

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

TRABAJO EXPERIMENTAL PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

TEMA:

"ANÁLISIS DE LAS CORRELACIONES ENTRE EL CBR, DCP, PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI"

AUTOR: Christian Ariel Garces Oñate

TUTOR: Ing. Ruth Lorena Pérez Maldonado, Mg.

AMBATO – ECUADOR

Febrero - 2024

APROBACIÓN DEL TUTOR

En mi calidad de Tutor del Trabajo Experimental, previo a la obtención del Título de Ingeniero Civil, con el tema: "ANÁLISIS DE LAS CORRELACIONES ENTRE EL CBR, DCP, PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI", elaborado por el Sr. Christian Ariel Garcés Oñate, portador de la cédula de ciudadanía: C.I. 1850874601, estudiante de la Carrera de Ingeniería Civil de la Facultad de Ingeniería Civil y Mecánica.

Certifico:

- Que el presente Trabajo Experimental es original de su autor.
- Ha sido revisado cada uno de sus capítulos componentes.
- Está concluido en su totalidad

Ambato, febrero 2024

Ing. Ruth Lorena Pérez Maldonado, Mg

ORENA EREZ

TUTOR

AUTORÍA DEL TRABAJO DE TITULACIÓN

Yo, Christian Ariel Garcés Oñate, con C.I. 1850874601 declaro que todas las actividades y contenidos expuestos en el presente Trabajo Experimental con el tema: "ANALISIS DE LA CORRELACIÓN ENTRE EL CBR, DCP, PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI", así como también los gráficos, conclusiones y recomendaciones son de mi exclusiva responsabilidad como autor del proyecto, a excepción de las referencias bibliográficas citadas en el mismo.

Ambato, febrero 2024

Christian Ariel Garces Oñate

And Foreign

C.I. 1850874601

AUTOR

DERECHOS DE AUTOR

Autorizo a la Universidad Técnica de Ambato, para que haga de este Trabajo Experimental o parte de él, un documento disponible para su lectura consulta y proceso de investigación, según las normas de la Institución.

Cedo los Derechos en línea patrimoniales de mi Trabajo Experimental, con fines de difusión pública, además apruebo la reproducción de este documento dentro de las regulaciones de la Universidad, siempre y cuando esta reproducción no suponga una ganancia económica y se realice respetando mis derechos de autor.

Ambato, febrero 2024

Christian Ariel Garces Oñate

C.I. 1850874601

AUTOR

APROBACIÓN DEL TRIBUNAL DE GRADO

Los miembros del Tribunal de Grado aprueban el informe del Trabajo Experimental, realizado por el estudiante Christian Ariel Garcés Oñate de la Carrera de Ingeniería Civil bajo el tema: "ANALISIS DE LAS CORRELACIONES ENTRE EL CBR, DCP, PROPIEDADES ÍNDICE Y MECÁNICAS EN SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI".

Ambato, febrero 2024

Para constancia firman:

Ing. Jorge Javier Guevara Robalino, Mg.

MIEMBRO CALIFICADOR

Ing. Diego Sebastián Cherrez Gavilanes, Mg.

MIEMBRO CALIFICADOR

DEDICATORIA

El presente trabajo, esfuerzo y dedicación va dedicado para mis padres, en especial a mi padre aunque él no esté presente ya en este mudo yo sé que se encuentra feliz de que su hijo cumple una meta grande en su vida y como no dedicarle a mi madre quien es padre y madre a la vez, quien ha hecho lo posible y lo imposible para entregarme esta gran herencia de mi preparación académica y a una persona que siempre ha estado a mi lado en las buenas y malas como es William López a quien considero como mi guía de vida.

Christian Garcés

AGRADECIMIENTO

En las peores circunstancias de la vida cuando parece que no existe fuerzas para seguir, siempre estará la entidad más grande del universo mi DIOS a quien agradezco un ser divino que quita y da vida quien me ha permitido realizar este trabajo de titulación y que gracias a él me ha puesto en mi camino personas quienes me han forjado en una gran persona y ahora en un profesional.

Como no agradecer también a esa persona que después de Dios me dio las fuerzas para seguir en adelante en mi diario vivir y en esta etapa académica, quien me ha apoyado tanto moralmente como económica para cumplir mi meta mi MADRE quien es la luz de mis ojos, a quien volteo a verle siempre al cometer errores y logros en la vida.

Agradezco a mi Tutor quien me guio en este camino académico y fue la llave para poder alcanzar mi sueño tan anhelado el de graduarme

Gracias Familia por confiar en mis capacidades de que algún día podría lograr una de mis metas en mi vida como yo en mi Santísima Cruz de Quinchibana Alto que juntamente con mi padre que está en el cielo me cuidan y me protegen en mi andar diario en fin gracias a todos.

Christian Garcés

ÍNDICE DE CONTENIDOS

A. PÁGINAS PRELIMINARES	
APROBACIÓN DEL TUTOR	ii
AUTORÍA DEL TRABAJO DE TITULACIÓN	iii
DERECHOS DE AUTOR	iv
APROBACIÓN DEL TRIBUNAL DE GRADO	v
DEDICATORIA	vi
AGRADECIMIENTO	vii
ÍNDICE DE CONTENIDOS	viii
ÍNDICE DE TABLAS	xi
ÍNDICE DE FIGURAS	xvii
RESUMEN EJECUTIVO	xix
ABSTRACT	xx
CAPÍTULO I MARCO TEÓRICO	1
1.1. Antecedentes Investigativos	1
1.1.1. Antecedentes	1
1.2. Objetivos	5
1.2.1. Objetivo General	5
1.2.2. Objetivos Específicos	5
CAPÍTULO II	6
2.1. METODOLOGÍA	6
2.1.1. Equipos y Materiales	6
2.2. Métodos	7
2.2.1. Fase preliminar – Investigación Exploratoria	7
2.2.2. Fase 1 – Investigación Aplicada y Experimental	11
2.2.3. Fase 2 – Investigación analítica	23
2.2.4. Fase 3 – Investigación Analítica	25
CAPÍTULO III RESULTADOS Y DISCUSIÓN	30
3.1. Análisis y discusión de resultados	30
3.1.1. FASE 1	31
3.1.2. FASE 2	38

3.1.2.1. Correlación N°1: Límite Líquido vs Límite Plástico	. 39
3.1.2.2. Correlación N°2: Humedad Natural vs Grado de Saturación del agua	. 40
3.1.2.3. Correlación N°3: Límite Plástico vs Gravedad Específica	. 41
3.1.2.4. Correlación N°4: Grado de Saturación del aire vs Humedad Natural	. 42
3.1.2.5. Correlación N°5: Porcentaje de Finos vs Grado de Saturación del agua	ι 43
3.1.2.6. Correlación N°6: Límite Líquido vs Arena %	. 44
3.1.2.7. Correlación N°7: Porosidad vs Densidad seca in titu	. 45
3.1.2.8. Correlación N°8: Humedad óptima vs Densidad seca in situ	. 46
$3.1.2.9.$ Correlación $N^{\circ}9$: Densidad seca máxima vs Densidad húmeda in situ .	. 47
3.1.2.10.Correlación N°10: Relación de vacíos vs Densidad seca in situ	. 48
3.1.2.11.Correlación N°11: Grado de compactación vs Relación de vacíos	. 49
3.1.2.12.Correlación N°12: Densidad Seca in situ vs Porosidad	. 50
3.1.2.13.Correlación N°13: Densidad máxima vs Límite líquido-Límite plástico	51
3.1.2.14.Correlación N°14: Humedad óptima vs Límite líquido-Límite plástico	. 52
3.1.2.15.Correlación N°15: Densidad máxima vs Límite líquido-Finos%	. 53
3.1.2.16.Correlación N°16: Índice de penetración vs Límite Plástico	. 54
3.1.2.17.Correlación N°17: Índice de penetración vs Límite Líquido-Límite plástico 55	
3.1.2.18.Correlación N°18: Índice de penetración vs Grado de compactación	. 56
3.1.2.19.Correlación N°19: Índice de penetración vs Finos%	. 57
3.1.2.20.Correlación N°20: Índice de penetración vs Arena% - Densidad seca is situ 58	n
3.1.2.21.Correlación N°21: CBR vs Índice de penetración	. 59
3.1.2.22.Correlación N°22: CBR vs Densidad seca máxima	. 60
3.1.2.23.Correlación N°23: CBR vs Humedad óptima	. 61
3.1.2.24.Correlación N°24: CBR vs Humedad natural – Límite plástico	. 62
3.1.3. FASE 3	. 63
3.1.3.1. Diseño de Pavimento (cálculo del TPDA)	. 63
3.1.3.2. Diseño del Pavimento Flexible Método AASHTO 93	. 72
2. Verificación de la Hipótesis	. 86
APÍTULO IV CONCLUSIONES Y RECOMENDACIONES	. 87
11 Conclusiones	87

