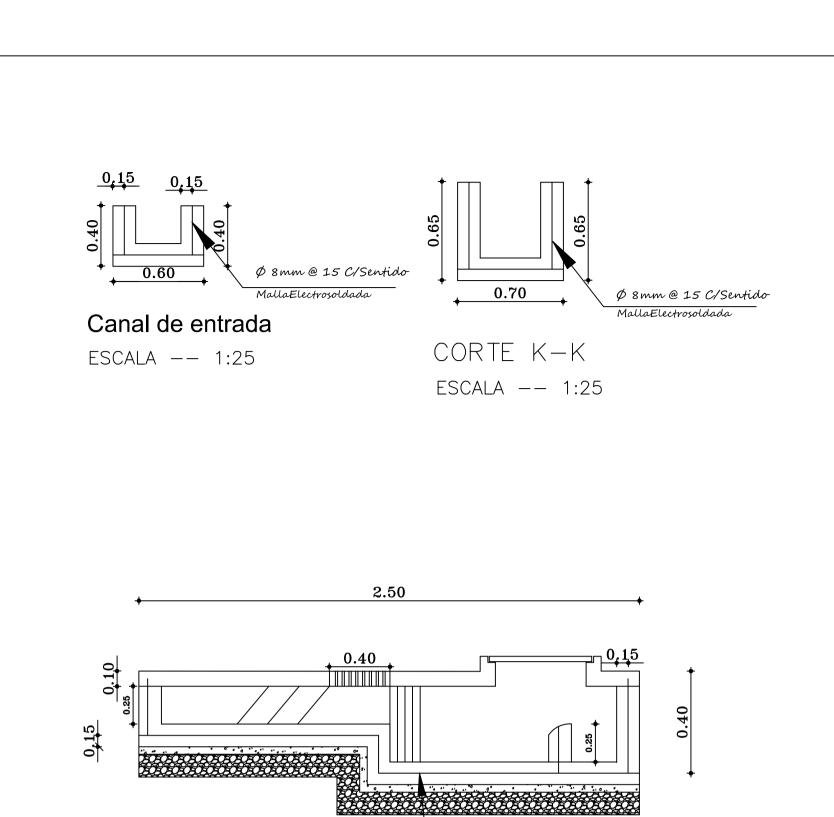
CONTIENE:

Implantacion de Planta de Tratamiento

Realizó:

David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

Aprobó:


Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO

Fecha: SEPTIEMBRE 2022

Sistema de Referencia: DATUM PSD WGS 84 ZONA 17S

Escala: INDICADAS

N°de lámina: 22 de 25

ARMADO

CORTE I-I

ESCALA ---- 1:20

DESARENADOR

5.50

6 Ø 12 Mc 402

2 Ø 12 Mc 405

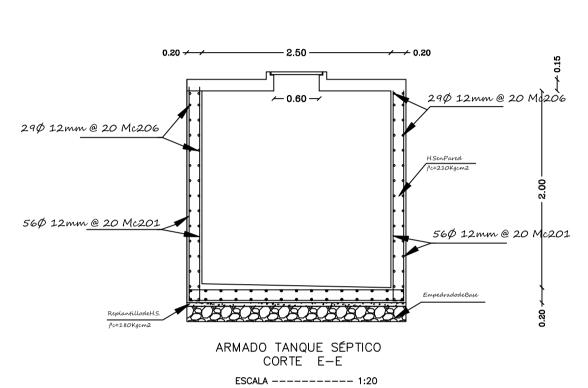
4 Ø 12 Mc 406

ARMADO DE LOSA DE TANQUE SÉPTICO

ESCALA ---- 1:20

4 Ø 12 Mc 401

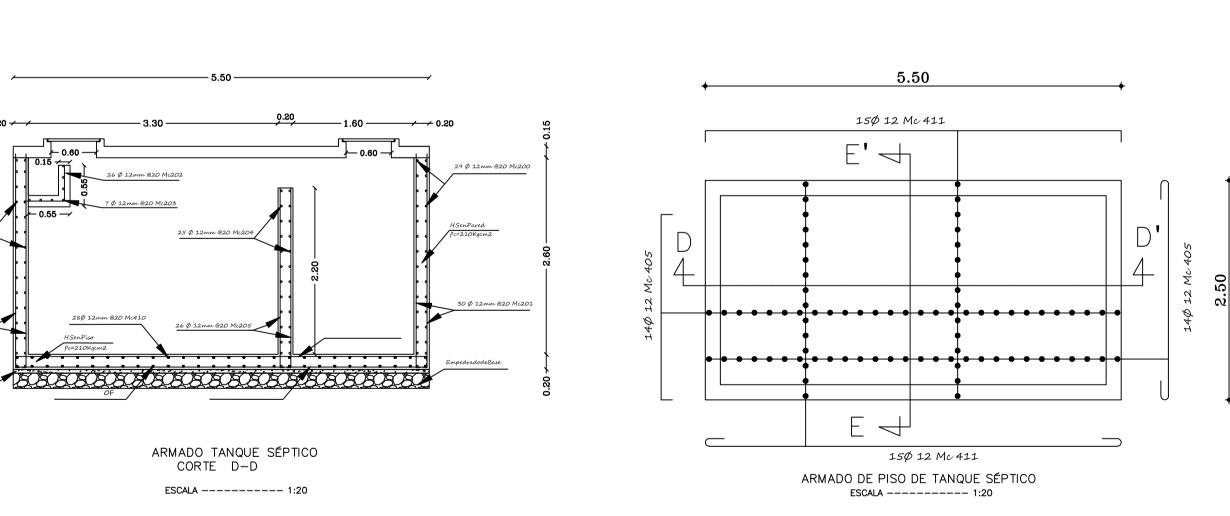
2 Ø 12 Mc 400

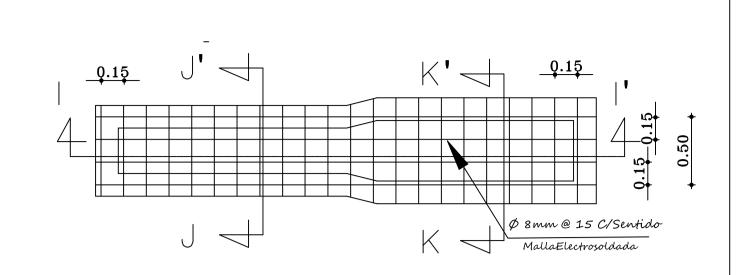

Ø 8mm @ 15 C/Sentido

4 Ø 12 Mc 401

