

UNIVERSIDAD TÉCNICA DE AMBATO

FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA

CARRERA DE MECÁNICA

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO MECÁNICO

TEMA:

"ANÁLISIS DE PARÁMETROS DE COMBUSTIÓN EN PROTOTIPO DE QUEMADOR RADIANTE DE GLP EXPERIMENTAL SIN RECUPERACIÓN Y SU INFLUENCIA SOBRE EL APROVECHAMIENTO ENERGÉTICO."

AUTORES:

Jonathan Alexis Llamuca Paguay Lizbeth Carolina Velastegui Quisimalin

TUTOR: Ing. Santiago Paúl Cabrera Anda, Mg.

AMBATO - ECUADOR

Septiembre - 2023

APROBACIÓN DEL TUTOR

En mi calidad de Tutor del Trabajo Experimental, previo a la obtención del Título de Ingeniero Mecánico, con el tema: **"ANÁLISIS DE PARÁMETROS DE COMBUSTIÓN EN PROTOTIPO DE QUEMADOR RADIANTE DE GLP EXPERIMENTAL SIN RECUPERACIÓN Y SU INFLUENCIA SOBRE EL APROVECHAMIENTO ENERGÉTICO"**, elaborado por el señor Jonathan Alexis Llamuca Paguay con cédula de ciudadanía 1804404711, y la señorita Lizbeth Carolina Velastegui Quisimalin con cédula de ciudadanía 1805065057, estudiantes de la Carrera de Mecánica, de la Facultad de Ingeniería Civil y Mecánica, de la Universidad Técnica de Ambato.

Certifico:

- Que el presente trabajo experimental es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Está concluido en su totalidad.

Ambato, septiembre 2023

Ing. Santiago Paúl Cabrera Anda, Mg. TUTOR

AUTORÍA DEL TRABAJO DE TITULACIÓN

Nosotros, Jonathan Alexis Llamuca Paguay con cédula de ciudadanía 1804404711, y Lizbeth Carolina Velastegui Quisimalin con cédula de ciudadanía 1805065057, declaramos que todas las actividades y contenidos expuesto en el presente Trabajo experimental con el tema: "ANÁLISIS DE PARÁMETROS DE COMBUSTIÓN EN PROTOTIPO DE QUEMADOR RADIANTE DE GLP EXPERIMENTAL RECUPERACIÓN Y SU **INFLUENCIA** SOBRE EL SIN APROVECHAMIENTO ENERGÉTICO", así como también los gráficos, conclusiones y recomendaciones son de nuestra exclusiva responsabilidad como autores del presente proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, septiembre 2023

antonica

Jonathan Alexis Llamuca Paguay

C.I. 1804404711

AUTOR

Laught Helastegue

Lizbeth Carolina Velastegui Quisimalin C.I. 1805065057

AUTORA

DERECHOS DE AUTOR

Autorizamos a la Universidad Técnica de Ambato, para que haga de este Trabajo Experimental o parte de él, un documento disponible para su lectura consulta y procesos de investigación, según las normas de la Institución.

Cedemos los Derechos en línea patrimoniales de nuestro Trabajo Experimental con fines de difusión pública, además aprobamos la reproducción de este documento, dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando nuestros derechos de autores.

Ambato, septiembre 2023

Houran

Jonathan Alexis Llamuca Paguay

C.I. 1804404711

AUTOR

.

Lizbeth Carolina Velastegui Quisimalin C.I. 1805065057 AUTORA

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Trabajo Experimental realizado por los estudiantes Jonathan Alexis Llamuca Paguay y Lizbeth Carolina Velastegui Quisimalin de la Carrera de Mecánica bajo el tema: "ANÁLISIS DE PARÁMETROS DE COMBUSTIÓN EN PROTOTIPO DE QUEMADOR RADIANTE DE GLP EXPERIMENTAL SIN RECUPERACIÓN Y SU INFLUENCIA SOBRE EL APROVECHAMIENTO ENERGÉTICO".

Ambato, septiembre 2023

Para constancia firman:

Ing. Luis Eduardo Escobar Luna, Mg.

MIEMBRO CALIFICADOR

Ing. Diego Fernando Núñez Núñez, Mg.

MIEMBRO CALIFICADOR

DEDICATORIA

Le dedico el resultado de este trabajo a Dios y al Niño bendito que con su sabiduría infinita supo acogerme bajo su manto para darme salud y fuerza.

A mi familia, principalmente, mis padres Isabel y Oswaldo, ya que gracias a su amor infinito me brindaron el apoyo incondicional que me permitió llegar a cumplir esta meta tan anhelada en mi vida.

A mis hermanos, por su apoyo moral, y consejos de responsabilidad y esfuerzo que me han sabido inculcar a lo largo de esta etapa que ha permitido superarme como persona.

A ustedes mi familia, con amor y respeto estas cortas líneas.

Jonathan Llamuca

DEDICATORIA

Este trabajo está dedicado a Dios por guiar mi camino y a la virgen del Rosario de Agua Santa por ser imagen constante de esperanza y oración.

A mis padres Juan y Lucía quienes con su confianza y esfuerzo me han dado lo mejor para mis estudios ya que la mejor herencia que un hijo puede recibir y llevar consigo es la educación.

A mi querida abuelita Gloria, por darme todo el amor, cariño y consejos que fueron de gran apoyo para lograr este sueño.

A mis hermanas, Emy y Ale, gracias por sus palabras de aliento, confianza, cariño y apoyo constante día a día.

A mis amigos y demás familiares, por tu amistad y por los gratos momentos que compartimos.

Lizbeth Velastegui

AGRADECIMIENTO

Agradezco a Dios por permitirme tener a mis padres Isabel y Oswaldo, quienes siempre me han brindado su apoyo incondicional para poder cumplir todos mis objetivos personales y académicos. Ellos, son los que con su cariño me han impulsado siempre a perseguir mis metas y nunca abandonarlas frente a las adversidades.

A la Universidad Técnica de Ambato y de manera muy grata a la Carrera de Ingeniería Mecánica que me permitió cursar este camino de conocimiento, experiencias y sueños.

Le agradezco muy profundamente a mi tutor Msc. Ing. Santiago Cabrera por su dedicación y paciencia, sin sus palabras y correcciones precisas no hubiese podido lograr llegar a esta instancia tan anhelada. Gracias por su guía y todos sus consejos, los llevaré grabados para siempre en la memoria en mi futuro profesional.

A mis queridos docentes, por transmitirme los conocimientos necesarios para hoy poder estar aquí. Sin ustedes los conceptos serían solo palabras, y las palabras se las lleva, el viento.

Agradecerles a todos mis compañeros, muchos de ellos se han convertido en mis amigos, y cómplices. De manera especial a Liz, quien se convirtió en un pilar fundamental en la culminación de este trabajo, y se volvió una persona especial e incondicional en esta etapa de mi vida. Gracias por las horas compartidas, los trabajos realizados en conjunto y las historias vividas.

Jonathan Llamuca

AGRADECIMIENTO

A mí querida Universidad Técnica de Ambato y de manera especial a la Carrera de Ingeniería Mecánica, a sus autoridades y profesores quienes con su paciencia y responsabilidad han sabido impartir sus conocimientos para el desarrollo de nuestra capacidad intelectual, pero sobre todo para que nos formemos como personas de bien. Al Msc. Ing. Santiago Cabrera tutor del presente trabajo, ya que, sin su asesoramiento e invalorable apoyo, no habría sido posible la culminación.

A mi familia y en especial a mis padres por todo su apoyo para la culminación de mi carrera profesional, por estar siempre cuando más los he necesitado.

A mis amigos que formaron parte de esta etapa, quienes contribuyeron en la culminación de mis estudios y formación, en especial a Alex quien además de ser mi compañero de tesis ha sido mi persona incondicional en esta etapa.

Lizbeth Velastegui

ÍNDICE GENERAL DE CONTENIDO

APROBACIÓN DEL TUTOR	ii
AUTORÍA DEL TRABAJO DE TITULACIÓNi	ii
DERECHOS DE AUTORi	V
APROBACIÓN DEL TRIBUNAL DE GRADO	v
DEDICATORIA	vi
AGRADECIMIENTOvi	ii
ÍNDICE GENERAL DE CONTENIDO	X
ÍNDICE DE FIGURASxi	ii
ÍNDICE DE TABLASx	v
ÍNDICE DE ANEXOSxvi	ii
RESUMEN EJECUTIVO x	X
ABSTRACTxx	xi
CAPÍTULO I	1
MARCO TEÓRICO	1
1.1 Antecedentes Investigativos	1
1.1.1 Antecedentes	1
1.1.2 Justificación	2
1.1.3 Fundamentación teórica	3
1.1.3.1 Termodinámica	3
1 1 3 1 1 Primera lev de la termodinámica	3
1.1.3.1.2 Balance de energía para sistemas de flujo estacionario	4
1.1.3.1.3 Balance de masas para procesos de flujo estacionario	4
1.1.3.2 Transferencia de calor	5
1.1.3.2.1 Conducción	5
1.1.3.2.2 Convección	5
1.1.3.2.3 Radiación	6
1.1.3.3Quemador de tubo radiante	7
1.1.3.3.1 Tipos de tubos radiantes	7
1.1.3.3.2 Características de calidad importantes de los tubos radiantes	8
1.1.3.3.3 Pérdidas significativas provocadas por el quemador	9
1.1.3.4Proceso de combustión de GLP	0
1.1.3.4.1 Parámetros de mezcla en el proceso de combustión1	2
1.1.3.4.2Parámetros de frente de flama1	4
1.1.3.4.3 Diagnóstico de defectos de flama	6
1.1.3.5Eficiencia de un quemador1	7

1.1	.3.5.1 Eficiencia térmica	17
1.1	.3.5.2 Eficiencia de combustión	17
1.1.	.3.5.3 Eficiencia de la segunda ley	17
1.1.3.	6 Aprovechamiento energético de un quemador	18
1.1.	.3.6.1 Aplicaciones aprovechamiento	19
1.1.3.	7 Herramientas para análisis térmico en tubos radiantes	19
1.1.	.3.7.1 Simulación CFD	19
1.1.	.3.7.2 Termografía	19
1.1.	.3.7.3 Análisis de imágenes usando Software	19
1.1.3.	8 Prueba estadística t de Student	20
1.2 C	Dbjetivo	20
1.2.1	Objetivo general:	20
1.2.2	Objetivos específicos:	20
1.3 Hipo	ótesis	20
CAPÍTUL	.O II	21
METODO	DLOGÍA	21
2.1 N	Aateriales	21
2.2 N	létodos	21
2.2.1 T	Cécnicas e instrumentos de recolección de información	21
2.2.2 I	dentificación y operacionalización de variables	22
2.2.3 F	lujograma para la metodología general	23
2.2.4 P	Procedimientos	24
2.2.4.	1 Procedimiento para medición de temperaturas superficiales	24
2.2.4.	2 Procedimiento para análisis de gases	25
2.2.4.	3 Procedimiento de operación de quemador	26
2.2.4.	4 Procedimiento de simulación	29
2.2.5 E	Descripción del quemador experimental	30
2.2.5.	1 Identificación de partes del quemador	33
2.2.5.	2 Inyector del quemador	34
2.2.6	Correlaciones aplicadas para transferencia de calor por convección	35
2.3	Cálculos de termodinámica y transferencia de calor	36
2.3.1 S	elección y determinación de la potencia teórica del inyector	36
2.3.2 P	Primera ley para sistemas reactivos	38
2.3.3 S	egunda ley para sistema reactivos	46

2.3.4	Pérdidas por convección en paredes y flujo de gases en la chimenea48
CAPÍTU	JLO III
RESUL	TADOS Y DISCUSIÓN
3.1	Análisis y discusión de los resultados
3.1.1	Balance de masa y energía
3.1.2	Análisis de rendimiento y eficiencia del sistema
3.1.3	Aprovechamiento energético para calentamiento de aire por convección
radiac	ión
3.1.4	Análisis de temperaturas en estado transitorio
3.1.5	Alternativa para aprovechamiento energético en calentamiento de agua 58
3.1.6	Parámetros de frente de flama
3.1.7	Distribución de temperaturas en el tubo radiante interior
3.1.8	Distribución de temperaturas de calentamiento en la superficie del TRE 60
3.1.	8.1 Distribución de temperaturas de enfriamiento en el tubo radiante
exte	erior 62
3.1.9	Simulación y comparación con temperaturas experimentales
3.2	Verificación de hipótesis
CAPÍTU	JLO IV
CONCL	USIONES Y RECOMENDACIONES68
4.1 Co	onclusiones
4.2 Re	ecomendaciones
BIBLIO	GRAFÍA70
ANEXC	95

ÍNDICE DE FIGURAS

Figura 1. Balance de energía para sistema estacionario en un tubo circular [10]	4
Figura 2. Interacciones energéticas en la superficie exterior de la pared [9]	5
Figura 3. Diferentes tipos de tubos radiantes sin recirculación de humos y e	con
recirculación de humos [13]	7
Figura 4. Tubo de un solo extremo sin recuperación	8
Figura 5. Tubo radiante de un solo extremo con recuperación [13]	8
Figura 6. Efecto de la recirculación interior sobre la distribución de temperatura en	n la
superficie de los tubos radiantes. [13]	9
Figura 7. Coeficientes de descarga de tipos de inyectores [18]	.11
Figura 8. Tipos de flama en un mechero Bunsen dependiendo del flujo de aire	. 15
Figura 9. Esquema de las zonas formadas en una flama de buena calidad [26]	. 15
Figura 10. Metodología general	. 23
Figura 11. Ubicación de cámara termográfica	. 24
Figura 12. Especificaciones de punto de medición	. 24
Figura 13. Termómetro CEM DT-8867H y cámara FLIR E8-XT	. 25
Figura 14. Tubo radiante interior	. 25
Figura 15. Analizador de combustión Bacharach Intech	. 26
Figura 16. Acciones preventivas para el encendido del quemador	. 27
Figura 17. Encendido y funcionamiento del quemador	. 28
Figura 18. Tiempo de funcionamiento y apagado	. 28
Figura 19. Modelado del volumen interior del prototipo de quemador en ANSYS.	. 29
Figura 20. Named Selection (A) Calor de entrada, (B) Salida, (C)Pared del TRE,	(D)
Simetría (E) Pared del TRI	. 30
Figura 21. Detalle de los sistemas del quemador	. 31
Figura 22. Rangos de instrumentos de control de GLP y aire	. 32
Figura 23. Esquema de conexión del quemador	. 33
Figura 24. Identificación de las partes del quemador	. 33
Figura 25. Distribución de temperaturas en el quemador de tubo radiante	. 38
Figura 26. Calor real de salida para combustión incompleta	. 42
Figura . Temperatura adiabática	. 44
Figura . Diagrama de resistencias térmicas para transferencia de calor	. 45
Figura . Balance de masa del sistema	. 52

Figura . Balance de energía del sistema	52
Figura . Diagrama de Sankey para balance de energías	53
Figura . Comportamiento térmico en función del tiempo	57
Figura . Comportamiento térmico en función del tiempo adimensional	57
Figura .Incremento de temperaturas para calentamiento de agua	58
Figura 35. Análisis de temperaturas en tubo radiante interior	60
Figura . Comportamiento de temperatura de calentamiento en TRE	61
Figura . Análisis termográfico de distribución de temperaturas en TRE	61
Figura . Temperaturas enfriamiento en TRE	62
Figura . Temperatura experimental del TRE	62
Figura . Comparación de temperatura experimental y numérico	63
Figura . Contorno de densidad	64
Figura . Contorno de velocidad	64
Figura . Contorno de temperatura	64
Figura . Comportamiento de partículas	64
Figura 45. Zona de uniformidad dentro de la zona media	65

ÍNDICE DE TABLAS

Tabla 1. Índice de Bacharach. [14]	10
Tabla 2. Características generales del GLP [16].	11
Tabla 3. Clasificación de los procesos de combustión [20]	13
Tabla 4. Exceso de aire recomendado [21]	14
Tabla 5. Tipos de flama en la combustión.	14
Tabla 6. Acciones correctivas para defectos de flama [24]	16
Tabla 7. Eficiencias de sistemas y procesos generales típicos [28]	18
Tabla 8. Variable independiente.	22
Tabla 9. Variable dependiente	22
Tabla 10. Valores típicos en los gases de combustión en quemadores de gas [30].	26
Tabla 11. Ajustes de parámetros de mallado de salida	29
Tabla 12. Ficha técnica del quemador	31
Tabla 13. Conceptualización de las partes del quemador	34
Tabla 14. Ponderación de la calidad de estructura de flama	35
Tabla 15. Ponderación de comportamiento de flama	36
Tabla 16. Densidad del aire	37
Tabla 17. Potencia teórica para inyector	38
Tabla 18. Masas molares	39
Tabla 19. Calor teórico generado	40
Tabla 20. Flujo másico teórico del combustible	41
Tabla 21. Composición volumétrica de los productos de combustión (Anexo 11).	41
Tabla 22. Calor real generado	42
Tabla 23. Flujo másico real del combustible	43
Tabla 24. Flujo másico del aire	43
Tabla 25. Entalpías de reactivos y productos a temperatura ambiente	44
Tabla 26. Convección para flujo interno en tubería circular	46
Tabla 27. Entropía generada a partir de proceso adiabático	47
Tabla 28. Exergía destruida en proceso reversible	48
Tabla 29. Exergía útil en superficie de quemador	48
Tabla 30. Pérdida de calor por convección	49
Tabla 31. Pérdida de calor en gases residuales	51
Tabla 32. Pérdidas por inquemados sólidos	51

Tabla 33. Eficiencia por segunda ley	. 53
Tabla 34. Transferencia de calor por convección	. 54
Tabla 35. Transferencia de calor por radiación	. 55
Tabla 36. Resumen de características del quemador	. 55
Tabla 37. Distribución de temperatura en función del tiempo	. 56
Tabla 38. Distribución de temperatura en función del tiempo	. 56
Tabla 39. Calor aprovechado por el agua	. 58
Tabla 40. Análisis de parámetros de frente de flama	. 59
Tabla 41. Comparación de resultados de simulación y experimentación	. 63
Tabla 42. Variación controlada de parámetros de combustión en el quemador	. 66
Tabla 43. Prueba t para dos muestras suponiendo varianzas iguales	. 67

ÍNDICE DE ANEXOS

Anexo 1. Ficha técnica de quemador de tubo radiante sin recuperación	.75
Anexo 2. Hoja técnica de inyectores	.76
Anexo 3. Prueba en TRI con variación de aire primario y presión de GLP	. 77
Anexo 4. Evaluación de estructura de flama en el TRI	. 79
Anexo 5. Medición de temperaturas en la superficie del TRI	. 80
Anexo 6. Termografía de estructura de flama en TRI en el exterior	. 81
Anexo 7. Análisis de las isotermas usando software	. 82
Anexo 8. Análisis cuantitativo de estructura de flama en TRI en el exterior	. 83
Anexo 9. Medición de temperaturas en quemador	. 84
Anexo 10. Medición de temperaturas por enfriamiento en TRE	. 86
Anexo 11. Parámetros de combustión en la salida de chimenea	. 87
Anexo 12. Aprovechamiento energético alternativo para calentamiento de agua	. 88
Anexo 13. Valores de emisividad para materiales	. 89
Anexo 14. Propiedades termo físicas de gases	. 90
Anexo 15. Propiedades de gas ideal del aire	. 91
Anexo 16. Propiedades de gas ideal del nitrógeno	. 92
Anexo 17. Propiedades de gas ideal del oxígeno	. 94
Anexo 18. Propiedades de gas ideal del dióxido de carbono	. 96
Anexo 19. Propiedades de gas ideal del monóxido de carbono	. 98
Anexo 20. Propiedades de gas ideal del vapor de agua	100
Anexo 21. Entalpía de diversas sustancias	102
Anexo 22. Propiedades de la atmósfera a gran altitud	103
Anexo 23. Propiedades termo físicas de sólidos metálicos1	104