4.2.	Recomendaciones	88
BIBLIC	OGRAFÍA	89
ANEXO	OS	93
ANE	XO A ESTUDIOS DE SUELOS	93
ANE	XO B CONTEO MANUAL DEL TRAFICO VEHICULAR	196
ANE	XO C IMÁGENES	204

ÍNDICE DE TABLAS

Tabla 1: Gravedad Específica de acuerdo con el tipo de suelo	19
Tabla 2: Clasificación de suelos de acuerdo con los valores del CBR	22
Tabla 3: Rangos de Correlaciones	23
Tabla 4: Formatos para las correlaciones múltiples	24
Tabla 5: Periodo de diseño AASHTO	26
Tabla 6: Nivel de confiabilidad R con respecto al tipo de carretera	26
Tabla 7: Ecuaciones del Módulo de Resiliencia	27
Tabla 8: Índice de serviciabilidad	27
Tabla 9: Calidad de drenaje	29
Tabla 10: Coeficientes de drenaje	29
Tabla 11: Nomenclatura	30
Tabla 12: Resultados del ensayo de Densidad de Campo	31
Tabla 13: Resultados del ensayo DCP	32
Tabla 14: Resultados ensayo de granulometría	33
Tabla 15: Resultados del ensayo de límites de atterberg	33
Tabla 16: Resultados ensayo de gravedad específica	34
Tabla 17: Resultados ensayo de compactación	35
Tabla 18: Resultados ensayo de CBR	35
Tabla 19: Propiedades Índice de los suelos de la parroquia Sigchos	36
Tabla 20: Propiedades Mecánicas del suelo de la parroquia Sigchos	37
Tabla 21: Resumen de correlaciones	38
Tabla 22: Conteo de flujo vehicular	63
Tabla 23: Hora Pico	65
Tabla 24: Valor k según la zona	66
Tabla 25: Resumen TPDA actual	67

Tabla 26: Tráfico actual calculado	69
Tabla 27: Periodo de diseño	69
Tabla 28: Tasa de crecimiento anual del tráfico	70
Tabla 29: Tráfico proyectado para dentro de 20 años	71
Tabla 30: Clasificación de carretera	71
Tabla 31: Factor de daño en base al tipo de vehículo	72
Tabla 32: Factor de distribución por carril	73
Tabla 33: Resumen de ejes equivalentes	74
Tabla 34: Nivel de confiabilidad	74
Tabla 35: Desviación estándar normal	74
Tabla 36: Desviación estándar normal (Zr)	75
Tabla 37: Calidad de drenaje	78
Tabla 38: Coeficiente de drenaje	79
Tabla 39: Espesores mínimos	79
Tabla 40: Resumen de datos para el diseño del paquete estructural	80
Tabla 41: Diseño del pavimento para el CBR de laboratorio	80
Tabla 42: Espesores del paquete estructural	82
Tabla 43: Diseño del pavimento para el cbr de correlaciones	84
Tabla 44: Espesores paquete estructural CBR laboratorio y CBR correlaciones	85
Tabla 45: Densidad de Campo muestra #1	94
Tabla 46: Densidad de Campo muestra #2	95
Tabla 47: Densidad de Campo muestra #3	96
Tabla 48: Densidad de Campo muestra #4	97
Tabla 49: Densidad de Campo muestra #5	98
Tabla 50: Densidad de Campo muestra #6	99

Tabla 52: Densidad de Campo muestra #8	. 101
Tabla 53: Densidad de Campo muestra #9	. 102
Tabla 54: Densidad de Campo muestra #10	. 103
Tabla 55: Densidad de Campo muestra #11	. 104
Tabla 56: Densidad de Campo muestra #12	. 105
Tabla 57: Contenido de Humedad muestra #1	. 106
Tabla 58: Contenido de Humedad muestra #2	. 106
Tabla 59: Contenido de Humedad muestra #3	. 107
Tabla 60: Contenido de Humedad muestra #4	. 107
Tabla 61: Contenido de Humedad muestra #5	. 108
Tabla 62: Contenido de Humedad muestra #6	. 108
Tabla 63: Contenido de Humedad muestra #7	. 109
Tabla 64: Contenido de Humedad muestra #8	. 109
Tabla 65: Contenido de Humedad muestra #9	. 110
Tabla 66:Contenido de Humedad muestra #10	. 110
Tabla 67: Contenido de Humedad muestra #11	. 111
Tabla 68: Contenido de Humedad muestra #12	. 111
Tabla 69: Granulometría muestra #1	. 112
Tabla 70: Granulometría muestra #2	. 113
Tabla 71: Granulometría muestra #3	. 114
Tabla 72: Granulometría muestra #4	. 115
Tabla 73:Granulometría muestra #5	. 116
Tabla 74: Granulometría muestra #6	. 117
Tabla 75: Granulometría muestra #7	. 118
Tabla 76: Granulometría muestra #8	. 119
Tabla 77: Granulometría muestra #9.	120

Tabla 78: Granulometría muestra #10	. 121
Tabla 79: Granulometría muestra #11	. 122
Tabla 80: Granulometría muestra #12	. 123
Tabla 81: Límites de Atterberg muestra #1	. 124
Tabla 82: Límites de Atterberg muestra #2	. 125
Tabla 83: Límites de Atterberg muestra #3	. 126
Tabla 84: Límites de Atterberg muestra #4	. 127
Tabla 85: Límites de Atterberg muestra #5	. 128
Tabla 86: Límites de Atterberg muestra #6	. 129
Tabla 87: Límites de Atterberg muestra #7	. 130
Tabla 88: Límites de Atterberg muestra #8	. 131
Tabla 89: Límites de Atterberg muestra #9	. 132
Tabla 90: Límites de Atterberg muestra #10	. 133
Tabla 91: Límites de Atterberg muestra #11	. 134
Tabla 92: Límites de Atterberg muestra #12	. 135
Tabla 93: Gravedad Específica muestra #1	. 136
Tabla 94: Gravedad Específica muestra #2	. 137
Tabla 95: Gravedad Específica muestra #3	. 138
Tabla 96: Gravedad Específica muestra #4	. 139
Tabla 97: Gravedad Específica muestra #5	. 140
Tabla 98: Gravedad Específica muestra #6	. 141
Tabla 99: Gravedad Específica muestra #7	. 142
Tabla 100: Gravedad Específica muestra #8	. 143
Tabla 101: Gravedad Específica muestra #9	. 144
Tabla 102: Gravedad Específica muestra #10	. 145
Tabla 103: Gravedad Específica muestra #11	146

Tabla 104: Gravedad Específica muestra #12	147
Tabla 105: Proctor modificado muestra #1	148
Tabla 106: Proctor modificado muestra #2	149
Tabla 107: Proctor modificado muestra #3	150
Tabla 108: Proctor modificado muestra #4	151
Tabla 109: Proctor modificado muestra #5	152
Tabla 110: Proctor modificado muestra #6	153
Tabla 111: Proctor modificado muestra #7	154
Tabla 112: Proctor modificado muestra #8	155
Tabla 113: Proctor modificado muestra #9	156
Tabla 114: Proctor modificado muestra #10	157
Tabla 115: Proctor modificado muestra #11	158
Tabla 116: Proctor modificado muestra #12	159
Tabla 117: CBR muestra #1	160
Tabla 118: CBR muestra #2	162
Tabla 119: CBR muestra #3	164
Tabla 120: CBR muestra #4	166
Tabla 121: CBR muestra #5	168
Tabla 122: CBR muestra #6	170
Tabla 123: CBR muestra #7	172
Tabla 124: CBR muestra #8	174
Tabla 125: CBR muestra #9	176
Tabla 126: CBR muestra #10	178
Tabla 127: CBR muestra #11	180
Tabla 128: CBR muestra #12	182
Tabla 129: Ensayo DCP muestra #1	184

Tabla 130: Ensayo DCP muestra #2	185
Tabla 131: Ensayo DCP muestra #3	186
Tabla 132: Ensayo DCP muestra #4	187
Tabla 133: Ensayo DCP muestra #5	188
Tabla 134: Ensayo DCP muestra #6	189
Tabla 135:Ensayo DCP muestra #7	190
Tabla 136: Ensayo DCP muestra #8	191
Tabla 137: Ensayo DCP muestra #9	192
Tabla 138: Ensayo DCP muestra #10	193
Tabla 139: Ensayo DCP muestra #11	194
Tabla 140: Ensayo DCP muestra #12	195
Tabla 141: Conteo manual del tráfico vehicular – Lunes	197
Tabla 142: Conteo manual del tráfico vehicular – Martes	198
Tabla 143: Conteo manual del tráfico vehicular – Miércoles	199
Tabla 144: Conteo manual del tráfico vehicular – Jueves	200
Tabla 145: Conteo manual del tráfico vehicular – Viernes	201
Tabla 146: Conteo manual del tráfico vehicular – Sábado	202
Tabla 147: Conteo manual del tráfico vehicular - Domingo	203