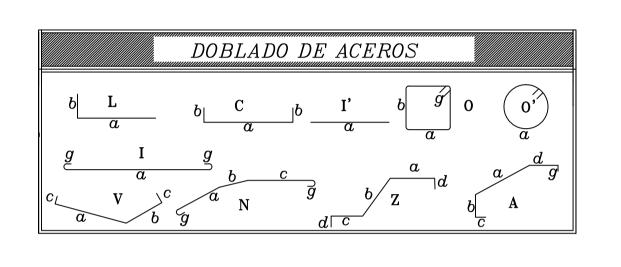
2 Ø 12 Mc 400

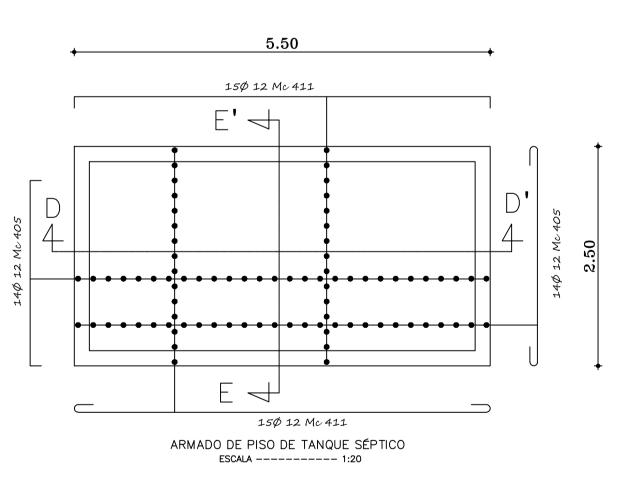
29 Ø 12mm @20 Mc20C

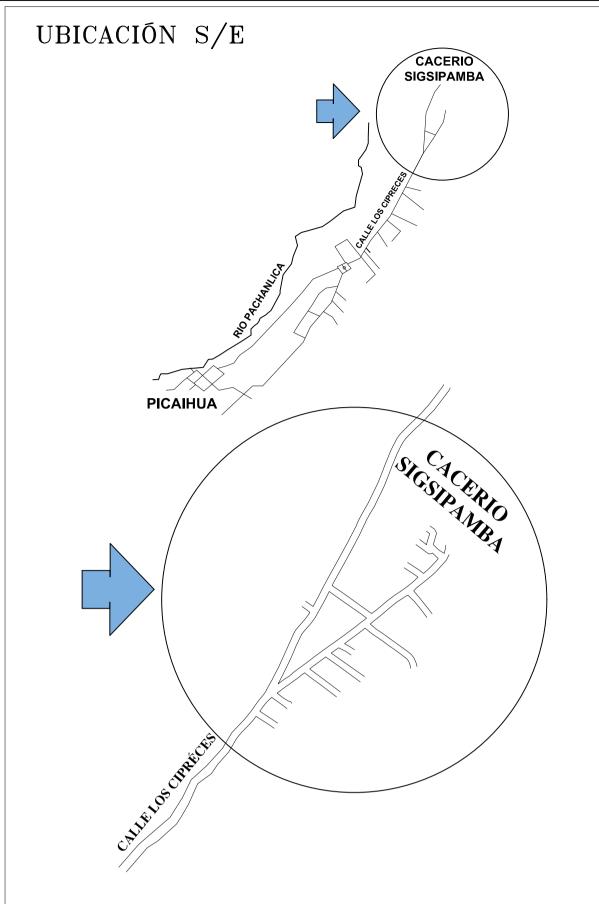

30 Ø 12mm @20 Mc200

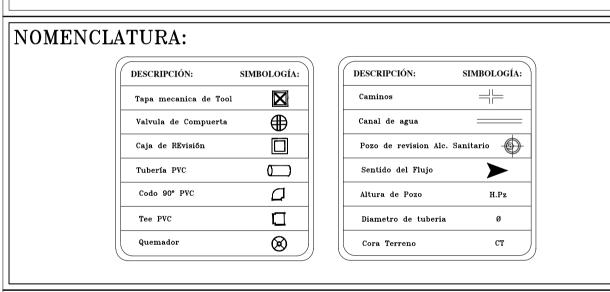


0.60


DETALLES DE LAS REJILLA


ESCALA ---- 1:10





ARMADO DE PISO DESARENADOR ESCALA ---- 1:25

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

||Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO Parroquia: PICAICHUA Sector: SIGSIPAMBA

Entidad colaborante: GAD Parroquial Picaihua

Fecha:

CONTIENE:

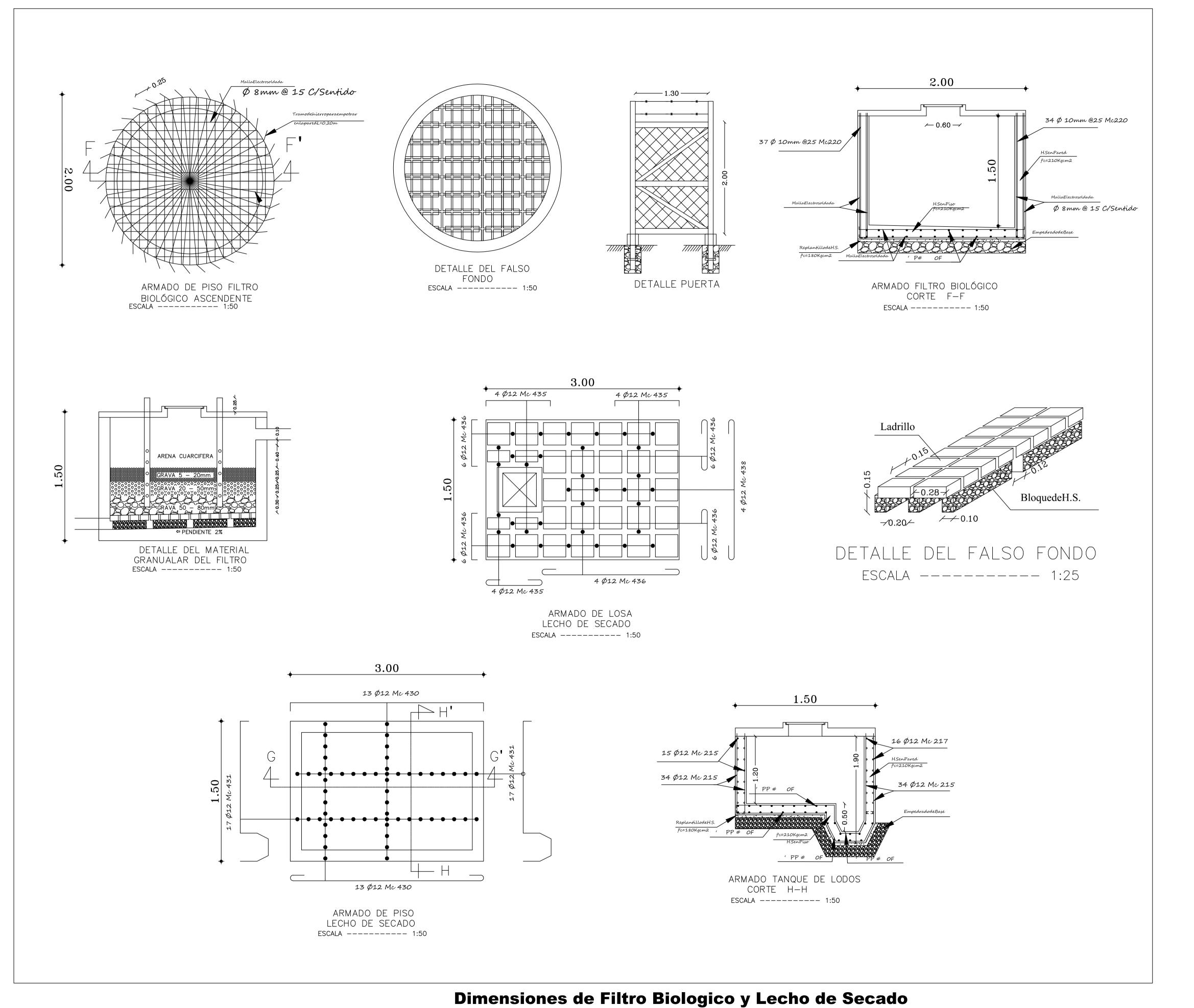
Dimensiones de Desarenador y Tanque Séptico

David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO Aprobó:

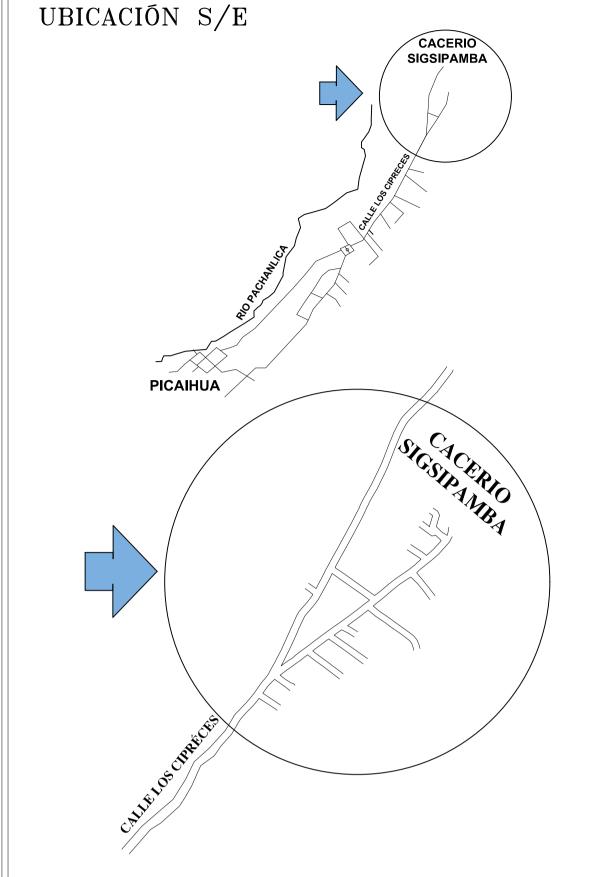
> Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO

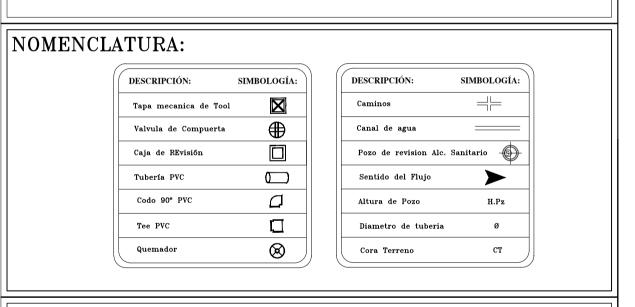
Escala: INDICADAS N°de lámina: 23 de 25

SEPTIEMBRE 2022


Sistema de Referencia:

DATUM PSD WGS


84 ZONA 17S


Dimensiones de Desarenador y Tanque Septico ESCALA Indicadas

VIGA DE LOSA TANQUE SÉPTICO ESCALA V----- 1:25 ESCALA H----- 1:50

ESCALA Indicadas

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

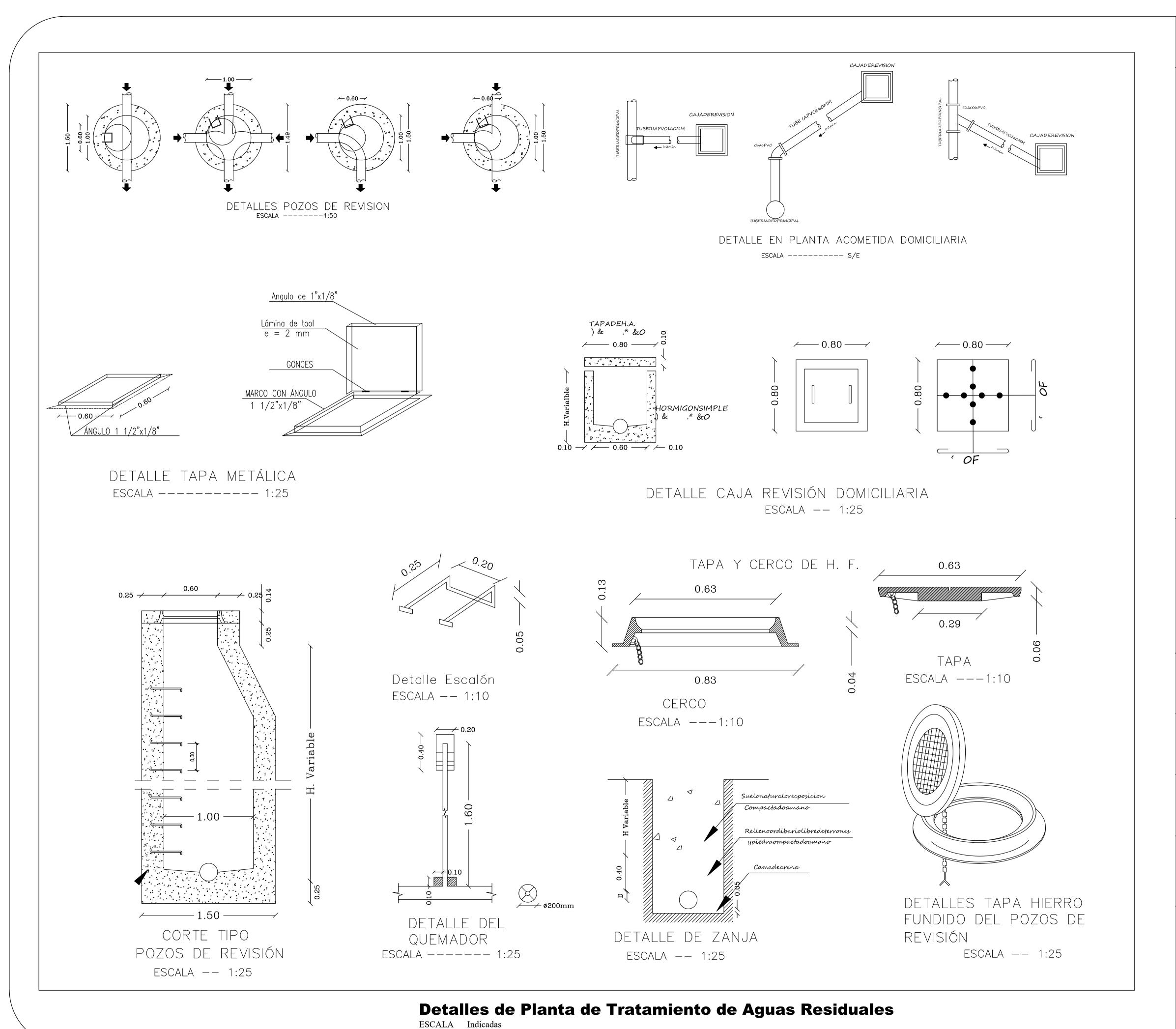
DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