GLOSARIO DE TÉRMINOS

AC:	relación aire/combustible
A_{conv} :	área de transferencia de calor por convección (m^2)
A_S :	área de la superficie (m^2)
α:	difusividad térmica (m^2/s)
<i>B</i> :	índice de Bacharach.
β:	coeficiente de expansión (K^{-1})
CAD:	dibujo asistido por computadora
CFD:	dinámica de fluidos computacionales
<i>CO</i> :	monóxido de carbono
<i>CO</i> ₂ :	dióxido de carbono
C_p :	calor especifico $[kJ/kg \cdot K]$
<i>C</i> ₃ <i>H</i> ₈ :	propano
$C_{4}H_{10}$	butano
<i>D</i> :	diámetro (mm)
Eff:	eficiencia calefacción superior
Eta:	eficiencia calefacción inferior
<i>ɛ</i> :	emisividad de la superficie
η_{II} :	eficiencia por segunda ley
GLP:	gas licuado de petróleo
g:	aceleración gravitacional
\overline{h} :	coeficiente de transferencia de calor por convección $(W/m^2 \cdot K)$
\overline{h} :	entalpía de formación a T de reacción a producto [kJ/kmol]
h_C :	coeficiente de transferencia de calor por convección $(W/m^2 \cdot K)$
\overline{h}_f :	entalpía de formación a condiciones estandar [kJ/kmol]
h_{RAD} :	coeficiente de transferencia de calor por radiación $(W/m^2 \cdot K)$
h°:	entalpía de corrección [kJ/kmol]
k:	conductividad térmica $(W/m \cdot K)$
λ:	exceso de aire Lambda
m:	masa de la sustancia a calentar $[kg]$
<i>m</i> :	número de átomos de hidrógeno
ṁ _{aire} :	flujo másico de aire
\dot{m}_{comb} :	flujo másico GLP
Ni:	número de moles de cada sustancia [kmol]
N_p :	moles de los productos [kmol]
N_r :	moles de los reactivos [kmol]
\overline{Nu}_D :	número de Nusselt
ν:	viscosidad cinemática (m^2/s)
<i>n</i> :	número de átomos de carbono
<i>O</i> ₂ :	oxigeno
<i>P</i> :	presión absoluta del gas en (mm ca)

PCS:	poder calorífico del gas en (<i>kcal/kg</i>)
Pi:	perdidas por inquemados. (%)
P_m :	presión total [atm]
Pr:	número de Prandtl
Q:	calor sensible absorbido [kW]
\dot{Q}_{conv} :	convección para flujo
\dot{Q}_{rad} :	transferencia de calor por radiación
Ra_D :	número de Rayleight para diámetros
Re_D :	número de Reynolds
R_u :	constante universal de los gases [8.31 $kJ/kmol \cdot K$]
ho:	densidad relativa
S _{gen} :	entropía generada
<i>Ī</i> ° _i :	entropía a una temperatura a condiciones estandar $[kJ/kmol \cdot K]$
S _{prod} :	entropía de productos
S _{react} :	entropía de reactivos
σ:	constante de Stefan Boltzmann (5,67 × $10^{-8} W/m^2 \cdot K^4$)
<i>T</i> :	tiempo transcurrido [s]
T_A :	temperatura ambiente
T _{alred} :	temperatura de los alrededores (K)
T_f :	temperatura promedio
T_H :	temperatura de combustión
T_k :	temperatura interna
TRE:	temperatura en el tubo radiante exterior
TRI:	tubo radiante Interior
<i>T_S</i> :	temperatura de la superficie (K)
T_{si} :	temperatura superficial
$T_{\infty i}$:	temperatura flujo interior
T_{∞} :	temperatura ambiente (K)
T_0 :	temperatura ambiente
ΔT :	gradiente de temperatura [°C]
W_{rev} :	trabajo reversible
X _{util} :	exergía útil
y_i :	fracción molar del componente

RESUMEN EJECUTIVO

En este proyecto se plantea la variación de parámetros de combustión como presión del combustible y diseño del inyector en un prototipo de quemador radiante de GLP experimental sin recuperación, para determinar su influencia en: aprovechamiento energético, parámetros de flama y distribución de temperaturas en el tubo radiante. La metodología combina el análisis teórico y experimental, empleando instrumentos de medición: cámara termográfica y analizador de gases. Las características del prototipo son: 1.79 kW de potencia, longitud de 1.1 m, diámetro de tubo de 0.10 m y diámetro de inyector de 0.5 mm.

El aprovechamiento energético comprende una transferencia de calor de 0.59 kW por convección natural y 1.05 kW por radiación, se cuantifican pérdidas de 0.98 kW por gases de combustión, 0.0918 kW por convección en paredes y 0.037 kW por inquemados sólidos lo cual representa una eficiencia térmica entre 42 a 62 por ciento. Se plantea una reacción de combustión real con 127 por ciento de aire teórico lo cual permitió identificar una zona radiante media con estabilidad térmica de longitud 0.45m con temperaturas máximas de entre 320 a 460 grados centígrados que se alcanzan a 660 segundos (11 min), aproximadamente.

Se aplicó un análisis con un modelo bidimensional para el flujo interno del gas para simular el comportamiento temperatura, densidad, velocidad y trayectoria de partículas.

Palabras claves: Quemador de GLP, Tubo radiante, Inyector de GLP, Combustión, Convección, Radiación, Eficiencia térmica, Aprovechamiento energético, Simulación.

ABSTRACT

This project proposes the variation of combustion parameters as fuel pressure and injector design in an experimental LPG radiant burner prototype without recovery, to determine its influence on: energy using, flame parameters and temperature distribution in the radiant tube. The methodology combines theoretical and experimental analysis, using this measurement instruments: thermographic camera and gas analyzer. The characteristics prototype are 1.79kW power, length 1.1m, tube diameter 0.10m and injector diameter 0.5mm.

The energy using includes: heat transfer 0.59 kW by natural convection and 1.05kW by radiation, losses 0.98 kW by combustion gases, 0.0918 kW by convection in walls and 0.037 kW in unburned solids, this represents a thermal efficiency between 43 and 62 percent. A real combustion reaction with 127 percent of theoretical air is proposed, which allowed identifying a radiant medium zone with thermal stability of 0.45 m length and maximum temperatures between 320 to 460 Celsius degrees reached in 660 seconds (11 min) approximately.

An analysis with a bidimensional model for the internal gas flow was applied to simulate the behavior of temperature, density, velocity, and particle trajectory.

Keywords: LPG burner, Radiant tube, LPG injector, Combustion, Convection, Radiation, Thermal efficiency, Energy use, Simulation.

CAPÍTULO I

MARCO TEÓRICO

1.1 Antecedentes Investigativos

1.1.1 Antecedentes

Los quemadores de tubo radiante son eficientes para producir un efecto de calentamiento uniforme en poco tiempo, y esenciales en aplicaciones donde la flama no debe estar en contacto con los productos a calentarse, demostrando que sus configuraciones de diseño están relacionadas directamente con los parámetros termo físicos [1].

El estudio de la configuración de parámetros en un quemador de tubo radiante maximiza su energía y minimiza la generación de contaminantes, mientras que, la estabilidad en la variación de parámetros garantiza la completa combustión y la transferencia de calor, a partir de distintas variaciones como el factor de aireación del sistema y la presión del combustible, los resultados de flama y temperaturas máximas alcanzadas dependen significativamente del diseño del inyector del combustible y de la admisión de aire primario y secundario [1, 2, 3, 4].

El comportamiento de la temperatura a lo largo del tubo radiante es estable en la zona media, sin embargo, en los extremos del tubo radiante la temperatura será menor. Se alcanzan temperaturas entre 377.9 y 970 °C [2].

Para analizar la distribución de temperaturas en el tubo exterior se lo realiza mediante comparación de simulación por elementos finitos y resultados experimentales, este análisis se considera como la primera línea de simulación y reduce significativamente la necesidad de realizar costosos experimentos antes de realizar modificaciones en un sistema y proporciona información difícil de obtener experimentalmente [5].

Existen parámetros del proceso de combustión que determinan la eficiencia del quemador y permite lograr un buen aprovechamiento energético, el cual se obtiene a partir del comportamiento de la flama, el calor disponible en los gases de combustión, la eficiencia de combustión y las emisiones contaminantes. La eficiencia de los quemadores de tubo radiante alcanza valores entre 28 y 85 %, lo que permite determinar un valor promedio de 43% en distintos tipos de quemador. Sin embargo, es importante destacar que esta tendencia no es aplicable a todos los tipos de quemadores de tubo radiante, debido a que su influencia varía en función del diseño particular [6].

1.1.2 Justificación

En Ecuador, el gas licuado de petróleo (GLP), se emplea como combustible en equipos destinados a usos residenciales, comerciales e industriales, es una opción segura y confiable, con un suministro estable y accesible. Este es un combustible versátil y limpio que presenta numerosos beneficios en comparación con otros combustibles tradicionales como el diésel. Su uso en quemadores permite una combustión más limpia y eficiente, con una menor emisión de gases contaminantes [1].

Se encuentran disponibles diversos modelos de quemadores de Gas Licuado de Petróleo (GLP), sin embargo, en el contexto de América Latina, se evidencia una carencia en el desarrollo de empresas especializadas en la producción de estos quemadores. No obstante, en los últimos años, países como Colombia han experimentado un aumento en la demanda de quemadores de tubo radiante debido a su baja emisión de gases contaminantes y su relación costo-beneficio. Ante esta situación, el estudio de parámetros de combustión en estos quemadores es de mucho interés, pues permite encontrar una manera de diseñar quemadores con mayor aprovechamiento [1, 6].

Para garantizar el funcionamiento de los quemadores de tubo radiante, es importante investigar la estabilidad de los parámetros de combustión. Al mantener una combustión eficiente, se logra una transferencia de calor más efectiva, una reducción en el consumo de combustible y un mejor aprovechamiento de los recursos energéticos disponibles. La calibración adecuada de los parámetros de combustión, como la

relación aire-combustible y la estabilidad de la flama, juegan un papel fundamental en el rendimiento de los quemadores [7].

El conocimiento y la optimización de los parámetros de combustión garantizan un funcionamiento eficiente, seguro y controlado en los procesos industriales. Esto se traduce en una mejora en la calidad y consistencia de los productos, una reducción en los costos operativos y un aumento en la productividad. El propósito de esta investigación es analizar los parámetros de combustión en un prototipo de quemador radiante experimental de GLP sin recuperación y su influencia sobre el aprovechamiento energético [4].

1.1.3 Fundamentación teórica

1.1.3.1 Termodinámica

1.1.3.1.1 Primera ley de la termodinámica

El principio de conservación de energía establece que el cambio neto en la energía total de un sistema durante un proceso es igual a la diferencia entre la energía que entra y la energía que sale del sistema [8]. Esta es conocida como el principio de conservación de energía y se expresa:

$$\dot{E}_{ent} - \dot{E}_{sal} = \frac{dE_{sistema}}{d_t} (W) \tag{1}$$

En el análisis de transferencia de calor, nos interesa principalmente la energía térmica del sistema y su efecto en la temperatura [8]. Este balance de energía se expresa mediante la ecuación 2:

$$\dot{Q}_{comb} = Q_{util} + Q_{gases} + Q_{chimenea} \tag{2}$$

Para un sistema isobárico sin trabajo, según la ecuación 3:

$$\dot{Q} = \frac{\left(C_p \cdot m \cdot \Delta T\right)}{t} \tag{3}$$

 \dot{Q} : calor sensible absorbido [*kW*]

 C_p : calor especifico $[kJ/kg \cdot K]$

- m: masa de la sustancia a calentar [kg]
- ΔT : gradiente de temperatura [°*C*]

T: tiempo transcurrido [*s*]

1.1.3.1.2 Balance de energía para sistemas de flujo estacionario

En el análisis de volúmenes de control en condiciones estacionarias, se establece que la cantidad de energía que ingresa a un volumen de control debe ser igual a la cantidad que sale del mismo. Esto es aplicable a sistemas de flujo estacionario, donde el volumen de control no varía con el tiempo [9].

Cuando se considera el flujo de fluido a través de un tubo unidimensional, se puede expresar el gasto másico del flujo como se muestra en la Fig. 1.

Figura 1. Balance de energía para sistema estacionario en un tubo circular [10]

La razón total de transferencia de calor hacia una superficie, o desde ésta, por convección y radiación se expresa en las ecuaciones 4, 5 y 6:

$$\dot{Q}_{total} = \dot{Q}_{conv} + \dot{Q}_{rad} = h_{conv}A_s(T_s - T_{alred}) + \varepsilon\sigma A_s(T_s^4 - T_{alr}^4)$$
(4)

$$\dot{Q}_{total} = h_{combinado} A_s (T_s - T_{\infty}) (W)$$
(5)

$$h_{combinado} = h_{conv} + h_{rad} = h_{conv} + \varepsilon \sigma (T_s - T_{alred}) (T_s^2 - T_{alred}^2)$$
(6)

1.1.3.1.3 Balance de masas para procesos de flujo estacionario

En un flujo estacionario, la cantidad de masa que entra a un sistema de control se mantiene constante. Esto se basa en la ley de conservación de la masa, que establece que la masa total de los reactivos debe ser igual a la masa total de los productos en una reacción química [10].

En el contexto de la combustión en la ecuación 7, el balance de masa se utiliza para determinar la cantidad de combustible y oxidante necesarios, así como la cantidad de productos de combustión generados [10].

$$\dot{m}_{COMB.} + \dot{m}_{AIRE} = \dot{m}_{GASES} \left(kg/s \right) \tag{7}$$

1.1.3.2 Transferencia de calor

La transferencia de calor se da de un cuerpo caliente a un cuerpo frío y dura hasta alcanzar la misma temperatura. El calor se puede transferir en tres modos diferentes: conducción, convección y radiación [10].

1.1.3.2.1 Conducción

Según [10], la transferencia de calor por conducción a través de un medio está determinada por su configuración geométrica, espesor y material, así como por la diferencia de temperatura a lo largo de él.

En el caso de una conducción de calor en estado estacionario a través de un medio Fig. 2, la tasa de transferencia de calor está relacionada con la suma de la transferencia de calor por convección y radiación.

Figura 2. Interacciones energéticas en la superficie exterior de la pared [9]

Las ecuaciones 8 y 9 se derivan a partir de la Fig. 2:

$$\dot{Q}_1 = \dot{Q}_2 + \dot{Q}_3$$
 (8)

$$\dot{Q}_{total} = \dot{Q}_{conv} + \dot{Q}_{rad} \tag{9}$$

1.1.3.2.2 Convección

Convección natural (o libre) donde el desplazamiento del fluido es causado por la variación de temperatura en ese fluido. Según Incropera [8], convección se origina desde una superficie sólida con cierta temperatura hacia un fluido con temperatura que se encuentra en un punto alejado de la superficie. Se expresa en forma conveniente por la ley de Newton del enfriamiento:

$$\dot{Q}_{conv} = hA_s(T_s - T_{\infty}) \quad (W) \tag{10}$$

Donde:

h_C :	coeficiente de transferencia de calor por convección $(W/m^2 \cdot K)$
A_{conv} :	área de transferencia de calor por convección (m^2)
T_S :	temperatura de la superficie (K)
T_∞ :	temperatura ambiente (K)

1.1.3.2.3 Radiación

La radiación de energía se emite en forma de ondas a un entorno frío y todos los cuerpos que no se encuentren a una temperatura de cero absoluto emiten radiación. Este fenómeno es especialmente relevante en los cuerpos sólidos, como los metales, que son capaces de emitir radiación. La máxima cantidad de radiación que una superficie puede emitir se puede expresar mediante la constante de la ley de Stefan-Boltzmann. Si la superficie es tal que $\alpha = \varepsilon$ (superficie gris), la velocidad neta de transferencia de calor por radiación desde la superficie puede determinarse por las ecuaciones 11 y 12. [9]

$$\dot{Q}_{rad} = h_{rad} A_s (T_s - T_{alred}) \tag{11}$$

$$h_{rad} = \varepsilon. \sigma. \left(T_s - T_{alr}\right) \left(T_s^2 - T_{alr}^2\right)$$
(12)

Donde:

$h_{RAD}:$	coeficiente de transferencia de calor por radiación $(W/m^2 \cdot K)$
<i>A_S</i> :	área de la superficie (m^2)
<i>ɛ</i> :	emisividad de la superficie
σ:	constante de Stefan Boltzmann (5,67 × $10^{-8} W/m^2 \cdot K^4$)
T_S :	temperatura de la superficie (K)
T _{alred} :	temperatura de los alrededores (<i>K</i>)

La emisividad de la superficie se representa en radiación emitida por la superficie a una temperatura determinada. La emisividad de una superficie varía entre $0 \le \varepsilon \le 1$ [11].

1.1.3.3 Quemador de tubo radiante

Son utilizados en aplicaciones industriales en procesos de calentamiento indirecto donde la flama o los productos de combustión no tienen contacto con el producto a calentar. La aplicación de estos ha ido creciendo alrededor de los años por su factibilidad y eficiencia. Están constituidos por un tubo el cual permite la radiación de calor la misma que es aprovechada para aplicaciones industriales. [11]

1.1.3.3.1 Tipos de tubos radiantes

En la industria, existen diferentes tipos aplicados para calentamiento uniforme. Se alimentan con gas natural o GLP, y se deben considerar los límites de temperatura máxima de los materiales de diseño. Existen varias configuraciones comerciales con distintas geometrías, quemadores y materiales, categorizadas en recirculación y circulación. En la Fig. 3 se muestra la descripción de los tipos: sin recirculación (lado izquierdo) y con recirculación (lado derecho). Los sin recirculación permiten un solo paso del flujo de combustión, como el tipo I, los de recirculación mezclan flujo fresco con el existente, utilizando quemadores de alta velocidad. La recirculación interna mejora la uniformidad de temperatura. Ejemplos de tubos con recirculación son tipo P, doble tipo P y tipo A [12] [13].

Figura 3. Diferentes tipos de tubos radiantes sin recirculación de humos y con recirculación de humos [13]

a) Tubo radiante de un solo extremo SER sin recuperación

La geometría ideal para lograr una distribución uniforme de temperatura en estos tubos radiantes es la de un solo extremo, en estos se utilizan quemadores de mezcla lenta con flama larga, asegurando que la flama cubra la primera parte del tubo radiante. [13].

Figura 4. Tubo de un solo extremo sin recuperación

b) Tubo radiante de un solo extremo con recuperación

Estos poseen un espacio anular para la recirculación de gases de combustión, ofrecen uniformidad de temperatura e instalación fácil. Las diferencias de temperatura en la superficie son menores en los de recirculación que en aquellos sin recirculación, pero con mayor costo de inversión [13].

Figura 5. Tubo radiante de un solo extremo con recuperación [13]

1.1.3.3.2 Características de calidad importantes de los tubos radiantes

La calidad se evalúa por su flujo máximo de calor y por su uniformidad tanto en temperatura superficial como flujo de calor por unidad de longitud. Esta afecta la transferencia de calor y la vida útil, la aparición de puntos calientes puede causar corrosión y tensiones térmicas, reduciendo la vida útil. La Fig. 6 muestra la distribución de temperatura en diferentes tecnologías de tubos radiantes. [13]

Figura 6. Efecto de la recirculación interior sobre la distribución de temperatura en la superficie de los tubos radiantes. [13]

La elección del material del tubo radiante depende de sus procesos térmicos de fabricación y la temperatura máxima de trabajo. Los más comunes son aleaciones resistentes al calor o cerámicas especiales, que permiten alcanzar temperaturas más altas. La temperatura dentro del tubo radiante es mayor que en una flama libre debido al efecto de pantalla de la pared del tubo, influyendo en su fabricación y eficiencia. [13]

1.1.3.3.3 Pérdidas significativas provocadas por el quemador

a) Pérdidas por las paredes

Estas pueden ser por convección y radiación, sumando ambas se obtiene pérdida de calor en la pared descrita con la ecuación 13.

$$\dot{Q}_{pared} = \dot{Q}_{convecc} + \dot{Q}_{radia} \tag{13}$$

b) Pérdidas por inquemados sólidos

La emisión de monóxido de carbono (CO) genera este tipo de pérdida en el proceso de combustión. En una combustión completa, es posible mantener esta pérdida en niveles considerablemente bajos. Para la detección de los inquemados sólidos se aplica el método de Bacharach. En [14], se manifiesta que este índice se puede calificar de acuerdo con la presencia de hollín en la chimenea, tal como se muestra en la Tabla 1.

Basándose en esta ponderación, se sugiere calcular dicho índice utilizando la ecuación 14:

$$Pi = 0.4 * B^2 + 0.8B + 0.07 \tag{14}$$

Donde:

B: índice de Bacharach.

Pi: perdidas por inquemados. (%)

Tabla 1.	Índice de	Bacharach.	[14]
----------	-----------	------------	------

Índice de	Características	Calificación
bacharach.		
1	Presencia de Hollín nulo.	Excelente
	Presencia de Hollín reducido.	Buena
2	Temperatura en los humos baja	
3	Cierta cantidad de Hollín.	Mediana
4	Hollín visible.	Pobre
5	Marcas de hollín muy visible.	Muy Pobre
	Las marcas de hollín son	Pobrísima
6-9	severamente visibles.	

c) Pérdidas de calor sensible en los humos

IDAE [15]señala que estas pérdidas dependen fundamentalmente de los siguientes factores:

- Temperatura de los humos, o la diferencia de temperatura entre estos y la del aire comburente.
- Calor específico del humo.
- Exceso de aire empleado en la combustión (manifestado como porcentaje de CO₂ en los humos que afecta al caudal másico o volumétrico).