ÍNDICE DE FIGURAS

Fig 1: Ubicación de la Parroquia Sigchos	8
Fig 2: Vías de Investigación	9
Fig 3: Ubicación de las calicatas en la Parroquia Sigchos	10
Fig 4: Medición del pozo a cielo abierto	11
Fig 5: Utilización del Método Cono y arena Ottawa	12
Fig 6: Penetración de la varilla DCP	14
Fig 7: Colocación de muestras en el horno	15
Fig 8: Uso del juego de tamices	15
Fig 9: Ensayo de Límite Líquido	17
Fig 10: Ensayo del Límite Plástico	18
Fig 11: Compactación de 56 golpes de las 5 capas	21
Fig 12: Ensayo de CBR en la maquina (MULTISPEED)	22
Fig 13: Ábaco del coeficiente a1	28
Fig 14: Ábaco del coeficiente a2	28
Fig 15: Ábaco del coeficiente a3	29
Fig 16: Correlación LL vs LP	39
Fig 17: Correlación Wnat vs Gw	40
Fig 18: Correlación LP vs Gs	41
Fig 19: Correlación Ga vs Wnat	42
Fig 20: Correlación % FINOS vs Gw	43
Fig 21: Correlación LL vs % ARENA	44
Fig 22: Correlación n vs γd in situ	45
Fig 23: Correlación Wopt vsyd in situ	46
Fig 24: Correlación γd máx vs γd in situ	47

Fig 25: Correlación e vs γd in situ	
Fig 26: Correlación Gc% vs e	
Fig 27: Correlación γd in situ vs n	
Fig 28: Correlación γd máx vs LL - LP	
Fig 29: Correlación Wopt vs LL – LP	
Fig 30: Correlación γd máx vs LL – % Finos	
Fig 31: Correlación DN vs LP	
Fig 32: Correlación DN vs LL – LP	
Fig 33: Correlación DN vs Gc%	
Fig 34: Correlación DN vs Finos	
Fig 35: Correlación DN vs % Arena - γd in situ	
Fig 36: Correlación CBR mayor vs DN	
Fig 37: Correlación CBR mayor vs γd máx	
Fig 38: Correlación CBR mayor vs Wopt	
Fig 39: Correlación CBR mayor vs Wnat - LP	
Fig 40: Comportamiento diario del tráfico	
Fig 41: Comportamiento horario (lunes)	
Fig 42: Distribución del tráfico por tipo (lunes)	
Fig 43: Distribución máxima de carga por eje	
Fig 44: Coeficiente estructural a1	
Fig 45: Coeficiente estructural a2	
Fig 46: Coeficiente estructural a3	
Fig 47: Correlación CBR vs DN	

RESUMEN EJECUTIVO

La presente investigación corresponde a un macroproyecto sobre correlaciones entre

las propiedades físicas y mecánicas de los suelos de la provincia de Cotopaxi, debido

a que al momento el sector no cuenta con estudios preliminares para conocer la calidad

del suelo y tratar de evitar gastos innecesarios en la construcción del pavimento

flexible.

Se realizaron ensayos de campo y laboratorio a partir de muestras representativas de

suelo, con el objetivo principal de establecer ecuaciones empíricas que aplicadas de

manera eficaz permitan encontrar las propiedades de los suelos partiendo de otras

propiedades de este. El área de estudio está comprendida en la parroquia Sigchos

perteneciente al cantón Sigchos, provincia de Cotopaxi, éste se desarrolló por medio

de fases, partiendo de una preliminar en la cual se realizó una inspección técnica de la

zona de estudio y se estableció los puntos de toma de muestras, una vez concretada la

fase preliminar se continuo con la fase 1 en la cual se llevó a cabo la realización de los

diferentes ensayos del suelo a fin de determinar sus propiedades índice y mecánicas,

para continuar con la fase 2 de la realización de las correlaciones entre los resultados

de las propiedades encontradas, obteniéndose un total de veinticuatro con un

coeficiente de determinación de 68 a 98 por ciento, considerados como aceptables a

partir del 50 por ciento.

Finalmente se aplicaron los resultados del CBR en el diseño de un pavimento flexible,

con el fin de demostrar la aplicabilidad de este trabajo experimental.

Palabras claves: Propiedades índice, Sigchos, Correlaciones, CBR, DCP

xix

ABSTRACT

The present experimental research work corresponds to a macroproject on correlations

between the physical and mechanical properties of the soils of the province of

Cotopaxi, by carrying out field and laboratory tests from representative soil samples,

with the main objective of establishing empirical equations that, applied effectively,

allow finding the properties of the soil based on other properties of the same in order

to save time and money in carrying out essential tests for the design of pavements.

The study area is included in the Sigchos parish belonging to the Sigchos canton,

province of Cotopaxi, the experimental work was developed through phases, starting

from a preliminary phase in which a technical inspection of the study area was carried

out and established the sampling points, once the preliminary phase was completed,

we continued with phase 1 in which the different soil tests were carried out in order to

determine its index and mechanical properties, to continue with the phase 2 of carrying

out the correlations between the results of the properties found, obtaining a total of

twenty-four correlations with coefficients of determination between 68 and 98 percent,

considered acceptable from 50 percent onwards.

Finally, the results found from the laboratory CBR and the correlations are applied in

the design of a flexible pavement for one of the roads studied, in order to demonstrate

the applicability of the results of this experimental work.

Keywords: Properties, Sigchos, Correlations, CBR, DCP

ХX

CAPÍTULO I.- MARCO TEÓRICO

1.1.Antecedentes Investigativos

1.1.1. Antecedentes

El propósito de la presente investigación es el de comprender el comportamiento y las características que el suelo posee, los resultados servirán directamente para el diseño estructural del pavimiento para el sector de la parroquia de Sigchos del cantón Sigchos de la provincia del Cotopaxi y así garantizar la seguridad y funcionalidad de la parroquia, con este propósito se realizará una serie de ensayos y pruebas que permitirá establecer si el suelo se encuentra en los rangos y límites estandarizados de estudio.

Uno de los ensayos principales y de mayor relevancia en esta investigación es el CBR (Relación de soporte de California), el cual es utilizado por Bojacá y Campagnoli [1] en su método alternativo para la determinación del módulo resiliente en suelos blandos de subrasante, mencionan que el ensayo CBR es una alternativa apropiada para evaluar o determinar valores de rigidez [2], consideran a este ensayo trabajoso en laboratorio y campo ya que se debe excavar el suelo un metro para la obtención de tres muestras alteradas las cuales son llevadas a laboratorio y simular las condiciones a las cuales se les encuentra en la naturaleza y el CBR en campo se lo extrae tres muestras inalteradas, esta extracción se lo debe realizar con la mayor meticulosidad del caso para después llevárselo a ensayar en una prensa que se puede hallar en cualquier laboratorio de Suelos, que es una gran ventaja a comparación de la maquina triaxial usada en el Mr (Modulo resiliente)[1].

De la misma forma López, Benz y Moustan [3] realizaron una comparación de los ensayos de penetración de cono dinámico (DCP) y penetrómetro de cono dinámico de energía variable PANDA, indican que por medio de correlaciones se puede corroborar los resultados de los análisis de los ensayos DCP y PANDA 2, pero se de tener en cuenta el rango de aplicabilidad de las correlaciones, porque puede existir disimilitudes entre los ensayos que se realizan en laboratorio a los ensayos de campo [4]. También en este articulo mencionan que las correlaciones conseguidas en los suelos de rellenos granulares y arenosos controlados se puede adoptar para suelos granulares con características semejantes y además pueden ser aplicados como punto de partida para suelos análogos [3].

Por otro lado, esta investigación también se determinara la plasticidad que contiene cada una de las muestras extraídas del lugar antes mencionado, para ello Rosas, Burgos, Branch y Corbi [5], hacen alusión a la delimitación del límite liquido (Wl), el índice plástico(PI) y el límite plástico(Wp) obtenidos de suelos finos naturales, por medio de un método alternativo machine-learning utilizando un aparato de membrana de precisión y como también por métodos estadísticos de acuerdo a la norma AASHTO[6] concluyendo que los márgenes de tolerancia del límite liquido son adecuados para propósitos de diseño, de la misma forma que en la delimitación del índice plástico, entretanto la determinación del límite plástico proporciona ajustes para labores de control [5].

Haciendo referencia al ensayo simple de evaluación del suelo como es el DCP y su relación que tiene con el CBR, Portilla [7] menciona en su investigación aplicada en las muestras tomadas en la sierra norte y centro del Ecuador, concluye que las correlaciones se pueden aplicar precisamente para suelos granulares del sector obviamente presentando una granulometría y las propiedades índices y mecánicas similares o adyacentes a los adquiridos. Además, refiere que existe una buena correlación entre varias propiedades del suelo estudiado pero la correlación del DCP y CBR no son tan aceptables esto podría ser causado por que el CBR ensayado en laboratorio están bajo condiciones de humedad y densidad examinadas en comparación del ensayo DCP que son realizadas en circunstancias naturales del suelo [7].