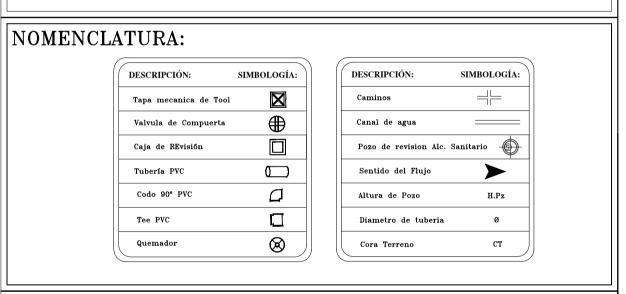
Provincia: TUNGURAHUA

Cantón: AMBATO Parroquia: PICAICHUA Sector: SIGSIPAMBA Entidad colaborante: GAD Parroquial Picaihua

INDICADAS


24 de 25


CONTIENE:


Dimensiones de Filtro Biologico y Lecho de Secado

Fecha: SEPTIEMBRE 2022 Sistema de Referencia: David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana DATUM PSD WGS 84 ZONA 17S AUTORES DEL PROYECTO Aprobó: Escala: N°de lámina:

Ing. Mg. Jorge Guevara Robalino TUTOR DEL PROYECTO

UNIVERSIDAD TÉCNICA DE AMBATO Facultad de Ingeniería Civil y Mecánica

Proyecto:

DISEÑO DEL ALCANTARILLADO SANITARIO Y PLUVIAL Y PTAR PARA EL CASERÍO SIGSIPAMBA DE LA PARROQUIA DE PICAIHUA DEL CANTÓN AMBATO, PROVINCIA DE TUNGURAHUA

Ubicación:

Provincia: TUNGURAHUA

Cantón: AMBATO
Parroquia: PICAICHUA Sector: SIGSIPAMBA

Entidad colaborante: GAD Parroquial Picaihua

CONTIENE:

Detalles de Planta de Tratamiento de Aguas Residuales

Realizo:

David Ernesto Cruz Andrade Yadira Nataly Pachucho Chuquiana AUTORES DEL PROYECTO

Aprobó:

Escala:
INDICADAS

Ing. Mg. Jorge Guevara Robalino
TUTOR DEL PROYECTO

N°de lámina:
YECTO 25 de 25