1.1.3.4 Proceso de combustión de GLP

El GLP es un subproducto que se obtiene de la refinación de petróleo, y se envasa licuado a alta presión dentro de un tanque, es más pesado que el aire, no es tóxico, no corroe el acero, es incoloro e inodoro, y se compone de butano y propano [16, 17].

Composición	60 % Propano
	40% Butano
Fórmula química	C_3H_8
	C_4H_{10}
Densidad específica	C_3H_8 : 1.882 kg/m ³
(fase gaseosa)	$C_4 H_{10}$: 2.52 kg/m ³
Poder calorífico	C ₃ H ₈ : 11 900 kcal/kg
	C ₄ H ₁₀ :10 938 Kcal/Kg
Estado físico	Envasado como líquido a 15°C con presiones
	manométricas mayores a 2.5 bar
Combustión	Una flama viva y azulada indica buena combustión.

Tabla 2. Características generales del GLP [16].

El caudal de GLP para la combustión es determinado por el inyector cuyas características más importantes son el diámetro del orificio, y el espesor de pared, su relación se denomina coeficiente de descarga, y varía según el ángulo de salida de cada inyector, esto se muestra en la Fig.7.

Figura 7. Coeficientes de descarga de tipos de inyectores [18]

El diámetro del orificio se calcula mediante la ecuación 15: [19]

$$D = \sqrt{\frac{\dot{Q}}{0.01139 \cdot C \cdot PCS \cdot \sqrt{\frac{P}{\rho}}}}$$
(15)

Donde:

- \dot{Q} : potencia (kcal/h)
- *C*: coeficiente de descarga del inyector
- D: diámetro del inyector (mm)
- P: presión absoluta del gas en (mm ca)
- ρ : densidad relativa del gas
- *PCS*: poder calorífico del gas en (*kcal/kg*)

1.1.3.4.1 Parámetros de mezcla en el proceso de combustión

La combustión es una reacción química en la cual un combustible se oxida, liberando energía en forma de calor o luz en forma de flama. Para analizar la combustión, se utiliza una mezcla de aire y combustible conocida como mezcla aire-combustible (AC) [20].

Existen tres condiciones que deben cumplirse para que las reacciones químicas de combustión tengan lugar [20]:

- 1. Se requiere una mezcla adecuada entre el combustible y el aire, como se indica en las ecuaciones químicas correspondientes.
- Es necesario contar con un exceso de aire en el sistema, de manera que cada partícula de combustible tenga suficiente aire a su alrededor para facilitar la combustión.
- 3. La temperatura de ignición debe alcanzarse para que la combustión pueda continuar sin necesidad de aporte de calor externo.

En la combustión se dan diferentes tipos de procesos clasificados en la Tabla 3.

Тіро	Características		
Combustión Completa	Cuando todos los componentes combustibles de un combustible se queman completamente durante el proceso de combustión. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + energía$		
Combustión Incompleta	Cuando los productos de combustión tienen componentes no quemados. $4CH_4 + 7O_2 \rightarrow 2CO_2 + 2CO + 8H_2O$		
Aire estequiométrico o teórico	La cantidad mínima de aire necesaria para la combustión completa de un combustible. $Aire_{teórico} = 100\%$		
Exceso de aire porcentual	Cantidad de aire en exceso de la cantidad estequiométrica. $100\% Aire_{teorico} = 0\% Aire_{exceso}$		
Deficiencia de aire porcentual.	Cantidades de aire menores que la cantidad estequiométrica.		

Tabla 3. Clasificación de los procesos de combustión [20]

A medida que aumenta la cantidad de exceso de aire en la combustión, se reduce la cantidad de combustible no quemado en los gases de escape. Esto ayuda a disminuir las pérdidas de combustible no quemado, pero a su vez aumenta las pérdidas de entalpía. Por lo tanto, es crucial encontrar un equilibrio entre las pérdidas de entalpía y las pérdidas de combustible no quemado [10].

En relación con esto, Testo [21] proporciona recomendaciones para ajustar los niveles de porcentaje de aire en la combustión utilizando diferentes tipos de combustibles líquidos y gaseosos. Estas recomendaciones se resumen en la Tabla 4.

Instalación de combustión	Rango de exceso de aire
Motores de combustión	0.8 - 1.2
Instalación de combustión de gas	1.1 – 1.3
Quemador de petróleo	1.2 – 1.5
Quemador de carbón	1.1 – 1.3
Caldera de parrilla para lignito	1.3 - 1.7

Tabla 4. Exceso de aire recomendado [21]

1.1.3.4.2 Parámetros de frente de flama

Sólo los gases pueden arder con flama directamente, estos solo tienen lugar en la fase gaseosa de un combustible [18]. Un factor importante en la flama del GLP es el suministro de aire, refiriéndose a las condiciones estequiométricas de un grado de premezcla de los reactantes específicos, sus diversos tipos se muestran en la Tabla 5.

Flamas laminares	Número de Reynolds inferior a 2000, esto significa que el		
	flujo va a tener más uniformidad. Las flamas laminares no		
	son muy comunes de encontrar en la vida real. [22]		
Flamas turbulentas	Número de Reynolds superior a 2000 y un flujo no uniforme.		
	El estudio teórico de flama turbulenta no es detallado porque		
	para los cálculos se considera flamas laminares y sus		
	resultados se pueden analizar fácilmente. [22]		
	Cuando antes de la zona de combustión se mezclan el aire y		
Flamas de	el gas. Es una premezcla total si se tiene la cantidad requerida		
premezcla	para combustión y premezcla parcial cuando el aire		
	premezcla es solo una fracción. [23]		
	Cuando la mezcla del aire y el gas ocurre en la zona de		
Flamas de difusión	combustión. El oxígeno y el combustible se difunden entre		
	sí produciéndose la flama inmediatamente. Se obtiene una		
	buena longitud de flama sin embargo produce una menor		
	temperatura y se produce hollín. [24] [25]		

Tabla 5. Tipos de flama en la combustión.

El color de la flama está determinado por tres aspectos: su temperatura, la mezcla de aire-combustible y el tipo de combustible utilizado. La temperatura de la flama afecta la interpretación visual del color. Cuando la mezcla de aire y combustible es deficiente, se produce una llama amarilla con formación de hollín. En la Fig. 8 se muestra una representación visual del aspecto de la flama para GLP, esta tiene puntas amarillas en conos externos que es algo normal [22] [25].

Figura 8. Tipos de flama en un mechero Bunsen dependiendo del flujo de aire

Válvula de aire cerrada. 2. Válvula medio cerrada. 3. Válvula semi-abierta. 4.
 Válvula abierta al máximo [23]

En la Fig. 9 la zona principal de la flama es rica en combustible, generando flamas luminosas con mayor transferencia de calor, mientras que la zona secundaria ayuda a alargar la flama y el perfil de flujo de calor. La elección entre estas zonas depende de la aplicación y de los requisitos de transferencia de calor del sistema [24] [26].

Figura 9. Esquema de las zonas formadas en una flama de buena calidad [26]
1.1.3.4.3 Diagnóstico de defectos de flama

Para diagnosticar las condiciones inadecuadas de la flama existen acciones correctivas [24],estas se pueden encontrar en la Tabla 6.

Condición	Causa posible	Acción correctiva
La flama es de color blanco azulado y tiene rasgos duros y afilados.	• Aire primario excesivo.	• Ajuste el obturador de aire.
La flama es pequeña y de color azul.	 Orificio o Venturi obstruido. Línea de gas restringida u obstruida. Presión de gas excesivamente baja. 	 Limpie o reemplace el orificio del quemador. Retire y limpie la línea de suministro de gas. Use un manómetro y ajuste la presión del gas.
La flama es amarilla	 Aire primario insuficiente. Orificio de quemador de gran tamaño. 	 Limpie el obturador de aire primario y ajústelo para obtener una mezcla de aire y gas adecuada. Reemplace el orificio del quemador.
La flama hace ruido (retumba o gorgotea).	 Aire primario excesivo. Presión de gas excesiva. 	 Limpie el obturador de aire primario y ajústelo para obtener una mezcla de aire y gas adecuada. Use un manómetro y ajuste la presión del gas.

Tabla 6. Acciones correctivas para defectos de flama [24]

			•	Reemplace el orificio.
Ruido del orificio	•	Tamaño de orificio	•	Use un manómetro v
(rebabas o chillido		inadecuado.	•	Ose un manometro y
agudo)		Presión de gas excesiva		ajuste la presión del
ugudo).	•	i resion de gas excesiva.		gas.

1.1.3.5 Eficiencia de un quemador

Se explica a partir de dos eficiencias: la de combustión y la térmica. También se considera otras pérdidas que afectan su valor global.

1.1.3.5.1 Eficiencia térmica

Se refiere a la capacidad de intercambio de calor al ambiente, y puede ser afectada por pérdidas del sistema, se calcula a partir de la ecuación 16:

$$\eta_{ter} = \frac{Q_{\acute{u}til}}{Q_{entra}} \tag{16}$$

1.1.3.5.2 Eficiencia de combustión

Permite evaluar el rendimiento de los equipos de combustión, e indica qué tan bien se está quemando el combustible. En un escenario ideal, se lograría una eficiencia del 100% cuando todo el combustible se quema por completo, extrayendo así toda la energía posible. Sin embargo, en la práctica, es difícil alcanzar el 100% de eficiencia de combustión, y muchos procesos presentan una eficiencia que oscila entre el 0% y el 95%. [27]

1.1.3.5.3 Eficiencia de la segunda ley

La primera ley no reconoce la importancia relativa de las diferentes pérdidas y consumo de exergía mientras que la segunda ley considera todas estas en la transferencia de exergía de calor fuera del sistema y desde el combustible, por tanto las eficiencias desde el punto de vista energético pueden requerir otro tipo de análisis. Algunos valores comparativos de eficiencia se muestran en la Tabla 7. [28]

Sistema	Eficiencias		
Distema	Primera ley	Segunda ley	
Caldera de alta presión	0.9	0.5	
Horno de calefacción	0.6	0.1	
Cocina Doméstica	0.7	0.2	

Tabla 7. Eficiencias de sistemas y procesos generales típicos [28]

La energía disponible o exergía, es una propiedad que mide la capacidad máxima de un objeto para causar cambios, esta se destruye irreversiblemente en cualquier proceso donde no existe un estado de equilibrio (diferencia de presión y temperatura), ocasionando pérdidas en el sistema. Para que esta sea reversible, el sistema y los alrededores deben estar en equilibrio térmico con una diferencia de temperatura infinitesimal, es decir un proceso adiabático. [29] La exergía útil se define con la ecuación 17.

$$X_{util} = \left(1 - \frac{T_0}{T_s}\right) Q_{salida} \tag{17}$$

La eficiencia exegética se calcula con la relación entre las salidas de exergía útil y la de trabajo máximo posible (reversible) que se puede obtener a partir de la exergía suministrada a un sistema [10], como se observa en la ecuación 18:

$$\eta_{II} = \left(\frac{X_{util}}{W_{rev}}\right) \times 100\% \tag{18}$$

1.1.3.6 Aprovechamiento energético de un quemador

El aprovechamiento energético de un quemador consiste en maximizar la eficiencia y rendimiento de un sistema de combustión, mediante el diseño adecuado del quemador, el control preciso de la relación aire-combustible y la implementación de técnicas de recuperación de calor. Esto permite convertir la mayor cantidad posible de energía química del combustible en energía térmica útil, reduciendo costos, emisiones contaminantes y promoviendo la sostenibilidad energética. [30]

1.1.3.6.1 Aplicaciones aprovechamiento

Las aplicaciones del quemador de tubo radiante en la industria son: calefacción de espacios interiores o exteriores, secado de productos de diferentes aleaciones en la industria alimentaria y textil, y en hornos industriales para producción de vidrios, metales y plásticos. [31]

1.1.3.7 Herramientas para análisis térmico en tubos radiantes

1.1.3.7.1 Simulación CFD

El CFD es una herramienta informática muy útil en los campos relacionados con flujo de calor, el intercambio de calor y el comportamiento de un fluido en determinadas condiciones. La fiabilidad de la temperatura se valida con las mediciones experimentales o simulación numérica [5] [32]. Esta simulación reduce significativamente la necesidad de realizar costosos experimentos antes de realizar modificaciones en un sistema y proporciona información difícil de obtener experimentalmente. [33]

El CFD por "Volúmenes Finitos" es una técnica de simulación numérica de fluidos que se basa en dividir el fluido en una malla de elementos finitos y simular el comportamiento de este mediante resolución de la ecuaciones de fluido para cada uno de los elementos. [33]

1.1.3.7.2 Termografía

La termografía es una técnica que permite medir y visualizar la distribución de temperaturas de una superficie, mediante la toma de imágenes usando una tecnología de detección de radiación infrarroja. Se utiliza una cámara termográfica para capturar las imágenes infrarrojas de una superficie, y luego se procesan esas imágenes para obtener un mapa de temperatura de la superficie, el cual muestra las diferentes áreas en diferentes colores. [21]

1.1.3.7.3 Análisis de imágenes usando Software

Consiste en procesar imágenes digitales para extraer información como longitudes, áreas y tamaños, es muy utilizada en las áreas de ingeniería, medicina, seguridad. Este proceso involucra la adquisición de la imagen y el postprocesamiento de la misma donde se pueda extraer las características e información de los objetos de la imagen. [21]

1.1.3.8 Prueba estadística t de Student

Se utiliza para la comparación de las medias de dos grupos independientes, el cual representa la diferencia entre los grupos dividida por la variabilidad de las muestras. Se establece una hipótesis nula donde los grupos de control no tienen diferencia, si la t calculada es mayor a la t critica se rechaza Ho y se acepta la H1 hay una diferencia significativa entre los datos. [34].

1.2 Objetivo

1.2.1 Objetivo general:

Analizar parámetros de combustión en prototipo de quemador radiante experimental de GLP sin recuperación y su influencia sobre el aprovechamiento energético.

1.2.2 Objetivos específicos:

- Investigar características de los quemadores radiantes
- Especificar parámetros de combustión teóricos
- Calcular transferencia de calor en prototipo experimental
- Aplicar balance de masa y energía
- Examinar la reacción de combustible teórico
- Determinar el aprovechamiento energético en prototipo experimental
- Analizar la distribución de temperaturas en el tubo exterior por elementos finitos y compararlos con los resultados experimentales

1.3 Hipótesis

La variación controlada de parámetros de combustión en un quemador de GLP permitirá determinar niveles de aprovechamiento energético.

CAPÍTULO II

METODOLOGÍA

2.1 Materiales

Para la parte experimental se aplicó un prototipo de quemador experimental en el Laboratorio de Energía de la Facultad de Ingeniería Civil y Mecánica de la Universidad Técnica de Ambato. Los equipos de medición y visualización de temperaturas son el pirómetro, la cámara termográfica, termómetro, caudalímetro, y medidor de gases. Para el análisis de simulación se utilizó software especializado.

2.2 Métodos

2.2.1 Técnicas e instrumentos de recolección de información

Para la recolección de información se utilizó cuatro técnicas las cuales son: el **método descriptivo** para especificar los parámetros de combustión, el **método experimental** que permitió recopilar datos sobre el prototipo estudiado y finalmente partiendo de los datos obtenidos se aplicó **técnicas computacionales** que permitieron la simulación por elementos finitos utilizando software especializados.

Método descriptivo: Se aplicó para especificar los parámetros de combustión teórico, debido a que se recopiló datos de temperatura, presiones y datos establecidos teóricamente, los mismos que se describen y tabulan en tablas.

Método experimental: La estructura de flama se analizó cualitativa en el tubo radiante interior. Se utilizó instrumentos de medición como el pirómetro, la cámara termográfica, termómetro, caudalímetro y medidor de gases, para obtener los datos usados en el cálculo de la transferencia de calor. Adicionalmente, se proporcionó una descripción detallada de los parámetros con el objetivo de alcanzar la estabilidad del sistema, además se analizó su impacto en el nivel de aprovechamiento.

Técnicas computacionales: Con un software de análisis de imágenes se observó las propiedades geométricas de la flama, como sus longitudes, áreas y perímetros. Se realizó un proceso de modelado bidimensional, seguido de una etapa de mallado para

subdividirlo en elementos finitos lo que permitió realizar una simulación de la distribución de temperaturas en el sistema.

2.2.2 Identificación y operacionalización de variables

Las Tablas 8 y 9 describen los parámetros para la operacionalización de variables independiente y dependiente.

Variable independiente	Conceptualización	Dimensiones	Indicadores	Técnicas e instrumentación
		Cantidad de Exceso de aire aire		Ecuaciones
Parámetros de combustión	Permiten la combustión	i la Parámetros ión termo físicos Presión entrada GLP	Presión de entrada de GLP	Regulador de presión Ecuaciones
		Diámetro del inyector	Calidad de flama	Ponderación

Tabla 8. Variable independiente.

Tabla 9. Vallable dependiente	Tabla 9.	Variable	dependiente
-------------------------------	----------	----------	-------------

Variable dependiente	Conceptualización	Dimensiones	Indicadores	Técnicas e instrumentación
		Pérdidas de calor	Calor residual por la chimenea	Ecuaciones
Aprovechamiento energético		Eficiencia Bajo térmica Alto rendimiento		Ecuaciones
	Proceso de intercambio de	Estructura de flama	Estable Inestable	Inspección visual Ecuaciones
	calor al medio.	DistribuciónTemperaturaDistribuciónen el tuboderadiantetemperatura.exterior(TRE)	Pirómetro Cámara termográfica	
		Calor útil	Calor por convección Calor por radiación	Ecuaciones

2.2.3 Flujograma para la metodología general

Figura 10. Metodología general

2.2.4 Procedimientos

2.2.4.1 Procedimiento para medición de temperaturas superficiales

Las temperaturas superficiales se midieron y analizaron con una cámara termográfica (ver Fig. 13) modelo FLIR E8-XT y su software. Esta cuenta con un rango de temperatura de -20 °C a 550 °C (-4 °F a 1022 °F), y una precisión del ± 2 % [35]. Para la medición de datos la cámara termográfica se posicionó a una distancia de 2m de la superficie a medir y a una altura de 1.15m desde el suelo, como se ilustra en la Fig. 11.

Figura 11. Ubicación de cámara termográfica

En la Fig. 12 se establecen puntos y zonas en las cuales se tomaron mediciones de temperatura del tubo radiante exterior. (ver Anexo 9).

Figura 12. Especificaciones de punto de medición

Figura 13. Termómetro CEM DT-8867H y cámara FLIR E8-XT

Las temperaturas superficiales se midieron con un pirómetro modelo CEM serie DT-8867H (ver Fig. 13.) con un rango de temperatura de -50 °C a 1650 °C (-58 °F a 3002 °F) [36], este se ubicó a 0.3m de la superficie a medir.

Se midieron temperaturas en el TRI fuera del quemador (ver Anexo 5), en los tres puntos establecidos según la Fig. 14.

Figura 14. Tubo radiante interior

2.2.4.2 Procedimiento para análisis de gases

La medición de gases se realizó con un analizador de combustión portátil marca Bacharach modelo Intech, que permite medir: eficiencia, CO_2 , CO, O_2 y temperaturas [37], mediante una sonda que se coloca dentro de la chimenea a 0.2 *m* desde el borde como se muestra en la Fig. 15.

Figura 15. Analizador de combustión Bacharach Intech

Aspectos	Rangos	Características
Dióxido de carbono (CO_2)	8-11 %	
Oxigeno (0_2)	2-6 %	
Monóxido de carbono (CO)	80 – 100 ppm	
$(CO_2)_{m \acute{a} x}$ GLP	13,9 %	
Excess de aire Lambda (1)	10 30.04	Exceso de aire respecto al
Excess de alle Lambda (λ)	10 - 30 %	teóricamente necesario
Temperatura ambiente (T_A)		Medida en chimenea de gases
Temperatura de combustión		Medida en lugar más caliente de la
(T_H)		corriente de gases
Eficiencia calefacción		Considera el vapor de agua como
inferior (Eta)		energía útil
Eficiencia calefacción		Considera que no existe
superior (Eff)		condensado ni energía útil

 Tabla 10. Valores típicos en los gases de combustión en quemadores de gas [30]

2.2.4.3 Procedimiento de operación de quemador

Para todas las pruebas y toma de datos se siguió el instructivo de operación que se detalla a continuación:

A) Actividades previas

- Conectar el combustible (cilindro de GLP doméstico) en el exterior del laboratorio.
- Conectar la alimentación del quemador (manguera) al regulador de presión y verificar que no exista fugas.
- Conectar la alimentación del comburente (aire) a una presión entre 68.95 y 137.89 kPag.