Así mismo en el análisis comparativo de suelos de campo de laboratorio para la medición de su capacidad portante con ensayos CBR y DCP realizados por Mejía, Gilces, Ortiz y García [8] detallan que para encontrar los valores del CBR en sitio utilizan los datos del DCP y los aplican en la fórmula experimental propuesta por Van Vuuren en 1969. Además, aluden al CBR ensayado en laboratorio arrojan datos un poco más preservadores que el ensayo CBR de campo mediante correlaciones del DCP [8].

En la investigación realizada por Sandoval y Rivera [9] en su correlación del CBR con la resistencia a la compresión inconfinada, mencionan que para alcanzar esta correlación es parcialmente sencillo en adquisición de las muestras y en la ejecución de los ensayos, llevados de la mano de un análisis estadístico y que puede dar como

resultado un gran aporte fundamental a la ingeniería geotécnica, cabe mencionar que por medio de las correlaciones se puede conseguir datos de un CBR saturado como también en circunstancias de humedad naturales en situ, estas correlaciones se pueden utilizar en cualquier suelo, mismo valores son empleados para el prediseño específicamente donde no se puede realizar CBR con muestras inalteradas [9].

Haciendo referencia también a la determinación de la capacidad portante del suelo por medio del ensayo DCP Aragundi, Delgado, Delgado y Ortiz [10] determinaron que por medio del ensayo DCP se puede llegar a obtener el CBR in situ, sirviéndose de la correlación del ensayo DCP y CBR en laboratorio y utilizando una formula empírica definida por la norma ASTMD6951M-09. 2009, en esta fórmula contiene un valor numérico de 292 en división con el DCP elevado a un coeficiente de 1.12, además de poderlo correlacionarlo con el ensayo de Penetración Estándar (SPT), ya que es un ensayo a mano y mucho más liviano y manejable [10].

En el artículo de la correlación entre el ensayo DCP y la relación con el ensayo CBR en campo, realizado en Portoviejo-Manta Publicado por la revista Gaceta Técnica efectuaron 56 sondeos superficiales para llegar a obtener dos ecuaciones de correlación exponencial entre los ensayos DCP y CBR al 0.1" y 0.2" en campo, y también se llevó a cabo la correlación múltiple lineal entre el ensayo CBR al 0.1" y 0.2" en campo y el DCP. Asimismo aluden que mediante el análisis ANOVA se puede determinar que los parámetros físicos intervienen en gran parte para la obtención del CBR in situ, cabe mencionar que para las correlaciones simple y múltiple también se añade parámetros como el contenido de humedad,% de grava, % de arena, % de finos, y si se está estudiando un suelo de subrasante no hay que pasar por alto los parámetros estadísticos como el coeficiente de correlación R2 y el p-valor a 0.05, parámetros que sirven para determinar el grado de correlación entre las variables y su fiabilidad, las dos correlaciones la simple y la múltiple fueron ejecutadas por el método de mínimos cuadrados con una tendencia exponencial para las dos correlaciones[11].

Por otra parte, con los datos obtenidos de la investigación a través de los ensayos que se realizaran, se procederá al diseño de pavimento flexible para las vías rurales, de la parroquia Sigchos del cantón Sigchos provincia de Cotopaxi, por del método de diseño AASHTO 93 en donde intervienen varios aspectos de diseño como el CBR de la subrasante que se calculara y de acuerdo con su porcentaje se diseñara el pavimento

flexible. Según Sánchez, Pavón y Tejeda [12] en su investigación de la propuesta de espesores mínimos de superficie y coeficientes de equivalencia de espesores para el diseño de pavimento flexibles, concluyen que por lo general las estructuras de pavimento asfáltico responden al fallo de la subrasante, interpretándolo como adecuado ya que satisface el criterio de deformación vertical a nivel de la subrasante y sus espesores calculados son aptos para el diseño acorde al tráfico estudiado. Determinan también que cuando la subrasante tiene una calidad superior a la solicitada según la norma, es decir estructuras formadas por base de 300 Mpa y un 15 % de CBR de subrasante con un tráfico medio se debe mantener los espesores mínimos de superficie que especifica la norma juntamente con los coeficientes de equivalencia de base y subbase [12].

Haciendo referencia también a Massenlli y Paiva [13] en su investigación de la influencia de la deflexión superficial en pavimentos flexibles con subrasante de baja resistencia, concluyen que el parámetro de rigidez más sensible en la actuación del pavimento flexible es el Módulo de elasticidad al igual que el espesor, ya que una pequeña alteración en estos parámetros, ocasionan cambios notables en la variación en los esfuerzos actuantes, teniendo como resultado un mal desempeño de la carpeta asfáltica y por ende la vida útil del pavimento va a ser corto. Además es importante mencionar que par subrasantes de baja resistencia se puede realizar un refuerzo estructural, es decir aquellos pavimentos que contienen un módulo de subrasante menores de 80 Mpa se lo puede realizar un refuerzo de un mínimo de 0.60m de espesor para así adquirir una subrasante que no sea frágil, pero no se aplica para aquellas subrasantes con un módulo de 30 Mpa aquí es necesario realizar tratamientos con aditivos para una estabilización química y poder así mejorar la subrasante para un pavimento más durable y resistente [13].

Por medio de la obtención de 12 muestras en campo sacadas de 6 vías elegidas estratégicamente en toda el área de la parroquia Sigchos del cantón Sigchos perteneciente a la provincia de Cotopaxi, se procederá a realizar los ensayos para evaluar las propiedades índice - mecánicas de los suelos.

1.2.Objetivos

1.2.1. Objetivo General

 Analizar las correlaciones entre el CBR de laboratorio, DCP y las propiedades índice y mecánicas de los suelos de la parroquia Sigchos del cantón Sigchos, Provincia de Cotopaxi.

1.2.2. Objetivos Específicos

- Establecer las propiedades índice y mecánicas de 12 muestras de suelo de la parroquia Sigchos del cantón Sigchos, por medio del análisis de campo y laboratorio.
- Correlacionar el CBR de laboratorio, DCP y las propiedades índice y mecánicas de los suelos de la parroquia Sigchos, cantón Sigchos, provincia de Cotopaxi.
- Emplear los resultados de la investigación en el diseño de pavimento flexible para vías rurales, de la parroquia Sigchos del cantón Sigchos, Provincia de Cotopaxi.

CAPÍTULO II

2.1. METODOLOGÍA

2.1.1. Equipos y Materiales

En el presente trabajo de investigación se usaron algunos de los instrumentos de laboratorio de la universidad Técnica de Ambato de la Facultad de Ingeniería Civil y Mecánica, como también de campo en cada uno de los ensayos que se detalla a continuación:

En el ensayo de pozo a cielo abierto realizado en campo se utilizó herramientas menores como pala, pico azadón barra de acero de 16" de marca (Bellota), un flexómetro de marca (Truper) y un GPS adquirido por la universidad marca (Garmín. Etrex), materiales que se utilizaron también en la Densidad de campo (método Cono y arena Ottawa), además se empleó un cono y placa metálica de marca (PYS), como también una balanza marca (Sartorlus M-power), para el Cono dinámico de penetración se aprovechó del equipo DCP de marca (PYS), en el ensayo de contenido de humedad se colocó el suelo ensayado en recipientes metálicos marca (SM) y el horno del laboratorio de marca (Lt OF-105), para la práctica de Gravedad especifica se usó un tamiz #40 marca (Humboldt), un picnómetro marca (Duran), horno marca (Lt OF-105), balanza marca (Sartorlus M-power) y otras herramientas como embudo, termómetro, recipientes y pipeta marca (SM), de la misma forma en la ejecución de Granulometría se utilizó la Máquina Tamizadora marca (INEZA) y el juego de Tamices marca (Humboldt), en la ejecución de los dos ensayos que se llevan de la mano como son Límite Líquido y Límite Plástico se aprovechó de una copa de Casagrande y acanalador marca (Humboldt), un mortero de porcelana, calibrador pie de rey marca (Stanley) y una placa de vidrio marca (SM), en los ensayos en los cuales se requirió más de fuerza como es el caso de la Practica del Proctor modificado (método B) se usó una bandeja metálica, el tamiz #4 marca (Humboldt), un martillo de 10 lb, una probeta graduada, enrasador y una palustre marca (SM), además de un molde cilíndrico marca (CMI), los recipientes metálicos marca (SM), en el utlimo de los ensayos de laboratorio como es el California Bearing Ratio (CBR) se utilizó los mismo equipos y materiales que en el Proctor modificado además del equipo CBR MULTISPEED marca (34-V1172), para el resto de trabajo que es el de tabulación de datos de cada ensayo como también las correlaciones se aprovechó de todos los beneficios que proporciona el programa EXCEL, y un programa electrónico para la creación del mapa de ubicación, por último y no menos importante en el diseño del Pavimento Flexible por el método AASHTO 93 se utilizó un transporte vehicular y toda la indumentaria de seguridad para el conteo vehicular.

2.2.Métodos

En la presente investigación del análisis de las correlaciones entre el CBR, DCP, propiedades Índice y Mecánicas en suelos de la parroquia Sigchos del cantón Sigchos, provincia de Cotopaxi se enfocó en una serie de fases, una fase preliminar y 3 fases de ejecución que están acorde a los tres objetivos que se propuso.