• Permanecer junto al quemador durante todo el proceso de encendido, evitar la sobre confianza y estar siempre alerta.

Figura 16. Acciones preventivas para el encendido del quemador

B) Encendido

- 1. Abrir la válvula de corte de GLP ubicada antes del regulador de presión.
- Regular los dos manómetros, el primero en 200 kPag (2 bar) y el segundo en 48.26 kPag (7 psig).
- Abrir la válvula del quemador y mantener abiertos tres de los seis agujeros ubicados en la zona de admisión de aire primario atmosférico sin aire comprimido.
- 4. Encender manualmente, verificando que la flama tenga la forma, color y longitud requerida.
- Introducir el tubo interior dentro del quemador y abrir todos los agujeros de aire primario atmosférico, con una separación a 15 mm y asegurarlo con los tornillos.
- 6. Abrir el suministro de aire comprimido.

Figura 17. Encendido y funcionamiento del quemador

- C) Apagado
- 7. Cerrar completamente la válvula de corte de GLP, a los 11 minutos de funcionamiento cuando el quemador haya alcanzado su temperatura máxima.
- 8. Cerrar completamente el suministro de aire comprimido.
- 9. El enfriamiento dura aproximadamente 17 minutos, posterior a este tiempo se puede realizar el proceso de encendido nuevamente.

Figura 18. Tiempo de funcionamiento y apagado

E. Recomendaciones de seguridad

• Verificar antes del encendido que no se encuentre material inflamable alrededor del quemador.

- Utilizar equipos de protección personal (guantes, mandil, gafas de seguridad), al momento de encender el quemador.
- Mantener el quemador sobre una base firme y que soporte altas temperaturas.
- Evitar obstrucciones que dificulten la inspección, control y toma de datos.

2.2.4.4 Procedimiento de simulación

El dominio viene definido por el volumen interior del prototipo de quemador por donde circula el flujo de gases, este se realiza en SpaceClaim de ANSYS, y por efectos de simulación se realiza "simplificación de geometría", proceso que reducirá la geometría a partes esenciales y necesarias, generando una superficie y un análisis en 2D.

Figura 19. Modelado del volumen interior del prototipo de quemador en ANSYS

Se realiza un ajuste de mallado en un modelo bidimensional del flujo interno del quemador.

Número de nodos	42021		
Número de elementos		79362	
Calidad del mallado	Calidad ortogonal	Aproximación (skewness)	Calidad del elemento
Mínimo:	0.69	$7.2913 e^{-07}$	0.6679
Máximo:	1	0.5578	1
Promedio:	0.968	0.0527	0.96509
Criterios de calidad de malla	0 - 1	0 - 0.25	0.9 - 1
Desviación estándar	$3.4302 e^{-02}$	$5.7946 e^{-02}$	$3.7257 e^{-02}$

Tabla 11. Ajustes de parámetros de mallado de salida

Los valores promedio están dentro de los criterios de calidad de malla, proporcionando una buena convergencia en la simulación [38].

Se realizó los ajustes de la malla siguiendo los parámetros de la Tabla 11, y se establece secciones (*Name Selections*) para identificar los bordes de geometría, como se muestra en la Fig. 20.

Figura 20. Named Selection (A) Calor de entrada, (B) Salida, (C)Pared del TRE, (D) Simetría (E) Pared del TRI

El desarrollo de la simulación se realiza en ANSYS FLUENT: análisis en estado estable, volumen de control con entrada y salida de calor, modelo de energía activado, viscosidad (*Viscous*) con modelo *Shear Stress transport*, tipo de fluido aire y material en paredes acero.

Las condiciones de frontera en la simulación se aplicaron a las zonas de volumen de control: condiciones de pared (Wall TRE) donde existe una transferencia de calor por radiación hacia el ambiente con una tasa de generación de calor 595.75 W/m^3 condiciones de pared interna (Symmetry), condiciones de entrada (Inlet heat) a una velocidad de 2.26 m/s y a una temperatura de 500°C y salida del fluido (Outlet) con un flujo másico de 0.00156 kg/s.

Para la configuración de los métodos de solución según [39], los flujos se ajustan a las 200 iteraciones, pero la distribución de temperatura no es correcta hasta después de las 4000 iteraciones, por tanto, el método de solución se realizó a 5000 iteraciones.

2.2.5 Descripción del quemador experimental

El quemador sin recuperación de GLP tipo inmersión (ver Anexo 1) se describe en la Tabla 12 y Fig. 21.

Combustible:	GLP		Entrada da aira	Comprimido
Longitud/diámetro:	1100/100	mm	Entraua de arre:	Atmosférico
Peso:	21	kg		
COMPONENTES				
Tubo chimenea		Válvula de quemador		
Tubo radiante exterior		Tapa separ	adora	
Inyector		Visor		
Tubo radiante interior		Acople (Racor)	neumático	

Tabla 12. Ficha técnica del quemador

Este quemador posee tres sistemas principales: admisión de aire combustible (AC) en donde se realizó la configuración de los parámetros de combustible y comburente, tubo radiante interior en donde se produce la combustión y permanece la flama, y tubo radiante exterior donde se aprovecha la transferencia de calor y se toma las mediciones de datos.

Figura 21. Detalle de los sistemas del quemador

Para la configuración del sistema de admisión de aire combustible se utilizó: regulación de presión del gas combustible (GLP) de doble etapa, regulación de aire comprimido por manómetro y caudalímetro en los rangos establecidos por Fig. 22.

Manómetro combustible GLP

Doble regulación 200 kPag (2 bar g) 0 a 70 kPag (0 a 10 psig)

Manómetro aire comprimido

68.95 a 138 kPag(10 a 20 psig)

Caudalímetro aire comprimido

 $\begin{array}{c} 0.\,0003\ a\ 0.\,00041\ m^3/s\\ (20\ a\ 30\ L/min\) \end{array}$

Figura 22. Rangos de instrumentos de control de GLP y aire.

En la Fig. 23 se presenta el esquema de conexión del quemador experimental en donde se especifica la ubicación de los instrumentos de medición y las entradas de aire y combustible.

Figura 23. Esquema de conexión del quemador

2.2.5.1 Identificación de partes del quemador

Figura 24. Identificación de las partes del quemador

N° de orden	Denominación	Material	Modelo / Semiproducto	Observaciones
la	Válvula de quemador	Acero	Indumetal M &A.	Manguera 0.00635 m. (1/4 pulg.)
1b	Inyector	Bronce	Inyector comercial M6 × 0.0005 m.	Roscable, intercambiable
2a	Tubo radiante Interior (TRI)	Acero Inoxidable	Tubo de 0.025 m. (1 pulg.) × 0.45 m. × 0.0015 m.	
2b	Admisión de aire primario atmosférico	Acero Inoxidable	Tubo radiante interior 0.194 m	Consta de 6 agujeros de 0.00635 m. (1/4 pulg.)
2b	Admisión de aire primario comprimido	Acero Inoxidable	Tubo de 0.006 m. × 0.05 m.	El tubo se ubica a un ángulo de 45°
3	Tapa posterior con separación de aire secundario	Acero	Tapa de 0.101 m. (4 pulg.) × 0.004 m. y platinas de 0.02 m.× 0.1 m × 0.0015 m.	Sujetado con perno G8 0.00635 m × 2.5 m (1/4 × 1 pulg.)
4	Tubo radiante exterior (TRE)	Acero	Tubo de 0.101 m. (4 pulg.) × 1 m. × 0.006 m.	Con mirilla de 0.054 m.× 0.025 m. × 0.004 m.
5	Tubo Chimenea	Acero	Tubo de 0.076 m. (3 pulg.) × 0.3 m. × 0.003 m.	Ubicada a 0.01 m desde la entrada del tubo radiante exterior

Tabla 13. Conceptualización de las partes del quemador

2.2.5.2 Inyector del quemador

La selección del inyector se realizó de manera experimental con tres alternativas de diámetro y la variación de presiones de combustible GLP. En el Anexo 2 se proporciona la información de su diámetro de paso y geometría, en el Anexo 3 se encuentran las pruebas realizadas con aire total y aire parcial.

La evaluación se realizó con la ponderación de la calidad de flama, para identificar la combustión completa, ver Tabla 14.

1	La flama empieza a escupir y la flama es inestable
2	Flama estable pero amarilla
3	Flama azul, sonido inestable
4	Flama estable azul

Tabla 14. Ponderación de la calidad de estructura de flama

2.2.6 Correlaciones aplicadas para transferencia de calor por convección

a) Correlación de Morgan de Número de Nusselt para cilindro horizontal

$$\bar{h} = \frac{D}{k} \overline{Nu}_D \tag{19}$$

Donde:

 \overline{Nu}_D : número de Nusselt

- \bar{h} : coeficiente de transferencia de calor por convección $(W/m^2 \cdot K)$
- D: diámetro exterior del cilindro por convección (m)
- k: conductividad térmica $(W/m \cdot K)$
 - b) Correlación simple de Número de Nusselt de Churchill y Chu desde una superficie horizontal

$$\overline{Nu}_{D} = \left\{ 0.60 + \frac{0.387 R a_{D}^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}} \right\}^{2} R a_{D} \le 10^{12}$$
(20)

Donde:

 \overline{Nu}_D : número de Nusselt

Ra_D: número de Rayleight para diámetros

Pr: número de Prandtl

c) Correlación para el número de Rayleight Ra_D

$$Ra_D = \frac{g\beta(T_s - T_\infty) D^3}{\nu\alpha}$$
(21)

Donde:

<i>g</i> :	aceleración gravitacional
β:	coeficiente de expansión (K^{-1})
$(T_s - T_\infty)$:	gradiente de temperatura alrededor del tubo radiante (° C)
<i>D</i> :	diámetro de la tubería exterior (m)
ν:	viscosidad cinemática (m^2/s)
α:	difusividad térmica (m^2/s)

2.3 Cálculos de termodinámica y transferencia de calor

2.3.1 Selección y determinación de la potencia teórica del inyector

a) Selección del inyector

Scribano [40] examinó el impacto del diseño de la boquilla en el rendimiento de un tubo radiante de gas, para comprender cómo la variación del diámetro del inyector afecta la flama. Este comportamiento para diversos inyectores y presiones de combustible se realizó mediante ponderación (ver Anexo 4).

	Ponderación						
1	2			3	4		
La llama empieza escupir y la llama es inestable	a Llama estal amari	Llama estable pero amarilla		ıma azul, sonid inestable	Llama estable azul		
				Puntuación ponderada			
Invector	Diámetro	Presión de GLP				Total	
v		14 kP	ag	35.5 kPag	48.26 kPag		
		(2 psi	g)	(5 psig)	(7 psig)		
Inyector 1	Ø 1.6	4		2	2	8	
Inyector 2	Ø 0.75	2		2	2	6	
Inyector 3	Ø 0.50	4		3	4	11	

Tabla 15. Ponderación de comportamiento de flama

El inyector 3 de 0.5mm mostró una flama azul y estable en presiones de GLP de 14 kPag a 48.26 kPag con puntuación de 11.

b) Potencia teórica del inyector

Para la densidad del aire se utiliza la ecuación 22:

$$\frac{P_1}{\rho_1} = \frac{P_2}{\rho_2}$$
(22)

Donde:

- P_1 : presión del aire a condiciones normales (25°C y 1 atm) [*kPa*]
- P_2 : presión a la altura requerida (2577 m) [kPa]
- ρ_1 : densidad del aire a condiciones normales (25°C y 1 atm) [kg/m³]
- ρ_2 : densidad requerida $[kg/m^3]$

La potencia del quemador se determinó mediante: un diámetro de Ø0.5 mm, presión absoluta (a 2577 m, ver Anexo 22), presión relativa (Tabla 16) y la ecuación 17 en la Tabla 17.

Datos							
Presión del aire a condiciones normales (P_1)	101.325	kPa					
Presión a la altura requerida (P_2)	73.97	kPa					
Densidad del aire a condiciones normales (ρ_1)	1.29	kg/m ³					
Densidad del propano	1.88	kg/m ³					
Resultados							
Densidad del aire (ρ_2)	0.94	kg/m ³					
Densidad relativa del propano (ρ)	2.00						

Tabla 16. Densidad del aire

Datos					
Diámetro del orifico del inyector	0.5	mm			
Poder calorífico superior	11900	kcal/kg			
Coeficiente de descarga	0.925				
Duración absoluto	12525.095	ттса			
	17.56	psi			
Densidad relativa del propano	2.00				
Resultados					
Dotonoio taórico	2480.44	kcal/h			
rotencia teorica	2.9	kW			

Tabla 17. Potencia teórica para inyector

La potencia teórica es de 2.9 kW para un inyector Ø0.5 mm.

2.3.2 Primera ley para sistemas reactivos

La temperatura promedio superficial es de 266.33 °C en una longitud de 0.9 m.

Figura 25. Distribución de temperaturas en el quemador de tubo radiante

a) Reacción estequiométrica

El balance estequiométrico se realizó con propano $[C_3H_8]$ en la ecuación 23.

$$C_n H_m + \left(n + \frac{m}{4}\right) (O_2 + 3.762N_2) \rightarrow nCO_2 + \frac{m}{2}H_2O + \left(n + \frac{m}{4}\right) 3.762N_2$$
 (23)

Donde:

$$C_n H_m$$
: hidrocarburos generales " $[C_3 H_8]$ combustible GLP"

m: número de átomos de hidrógeno

n: número de átomos de carbono

Mezcla estequiométrica (100% aire teórico):

$$C_3 H_8 + 5(O_2 + 3.762N_2) \rightarrow 3CO_2 + 4H_2O + (5)3.762N_2$$

b) Reacción teórica con exceso de aire

El balance para combustión completa con 30% exceso de aire (130 % aire teórico):

$$C_3 H_8 + 6.5 (O_2 + 3.762N_2) \rightarrow 3CO_2 + 4H_2O + O_2 + (6.5)3.762N_2$$

Con la ecuación balanceada se calculó la relación aire/combustible mediante las masas molares y la ecuación 24.

С	Н	О	Ν
12[<i>kg/kmol</i>]	1.007[kg/kmol]	16[<i>kg/kmol</i>]	14.0067[kg/kmol]
AC =	(24)		
$AC = \frac{6.5[(1)]}{6.5[(1)]}$	$\frac{16 \cdot 2) + (3.762 \cdot 2 \cdot 2}{1 \cdot 44.056}$	$\frac{14.0067)}{k} = 20.3 \frac{1}{k}$	kg _{aire} Gcombustible

Tabla 18. Masas molares

Se determinó que se utiliza 20.3 kg de aire por cada kilogramo de combustible, durante todo el proceso de combustión.

• Cálculo del calor teórico generado por la reacción de combustión

Para calcular el calor teórico por combustión completa se asume la temperatura de 500°C dentro del quemador y la ecuación 25. (Anexos 16 al 21).

$$Q_{sal} = \sum N_r (\bar{h}_f + \bar{h} - h^{\circ})_r - \sum N_p (\bar{h}_f + \bar{h} - h^{\circ})_p$$
(25)

Donde:

- *Q*: flujo de calor teórico generado [kJ/kg]
- N_p : moles de los productos [*kmol*]
- N_r : moles de los reactivos [*kmol*]
- \bar{h}_f : entalpía de formación a 25°*C* y 1 *atm* [*kJ*/*kmol*] (Anexo 21)
- \bar{h} : entalpía de formación a T de reacción a producto [kJ/kmol]
- h° : entalpía de corrección [kJ/kmol]

Tabla 19. C	Calor teórico	generado
-------------	---------------	----------

Datos						
	$\bar{h}_f[kJ$	ħ [kJ	h° [kJ	ħ [kJ		
Sustancia	/kmol]	/kmol]	/kmol]	/kmol]	N [kmol]	
	(298.15 K)	(288.15 K)	(298.15 <i>K</i>)	(773.15 K)		
$C_3 H_8$	-103850	_	_	-	1	
02	0	8388.795	8686.05	-	6.5	
N ₂	0	8378.165	8673.05	-	24.453	
<i>CO</i> ₂	-393520	_	9369.025	30804.65	3	
H ₂ 0	-285830	_	9908.65	26861.96	4	
02	_	_	8686.05	23619.155	1	
N ₂	_	_	8673.05	22870.595	24.453	
		Re	sultados			
Calor teórico generado (Q_{sal})		171666	51.232	kJ/kmol C ₃ H ₈		

Datos						
Calor real generado (Q_{sal})	1716661.232 C ₃ H ₈	kJ/kmol				
Masa molar del combustible (C_3H_8)	44.097 C ₃ H ₈	kg/kmol				
Potencia teórica (Q)	2.9	kW				
Resultados						
Fluio másico GLP $(\dot{m},,t)$	7.45×10^{-5}	kg/s				
(ncomb)	0.268	kg/h				

Tabla 20. Flujo másico teórico del combustible

El flujo másico GLP para una combustión completa es de 0.268 kg/h.

c) Reacción real con exceso de aire

Los productos de combustión con una presión de GLP de 48.2 kPag (7 psig) y una temperatura de combustible de 15°C son:

Tabla 21. Composición volumétrica de los productos de combustión (Anexo 11)

СО	02	<i>CO</i> ₂	<i>N</i> ₂	H ₂ 0
0.2572 %	5.40%	10.30%	84.04%	No se mide

Se considera que son gases ideales, por lo tanto, las fracciones de volumen se asemejan a las fracciones molares. Se asume 100 kmol de productos secos en la ecuación de combustión:

$$xC_{3}H_{8} + a(O_{2} + 3.762N_{2}) \rightarrow 10.3CO_{2} + 0.25CO + 5.4O_{2} + 84.04N_{2} + bH_{2}O_{2} + 6.04N_{2} + bH_{2}O_{2} + 0.04N_{2} + 0.04N_{2} + bH_{2}O_{2} + 0.04N_{2} + 0.04N_{2}$$

Los coeficientes desconocidos x, a y b se determinan de los balances de masa:

$$C_3H_8 + 6.35(O_2 + 3.762N_2) \rightarrow 2.92CO_2 + 0.07CO + 1.53O_2 + 23.88N_2 + 4H_2O_2 + 20.07CO_2 + 0.07CO_2 + 0.$$

Con la ecuación balanceada se calculó la relación aire/combustible mediante las masas molares en Tabla 21 con la ecuación 24:

$$AC = \frac{6.35[(16 \cdot 2) + (3.762 \cdot 2 \cdot 14.0067)]}{1 \cdot 44.056} = 19.80 \frac{kg_{aire}}{kg_{combustible}}$$

El porcentaje de exceso de aire real se calcula con la ecuación 26:

Porcentaje de aire real =
$$\frac{m_{aire,act}}{m_{aire,teo}}$$
 (26)

Porcentaje de aire real =
$$\frac{(6.35)}{(5)}$$
 = 127 %

• Cálculo del calor real generado para la reacción de combustión incompleta

Para calcular el calor real para combustión incompleta se asume la temperatura de 500°C dentro del quemador y la ecuación 25. (Anexos 18 al 21)

$$Q_{sal} = \sum N_r (\bar{h}_f + \bar{h} - h^\circ)_r - \sum N_p (\bar{h}_f + \bar{h} - h^\circ)_p$$

Datos						
	$\bar{h}_f[kJ$	ħ [kJ	h° [kJ	$\overline{h} \left[k \right]$		
Sustancia	/kmol]	/kmol]	/kmol]	/kmol]	N [kmol]	
	(298.15 <i>K</i>)	(288.15 K)	(298.15 <i>K</i>)	(773.15 <i>K</i>)		
$C_3 H_8$	-103850	_	-	_	1	
02	0	8388.795	8686.05	_	6.35	
N ₂	0	8378.165	8673.05	_	23.89	
<i>CO</i> ₂	-393520	_	9369.025	30804.65	2.92	
СО	-110530	_	8673.05	22990.17	0.07	
H ₂ 0	-285830	—	9908.65	26861.96	4	
02	—	—	8686.05	23619.155	1.53	
N ₂	_	_	8673.05	22870.595	23.89	
	Resultados					
Calor real generado (Q_{sal})			169392	18.66	kJ/kmol C ₃ H ₈	

Tabla 22. Calor real generado

 $Q = 1693918.66 \left[k J / k mol C_3 H_8 \right]$

Figura 26. Calor real de salida para combustión incompleta

Datos						
Calor real generado (Q_{sal})	1693918.66 C ₃ H ₈	kJ/kmol				
Masa molar del combustible (C_3H_8)	44.097 <i>C</i> ₃ <i>H</i> ₈	kg/kmol				
Potencia teórica (Q)	2.9	kW				
Resultados						
Fluio másico real GLP (\dot{m}_{max})	7.55×10^{-5}	kg/s				
	0.27	kg/h				

Tabla 23. Flujo másico real del combustible

El flujo másico para aire se realizó con la ecuación 24 y el flujo másico real GLP.

Datos					
Relación aire/combustible (AC)	19.80	kg_{aire}/kg_{comb}			
Fluio másico GLP $(\dot{m},,)$	7.55×10^{-5}	kg/s			
(<i>ncomb</i>)	0.27	kg/h			
Resultados					
Fluio másico de aire (\dot{m}_{max})	1.49×10^{-3}	kg/s			
indjo musico de une (maire)	5.38	kg/h			

Tabla 24. Flujo másico del aire

El flujo masico total se calcula con la ecuación 7.

$$\dot{m}_{comb} + \dot{m}_{aire} = \dot{m}_{total}$$

$$0.27\frac{kg}{h} + \frac{5.38kg}{h} = 5.65 \, kg/h$$

d) Temperatura de flama adiabática

La combustión adiabática es un proceso en el que no hay transferencia de calor entre el sistema y sus alrededores. [10] En este caso, la temperatura de la flama puede alcanzar su valor máximo sin ninguna pérdida de calor hacia el entorno (Q = 0). Por tanto, la ecuación 25 se reduce a la 27:

$$\sum N_p \left(\bar{h}^{\circ}{}_f + \bar{h} - h^{\circ}\right)_p = \sum N_r \bar{h}^{\circ}{}_{f,r} = N \bar{h}^{\circ}{}_f$$
(27)

En este caso, se considera que la temperatura de los reactivos es 25°C y se asume 101.325 kPa (1 atm). Se considera el 27 % de exceso de aire y se encuentra la temperatura de los productos por ensayo y error.

Datos					
Sustancia	<i>h</i> ° _f [kJ/kmol] (298.15 K)	h° [kJ/kmol] (298.15 K)	N [kmol]		
<i>C</i> ₃ <i>H</i> ₈	-103850	_	1		
02	0	8686.05	6.35		
N ₂	0	8673.05	23.89		
<i>CO</i> ₂	-393520	9369.025	2.92		
СО	-110530	8763.05	0.07		
H ₂ 0	-285830	9908.65	4		
02	_	8686.05	1.53		
N ₂	_	8673.05	23.89		
Resultados					
$2.92h_{CO_2} + 0.07h_{CO} + 4h_{H_2O} + 1.53h_{O_2} + 23.89h_{N_2} = 2484379.89 kJ$					
Temperatura adiabática (T_{-})		2155.20	K		
remperutu	in actuation (Faa)	1882.05	°C		

Tabla 25. Entalpías de reactivos y productos a temperatura ambiente

Figura 27. Temperatura adiabática

La temperatura adiabática generada es de 1882.05 °C, en condiciones adiabáticas.

e) Cálculo de convección de flujo interno

El TRE es considerado como un tubo circular caracterizado por un flujo de calor superficial y condiciones laminares en donde el número de Nusselt es constante.

Figura 28. Diagrama de resistencias térmicas para transferencia de calor

La convección del flujo interno se calcula con las ecuaciones 28 a 29 en la Tabla 26.

$$Re_D = \frac{\rho(D*V)}{u} < 2000 \ Flujo \ laminar \tag{28}$$

$$\overline{Nu}_{D} = \frac{\overline{h}D}{k} = 4.36 \quad q_{s} = constante$$
(29)

$$\dot{Q}_{conv} = hA_s(T_s - T_\infty) \qquad (W)$$

Datos				
Diámetro del interior (D)	0.0896	m		
Densidad simulación (ρ)	0.53	kg/m ³		
Velocidad simulación (V)	1.51	m/s		
Viscosidad dinámica (µ)	5.12×10^{-5}	$N \cdot s/m^2$		
Longitud (L)	0.94	m		
Área del interior (A_s)	0.26	m^2		
Temperatura superficial (T_{si})	266.33	°C		
Temperatura flujo interior $(T_{\infty i})$	1882.05	°C		
Gradiente de temperatura $(T_{\infty i} - T_{si})$	1615.75	°C		
Conductividad (k)	0.0862	W/m		
Resultados				
Número de Reynolds (Re_D)	1400	Laminar		
Número de Nusselt (\overline{Nu}_D)	4.36			
Coeficiente por convección \overline{h}	4.19	$W/m^2 \cdot K$		
Convección para flujo interior (\dot{Q}_{conv})	1.79	kW		

Tabla 26. Convección para flujo interno en tubería circular

El flujo laminar interior del TRE tiene una convección de 1.79 kW desde el flujo interior hacia las paredes del tubo.

La transferencia de calor por radiación es más prominente en sistemas donde hay grandes diferencias de temperatura entre la flama y la superficie interna del quemador, por tanto, no se calcula.

2.3.3 Segunda ley para sistema reactivos

Se asume que los gases y los productos están a una presión total de 1 atm, lo que permite calcular las entropías basado en la presión con ecuación 30.

$$S_{i} = N_{i}\bar{S}_{i}(T, P_{i}) = N_{i}[\bar{S}^{\circ}_{i}(T, P_{0}) - R_{u}\ln y_{i}P_{m}]$$
(30)

Donde:

Ni: número de moles de cada sustancia [kmol]

 \bar{S}°_{i} : entropía a una temperatura de 25 °C y una presión de 1 atm $[kJ/kmol \cdot K]$

- R_u : constante universal de los gases [8.31 kJ/kmol · K]
- y_i: fracción molar del componente
- P_m : presión total [atm]

Datos					
Sustancia	Ni	$y_i = \begin{bmatrix} \overline{S}^{\circ}_i (T_{ad}, 1 \text{ atm}) \\ [kJ/kmol \cdot k] \end{bmatrix}$	$\overline{S}^{\circ}_{i}(T_{ad}, 1 atm)$	$R_u \ln y_i P_m$	$N_i \overline{S}_i$
Sustancia	[kmol]		[kJ/kmol · K]		[kJ/kmol · K]
$C_3 H_8$	1	1	269.91	0	269.91
02	6.35	0.21	205.04	-12.976	1384.405
<i>N</i> ₂	23.89	0.79	191.61	-1.959	4624.382
<i>CO</i> ₂	2.92	0.090	313.73	-20.012	974.527
СО	0.07	0.002	261.31	-51.032	21.864
H ₂ 0	4	0.123	268.43	-17.395	1143.301
02	1.53	0.047	271.49	-25.386	404.220
N ₂	23.89	0.737	254.66	-2.536	6144.507
Resultados					
Entropía de reactivos (S_{react})			6278.696	kJ/kmol · K	
Entropía de productos (S_{prod})			8738.419	kJ/kmol · K	
Entropía generada (S_{gen})			2459.722	kJ/kmol · K	

Tabla 27. Entropía generada a partir de proceso adiabático

La destrucción de exergía asociada con este proceso se obtiene de la ecuación 31:

$$X_{destruida} = T_0 \cdot S_{gen} \tag{31}$$

La potencia reversible para un dispositivo de flujo estacionario se determina a partir de la ecuación 32:

$$W_{rev} = X_{destruida} + \sum \left(1 - \frac{T_0}{T_k}\right) Q_{salida}$$
(32)

Datos			
Entropía generada (S_{gen})	2459.722	kJ/kmol · K	
Temperatura ambiente (T_0)	298.15	K	
Temperatura interna (T_k)	773.15	K	
Calor real generado (Q_{salida})	1693918.66	kJ/kmol C ₃ H ₈	
Resultados			
Trabajo reversible (W_{rev})	1785013.102	kJ/kmol C ₃ H ₈	

Tabla 28. Trabajo en proceso reversible

El trabajo reversible de 1785013 $kJ/kmol C_3 H_8$ se produciría en condiciones ideales durante la combustión.

Se calcula la exergía útil de la superficie del quemador con la ecuación 17.

$$X_{util} = \left(1 - \frac{T_0}{T_s}\right) Q_{salida}$$

Datos			
Temperatura ambiente (T_0)	298.15	K	
Temperatura superficial (T_s)	539.48	K	
Calor real generado (Q_{salida})	1693918.66	kJ/kmol C ₃ H ₈	
Resultados			
Exergía útil (X _{util})	757 754.48	kJ/kmol C ₃ H ₈	

Tabla 29. Exergía útil en superficie de quemador

La exergía útil en el sistema es 757 754.48 $kJ/kmol C_3 H_8$.

2.3.4 Pérdidas por convección en paredes y flujo de gases en la chimenea

Se determinan pérdidas por convección en la pared cilíndrica de la chimenea según datos de Anexo 9, 13 y 14.

$$\overline{h} = \frac{D}{k} \overline{Nu}_D$$

$$\overline{Nu}_{D} = \left\{ 0.60 + \frac{0.387 \, Ra_{D}^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}} \right\}^{2} Ra_{D} \le 10^{12}$$

$$Ra_D = \frac{g\beta(T_s - T_\infty) D^3}{\nu\alpha}$$

Datos				
Diámetro del tubo exterior (D)	0.0762	m		
Longitud (L)	0.3	m		
Área de pérdidas de calor (A_s)	0.0718	<i>m</i> ²		
Temperatura superficial (T_s)	185	°C		
Temperatura ambiente (T_{∞})	20	°C		
Gradiente de temperatura $(T_s - T_{\infty})$	165	°C		
Emisividad (ε)	0.80			
Constante de Stefan Boltzmann (σ)	5.67×10^{-8}	$W/m^2 \cdot K^4$		
Temperatura promedio (T_f)	375.65	K		
Conductividad (k)	0.0319	W/m		
Viscosidad cinemática (v)	2.37×10^{-5}	<i>m</i> ² / <i>s</i>		
Número de Prandtl (Pr)	0.69487			
Coeficiente de expansión (β)	2.66×10^{-3}	<i>K</i> ⁻¹		
Difusividad térmica (α)	3.421×10^{-5}	<i>m</i> ² / <i>s</i>		
Resultados				
Número de Rayleight (Ra_D)	2.35×10^{6}			
Número de Nusselt (\overline{Nu}_D)	18.470			
Coeficiente de pérdida por convección (\bar{h})	7.744	$W/m^2 \cdot K$		
Pérdida de calor por convección (\dot{Q}_{conv})	0.0918	kW		

Se obtuvo una pérdida de calor por convección en la chimenea de 0.0918 KW.

Para pérdida por gases se considera una temperatura de 348 °C. (Anexo 11 y 15)

$$\dot{Q}_{gases} = (\dot{m}) * \left(\bar{h}_g\right) \tag{33}$$

Datos			
Flujo másico de gases (<i>m</i>)	5.65	kg/h	
Entalpía de salida (\bar{h}_g)	629.28	kJ/kg	
Resultados			
Pérdida de calor por gases (\dot{Q}_{gases})	0.98	kW	

Tabla 31. Pérdida de calor en gases residuales

Las pérdidas por inquemados sólidos se calcula con la ecuación 14 y la Tabla 1.

Datos				
Índice de Bacharach (<i>B</i>)	1			
Resultados				
Pérdida por inquemados sólidos (Pi)	1.27	%		

Tabla 32.	Pérdidas	por inquer	nados	sólidos
1		p 01		001000

Se obtuvo una pérdida de inquemados sólidos de 1.27 %.
CAPÍTULO III

RESULTADOS Y DISCUSIÓN

3.1 Análisis y discusión de los resultados

3.1.1 Balance de masa y energía

Figura 29. Balance de masa del sistema

El balance de masa en el sistema considera la mezcla de aire primario y secundario con el gas combustible.

Figura 30. Balance de energía del sistema

Las pérdidas de energía cuantificadas en el sistema alcanzan 1.11 kW.

3.1.2 Análisis de rendimiento y eficiencia del sistema

a) Rendimiento térmico del sistema

Figura 31. Diagrama de Sankey para balance de energías

Un total de 1.11 kW constituyen las pérdidas del sistema, mientras que la energía útil por método indirecto alcanza 1.79 kW correspondiente a transferencia de calor por convección y radiación, que constituye un rendimiento térmico de 61.72 %.

b) Eficiencia por segunda ley

El análisis de la eficiencia se realiza con la ecuación 18.

$$\eta_{II} = \left(\frac{X_{util}}{W_{rev}}\right) \times 100\%$$

Datos				
Trabajo reversible (W_{rev})	1785013.102	kJ/kmol C ₃ H ₈		
Exergía útil (X _{util})	757 754.48	kJ/kmol C ₃ H ₈		
Resultados				
Eficiencia por segunda ley (η_{II})	42.45	%		

T 11 00 T			1	1
	11101000000	nor	coound	
гашалл г	чистениста.	1 14 11	Veo minis	1 10 1
1 aora 55.1		DOI	sezuna	
				· · J

La eficiencia de calefacción superior resultado del análisis de productos de combustión es de 75.7%, y la eficiencia por segunda ley se determinó en 42.45% es decir el máximo potencial de trabajo posible.

3.1.3 Aprovechamiento energético para calentamiento de aire por convección y radiación

 a) Para transferencia de calor por convección se usan las ecuaciones 10, 19, 20 y 21. (Anexo 9, 13 y 14)

$$\begin{split} \dot{Q}_{conv} &= hA_s(T_s - T_{\infty}) \quad (W) \\ \overline{Nu}_D &= \left\{ 0.60 + \frac{0.387 \, Ra_D^{1/6}}{[1 + (0.559/Pr)^{9/16}]^{8/27}} \right\}^2 \ Ra_D &\le 10^{12} \\ Ra_D &= \frac{g\beta(T_s - T_{\infty}) \, D^3}{\nu\alpha} \end{split}$$

Datos			
Diámetro del tubo exterior (D)	0.1016	т	
Longitud (L)	0.94	m	
Área de transferencia de calor (A_s)	0.30	<i>m</i> ²	
Temperatura superficial (T_s)	266.33	°C	
Temperatura ambiente (T_{∞})	20	°C	
Emisividad (ε)	0.80		
Constante de Stefan Boltzmann (σ)	5.67×10^{-8}	$W/m^2 \cdot K^4$	
Temperatura promedio (T_f)	416.165	K	
Conductividad (k)	0.0349316	W/m	
Viscosidad cinemática (ν)	2.83×10^{-5}	<i>m</i> ² / <i>s</i>	
Número de Prandtl (Pr)	0.68870		
Coeficiente de expansión (β)	2.40×10^{-3}	K ⁻¹	
Difusividad térmica (α)	4.12×10^{-5}	<i>m</i> ² / <i>s</i>	
Gradiente de temperatura $(T_s - T_{\infty})$	246.33	°C	
Resultados		·	
Número de Rayleight (Ra_D)	5.22×10^{6}		
Número de Nusselt (\overline{Nu}_D)	23.24		
Coeficiente de calor por convección (\bar{h})	8.00	$W/m^2 \cdot K$	
Transferencia de calor por convección (\dot{Q}_{conv})	0.591	kW	

Tabla 34. Transferencia de calor por convección

Se obtiene una transferencia de calor por convección de 0.591 kW en el tubo radiante exterior.

b) Para la transferencia de calor por radiación se usa la ecuación 11 y 12

$$\dot{Q}_{rad} = h_{rad}A_s(T_s - T_{alred})$$
$$h_{rad} = \varepsilon. \sigma. (T_s - T_{alr})(T_s^2 - T_{alr}^2)$$

Tabla 35.	Transferencia	de calor	por radiación
-----------	---------------	----------	---------------

Datos		
Constante de Stefan Boltzman (σ)	5.67×10^{-8}	$W/m^2 \cdot K^4$
Emisividad de la superficie (ε)	0.80	
Área de transferencia de calor (A_s)	0.30	m^2
Gradiente de temperatura $(T_s^4 - T_{\infty}^4)$	7.72×10^{10}	K
Resultados		·
Coeficiente de calor por radiación \bar{h}	14.22	$W/m^2 \cdot K$
Transferencia de calor por radiación (\dot{Q}_{rad})	1.05	kW

Se determina una transferencia de calor por radiación de 1.05 kW en el tubo radiante exterior mayor que la de convección de 0.591 kW.

Potencia teórica del inyector	2.9	kW
Potencia útil	1.79	kW
Longitud total del tubo	1.1	т
Longitud útil del tubo	0.94	т
Potencia útil por unidad de longitud	1.9	kW/m

Tabla 36. Resumen de características del quemador

3.1.4 Análisis de temperaturas en estado transitorio

Considerando al tubo radiante exterior como una pared plana debido a que su espesor es mucho menor que su diámetro, dada las condiciones y datos (ver Anexo 23), se calcula la distribución de temperaturas en una pared plana con convección en una sola superficie mediante método de resistencia interna despreciable [8].

$$\frac{\bar{h}A_s t}{pVc} = Bi \cdot Fo \tag{34}$$

$$\theta^* = \frac{\theta}{\theta_i} = \frac{T - T_{\infty i}}{T_i - T_{\infty i}} = \exp(-Bi \cdot Fo)$$

$$T = [(T_i - T_{\infty i}) \cdot \exp(-Bi \cdot Fo)] + T_{\infty i}$$
(35)

Datos			
Área de convección (A_s)	0.265	m^2	
Volumen (V)	1.51	m^3	
Densidad de acero al carbono(ρ)	7884	kg/m^3	
Calor específico de acero al carbono (C_p)	434	J/kg · K	
Temperatura inicial (T_i)	20	°C	
Temperatura flujo interior $(T_{\infty i})$	1882.05	°C	
Coeficiente por convección (h_i)	4.19	$W/m^2 \cdot K$	
Longitud del tubo (L)	0.94	m	
Conductividad (k)	0.086	W/m	
Resultad	OS		
Bi · Fo	$2.04 \times 10^{-4} \cdot t$		
Bi		0.292	
Temperatura en la pared a $t_{m \acute{a}x} = 11 min$	255.02 ° <i>C</i>		

Tabla 37. Distribución de temperatura en función del tiempo

La distribución de temperatura del sistema para parámetros adimensionales se analiza en la Tabla 38.

Tabla 38. Distribución de temperatura en función del tiempo

Tioner o (a)	Tomor and turns (%C)	Tiempo	Temperatura
Tiempo (S)	Temperatura (°C)	adimensional (F _o)	adimensional (θ^*)
0	20,00	0,00	1
60	42,70	447,79	0,99
180	87,27	1343,37	0,96
300	130,76	2238,95	0,94
420	173,20	3134,52	0,92
540	214,61	4030,10	0,90
660	255,02	4925,68	0,87
780	294,45	5821,26	0,85

Figura 32. Comportamiento térmico en función del tiempo

Figura 33. Comportamiento térmico en función del tiempo adimensional

3.1.5 Alternativa para aprovechamiento energético en calentamiento de agua

Figura 34.Incremento de temperaturas para calentamiento de agua

Se registró un aumento de temperatura del agua de 2 °C cada 2 minutos, durante los 11 minutos de proceso de calentamiento, alcanzando una temperatura de 35°C. Al apagar el quemador, después de 17 minutos, se alcanzó una temperatura final de 52°C. (ver Anexo 12)

Datos			
Calor específico del agua (C_p)	4.18	kJ∕kg · K	
Masa de agua (<i>m</i>)	3	kg	
Gradiente de temperatura (° C)	18	°C	
Resultados			
Calor aprovechado	0.342	kW	

Tabla 39. Calor aprovechado por el agua

El calor aprovechado por el agua es de 0.34 kW de la potencia útil de 1.79 kW, y de utilizarse toda la zona media se podría alcanzar un aprovechamiento de hasta 0.68 kW.

3.1.6 Parámetros de frente de flama

El perímetro proporciona información sobre la extensión y forma de la zona de combustión [26], mediante software de análisis de imagen se obtuvo: (ver Anexos 6, 7 y 8).

Características	Baja:14 kPag	Media: 35.5 kPag	Alta: 48.26 kPag
	(2 psig)	(5 psig)	(7 psig)
Forma			
Estabilidad	Estabilidad baja	Estabilidad media	Estabilidad alta
Temperatura (°C)	190	200	225
Longitud en zona primaria (mm)	92.67	110.02	114.86
Longitud en zona secundaria (mm)	135.46	140.45	208.82
Área de la zona primaria (mm ²)	2301.69	2621.02	3111.95
Perímetro de la zona secundaria (mm)	324.74	366.36	445.17

Tabla 40. Análisis de parámetros de frente de flama

A medida que aumenta la presión, se produce un aumento en los parámetros de frente de flama, a 48.26 kPag (7 psig) se obtiene una flama extensa con mayor temperatura.