En la fase preliminar consistió en una investigación exploratoria en donde se desarrolló una serie de análisis iniciales, específicamente en la zona de estudio para la obtención de las muestras.

La primera fase consistió en una investigación Aplicativa y Experimental, en la cual se utilizó todos los conocimientos adquiridos en la instrucción académica de la carrera, aplicados en los ensayos realizados a las muestras, específicamente de la cátedra de Mecánica de Suelos y experimental en la determinación de los resultados de cada uno de los ensayos y propiedades de las 12 muestras recolectadas de la parroquia Sigchos.

La segunda fase se aplicó una investigación analítica, en la cual se procedió a correlacionar discerniendo e identificando el tipo y propiedades del suelo que se obtuvo en campo y laboratorio.

Al final en la tercera fase se efectuó una investigación analítica donde se ejecutó el diseño del pavimento flexible con el resultado obtenido en la fase 2.

2.2.1. Fase preliminar – Investigación Exploratoria

Se procedió a realizar una inspección técnica de la zona de estudio, específicamente de las vías que la conforman y se acogió aleatoriamente seis vías de donde se recogió 12 muestras alteradas establecidas para este trabajo de investigación. Este método utilizado permitió definir y comprender a simple visualización la necesidad vial que está pasando la parroquia Sigchos por falta de datos para el diseño de un adecuado pavimento flexible.

680000 700000 720000 740000 760000 800000 820000 SIMBOLOGÍA SIGCHOSparro quia SIGCHOScanton COTOPAXI 1:1.000.000 15.500 31.000 62.000 93.000 124.000 Metros

Fig 1: Ubicación de la Parroquia Sigchos

Como se mencionó anteriormente este trabajo de investigación se concentrará netamente en la parroquia Sigchos del cantón Sigchos de la provincia de Cotopaxi, esta parroquia tiene una cantidad de 1947 habitantes, con una extensión de 775.65 km^2 además tiene dos zonas climáticas la primera que es una zona húmeda templada fría y la otra que es una zona húmeda templada caliente con una temperatura promedio de 13°C, está asentada entre los 3700 msnm y los 1500 msnm, sus límites geográficos son: al norte está alinderado con las parroquias de Palo Quemado y las Pampas, al sur con las parroquias Chugchilan e Isinlivi, al Este con los cantones Mejía y Latacunga y al oeste con los cantones de Santo Domingo, Valencia y la Maná.

Fig 2: Vías de Investigación

734400 735600 736200 737400 733200 733800 735000 736800 738000 SIMBOLOGÍA PUNTOS ZONA DE ESTUDIO ZONA DE ESTUDIO.jpg Red: Band_1 Green: Band_2 UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL 9922800 "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI." CHRISTIAN GARCÉS Lamina: Escala: 1:25000 Fecha: ELEVACION CLASIFICACIÓN COORDENADAS (UTM) VÍAS POZO NORTE ESTE SUCS PAMPAS-9922200 SIGCHOS 9922378,65 SM 9921648,4 734732,86 2966 SM TOPALIVI -9921381, 733969,34 2904 CENTRO 9923620,22 735905,33 2676 SW-SM VÍA YALÓ 736603,84 2640 9923920,52 SIGCHOS P10 2865 VÍA GÓMES 734815,8 SM 734422,9 (BOMBEROS) 2887 1:25.000 735105,22 735356,58 9922398,85 SW-SM SIGCHILAS 2863 (ESTADIO DE SM 735262,45 HOSPITAL 9922727,73 2826 SM DE SIGCHOS 9923037,42 SM 725 2.900 362,5 1.450 2.175 Metros

Fig 3: Ubicación de las calicatas en la Parroquia Sigchos

2.2.2. Fase 1 – Investigación Aplicada y Experimental

Aquí se estableció las propiedades índice y mecánicas de 12 muestras de suelo de la parroquia Sigchos del cantón Sigchos, por medio del análisis de campo y laboratorio. El método aplicativo consistió en poner cada uno de los conocimientos académicos como también prácticos obtenidos en la catedra de Mecánica de Suelos porque se ejecutó ensayos en campo y en laboratorio y método experimental en la elaboración de estos, realizados para obtener los datos de CBR de laboratorio bajo todas las normas de cada uno de los estos y las mejores condiciones para la determinación de estos basados en las normas ya preestablecidas para cada ensayo en este caso AASHTO.

A continuación, se detalla las actividades realizadas en cada uno de los ensayos propuestos para la determinación de las propiedades índice y mecánicas de las 12 muestras de la parroquia Sigchos.

• Pozo a cielo abierto AASHTO T 87-70

Para la determinación de todos los ensayos de este trabajo de investigación, se obtuvo todas las muestras por medio del pozo a cielo abierto, utilizando las herramientas menores como pala, pico y barra, en donde se realizó una calicata rectangular de 1.50 m*1.50 m y 1.00 m de profundidad, retirando toda la capa vegetal, para luego extraer una muestra aproximada de 50 kg en cada punto.

Fig 4: Medición del pozo a cielo abierto

Autor: Christian Garcés

• Densidad de campo (Método Cono y arena Ottawa) AASHTO T 191 2014

Una vez que se realizó la calicata rectangular de 1.50m*1.50m*1.00m de profundidad, se recoge el suelo de ensayo. En una de las cuatro esquinas se colocó la placa metálica con un orificio en su interior de 17 cm de diámetro, que sirvió para excavar un hoyo pequeño con una profundidad de más o menos 15 cm y ese suelo extraído se pesó en la balanza portátil, en el hoyo excavado se depositó la arena de Ottawa abriendo la llave del cono de arena, con una densidad conocida de 1.582 gr/cm3 y así determinar la densidad seca y húmeda in situ.

Fig 5: Utilización del Método Cono y arena Ottawa

Autor: Christian Garcés

En este ensayo se pudo determinar cada una de las siguientes propiedades que el suelo posee en estado natural, con ayuda de las siguientes ecuaciones.

• Relación de vacíos

$$e = \frac{Vv}{Vm}$$
 (Ec. 1)

Donde

Vv = Volumen de Vacíos

Vm = Volumen de masa[14]

Porosidad

$$e = \frac{Vv}{Vs}$$
 (Ec. 2)

Donde

Vv = Volumen de Vacíos

Vm = Volumen de Solidos [14]

• Grado de saturación del agua

$$Gw(\%) = \frac{Vw}{Vv} * 100$$
 (Ec. 3)

Donde

 $\mathbf{V}\mathbf{w} = \mathbf{V}$ olumen de agua del suelo

 $\mathbf{V}\mathbf{v} = \text{Volumen de Vacíos}[14]$

• Grado de saturación del aire

$$Ga(\%) = \frac{Va}{Vv} * 100$$
 (Ec. 4)

Donde

Va = Volumen de aire del suelo

Vv = Volumen de Vacíos

• Densidad seca húmeda

$$\gamma h = \frac{Wm}{Vm} \tag{Ec. 5}$$

Donde

Wm = Peso de la masa del suelo húmedo

Vm = Volumen del hueco de la masa

• Densidad seca

$$\gamma d = \frac{Ws}{Vm}$$
 ó $\gamma d = \frac{\gamma h}{1+w}$ (Ec. 6)

Donde

 γh = Densidad seca húmeda

 $\mathbf{w} = \text{contenido de humedad}$

• Cono Dinámico de Penetración (DCP) AASHTO D 6951-03

Después de haber realizado el ensayo de campo, en las tres esquinas restantes se armó el equipo DCP se verificó que la barra penetradora de punta cónica en el extremo inferior este colocado de la manera verticalmente recto posible y la regla marque exactamente las penetración de la barra, con la ayuda del martillo o mazo de un peso de 8 kg se dejó caer y golpear a la barra penetradora y luego tomo la lectura de la longitud de penetrada en la regla del equipo en mm, este procedimiento se realizó hasta que la barra de acero pudo penetrar 1m de profundidad, cabe mencionar que no en todos los puntos se pudo lograr el 1 m de penetración por la dureza del suelo.[4]

Fig 6: Penetración de la varilla DCP

Autor: Christian Garcés

• Contenido de humedad Natural AASHTO T 265 2015

Este ensayo es el primero que se realizó después de trasladar las muestras al laboratorio de la Universidad, para este ensayo la muestra estaba en una funda para que no se altere el contenido de humedad de cada muestra, se inició sacando dos recipientes con suelo natural por cada muestra, pesarlas y dejarlas en el horno por un periodo de 18 a 24 horas de acuerdo con la norma AASHTO, para después sacarlas y volverlas a pesar.

Fig 7: Colocación de muestras en el horno

Con este ensayo se encontró el porcentaje de agua que está presente en la muestra representativa obtenida en campo respecto al peso seco al horno.