3.1.7 Distribución de temperaturas en el tubo radiante interior

El uso de materiales no conductores mantiene temperaturas bajas y reduce la pérdida de calor [13], por tanto, el uso de acero inoxidable permitió mantener temperaturas bajas en el tubo interior. (ver Fig. 35)

Figura 35. Análisis de temperaturas en tubo radiante interior

A una presión de 48.26 kPag (7 psig), el incremento de temperaturas en el TRI es menor.

3.1.8 Distribución de temperaturas de calentamiento en la superficie del TRE

Para evitar el sobrecalentamiento en los quemadores es propicio que la variación de parámetros se mantenga en temperaturas dentro de limites metalúrgicos [20], al usar tubería comercial de acero sin costura en el quemador se considera temperaturas máximas de trabajo entre 450 °C a 550 °C. En la Fig. 36 se analiza el comportamiento de la temperatura tomada mediante pirómetro en las diferentes zonas (ver Anexo 9).

Figura 36. Comportamiento de temperatura de calentamiento en TRE

En la zona media (0.5 m), se registra un calentamiento más rápido alcanzando la temperatura máxima del quemador, debido a que en esta ocurre la combustión principal.

Se analizó la termografía de distribución de la temperatura a los 11 minutos a lo largo de la superficie del TRE.

Figura 37. Análisis termográfico de distribución de temperaturas en TRE

Esta distribución indica que la zona media en el tramo entre 0.31 a 0.58 m presenta la mayor concentración de calor con temperaturas máximas entre 320 a 460°C, lo que la convierte en una región propicia para aplicaciones energéticas.

3.1.8.1 Distribución de temperaturas de enfriamiento en el tubo radiante exterior

En la Fig. 38 el comportamiento de la temperatura en el proceso de enfriamiento del quemador presenta un proceso gradual y relativamente estable después de apagarlo (ver Anexo 10).

Figura 38. Temperaturas enfriamiento en TRE

3.1.9 Simulación y comparación con temperaturas experimentales

La distribución de temperaturas experimentales se muestra en la Fig. 39 y se compara con los resultados de las simulaciones CFD utilizando la metodología establecida.

Figura 39. Temperatura experimental del TRE

Los dos modelos produjeron predicciones muy similares para el perfil de temperatura del quemador. La simulación numérica se ajusta en las zonas media y final comprendida desde los 0.3m en adelante, pero diverge sobre la zona inicial del TRE. (ver Anexo 9).

Figura 40. Comparación de temperatura experimental y numérico

En el caso de la simulación y experimentación la temperatura máxima fue de 460 °C, este resultado respalda la idea de que el sistema es capaz de alcanzar temperaturas elevadas con la configuración de parámetros. La desviación más significativa se produce en la zona inicial, con una diferencia de temperatura de 26 % (86 °C).

Datos	CFD	Experimental	Diferencia	%Error
Datos	(°C)	(° C)	(°C)	/01/101
Zona Inicial	328.20	241.75	86.45	26.34
Zona Media	460.00	460.00	2.00	0.39
Zona Final	177.80	162.67	15.12	8.50

Tabla 41. Comparación de resultados de simulación y experimentación.

La simulación también permite obtener resultados de otras magnitudes relacionadas con el flujo de gases según se muestra en las Fig. 41 a 44.

Figura 44. Comportamiento de partículas

En la Fig. 45 se analiza la zona media, y se resalta la uniformidad al lado izquierdo

c) Contorno de temperatura

d) Comportamiento de partículas

Figura 45. Zona de uniformidad dentro de la zona media

Los parámetros de uniformidad corresponden a: densidad de 0.5 a 0.54 kg/m^3 , velocidad de 1.21 a 1.51 m/s, la temperatura se encuentra entre 438.33 a 470.13 °C, y el comportamiento de partículas entre 2368.4 y 7105.2.

3.2 Verificación de hipótesis

La variación controlada de parámetros como diámetro del inyector y presión de combustible permitió alcanzar condiciones de flama estable al interior y mayor temperatura en el tubo radiante.

Diámetro de inyector	Presión	Temperatura de flama (°C)	Rendimiento
	14 kPag	100	
	(2 psig)	190	Estabilidad de flama baia -media
Ø 0.5	35.5 kPag	200	Baja temperatura
	(5 psig)	200	
	48.26 kPag	225	Estabilidad de flama alta
	(7 psig)		Alta temperatura
Ø 0.75	- Flama Inestable		
Ø 1.6			

Tabla 42. Variación controlada de parámetros de combustión en el quemador

Se aplica una prueba estadística t para determinar si existe diferencia significativa entre las temperaturas de experimentación y simulación, considerando: si la T de student calculada es mayor que la crítica se rechaza la hipótesis nula (Ho = no existe diferencia significativa) y se acepta la hipótesis alternativa ($H_1 =$ existe diferencia significativa) con un nivel de confianza del 99% y un margen de error del 1%.

Temperaturas (°C)		Drucko T Student					
Experimental	Simulación	Prueba	1 Student				
178	247	Varianza agrupada	15125.81				
211	282	Varianza de temperatura	15087.95				
258	328	experimental	15007.55				
320	363	Varianza de temperatura	15163.66				
390	421	simulada	15105.00				
440	453	Diferencia hipotética	0				
460	460	entre datos	0				
412	434	Grados de libertad	28				
350	380	Numero de datos	15				
260	288	Estadístico t	0.6531				
210	235	P(T<=t) una cola	0.2594				
180	186	Valor crítico de t (una	2 4671				
134	148	cola)	2.4071				
100	114	P(T<=t) dos colas	0.5189				
92	96	Valor crítico de t (dos					
Media:	Media:	colas)	2.7632				
266.33	295.64	0145)					

Tabla 43. Prueba t para dos muestras suponiendo varianzas iguales

El estadístico $t_{cal} = 0.65$ es menor que $t_{crit} = 2.46$, por tanto, se acepta la hipótesis nula (Ho), lo cual indica que no existe diferencia significativa entre las temperaturas de experimentación y simulación.

CAPÍTULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Las características principales de los quemadores a gas de tubo radiante incluyen su uso industrial en calentamiento indirecto, la uniformidad de temperaturas en la superficie y el uso de materiales resistentes al calor. Tienen aplicaciones principalmente en la transferencia de calor por radiación, convección, además de bajas emisiones contaminantes. Según su geometría y configuración se dividen en regenerativos y no regenerativos, y se han estudiado mediante simulaciones computacionales.
- Los parámetros de combustión teóricos son: diámetro del inyector de 0.5 mm con potencia teórica de 2.9 kW, presión de GLP entre 35.5 kPag(5 psig) y 48.2kPag(7 psig) y admisión de aire para combustión completa con 130 % de exceso de aire.
- Se determinó transferencia de calor por convección natural en el tubo radiante para condiciones de: flujo interno laminar con $h_i = 4.19 W/m^2 K$ y convección y radiación externa combinadas con $h_o = 8 W/m^2 K$ y $h_r =$ $14.22 W/m^2 K$. También se consideró transferencia de calor por convección natural de $h_o = 7.74 W/m^2 K$.
- El balance de masa en el sistema considera la mezcla de aire primario y secundario de 5.38 kg/h y un flujo de combustible de 0.27 kg/h, trabajando el sistema con un total de 5.65 kg/h. Para el balance de energía la potencia del inyector que ingresa al sistema es 2.9 kW y la energía útil disponible es 1.79kW.
- Al examinar la reacción de combustible teórico se determinó que se utiliza 20.3kg de aire por cada kilogramo de combustible a un exceso de aire de 130 % y se genera un calor de combustión completa de 1 716 661 kJ/kmol C₃ H₈. Para la reacción real incompleta se obtiene un calor de combustión de 1 693 918.66 kJ/kmol C₃ H₈ con una relación aire combustible de 19.8 kg de aire por cada kilogramo de combustible, exceso de aire de 127 % y temperatura de flama adiabática de 1882.05 °C.

- La transferencia de calor para aprovechamiento energético en calentamiento de aire por convección es 0.591 kW y por radiación es 1.05 kW, esto permitió identificar las pérdidas de 0.98 kW por gases de combustión, 0.0918 kW por convección en paredes, 0.037 kW por inquemados sólidos, dando un total de pérdidas de 1.11 kW.
- En el análisis de la comparación de distribución de las temperaturas a los 11 minutos, los dos modelos proporcionaron resultados similares con un error promedio de 10 %. La distribución de temperatura para el calentamiento y enfriamiento se ajusta a un modelo de comportamiento logarítmico. El quemador presentó una zona media en donde se registraron temperaturas máximas entre 320 y 460°C. La simulación presentó una subzona de uniformidad en la zona media con estabilidad de: densidad de 0.5 a 0.54 kg/m³, velocidad de 1.21 a 1.51 m/s, la temperatura se encuentra entre 438.33 a 470.13 °C, y el comportamiento de partículas entre 2368.4 y 7105.2. La simulación numérica se ajusta al comportamiento experimental en las zonas final y media, pero diverge sobre la zona inicial.

4.2 Recomendaciones

- Considerar aprovechar el calor residual de los gases de combustión para mejorar la eficiencia.
- Evaluar el efecto de sistemas de recuperación de calor residual en futuras investigaciones.
- Analizar cambios en la geometría del quemador como reducción de longitudes en el tubo exterior y aumento en el interior.
- Simular con un modelo 3D del quemador para comparar con los resultados obtenidos y aplicar otros métodos de análisis de fluidos.
- Utilizar un caudalímetro para flujos pequeños.
- Utilizar un manómetro para flujos pequeños.
- Calcular transferencia de calor por radiación en el interior del tubo radiante considerando variación significativa entre la temperatura de la flama y las paredes internas circundantes, mediante simulación de esta.

BIBLIOGRAFÍA

- J.C. Serrano, Y.A. Carranza "Teórico de la combustión en quemadores de gas natural", *rev.* Scientia et Technica Año XI., vol. 3, n.o 29, pp. 139-143, dic. 2005.
- [2] D.A. Henao, C.A. y AA. Amell Cano, "Diseño y construcción de un quemador de tubo radiante regenerativo", *rev. Facu.de Ing*, vol. 3, n.º 27, pp. 90-103, dic. 2002
- [3] N. Tsioumanis, J. G. Brammer, y J. Hubert, «Flow processes in a radiant tube burner: Combusting flow», *Energy Convers. Manag.*, vol. 52, n.º 7, pp. 2667-2675, jul. 2011, doi: 10.1016/j.enconman.2011.02.008.
- [4] G. K. Jiménez Lira, "Análisis de la eficiencia de la combustión de biogás en un quemador boliviano", *Rev. Investig. E Innov. Agropecu. Recur. Nat.*, vol. 3, n.o 1, pp. 94-102, jun. 2016.
- [5] A. M. García, M. A. Rendon, y A. A. Amell, «Combustion model evaluation in a CFD simulation of a radiant-tube burner», *Fuel*, vol. 276, p. 118013, sep. 2020, doi: 10.1016/j.fuel.2020.118013.
- [6] C. E. Baukal, Y. Vladimir y L. Xianming, Industrial Combustion Handbook. United States of America: CRC Press, 2003.
- [7] J. S. C. Cuasapud, D. P. P. Maigua, y E. Á. Jaramillo, "Ventaja del uso de gas licuado de petróleo en comparación al sistema de combustible tradicional", *rev. Cient. Dominios de la ciencia*, vol. 8, n.º 3, pp. 2151-2166, sep. 2022,
- [8] Incropera, F. y De Witt, David. (1999). Fundamentos de Transferencia de calor (4ta ed.). México: Prentice Hall Hispanoamericana, S.A.
- [9] Y.Çengel y A. Ghajar, *Transferencia de Calor y Masa*, 4ta ed. McGraw-Hill, 2004.
- [10] Y. Cengel y M. Boles, *Termodinámica*, 8va ed. México: McGraw-Hill, 2014.

- [11] A. Amell Arrieta, H. Copete López, y J. P. Gómez, "Análisis de los parámetros para el diseño y optimización de un tubo radiante", *Rev. Fac. Ing. Univ. Antioquia*, n.o 38, pp. 31-39, sep. 2006.
- [12] C E Baukal Jr. Industrial Burners Handbook. CrC press, 2004.
- [13] Flamme M., Milani A., Wünning J., Blasiak W., Yang W., Szewczyk D.,
 Sudo J., Mochida S., Industrial Combustion Testing. Taylor and Francis
 Group, 2011. [En línea]. Disponible en: https://doi.org/10.1201/EBK1420085280
- [14] A. Sanchez, Análisis térmico para evaluar eficiencia en un calderín pirotubular de 2 BHP del laboratorio de la carrera de Ingeniería Mecánica, Ambato: Tesis, 2018.
- [15] IDAE, "Ahorro y eficiencia energética en climatización," Junio 2010. [En línea]. Available: http://www.idae.es/tecnologias/eficiencia-energetica/edificacion/reglame nto-de-instalaciones-termicas-de-los-0. [Último acceso: 15 Febrero 2023].
- [16] A. Lapuerta Torres, «El gas natural: una posibilidad de combustible limpio en el mercado automotriz del Ecuador», masterThesis, Universidad Andina Simón Bolívar. Sede Ecuador, 2008. Accedido: 2 de febrero de 2023. [En línea]. Disponible en: http://hdl.handle.net/10644/986
- [17] Osinergmin, *El gas natural y sus diferencias con el GLP*. Lima: Teps Group
 S.A.C., 2012. Accedido: 2 de febrero de 2023. [En línea]. Disponible en: https://biblioteca.olade.org/opac-tmpl/Documentos/hm000661.pdf
- [18] J. L. Bayas Pasto y A. G. Jarrín López, «Diseño y construcción de un prototipo de quemador de GLP de Baja potencia para secado agroindustrial para uso en los Laboratorios de la FICM», bachelorThesis, Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica, 2020. Accedido: 16 de febrero de 2023. [En línea]. Disponible en:

https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/30650

- [19] J. Fuentes, D. Osorio S., y J. Celis, *Instalaciones de gas natural*, 2da ed. Santiago-Chile: INACAP, 1999.
- [20] L.KOHAN, *Manual de calderas*, vol. 2. Mc Graw Hill, 2000. [En línea]. Disponible en:http://recursosbiblio.url.edu.gt/publicjlg/biblio_sin
 _paredes/fac_ing/Manu_cald/c ap/11.pdf.
- [21] Testo, *Guía práctica Termografía para instaladores de calefacción*, 3ra ed. Barcelona. España, 2017.
- [22] B. José, "Determinación De La Velocidad De Llama Laminar En Un Quemador De Premezcla", vol. Perú, pp. 35-40, 2015.
- [23] A. Andrés, "TIPOS DE LLAMA", Grupo de Ciencia y Tecnologia del Gas, vol. II, nº 1, pp. 2-6, 2009
- [24] Daniel O'Neill, "What should my gas range's flames look like", *Appliance411*, 2022. http://www.appliance411.com/faq/gas_range_flames.shtml (accedido 2 de febrero de 2023).
- [25] J. F. Alfonso Serrano, "Es posible inferir la eficiencia de un proceso de combustión, a partir de una inspección visual de la llama", *MET&FLU*, no. 7, pp. 64-72, 2012. [En línea] Disponible en: https://issuu.com/mayns/docs/revista_met_flu_n_7
- [26] DE. Quinn, J. Newby, Radiant Tube Burners, en: CE Baukal Jr. (Ed). Manual de quemadores industriales, CRC Press,2003
- [27] Bacharach, "Qué es la eficiencia de combustión", Bacharach, 15 de octubre de 2019. Disponible en: https://www.mybacharach.com/es/que-es-laeficiencia-de-la-combusti%C3%B3n/ (accedido 11 de mayo de 2023).
- [28] R. A. Gaggioli, Efficiency and Costing, Washington DC, USA: ACS Symposium Series, 1983.
- [29] V. J. Lopardo, A treatise of exergy and the second law of thermodynamics, USA: United States Naval Academy Annapolis, Maryland, 1982.

- [30] Testo. (2004). Manual práctico. Tecnología de medición en calderas (3ra ed.).Barcelona. España.
- [31] Quemador aem, «Quemador de Metal Radiante», Equipos térmicos industriales a medida. , [En línea].https://www.quemadoraem.es/quemador/quemador_atmosferico_ind ustrial/quemadores_radiantes_6/_103.htm (accedido 11 de mayo de 2023).
- [32] J. X. Quinga Hernández, "Análisis de la combustión de un quemador de gas tipo Venturi con premezcla del Laboratorio de Energía de la Facultad de Ingeniería Civil y Mecánica utilizando simulación CFD mediante el software ANSYS Fluent", bachelorThesis, Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica, Carrera de Ingeniería Mecánica, 2021. Accedido: 21 de noviembre de 2022. [En línea]. Disponible en: https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/32704
- [33] Abelcaro, «CFD (Computational Fluid Dynamics) Simulaciones AERODINÁMICAS», Lebalap Academy, 25 de diciembre de 2018. https://lebalap.academy/f1/aerodinamica/simulacion-cfd/ (accedido 11 de mayo de 2023).
- [34] D. C. Montgomery and G. C. Runger, "Probabilidad y Estadística para Ingenieros," 2nd ed., México: Grupo Editorial Patria, 2015.
- [35] FLIR Systems, Inc., «FLIR E8xt». 2019. [En línea]. Disponible en: http://www.flir.com
- [36] PCE Instruments, Manual de instrucciones Medidor de Temperatura Láser DT-8861, Santiago de Chile. Chile, 2017.
- [37] Bacharach, Inc., Analizador de gas de combustión Manual de configuración y operación, Manual de Fyrite InTech, Pensilvania, 2012.
- [38] ANSYS,Inc, Fluent Tutorial Guide. Caanonsburg, Europe, 2017. [En línea].Disponible en: http://www.ansys.com
- [39] Cortés, Magdalena, Fazio, Paul, Rao, Jiwu, Bustamante, Waldo, & Vera, Sergio, "Modelación CFD de casos básicos de convección en ambientes

cerrados: Necesidades de principiantes en CFD para adquirir habilidades y confianza en la modelación CFD", rev. ing. constr., Santiago, vol. 29, n. °1, ppp. 22-45, 2014

- [40] Scribano G,solero G, Coghe A. Reduccion de emisiones contaminantes y optimización del rendimiento de un quemador de tubo radiante industrial. Exp Therm Fluid SCI 2006;30(7):605-12
- [41] Atet spare parts « Recambios originales boquillas de cocción en caliente | Repuestos para electrodomésticos en línea». https://www.atetricambi.it/it/category/heating/309/ugelli-cucina (accedido 14 de mayo de 2023).

ANEXOS

Anexo 1. Ficha técnica de quemador de tubo radiante sin recuperación

SHERWIC TECNIC TO THE CHICAGE AND	FICM									
LABORATORIO DE ENERGÍAS PROTOTIPO DE QUEMADOR DE TUBO RADIANTE SIN RECUPERACIÓN										
(CARACTERÍS	ГІСА	S GENERAI	LES						
COMBUSTIBLE:	GLP		POTEN	CIA	1.79	kW				
LONGITUD/DIÁM	1100/100		ENTRAD	A DE	Co	mprimido				
ETRO:	1100/100	mm	AIRE	:	Atı	nosférico				
PESO:	21	kg	TEMPERA	TURA:	45	0-550°C				
	SISTEMAS/	COM	PONENTES							
Tubo chi	imenea		Válv	/ula de q	uema	dor				
Tubo radian	te exterior		Tapa separadora							
Inyec	ctor		Visor							
Tubo radian	te interior		Acople (Racor) neumático							
E	Esta máquina tier	ne mai	nual de fabric	ante						
	FUNCIÓ	N PR	INCIPAL							
Mediante la combustión de GLP obtener altas temperaturas para aplicaciones donde el producto no deba encontrarse en contacto directo con la flama.										
	Jonathan			Inc						
REALIZADO	Llamuca		OBACIÓN	Santie Santie		28/3/2023				
	Lizbeth			Cabr	era	20/3/2023				
	Velastegui			Cault						

[41]

Anexo 3. Prueba en TRI con variación de aire primario y presión de GLP.

A) Pruebas con aire atmosférico parcial.

Aná	Análisis cuantitativo de estructura de flama en tubo radiante interior												
Contraction of the second	Universidad Técnica de AmbatoFacultad de Ingeniería Civil y MecánicaCarrera de Mecánica												
Carrera de Mecanica													
Elaborad	lo por:	Autores		Revisado por:	Ing. Santiago Cabrera								
Luga	ar:	FICM		Fecha:	17/02/2023								
Hor	a:	11h45		Temperatura de bulbo seco %	22°C								
Admisi	ón de	Atmosférico):]	Parcial								
aire	e:	Comprimido):	No aplica									
Presión]	Inyector 1		Inyector 2	Inyector 3								
Baja : 14 kPag (2 psig)													
Media: 35.5 kPag (5 psig)	200 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
Alta: 48.2 kPag (7 psig)	×4												

B) Pruebas con **aire atmosferico total.**

F

Aná	Análisis cuantitativo de estructura de flama en tubo radiante interior TRI												
	Universidad Técnica de AmbatoFacultad de Ingeniería Civil y MecánicaCarrera de Mecánica												
Elaborad	lo por:	Autores		Revisado por:	Ing. Santiago Cabrera								
Lug	ar:	FICM		Fecha:	17/02/2023								
Hor	a:	11h45		Temperatura de bulbo seco %:	22°C								
Admisión de Atmosférico					Total								
aire	e:	Comprimide):	: No aplica									
Presión]	Inyector 1		Inyector 2	Inyector 3								
Baja: 14 kPag (2 psig)			*										
Media: 35.5 kPag (5 psig)			~										
Alta: 48.2 kPag (7 psig)	*												

Evalua	Evaluación cualitativa de estructura de flama en el tubo radiante interior TRI													
E DINC	Universidad Técnica de AmbatoFacultad de Ingeniería Civil y Mecánica													
	Carrera de Mecánica													
Elaborac	lo por:	Autores		Revi	sado por:	Ing. San Cabre	tiago ra							
Lug	ar:	FICM		F	Fecha:	17/02/2	023							
Hor	a:	11h45		Temp bulb	o seco %:	22°C								
Ponderación														
1		2			3	4								
La llama a escup llama es in	empieza ir y la nestable	Llama establ pero amarilla	e a	Lla sonide	ma azul, o inestable	Llama estable azul								
				F	Presión de air	e								
Inyector	Diámetro	Aire	14	l kPag	35.5 kPag	48.2 kPag	Total							
			(2	psig)	(5 psig)	(7 psig)								
		Aire parcial		4	2	2	8							
Inyector 1	Ø 1.6	Aire total		1	3	3	7							
	~ ~	Aire parcial		2	2	2 2								
Inyector 2	Ø 0.75	Aire total		4	1	1	6							
Lucci 2	0.050	Aire parcial		4 3 4		4	11							
Inyector 3	Ø 0.50	Aire total		1	1	1	3							

Anexo 4. Evaluación de estructura de flama en el TRI

Temp	oerat	uras en la superfici	e del tubo ra	ndia	nte inter	ior TRI							
TECHIC:	Universidad Técnica de AmbatoFacultad de Ingeniería Civil y Mecánica												
		Carrera d	le Mecánica										
Elaborado	por:	Autores	Revisado po	or:	Ing. Sant	iago Cabrera							
Lugar	:	FICM	Fecha: 17/02/2023										
Hora:		11h45	Temperatura bulbo seco 9	de %		22°C							
Admisiór	ı de	Atmosférico:]	Parcial								
aire:		Comprimido:	No aplica										
Presión		Apariencia	L Y	ongitud K (mm)	Temperatura máxima (°C)								
Baja:				E ini	Extremo icial x=0	67							
14 kPag				Pur	nto medio x=250	26.7							
(2 psig)				S flar	alida de na x=450	25.3							
Media				E ini	Extremo icial x=0	63							
35.5 kPag			-	Pur	nto medio x=250	27.8							
(5 psig)				S flar	alida de na x=450	25.1							
Alta				E ini	Extremo icial x=0	59							
48.2 kPag			T	Pur	nto medio x=250	26.2							
(7 psig)				S flar	alida de na x=450	24.8							

Anexo 5. Medición de temperaturas en la superficie del TRI.

Termog	rafía de estructura	de flama en TR	I en el exterior									
	Universidad To Facultad de Ingeni Carrera o	écnica de Amba ería Civil y Mec le Mecánica	to cánica									
Elaborado por:	Autores	Revisado por:	Ing. Santiago Cabrera									
Lugar:	FICM	Fecha:	17/02/2023									
Hora:	11h45Temperatura de bulbo seco %22°C											
Admisión de aire	Comprimido:	Ν	o aplica									
Instrumento de medición:		Cámara termográfica										
Presión	Admisió	Admisión de aire atmosférico parcial										
Baja: 14 kPag (2 psig)	Bx1 Max 1 Sp1 1 Sp2	90,2 °C °C 58,1 °C 48,6 °C Bx1 Sp2	120,5									
Media : 35.5 kPag (5 psig)	Bx1 Max 2 Sp1 1 Sp2	00,2 °C °C 97,9 °C 87,4 °C Bx1	168,3									
Alta: 48.26 kPag (7 psig)	Bx1 Max Sp1 Sp2	225,4 °C °C 218,4 °C 115,1 °C Bx1 ■ 5p2 5p1	164,3									

Anexo 6. Termografía de estructura de flama en TRI en el exterior

Análisis d	e isotermas o	de la flai	na en ti	ibo ra	diante	e inter	ior T	ſ RI
	Univer Facultad d C	sidad To e Ingeni Carrera o	écnica d ería Civ le Mecá	le Am vil y N inica	bato Iecáni	ca	FIC	
Elabora	do por:	Autores	Re	visado	por:	Ing	g. San <u>Cabre</u>	itiago era
Lug	gar:	FICM		Fecha	:	2	0/02/2	2023
Но	ra:	10h00	Tempe	ratura (seco %	de bulbo)	22° 0	2
Admisiór	n de aire:		Atmosfé	rico:			Total	
Instrumento	de medición:		Softwar	e de ar	alisis de	e image	en	
Presión		An	álisis de l	las isot	ermas			
Baja:14 kPag (2 psig) Media: 35.5 kPag (5 psig)		Mea Unit Area Area Lon Lon Fror Lon Anc Ang Unit Leng Area Area Lon Lon Anc Ang Unit Lon Anc Ang Unit Lon Anc Ang Area Lon Lon Anc Ang Ang Ang Area Lon Lon Anc Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang	surement 2 cona 1 2 cona 2 gitud zona 2 gitud zona 2 gitud x zona 1 atera gitud x zona 2 ho zona 1 ho zona 2 le surement 2 cona 1 a zona 2 gitud zona 1 gitud zona 2 gitud zona 1	Area 2301,693 6472,411 Area 2621,027 7505,098	Perime 208,132 324,747 Perime 250,757 366,367	Length 135,965 93,222 133,782 92,675 135,460 66,099 29,146 77,364 119,862 72,887 Length 137,413 29,160 115,585 150,679 110,023 140,457 105,712 98,482 82,629	Angle 54,334 Angle	Unit pix mm mm mm mm mm mm mm mm mm mm mm mm
Alta: 48.26 kPag (7 psig)		Anc Ang Mea Uni Fro Are Lon Lon Lon Lon Anc Ang Ang	ho zona 2 le surements list assurement t t a zona 1 a zona 1 a zona 2 gitud zona 2 gitud zona 2 gitud zona 2 gitud x zona 1 gitud x zona 2 cho zona 2 cho zona 1 gitud zona 2	Area 3111,953 7355,764	Perimeter 249,302 445,178	Length 137,472 29,547 112,433 211,216 114,861 208,824 88,086 146,465 154,420 74,297	45,471 Angle 25,407	Unit pixels mm mm mm mm mm mm mm

Anexo 7. Análisis de las isotermas usando software

Análisis cuantitativo de estructura de flama en tubo radiante interior TRI										
	Universidad Té Facultad de Ingeni Carrera d	cnica de Amb ería Civil y Me le Mecánica	ato ecáni							
Elaborado por:	Autores	Revisado por:	Ing	. Santiago Cabrera						
Lugar:	FICM	Fecha: 20/02/2023								
Hora:	10h00	Temperatura de bulbo seco %	mperatura de 22°C							
Admisión de	Atmosférico:		Tota	al						
aire:	Comprimido:	I	No ap	lica						
Instrumento de medición:	Softw	vare de análisis de	imag	gen						
		Presión								
Características	Baja: 14 kPag (2 psig)	Media: 35.5 kl (5 psig)	Pag	Alta: 48.26 kPag (7 psig)						
Forma										
Estabilidad	Estable	Estable		Estable						
Temperatura (°C)	190	200		225						
Ángulo (°)	54.33	45.47		25.4						
Longitud interna de flama (mm)	92.67	110.02		114.86						
Longitud externa de flama (mm)	135.46	140.45		208.82						
Ancho interno de flama (mm)	119.80	82.62		74.29						
Ancho externo de flama (mm)	72.88	119.12		154.42						

Anexo 8. Análisis cuantitativo de estructura de flama en TRI en el exterior

Anexo 9. Medición de temperaturas en quemador

Medición de temperaturas en el tubo radiante exterior TRE													
Universidad Técnica de Ambato Facultad de Ingeniería Civil y Mecánica Carrera de Mecánica													
Elaborado	por:		Autor	es	R	evisad	o por:	Ing	. Sant	tiago Ca	brera		
Lugar:			FICM	Л		Fecl	na:		22/	02/2023			
Hora:			10h3	0	Te b	empera ulbo se	tura de eco %	;	4	20 °C			
Presión de kPag (psi	GLP g):		48.26	(7)	Ad a	misiór tmosf) de air érico:	e	,	Total			
Admisión de kPag (psi	e aire g):	1	103.42 (15) Aire Secundar (%):				undaric):)	10% c	le aperti	ıra		
Instrument mediciói	to de n:					Piró	metro						
Tiempo t	(min)		Longitud x(1							0.7	~		
1				0,25				,5)6		0,7	5		
2				83			1	97					
3				115		245				80			
4				148		308			3				
5				159		352				108			
6				170			3	64		120)		
7				183			3	77		132	2		
8				203			3	93		14	5		
9				225			4	25		14'	7		
10			243 44							16)		
11	11 258 4									180)		
N	Iedic	ción d	le tem	perat	uras	en el	tubo (de chi	imen	ea			
Tiempo t (min)	1	2	3 4 5 6			6	7	8	9	10	11		
Zona Alta	60	64	66	105	114	116	125	135	145	149	153		
Zona baja	83	103	117	129	144	148	154	168	173	175	185		

A. Temperaturas con el pirómetro a lo largo del quemador

-

	Medición de temperaturas en el tubo radiante exterior																
	Universidad Técnica de Ambato Facultad de Ingeniería Civil y Mecánica Carrera de Mecánica																
	Elaborado por: Autores						es		Revi	sado	por:			Ing. C	Sant abre	iago ra	
	L	Jugar:			F	FICM	1		F	Fecha	:			22/	02/2	023	
	Hora: 10h30)		Temp bulb	oeratu o sec	ıra d xo %	e		/	20°C			
	Presić kPa	ón de (g (psi	GLP g):		48	.26 ([7)	A	Admis atm	sión c osfér	le ai ico:	re		r	Tota	1	
Admisión de aire kPag (psig):103.42 (15)Aire Se							re Sec	cunda	rio (%):	1	0% c	le ap	ertu	a		
	Instrumento de medición: Cámara termográfica																
	Sp17 Sp16 Sp13 Sp13 Sp12 Sp11 Sp10 Sp9 Sp8 Sp7 Sp6 Sp5 Sp4 Sp3 Sp2 Sp1																
ie Do							D	istar	ncia (1	m)							
	0,15	0,20	0,25	0,31	0,36	0,42	0,47	0,52	0,58	0,63	0,69	0,74	0,79	0,85	0,90	0,96	1,0
1	76	86	116	122	127	132	135	125	100	93	70	55	50	44	39	32	34
2	92	102	145	127	240	223	226	188	133	110	82	00 72	50	52	48	45	41
3 4	118	130	145	109	240	203	318	202	140	124	106	78	70	61	57	40	43 20
5	128	143	154	195	249	318	320	230	167	139	100	93	83	73	61	54	50
6	137	160	184	223	274	343	343	279	234	166	122	94	86	75	66	59	54
7	142	176	201	244	281	345	347	285	236	178	135	108	87	80	69	57	54
8	149	159	210	263	284	357	358	300	245	194	151	121	96	82	76	60	56
9	152	183	221	298	306	383	394	354	296	229	175	138	108	89	78	63	58
10	159	199	232	300	366	403	425	365	303	240	183	145	116	93	86	65	58
11	178	211	258	320	390	440	460	412	350	260	210	180	134	100	92	76	60

B. Termografía a lo largo de la longitud del TRE

Medición de temperaturas de enfriamiento en tubo radiante											
exterior TRE											
STECNIC4	U	niversidad T	écnica de A	mba	to 💦						
HE LEAST	Facul	ltad de Ingeni	ería Civil y	Mec	cánica 🚺						
ATU		Carrera	de Mecánica	a	FICM						
Elaborado por:		Autores	Revisado p	or:	Ing. Santiago Cabrera						
Lugar:		FICM	Fecha:		24/02/2023						
Hora:		11h45	Temperatura bulbo seco	a de %	17 °C						
Presión de GLP kPag (psig):		48.26 (7)	Admisión de atmosféric	aire o:	Total						
Admisión de			A.' G 1								
aire	1	03.42 (15)	Aire Secund	ario	10% de apertura						
kPag (psig):			(70)								
Instrumento de		Pirómetro			Cámara termográfica						
medición:		1 Hom	cuo		camara termogranea						
t(min)		Punto c	rítico		Punto crítico						
13		384	1		383						
14		345	5		350						
15		310	5		314						
16		275	5		277						
17		260)		265						
18		231	l		230						
19		210	5		218						
20 193			3		197						
21	21 180				186						
22		3		170							
23		158	3		157						
24		145	5		150						
25		138	3	152							
26		100)	127							
20 100					10.1						
27 96					124						

Anexo 10. Medición de temperaturas por enfriamiento en TRE

Análisis de gases de combustión en la salida de chimenea				
Universidad Técnica de Ambato				
Facultad de Ingeniería Civil y Mecánica				
Carrera de Mecánica				
Elaborado por:	Autores	Revisado por:		Ing. Santiago Cabrera
Lugar:	FICM	Fecha:		3/04/2023
Hora:	10h30	Temperatura de bulbo seco %		20°C
Admisión de aire atmosférico:	Total	Admisión de aire kPag (psig):		103.42 (15)
Aire Secundario (%)	10% de apertura	Presión de GLP kPag (psig):		48.26 (7)
Instrumento de medición:	Analizador de gases de con			ombustión
Parámetros de combustión	Admisión de aire Atmosférico		Admisión de aire Comprimido	
	Aire total		103,42kPag (15psig)	
O2 (%)	19.1		5.4	
CO (ppm)	3741		2572	
Lambda	-		1.3	
Co2 (%)	-		10.3	
CO2 máx. (%)	13.9		13.9	
T-Stk (°C)	128		348	
T-Air (°C)	24.8		22	
qA (%)	-		16.7	
Eta (%)	-		83.3	
Eff (%)	-		75.7	
CO/CO2	-		0.0249	
CO (8) (ppm)	-		2135	
Med. Humo	-		-	
Der Aceite	-			-
Temp. Caldera (°C)	-			-

Anexo 11. Parámetros de combustión en la salida de chimenea
Aprovechamiento energético alternativo para calentamiento de agua								
Uni Faculta	versidad Técni d de Ingeniería Carrera de N	ica de Ambato a Civil y Mecá ⁄Iecánica	nica					
Elaborado por:	Autores	Revisado por:	Ing. Santiago Cabrera					
Lugar:	FICM	Fecha:	3/04/2023					
Hora:	10h30	Temperatura de bulbo seco %	e 17°C					
Admisión de aire atmosférico:	Total	Admisión de ain kPag (psig):	re 103.42 (15)					
Aire Secundario (%)	10% de apertura	ra Presión de GLP kPag (psig): 48.26 (7)						
Instrumento de medición: Termómetro								
Recipiente cilíndrico 1 Recipiente cilíndrico 2								
Tiempo t(min)	Temperatura (°C)	Tiempo t(min)	Temperatura (°C)					
0	17	0	17					
1	20	1	19					
2	24	2	20					
3	26	3	21					
4	28	4	22					
5	29	5	24					
0	30	0	25					
/	31	/	20					
0 0	32	0	27					
10	34	10	31					
11	35	10	33					
11	APAGA		55					
12	36	12	35					
13	37	13	36					
14	38	14	37					
15	39	15	38					
16	40	16	39					
17	41	17	40					
18	42	18	42					
19	43	19	43					
20	44	20	44					
21	45	21	45					
22	46	22	46					
23	47	23	47					
24	48	24	47					
25	49	25	48					
26	50	26	49					
21	52	49	49 50					
۷۵	32	30	30					

Anexo 12. Aprovechamiento energético alternativo para calentamiento de agua

VALORES DE EMISIVIDAD PARA	MATERIALES
Material (temperatura del material)	Emisividad
Acero laminado en frío (93 °C)	0,75–0,85
Acero oxidado (200 °C)	0,79
Acero tratado térmicamente Superficie (200 °C)	C) 0,52
Algodón (20 °C)	0,77
Aluminio laminado sin tratamiento (170 °C)	0,04
Aluminio muy pulido (100 °C)	0,09
Aluminio, muy oxidado (93 °C)	0,20
Aluminio, no oxidado (100 °C)	0,03
Aluminio, no oxidado (25 °C)	0,02
Arcilla (70 °C)	0,91
Caucho, blando, gris (23 °C)	0,89
Cinc, oxidado	0,1
Cobre ligeramente deslustrado (20 °C)	0,04
Cobre oxidado (130 °C)	0,76
Cobre, laminado (40 °C)	0,64
Cobre, pulido (40 °C)	0,03
Corcho (20 °C)	0,70
Cristal (90 °C)	0,94
Cromo (40 °C)	0,08
Cromo pulido (150 °C)	0,06
Cuerpo refrigerante anodizado negro (50 °C)	0,98
Goma dura (23 °C)	0,94
Granito (20 °C)	0,45
Hielo liso (0 °C) Hierro con costra de fundición (100 °C) Hierro con costra de laminación (20 °C) Hierro de fundición oxidado (200 °C) Hierro, esmerilado (20 °C) Hormigón (25 °C) Ladrillo, mortero, revoque (20 °C)	0,97 0,80 0,77 0,64 0,24 0,93
lámina de aluminio (40 °C)	0,79
Latón oxidado (200 °C)	0,61

Anexo 13. Valores de emisividad para materiales

T (K)	р (kg/m³)	c_p (kJ/kg · K)	$\mu \cdot 10^7$ (N · s/m ²)	υ · 10 ⁶ (m²/s)	<i>k</i> • 10 ³ (W/m • K)	α·10 ⁶ (m²/s)	Pr
Aire		469	90) - 30e	-	and the second		
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.73
250	1.3947	1.006	159.6	11 44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	20.0	0.70
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32 30	37 3	47.2	0.68/
500	0.6964	1.030	270.1	38 79	40.7	567	0.68/
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.684
650	0.5356	1.063	322.5	60.21	40.7	873	0.60
700	0.4975	1.075	338.8	68 10	52.4	02.0	0.604
750	0.4643	1.087	354.6	76 37	54.0	100	0.09.
800	0.4354	1.099	369.8	84.93	57.3	120	6.70
							1.
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0 2902	1 175	473.0	162.0	76 3	224	0 72
1200	0.2670	1 180	475.0	102.9	20.5	224	0.72
1400	0.2488	1.107	530	213	02	202	0.71
1500	0.2408	1.207	557	215	100	303	0.70
1600	0.2322	1.230	584	240	106	390	0.68
1700	0.0010	1.0/7					
1700	0.2049	1.267	611	298	113	435	0.68
1800	0.1935	1.286	637	329	120	482	0.68
1900	0.1833	1.307	663	362	128	534	0.67
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.66
2200	0.1582	1.417	740	468	160	714	0.65
2300	0.1513	1.478	766	506	175	783	0.64
2400	0.1448	1.558	792	547	196	869	0.630
2500	0.1389	1.665	818	589	222	960	0.61
3000	0.1135	2.726	955	841	486	1570	0.530
Amoni	iaco (NH.)						
300	0.6894	2.158	101.5	14.7	24.7	16.6	0.883
320	0.6448	2.170	109	16.9	27.2	19.4	0.87
340	0.6059	2.192	116.5	19.2	29.3	22.1	0.87
360	0.5716	2.221	124	21.7	31.6	24.9	0.87
200	0.5410	2 254	121	24.2	24.0	37.0	0.020