En este ensayo se utilizó la siguiente fórmula.

$$\omega(\%) = \left(\frac{W\omega}{Ws}\right) * 100$$
 (Ec. 7)

Donde

Ww = Peso del agua

 $\mathbf{W}\mathbf{s} = \text{Peso de los sólidos}$

• Granulometría AASHTO T 88 2013

Por medio de este ensayo se identificó si el suelo contiene una mala o buena graduación, una vez que se dejó en el horno más o menos 1500 gr de suelo se inició a coger una cantidad de 1000 gr de suelo para tamizarla, colocando la muestra en el juego de tamices que va desde el tamiz #4 al tamiz #200, todo el juego de tamices se coloca en la tamizadora electrónica por un tiempo de 10 minutos para luego ir pesando parcialmente el suelo que queda en cada tamiz y así después todo los valores procesarlos y determinar qué tipo de suelo [15].

Fig 8: Uso del juego de tamices

Autor: Christian Garcés

Mediante las siguientes ecuaciones y utilizando los datos de este ensayo se pudo encontrar el diámetro efectico D10, diámetro equiparable D30 y el diámetro dimensional D60, además del coeficiente de uniformidad Cu y el coeficiente de curvatura Cc.

• Coeficiente de uniformidad Cu

$$Cu = \frac{D_{60}}{D_{10}} (Ec. 8)$$

Donde

 D_{60} = diámetro dimensional, es el 60% del material

 D_{10} = Diámetro efectivo, es el 10 % del material

• Coeficiente de curvatura Cc

$$Cc = \frac{(D_{30})^2}{D_{60} * D_{10}}$$
 (Ec. 9)

Donde

 D_{30} = Diámetro equiparable, es el 30% del material

 D_{60} = diámetro dimensional, es el 60% del material

 D_{10} = Diámetro efectivo, es el 10 % del material

• Límite Líquido AASHTO T 89-2013

Una vez realizada la granulometría se ocupó la muestra que pasa el tamiz #40, es decir el que retiene el tamiz#50 con ello se realizó el ensayo límite Líquido y Plástico, para el límite líquido se utiliza más o menos unos 100 gramos de muestra de suelo, al cual se le añadió un poco de agua en el recipiente de porcelana para tener una consistencia media pastosa. Posteriormente a esa mezcla se la deposita en la copa de casa grande, de manera que la muestra húmeda quede estable horizontalmente y con el acanalador enrasarla, con el ranurador se la separa por la mitad de la muestra, una vez separada la muestra se inició con los goles, los cuales cumple con los rangos de 0 a 15, 15 a 30, 30 a 45 y 45 a 60 golpes, hasta que la muestra se una a lo largo de media pulgada, al momento de unirse la muestra se procede a extraer esa fracción de muestra unida en dos recipientes metálicos, los mismos deben estar pesados previamente para de nuevo pesarlos con la muestra e introducirlos en el horno por 24 horas y pesarlos para encontrar el porcentaje de agua en la muestra, este procedimiento debe ser repetitivo para que entre en los rangos de golpes antes mencionados aumentado o disminuyendo el contenido de agua, motivo por el cual es considerado como un ensayo visual [16]

Fig 9: Ensayo de Límite Líquido

Autor: Christian Garcés

• Límite Plástico AASHTO T 90-2016

Con el mismo suelo que se utilizó en el límite líquido se utiliza para el ensayo de límite plástico, el cual consistió de la misma forma se mezcló el suelo con un porcentaje de agua en el recipiente de porcelana, para encontrar la consistencia del suelo óptimo para formar rollitos longitudinales de 5 cm con un espesor de 3 milímetros de acuerdo a la norma AASHTO T-90, para la formación de los rollito se lo realizó con el acanalador

sobre la superficie de la placa de vidrio y luego se colocó en el recipiente anteriormente pesado y volverlo a pesar con los rollitos e introducirlo en el horno por 24 horas, después se sacó y se tomó el peso, este procedimiento se lo debe realizar 5 veces por muestra de suelo. Es un ensayo subjetivo que da a entender la frontera que existe entre el estado semisólido y plástico.

Fig 10: Ensayo del Límite Plástico

Autor: Christian Garcés

• Índice plástico

Para encontrar el índice plástico simplemente se procedió a realizar la diferencia entre el límite líquido (Ll) y el Límite Plástico (Lp)

$$Ip = Ll - Lp (Ec. 10)$$

Donde:

Ll= Límite líquido

Lp= Límite Plástico

Gravedad Específica AASHTO T 100 2015 ASTM D854-58

En este ensayo se utilizó una muestra de 50 gr que pase el tamiz #40 y que retenga el tamiz #50, primero se colocó 500 ml de agua en el picnómetro y se pesó después se sacó un cierto porcentaje de agua del picnómetro para colocar los 50 gramos de suelo por medio del embudo, una vez depositado el suelo en el picnómetro se completa o se saca cierto porcentaje de agua hasta que quede los 500 ml de la mezcla. Posteriormente

se procedió a dejar el picnómetro en el baño maría durante 10 minutos, esto se lo realizó para expulsar todas las burbujas de aire de la mezcla, pasado los 10 minutos el aire salió del picnómetro y los 500 ml disminuyeron entonces se le completo con más agua y se pesó, además a esto se asentó la mezcla en un recipiente metálico para pesarlo y meterlo al horno de 105 a 110°C durante 24 horas volver a sacarlo y pesarlo de nuevo.

Tabla 1: Gravedad Específica de acuerdo con el tipo de suelo

Tip	o de suelo	Gravedad especifica (Gs)
	Grava	2,65
Inougénico	Arena gruesa a media	2,65
Inorgánico	Arena Fina (limosa)	2,65
	Loess, polvo de piedra y limo arenoso	2,67
	Arena algo arenosa	2,65
	Limo arenoso	2,66
	Limo	2,67-2,70
I	Arena Arcillosa	2,67
Inorgánico	Limo arcillo arenosa	2,67
	Arcilla arenosa	2,7
	Arcilla limosa	2,75
	Arcilla	2,72-2,80
	Limos con trazos de materia organica	2,3
Orgánico	Lodos aluviales organicos	2,13-2,60
	Turva	1,50-2,15

Autor: Tomado de la Norma AASHTO T100-70[17]

• Proctor modificado (método B) AASHTO T 180 2018 [18]

Para este ensayo se inició pesando 6000 gr de suelo que pasen el tamiz #4, después se escogió una bandeja metálica en donde se colocó un contenido de agua para mezclarlo, este se va aumentado por 4 veces según la norma, en este caso se inició con un porcentaje de 5 % de la muestra en agua, es decir para 6000 gr se utilizó 300 ml de agua, se mezcló hasta que se incorpore toda el agua con el suelo, cabe mencionar que el suelo no debe estar totalmente seco.

Con el suelo mezclado en la bandeja metálica se dividió en 5 capas, cada capa se colocó en el molde compactándolas con un martillo que pesa 10 libras y se deja caer en caída libre una distancia de 18", la energía de compactación utilizado en este ensayo y como también en el que se utilizó en el CBR, se encontró por medio de la siguiente ecuación.

$$E = \frac{W * H * N * n}{V}$$
 (Ec. 11)

Donde:

W= Peso del pistón en Kg

H= Altura de Caída

N= Número de golpes por capa

n= Número de capas

V= Volumen del suelo compactado

Se realizó una cantidad de 56 golpes en cada capa como dice la norma, el molde se pesó previamente con el collarín, en la última capa después de compactarla se sacó el collarín y se enrazo el suelo, inmediatamente se llevó a pesar el molde con la muestra compactada, luego de eso se sacó dos muestras en frascos pequeños metálicos ya pesados, una de la parte superior y otra de la parte inferior del molde, luego se llevó a pesarlos con las muestras e introducirlos al horno por una duración de 24 horas y pesarlos de nuevo para determinar el contenido de humedad, para saber que el ensayo este bien realizado uno de las 4 repeticiones debe bajar el peso del molde con la muestra a comparación de los otros pesos y si no baja debe seguir aumentando el contenido de agua hasta que baje el peso ahí el ensayo termina.

Este procedimiento se debe realizar 4 veces por muestra aumentando el contenido de humedad, el contenido de humedad depende del tipo de suelo con el que se está trabajando, este ensayo tubo como finalidad aumentar la resistencia, reduciendo la capacidad de deformación.

Fig 11: Compactación de 56 golpes de las 5 capas

• California Bearing Ratio (CBR) AASHTO T 139 2013

Se inicio al igual que en el ensayo del Proctor midiendo en una bandeja 6000 gr de suelo, la muestra debe estar seca o saber el contenido de humedad que contiene para colocar el contenido de humedad que falta, con anterioridad se debe saber los datos del ensayo de Proctor Modificado tipo B para determinar el contenido óptimo de agua de cada muestra, este contenido de humedad se utilizó para realizar el ensayo de CBR, al saber el porcentaje de humedad óptimo se le incorporó en la muestra de 6000 gr para mezclarlo, seguidamente de mezclarlo se lo dividió en 5 capas de igual forma que en el ensayo de Proctor, con la diferencia que aquí se realizó tres moldes de cada muestra con una variación de golpes en cada molde de 11 para el primero 27 para el segundo y 56 para el tercer molde con el mismo contenido de humedad para estos, posteriormente al finalizar la compactación se sacó el collarín y la retorta y se dio la vuelta al molde con la muestra compactada, después se lo llevó a pesar el molde con la muestra sin la retorta y sin el collarín, la muestra que queda en el collarín después de enrasar se las coloco un poco en recipientes metálicos anteriormente pesados y pesados con la muestra para determinar el contenido de humedad, se los introdujo en el horno durante 24 horas para después sacarlas y pesarlas de nuevo, al tener ya los tres moldes pesados y con las muestras sacadas se procedió a colocarlas en el espacio de la retorta unas pesas de 3kg en cada molde y se las llevó a sumergirlas en la cámara de curado de CBR, pasado los 3 días de acuerdo a la norma se los saco y se les colocó

a estilar durante 30 minutos para después llevarlos a pesar y de ahí a la máquina de penetración CBR (MULTISPEED), al momento que se realizó el ensayo previamente se reguló la máquina y se verificó que el dial marque, además se gravó el ensayo específicamente la gráfica para después procesar los datos de la misma, el ensayo termina cuando el dial calcula una penetración última.

Fig 12: Ensayo de CBR en la máquina (MULTISPEED)

Autor: Christian Garcés

Con los datos obtenidos se procedió a calcular el CBR, el mismo que se comparó con el valor de CBR de la piedra triturada que tiene un valor de 100%, para obtener nuestro % de CBR se realizó una regla de tres que a continuación se detalla.

$$CBR\% = \frac{Carga\ unitaria\ del\ ensayo}{carga\ unitaria\ patr\'on} * 100$$
 (Ec. 12)

Tabla 2: Clasificación de suelos de acuerdo con los valores del CBR

CBR%	Clasificacion General	Usos	sucs	AASHTO
0-3	Muy pobre	Subrasante	OH, CH, MH, OL	A5, A6, A7
3-7	Pobre a regular	Subrasante	OH, CH, MH, OL	A4, A5, A6, A7
7-20	Regular	Subrasante	OL, CL, ML, SC, SM, SP	A2, A4, A6, A7
20-50	Bueno	Subbase, Base	GM, GC, SW, SM, SP,GP	A1b, A2-5, A3, A2-6
>50	Excelente	Base	GW, GM	A1a, A2-4, A3

Autor: Ing. Luis Chang Chang, CBR CISMID.

2.2.3. Fase 2 – Investigación analítica

En esta fase se correlacionó el CBR de laboratorio, DCP y las propiedades índice y mecánicas de los suelos de la parroquia Sigchos, cantón Sigchos, provincia de Cotopaxi. En este método se analizó cada uno de los resultados de cada ensayo en formatos de Excel adecuados para cada ensayo, en donde se identificó el tipo y las propiedades del suelo, con ello se procedió al muestreo para determinar las correlaciones existentes entre las muestras se realizó dos tipos de correlación las regresión y correlación que se utilizó para determinar las variables que están en función de otra, es decir para aquellas variables que están en función de otra, a estas relaciones entre dos variables se pudo interpretar mediante una ecuación matemática denominada lineal de regresión y la representación de dependencia entre ambas variables se lo denomina análisis de regresión, los tipos de relación que se encontró son: lineal parabólico, exponencial, logarítmico, representadas en funciones matemáticas la ecuación que abarca esta correlación es la siguiente.

$$\sum y = a_0 N + a_1 \sum x \tag{Ec. 13}$$

$$\sum XY = a_0 \sum x + a_1 \sum x^2 \qquad (Ec. 14)$$

En la correlación Múltiple se buscó relacional más de dos variables, se precedió a determinar varias ecuaciones matemáticas que mejor se ajuste a la relación que se presentó en este trabajo de investigación, en este caso se utilizó métodos matriciales y algebraicos, además el factor que se determinó en los dos tipos de correlaciones es el factor r^2 que representa el grado o fuerza de relación que existe entre las variables y según este valor se determinó| si la correlación es excelente, buena, regular o mala según la siguiente tabla.

Tabla 3: Rangos de Correlaciones

Criterio	R ²
Excelente	≥ 0.90
Buena	0.70 - 0.89
Aceptable	0.40 - 0.69
Pobre	0.20 - 0.39
Muy Pobre	≥ 0.19

Autor: Investigation of the use of Dynamic modulus as indicator of hot mix asphalt performance

Se utilizaron subíndices los cuales provienen de la denominación de las variables, que se utilizaron para los mínimos cuadrados en diagramas tridimensionales para una cantidad de N puntos (X1, X2, X3...). Las ecuaciones para la cantidad de N puntos o muestras son las siguientes.

$$\sum Z = a_0 N + a_1 \sum x + a_2 \sum Y \qquad (Ec. 15)$$

$$\sum XZ = a_0 \sum x + a_1 \sum x^2 + a_2 \sum XY$$
 (Ec. 16)

$$\sum YZ = a_0 \sum Y + a_1 \sum XY + a_2 \sum x^2$$
 (Ec. 17)

Para la obtención de las correlaciones múltiples se estableció un formato para su cálculo, el cual se muestra a continuación.

Tabla 4: Formatos para las correlaciones múltiples

Variable Dependiente	Variable Dependiente	Variable Dependiente	$Y = a + b_1 * X_1 + b_2 * X_2$					
X1	X2	Υ	X1*Y	X2*Y	X1*X2	X1^2	X2^2	γ^2
∑X1	∑X2	ΣΥ	∑(X1*Y)	∑(X2*Y)	∑(X1*X2)	∑(X1^2)	∑(X2^2)	∑(Y^2)

Autor: Christian Garcés

Con este formato se trabajó y se puedo encontrar el coeficiente de correlación factor r^2 el cual determina si la correlación es buena o mal, expresado en la siguiente ecuación.

$$r^{2} = \frac{a\Sigma(Y) + b_{1}\Sigma + (X_{1} * Y) + b_{2}\Sigma(X_{1} * Y) - n * (Y_{med})^{2}}{\Sigma Y^{2} - n * (Y_{med})^{2}}$$
(Ec. 18)

2.2.4. Fase 3 – Investigación Analítica

Se empleo los resultados de la investigación en el diseño de pavimento flexible para vías rurales, de la parroquia Sigchos del cantón Sigchos, provincia de Cotopaxi.

Este método se utilizó para discernir y obtener el CBR mayor que se utilizara, tras las correlacione realizadas, se diseñó por el método AASHTO 93, en el cual se buscó el numero estructural SN, para la obtención del número estructural se sirve de una ecuación en base a unos coeficientes, pero se lo pudo hacer en un software (Ecuación 1993 para pavimento flexible), programa en que se introdujo algunas variables como ejes equivalentes, rango de serviciabilidad, módulo de resiliencia y confiabilidad.

La ecuación que resuelve el software es la siguiente.

$$logW_{18} = Z_r * S_0 + 9.36Log(SN + 1) - 0.20$$

$$+ \frac{Log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \left(\frac{1094}{(SN + 1)^{5.19}}\right)} + 2.32LogMr - 8.07$$
(Ec. 19)

Donde:

 W_{18} = Número de cargas de ejes equivalente de 80KN

 Z_r = Desviación estándar normal

 S_0 = desviación estándar

SN= Número estructural

Δ**PSI**= Perdida de serviciabilidad

Mr= Módulo de resiliencia

Para el método AASHTO 93 se consideró varios parámetros como el TPDA de la vía que se va a diseñar, el periodo de diseño para el cual se debe satisfaces las exigencias de servicio de acuerdo con el flujo de vehículos que posee la vía que se dispone por la siguiente tabla.

Tabla 5: Periodo de diseño AASHTO

Tipo de Carretera	Período de Diseño (Años)
Urbana de alto volumen	30 a 50
Rural de alto volumen	20 a 50
Pavimentada de bajo volumen	15 a 25
Tratada superficialmente de bajo volumen	10 a 20

Autor: AASHTO [16]

Además, que se utilizo de los factores de daño que ocasionan los vehículos que dispuestos en la norma MOP (2003), factores de distribución por dirección, factores de distribución por carril, y el número de ejes equivalentes que es calculado por la ecuación siguiente.

$$W_{18 carril de diseño} = W_{18 ACUMULADO} * DD * DC$$
 (Ec. 20)

Donde:

 W_{18} = Número de cargas de ejes equivalente de 80KN acumulado

DD = Factor de distribución por dirección

DC = Factor de distribución por carril

Para el diseño del pavimento flexible se calculó con los siguientes datos, la confiabilidad los cuales están clasificados dependiendo la funcionalidad de la vía, estos valores se les cogió de la tabla de la norma AASHTO, de la misma forma la desviación estándar global.