Anexo 14. Propiedades termo físicas de gases

Anexo 15. Propiedades de gas ideal del aire

Propi	Propiedades de gas ideal del aire										
Т	h		u		S°	T	h		u		S°
К	kJ/kg	P,	kJ/kg	V _r	kJ/kg · K	ĸ	kJ/kg	Ρ,	kJ/kg	V _r	kJ/kg · K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	4/3.25	85.34	2.49364
280	280.13	1.0889	203 33	738.0	1.65055	670	681.14	23.13	481.01	78.61	2.50985
200	200.14	1.0011	200.00	676.1	1.66803	600	601.00	25.95	406.62	75.50	2.52505
290	290.10	1.2311	206.91	647.0	1.68515	600	702.52	25.65	490.02 504.45	75.50	2.54175
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	2/1.69	343.4	1.94001	880	910.56	68.98	657.95	30.01	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	591.28	32.18	2.8/324
410	411.12	4.100	300.69	265.5	2.01699	940	1000 55	97.00	706.00	28.40	2.09/40
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5 332	315 30	236.8	2.08870	1000	1046.04	114.0	758 94	25.17	2,96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540	544.35	11.10	389.34	139.7	2.29906	1200	1277.79	238.0	933.33	14.470	3.17888
550	555.74	11.86	396.86	133.1	2.31809	1220	1301.31	254.7	951.09	13.747	3.19834
000	202.17	12.00	404.42	127.0	2.33080	1240	1324.93	212.3	908.95	13.069	3.21/51

Anexo	16.	Pro	piedades	de	gas	ideal	del	nitrógeno)

Propiedad	des de gas ideal	del nitrógeno, N	N ₂				
Т	ĥ	ū	<u>s</u> °	Т	ħ	ū	<u>s</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol - K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,563	12,574	212.066
220	6,391	4,562	182.639	610	17,864	12,792	212.564
230	6,683	4,770	183.938	620	18,166	13,011	213.055
240	6,975	4,979	185.180	630	18,468	13,230	213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270	7,849	5,604	188.614	660	19,380	13,892	214.954
280	8,141	5,813	189.673	670	19,685	14,114	215.413
290	8,432	6,021	190.695	680	19,991	14,337	215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.038	710	20,912	15,008	217.192
320	9,300	6,645	193.362	720	21,220	15,234	217.024
340	9,888	7.061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196 173	750	22,149	15,913	218 889
360	10,471	7,478	196,995	760	22,140	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,265	10,210	206.033	090	20,000	19,166	224.200
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	11,040	207.792	920	27,002	20 122	225.353
540	15,766	11,002	208.914	940	28,178	20,362	226.047
550	16,064	11 402	200.011	950	28 501	20,602	226.380
560	16,363	11,492	209.401	960	28,301	20,803	226.339
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728

Anexo 16. Propiedades de gas ideal del nitrógeno (*continuación*) TABLA A-18

т	ħ	ū	<u>s</u> °	Т	h	ū	<u>s</u> °
к	kJ/kmol	kJ/kmol	kJ/kmol - K	к	kJ/kmol	kJ/kmol	kJ/kmol ·
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47.075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40.170	29.361	236.831	2150	70.226	52.351	254,578
1320	40,853	29,378	237.353	2200	72,040	53,749	255,412
1340	41,539	30,398	237.867	2250	/3.855	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31.964	239.375	2400	79.320	59,366	258,580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47.073	34.601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186
1740	55,516	41.049	246,990	3250	110,690	83,668	269,763

Anexo 17. Propiedades de gas ideal del oxígeno

TABLA A-	-19						
Propieda	des de gas ideal	del oxígeno, O ₂	2				
т	ħ	ū	<u>s</u> °	Т	ħ	ū	<u>s</u> °
к	kJ/kmol	kJ/kmol	kJ/kmol · K	к	kJ/kmol	kJ/kmol	kJ/kmol - K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390 400 410 420 430 440	11,409 11,711 12,012 12,314 12,618 12,923	8,166 8,384 8,603 8,822 9,043 9,264	213.002 213.765 214.510 215.241 215.955 216.656	800 810 820 830 840	24,188 24,523 24,861 25,199 25,537 25,877	17,618 17,872 18,126 18,382 18,637 18,893	235.387 235.810 236.230 236.644 237.055 237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

Anexo 17.	Propiedades	de gas ideal	del oxígeno	(continuación)	
-----------	-------------	--------------	-------------	----------------	--

TABLA A-	-19						
Propieda	des de gas idea	l del oxígeno, O ₂	(conclusión)				
т	ħ	U	<u>ड</u> °	Т	ħ	σ	٤°
к	kJ/kmol	kJ/kmol	kJ/kmol - K	к	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	<u>69,772</u>	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300 1320 1340 1360	42,033 42,753 43,475 44,198	31,224 31,778 32,334 32,891	252.776 253.325 253.868 254.404 254.932	2150 2200 2250 2300 2350	73,573 75,484 77,397 79,316 81,243	55,697 57,192 58,690 60,193	271.399 272.278 273.136 273.891 274.809
1400 1420 1440 1460 1480	44,923 45,648 46,374 47,102 47,831 48,561	34,008 34,567 35,129 35,692 36,256	254.552 255.454 255.968 256.475 256.978 257.474	2400 2450 2500 2550 2600	81,243 83,174 85,112 87,057 89,004 90,956	63,219 64,742 66,271 67,802 69,339	275.625 276.424 277.207 277.979 278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

TABLA A-	20						
Propieda	des de gas ideal	del dióxido de c	arbono, CO ₂				
т	ĥ	Π	<u>چ</u>	Т	ĥ	Π	<u>چ</u>
к	kJ/kmol	kJ/kmol	kJ/kmol · K	к	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350 360 370 380 390	11,351 11,748 12,148 12,552 12,950	8,439 8,752 9,068 9,392 9,718	219.831 220.948 222.044 223.122 224.182	750 760 770 780	29,629 20,135 30,644 31,154	23,393 23,817 24,242 24,669 25,097	254.117 254.787 255.452 256.110 256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560	20,407	15,751	239.962	960	40,607	32,625	267.007
570	20,870	16,131	240.789	970	41,145	33,081	267.566
580	21,337	16,515	241.602	980	41,685	33,537	268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670

Anexo 18. Propiedades de gas ideal del dióxido de carbono

TABLA A-	20						
Propiedad	des de gas ideal	del dióxido de	carbono, CO ₂ (<i>con</i>	clusión)			
т к	h̄ kJ/kmol	0 kJ/kmol	ਤ° kJ/kmol ⋅ K	т к	h <mark>kJ/kmol</mark>	a kJ/kmol	ਤ° kJ/kmol ∙ K
1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260	42,769 43,859 44,953 46,051 47,153 48,258 49,369 50,484 51,602 52,724 53,848 54,977 56,108 57,244	34,455 35,378 36,306 37,238 38,174 39,112 40,057 41,006 41,957 42,913 43,871 44,834 45,799 46,768	269.215 270.293 271.354 272.400 273.430 274.445 275.444 276.430 277.403 278.361 297.307 280.238 281.158 282.066	1760 1780 1800 1820 1840 1860 1880 1900 1920 1920 1940 1960 1980 2000 2050	86,420 87,612 88,806 90,000 91,196 92,394 93,593 94,793 95,995 97,197 98,401 99,606 100,804 103,835	71,787 72,812 73,840 74,868 75,897 76,929 77,962 78,996 80,031 81,067 82,105 83,144 84,185 86,791	301.543 302.217 302.884 303.544 304.198 304.845 305.487 306.122 306.751 307.374 307.992 308.604 309.210 310.701
1280 1280 1320 1320 1340 1360 1380 1400 1420 1440 1460 1480	57,244 58,381 59,522 60,666 61,813 62,963 64,116 65,271 66,427 67,586 68,748 66,911 71,078	46,768 47,739 48,713 49,691 50,672 51,656 52,643 53,631 54,621 55,614 55,614 56,609 57,606 58,606	282.962 283.847 284.722 285.586 286.439 287.283 288.106 288.934 289.743 290.542 291.333 292.114	2030 2100 2150 2250 2300 2350 2400 2450 2550 2550 2600 2650	105,835 106,864 109,898 112,939 115,984 119,035 122,091 125,152 128,219 131,290 134,368 137,449	89,404 92,023 94,648 97,277 99,912 102,552 105,197 107,849 110,504 113,166 115,832 118,500	312.160 313.589 314.988 316.356 317.695 319.011 320.302 321.566 322.808 324.026 325.222 326.396
1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720	71,078 72,246 73,417 74,590 76,767 76,944 78,123 79,303 80,486 81,670 82,856 84,043	58,606 59,609 60,613 61,620 62,630 63,741 64,653 65,668 66,592 67,702 68,721 69,742	292.114 292.888 292.654 294.411 295.161 295.901 296.632 297.356 298.072 298.781 299.482 300.177	2650 2700 2750 2850 2950 3000 3050 3100 3150 3200	140,533 143,620 146,713 149,808 152,908 156,009 159,117 162,226 165,341 168,456 171,576 174,695	118,500 121,172 123,849 126,528 129,212 131,898 134,589 137,283 139,982 142,681 145,385 148,089	326.396 327.549 328.684 329.800 330.896 331.975 333.037 334.084 335.114 336.126 337.124 338.109

Anexo 18. Propiedades de gas ideal del dióxido de carbono (continuación)

Anexo 19. Propie	dades de	gas ideal	del mon	óxido de	carbono
------------------	----------	-----------	---------	----------	---------

Propieda	des de gas ideal	del monóxido d	e carbono, CO				
Т	ħ	ū	<u>s</u> °	Т	h	ū	<u>s</u> °
к	kJ/kmol	kJ/kmol	kJ/kmol - K	K	kJ/kmol	kJ/kmol	kJ/kmol • K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,200	5,166	192.411	640	10,033	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,/30	220.656
280	8 140	5,812	195 713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,009	7,002	201.371	740	21,943	15,769	224.092
360	10,181	7,271	202.217	750	22,258	16,022	225.115
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
450	12,021	9,105	208.929	850	25,124	18,140	220.724
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
540	15,497	11,090	214.460	930	28,046	20,314	232.028
550	16,097	11,507	215.520	050	28,373	20,005	222.075
560	16,399	11,743	216.115	960	29,033	21.051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLA A-	21						
Propieda	des de gas ideal	del monóxido de	e carbono, CO (<i>con</i>	clusión)			
т	ħ	ū	<u>s</u> °	Т	ħ	ū	<u>s</u> °
к	kJ/kmol	kJ/kmol	kJ/kmol - K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600
1260	39,154	28,678	242.236	2050	67.224	50,179	259.494
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065
1340	41,919	30,778	244.366	2250	74.516	55,809	262.887
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494

Anexo 19. Propiedades de gas ideal del monóxido de carbono (continuación)

TABLA A	-23						
Propieda	ides de gas idea	l del vapor de ag	ua, H ₂ O				
т	ħ	ū	<u>s</u> °	Т	ħ	ū	۶°
к	kJ/kmol	kJ/kmol	kJ/kmol · K	к	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350 360 370 380 390	11,652 11,992 12,331 12,672 13,014	8,742 8,998 9,255 9,513 9,71	194.125 195.081 196.012 196.920 197.807	750 760 770 780	25,977 26,358 26,741 27,125	19,741 20,039 20,339 20,639 20,941	221.215 221.720 222.221 222.717 223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

Anexo 20. Propiedades de gas ideal del vapor de agua

TABLA A-	23 dos do gos ideal	del upper de or	wa H O (conclusi	(n)			
T	E ce gas ideal	uei vapor ue at	ua, H ₂ O (conclusi		-		
ĸ	n kJ/kmol	u kJ/kmol	s- kJ/kmol·K	ĸ	n kJ/kmol	u kJ/kmol	s⁻ kJ/kmol⋅K
1000	25 002	27 569	222 507	1760	70 525	EE 002	259 151
1020	36,709	28,228	232.597	1780	71,523	56,723	258,708
1040	37.542	28,895	234,223	1800	72,513	57.547	259,262
1060	38,380	29,567	235.020	1820	73,507	58.375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40.071	30,925	236.584	1860	75 506	60.042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	/8,52/	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85.156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	55,128	43,989	249.185	2550	111,565	90,364	277.354
1400	57,062	44,750	249.820	2000	114,275	92,000	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	50,942	46,304	251.074	2750	122 453	97,269	280.462
1560	60,838	47,868	252 305	2800	125,400	101 917	282 453
1580	61,792	48,655	252.912	2850	127,952	104,256	283,429
1600	62 748	19,000	253 513	2000	130 717	106 605	284 390
1620	63 709	50 240	254 111	2950	133,486	108,005	285 338
1640	64.675	51.039	254,703	3000	136,264	111.321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102
1700	67.589	53,455	256.450	3150	144,648	118,458	288,999
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756

Anexo 20. Propiedades de gas ideal del vapor de agua (continuación)

Anexo 21. Entalpía de diversas sustancias

TABLA A-26

Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm

		\overline{h}_{t}°	gr	<u>s</u> °
Sustancia	Fórmula	kJ/kmol	kJ/kmol	kJ/kmol · K
Acetileno	$C_2H_2(g)$	+226,730	+209,170	200.85
Agua	H₂O(ℓ)	-285,830	-237,180	69.92
Alcohol etílico	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Alcohol etílico	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Alcohol metílico	CH ₃ OH(g)	-200,670	-162,000	239.70
Alcohol metílico	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Amoniaco	$NH_3(g)$	-46,190	-16,590	192.33
Benceno	$C_6H_6(g)$	+82,930	+129,660	269.20
<i>n</i> -butano	$C_4H_{10}(g)$	-126,150	-15,710	310.12
Carbón	C(s)	0	0	5.74
Dióxido de carbono	$CO_2(g)$	-393,520	-394,360	213.80
n-dodecano	C ₁₂ H ₂₆ (g)	-291,010	+50,150	622.83
Etano	$C_2H_6(g)$	-84,680	-32,890	229.49
Etileno	$C_2H_4(g)$	+52,280	+68,120	219.83
Hidrógeno	$H_2(g)$	0	0	130.68
Hidrógeno	H(g)	+218,000	+203,290	114.72
Hidroxilo	OH(g)	+39,460	+34,280	183.70
Metano	$CH_4(g)$	-74,850	-50,790	186.16
Monóxido de carbono	CO(g)	-110,530	-137,150	197.65
Nitrógeno	$N_2(g)$	0	0	191.61
Nitrógeno	N(g)	+472,650	+455,510	153.30
n-octano	C ₈ H ₁₈ (g)	-208,450	+16,530	466.73
n-octano	$C_0H_{10}(\ell)$	-249,950	+6,610	360.79
Oxígeno	$O_2(g)$	0	0	205.04
Oxígeno	O(g)	+249,190	+231,770	161.06
Peróxido de hidrógeno	$H_2O_2(g)$	-136.310	-105,600	232.63
Propano	$C_3H_{e}(g)$	-103.850	-23,490	269.91
Propileno	$C_{3}H_{6}(g)$	+20,410	+62,720	266.94
Vapor de agua	H ₂ O(g)	-241,820	-228,590	188.83

Fuente: De JANAF, Thermochemical Tables, Midland, MI, Dow Chemical Co., 1971, Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; y API Research Project 44, Carnegie Press, 1953.

Anexo 22. Propiedades de la atmósfera a gran altitud

Propiedadee	de	la.	atmósfera		gran	altitud	
riobleudues	ue.	10	aunosieia	-	ciali	annuu	

Altitud, m	Temperatura, °C	Presión, kPa	Gravedad g, m/s ²	Velocidad del sonido, m/s	Densidad, kg/m ³	Viscosidad µ, kg/m · s	Conductivi dad térmica W/m · K
0	15.00	101.33	9.807	340.3	1.225	$1.789 imes 10^{-5}$	0.0253
200	13.70	98.95	9.806	339.5	1.202	1.783×10^{-5}	0.0252
400	12.40	96.61	9.805	338.8	1.179	1.777×10^{-5}	0.0252
600	11.10	94.32	9.805	338.0	1.156	1.771×10^{-5}	0.0251
800	9.80	92.08	9.804	337.2	1.134	1.764×10^{-5}	0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090	1.752×10^{-5}	0.0248
1400	5.90	85.60	9.802	334.9	1.069	1.745×10^{-5}	0.0247
1600	4.60	83.53	9.802	334.1	1.048	1.739×10^{-5}	0.0245
1800	3.30	81.49	9.801	333.3	1.027	1.732×10^{-5}	0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5}	0.0243
2200	0.70	77.55	9 800	331.7	0.987	1.720×10^{-5}	0.0242
2400	-0.59	75.63	9.799	331.0	0.967	1.713×10^{-5}	0.0241
2600	-1.89	73.76	9.799	330.2	0.947	1.707×10^{-5}	0.0240
2800	-3.19	71.92	9.798	329.4	0.928	1.700×10^{-5}	0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891	1.687×10^{-5}	0.0237
3400	-7.09	66.63	9.796	327.0	0.872	1.681×10^{-5}	0.0236
3600	-8.39	64.94	9.796	326.2	0.854	1.674×10^{-5}	0.0235
3800	-9.69	63.28	9.795	325.4	0.837	1.668×10^{-5}	0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802	1.655×10^{-5}	0.0232
4400	-13.6	58.52	9.793	323.0	0.785	1.648×10^{-5}	0.0231
4600	-14.9	57.00	9.793	322.2	0.769	1.642×10^{-5}	0.0230
4800	-16.2	55.51	9.792	321.4	0.752	1.635×10^{-5}	0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721	1.622×10^{-5}	0.0227
5400	-20.1	51.23	9.790	318.9	0.705	1.615×10^{-5}	0.0226
5600	-21.4	49.86	9.789	318.1	0.690	1.608×10^{-5}	0.0224
5800	-22.7	48.52	9.785	317.3	0.675	1.602×10^{-5}	0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646	1.588×10^{-5}	0.0221
6400	-26.6	44.69	9.787	314.8	0.631	1.582×10^{-5}	0.0220
6600	-27.9	43.47	9.786	314.0	0.617	1.575×10^{-5}	0.0219
6800	-29.2	42.27	9.785	313.1	0.604	1.568×10^{-5}	0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	$1.493 imes 10^{-5}$	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312	1.422×10^{-5}	0.0195
14,000	-56.5	14.17	9.764	295.1	0.228	1.422×10^{-5}	0.0195
16,000	-56.5	10.53	9.758	295.1	0.166	1.422×10^{-5}	0.0195
18,000	-56.5	7.57	9.751	295.1	0.122	1.422×10^{-5}	0.0195

				and South States		a filina ¹⁹⁶⁶ ana	· · · · · · · · · · · · · · · · · · ·	//////////////////////////////////////	Propieda	ides a va	rias temp	eraturas (К)		
	Dunto	Propiedades a 300 K				$k (W/m \cdot K)/c_p (J/kg \cdot K)$									
Composición	de fusión (K)	ρ (kg/m³)	c_p (J/kg · K)	<i>k</i> (₩/m • K)	α · 10 ⁶ (m ² /s)	100	200	400	600	800	1000	1200	1500	2000	2500
Acero		a la construction de la construction La construction de la construction d		- 19 (19)		Magazari N		and an			See See See			1997 - Sec. 1	
puro	1810	7870	447	80.2	23.1	134	94.0 384	69.5 490	54.7 574	43.3	32.8	28.3	32.1		
Aceros al carbón						210	504	470	574	000	315	009	034		
Carbón ordinario (Mn $\leq 1\%$, Si $\leq 0.1\%$)		7854	434	60.5	17.7			56.7 487	48.0 559	39.2 685	30.0 1169				
AISI 1010		7832	434	63.9	18.8			58.7 487	48.8 559	39.2	31.3				
Carbón-silicio $(Mn \le 1\%, $ $0.1\% < Si \le 0.6\%)$		7817	446	51.9	14.9			49.8 501	44.0 582	37.4 699	29.3 971				
Carbón-manganeso- silicio $(1\% < Mn \le 1.65\%, 0.1\% < Si \le 0.6\%)$		8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090				
$A_{\text{coros}} = con \operatorname{grams}(baio$															
Cr-1Mo-Si	,	7822	444	37.7	10.9			38.2	36.7	33.3	26.9				
(0.18% C, 0.65% Cr, 0.23% Mo. 0.6% Si)								492	575	688	969				
1 Cr-}Mo (0.16% C, 1% Cr,		7858	442	42.3	12.2			42.0 492	39.1 575	34.5 688	27.4 969				
0.54% Mo. 0.39% Si) 1 Cr-V (0.2% C, 1.02% Cr 0.15% V)		7836	443	48.9	14.1			46.8 492	42.1 575	36.3 688	28.2 969				
Aceros inoxidables															
AISI 302		8055	480	15.1	3.91			17.3	20.0	22.8	25.4				
AISI 304 물 음	1670	7900	477	14.9	3.95	9.2	12.6	16.6	19.8	22.6	25.4	28.0	31.7		
AISI 316		8238	468	13.4	3.48	212	402	15.2	18.3	21.3	24,2	640	682		
AISU 347		7978	480	14.2	3.71			15.8 513	18.9 559	21.9 585	24.7 606				
T BIE															

Anexo 23. Propiedades termo físicas de sólidos metálicos