Tabla 6: Nivel de confiabilidad R con respecto al tipo de carretera

Tipo de carretera	Nivel de confiabilidad Recomendada "R"			
-	Urbana	Rural		
Autopistas	85 a 99.9	80 a 99.9		
Arterias Principales	80 a 99	75 a 95		
Colectoras	80 a 95	75 a 95		
Caminos vecinales	50 a 80	50 a 80		

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

Un dato impórtate que se utilizó para el diseño es el Módulo de resiliencia en el cual se utiliza el valor que CBR que se calculó en laboratorio y con las correlaciones, a continuación, se muestra las ecuaciones del módulo resiliente para subrasante.

Tabla 7: Ecuaciones del Módulo de Resiliencia

Sub rasante	Ecuación
CBR=< 7,2%	MR = 1500*CBR
CBR>7,2% Y <= 20%	$MR = 3000*CBR^{(0,65)}$
CBR> 20%	MR = 4326* Ln(CBR) + 241

Autor: Maestría en vías terrestre, Diseño de pavimento I

Posterior a la obtención del módulo resiliente se procedió a encontrar el índice de serviciabilidad, el cual es la condición en el que se encuentra la vía al ser transitado sobre ella como puede ser confortable y seguro, está dada en rangos que se encuentra en la siguiente tabla.

Tabla 8: Índice de serviciabilidad

Índice de serviciabilidad	Calificación (usuarios)
5 a 4	Muy buena
4 a 3	Buena
3 a 2	Regular
2 a 1	Mala
1 a 0	Muy Mala

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

Con estos datos anteriormente mencionado se procedió a encontrar los espesores por capa, los cuales están en función del número estructural expresado en la siguiente fórmula.

$$SN = a1D1 + a2D2m2 + a3D3m3$$
 (Ec. 21)

Donde:

a1, a2, a3= Coeficientes estructurales de la carpeta, base y subbase

D1, D2, D3 = Espesores de la carpeta, base y subbase

m2, m3 = Coeficientes de drenaje para base y subbase

Para aplicar esta fórmula se debió calcular los a1, a2 y a3, estos coeficientes se obtuvieron por medio de los siguientes ábacos.

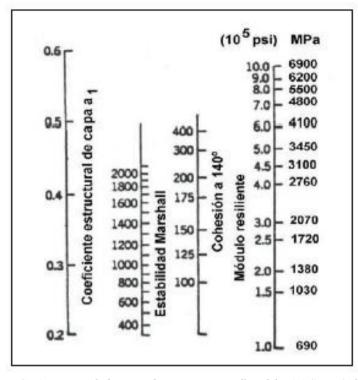


Fig 13: Ábaco del coeficiente a_1

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

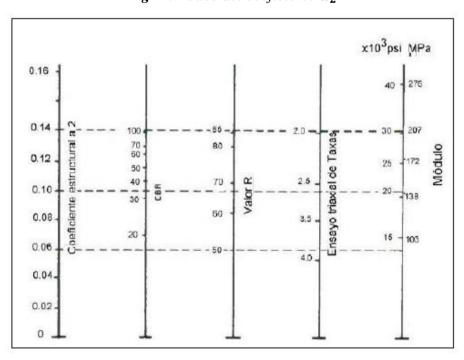


Fig 14: Ábaco del coeficiente a2

Autor: Guía para el diseño de pavimento flexible AASHTO 93[16]

x 10³ psi MPa 50 40 0.12 89 76 69 0.08

Fig 15: Ábaco del coeficiente a₃

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

Una vez calculado estos coeficientes se identificó los espesores de la carpeta asfáltica, base y la subbase juntamente con los coeficientes de drenaje basándose también en las dos tablas que nos proporciona la AASHTO.

Tabla 9: Calidad de drenaje

Calidad del Drenaje	Tiempo de eliminación del agua
Excelente	2 horas
Buena	1 día
Regular	1 semana
Pobre	1 mes
Deficiente	Agua no drenada

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

Tabla 10: Coeficientes de drenaje

Capacidad de Drenaje	% de tiempo en el que el pavimento esta expuesto a niveles de humedad próximos a la saturación				
	Menores del 1%	1 a 5%	5 a 25%	Mas del 25%	
Excelente	1.40 a 1.35	1.35 a 1.30	1.30 a 1.20	1,2	
Bueno	1.35 a 1.25	1.25 a 1.15	1.15 a 1.00	1	
Regular	1.25 a 1.15	1.15 a 1.05	1.00 a 0.80	0,8	
Malo	1.15 a 1.05	1.05 a 0.80	0.80 a 0.60	0,6	
Muy malo	1.05 a 0.95	0.95 a 0.75	0.75 a 0.40	0,4	

Autor: Guía para el diseño de pavimento flexible AASHTO 93 [16]

CAPÍTULO III.- RESULTADOS Y DISCUSIÓN

3.1. Análisis y discusión de resultados

A continuación, se presenta la nomenclatura aplicada en el presente trabajo experimental.

Tabla 11: Nomenclatura

N°	Nomenclatura	Descripción	Unidad
1	Wnat	Contenido de humedad natural	%
2	LL	Límite líquido	%
3	LP	Límite plástico	%
4	IP	Índice de plasticidad	%
5	Gw	Grado de saturación del agua	%
6	Ga	Grado de saturación del aire	%
7	Gs	Gravedad específica	-
8	G	Porcentaje de grava	%
9	e	Relación de vacíos	-
10	n	Porosidad	%
11	A	Porcentaje de arena	%
12	F	Porcentaje de fino	%
13	γm in situ	Densidad húmeda in situ	gr/cm3
14	γd in situ	Densidad seca in situ	gr/cm4
15	Gc	Grado de compactación	%
16	W óptimo	Contenido de humedad óptimo	%
17	CBR	CBR	%
18	DN	Índice de penetración	%
19	Pasa 200	Muestra de suelo que pasa el tamiz #200	mm/golpe
20	Cu	Coeficiente de uniformidad	-
21	Сс	Coeficiente de curvatura	-
22	CIICC	Sistema Unificado de Clasificación de	
22	SUCS	Suelos	
23	AASHTO	Asociación Americana de Carreteras	
23	ААЗПІО	Estatales y Transporte Oficial	

3.1.1. FASE 1

3.1.1.1. Resultados de los ensayos de campo

• Densidad de campo

En la tabla 2, se presentan los resultados obtenidos mediante el ensayo de densidad de campo – método de cono y arena de Ottawa.

Tabla 12: Resultados del ensayo de Densidad de Campo

e.			Densidad de Campo				
N° Muestra	Pozo	e	n%	Gw%	Ga%	γm in situ (gr/cm ³)	γd in situ (gr/cm³)
1	MT1	1.10	52.49	58.35	41.65	1.565	1.260
2	MT2	1.15	53.59	59.93	40.07	1.551	1.230
3	MT3	1.26	55.80	46.87	53.13	1.433	1.154
4	MT4	1.23	55.25	50.03	49.97	1.462	1.179
5	MT5	1.09	52.16	63.45	36.55	1.599	1.272
6	MT6	1.51	60.17	45.78	54.22	1.331	1.060
7	MT7	1.20	54.61	59.87	40.13	1.530	1.187
8	MT8	1.00	50.08	61.37	38.63	1.630	1.317
9	MT9	1.06	51.47	60.38	39.62	1.597	1.288
10	MT10	1.18	54.19	55.08	44.92	1.512	1.221
11	MT11	1.08	51.90	40.18	59.82	1.483	1.283
12	MT12	1.19	54.40	36.73	63.27	1.408	1.216

Autor: Christian Garcés

Mediante el ensayo de densidad de campo se determinó la densidad húmeda in situ cuyos valores se encuentran en un rango que va de 1.331 gr/cm³ a 1.630 gr/cm³, valores de densidad seca in situ de 1.060 gr/cm³ a 1.317 gr/cm³, además de la relación de vacíos y porosidad cuyos valores están en un rango de 1 a 1.26 y 50.08 a 60.17% respectivamente, de los resultados obtenidos se puede deducir que los suelos corresponden a limos y arcillas blandas según la clasificación de suelos de Lambe.

Así mismo, se determinó el grado de saturación de agua y del aire, obteniéndose valores que van del 36.73 al 63.45% y del 36.55 al 63.27% según corresponde, cabe recalcar que al ser un ensayo realizado en campo los resultados de este pueden variar según las condiciones en las cuales se lleve a cabo el ensayo.

• Dynamic Cone Penetrometer (DCP)

En la tabla 3 se encuentran los resultados obtenidos mediante el ensayo DCP, los valores de índice de penetración encontrados varían desde 7 a 32 mm/golpe, siendo la muestra MT10 la que presenta una mayor penetración con un valor de 31.03 mm/golpe.

Tabla 13: Resultados del ensayo DCP

g		DCP			
N° Muestra	Pozo	DN mm/golpe			
1	MT1	10.94			
2	MT2	10.93			
3	MT3	14.06			
4	MT4	12.65			
5	MT5	12.03			
6	MT6	19.39			
7	MT7	7.77			
8	MT8	8.38			
9	MT9	29.16			
10	MT10	31.03			
11	MT11	18.63			
12	MT12	17.88			

Autor: Christian Garcés

3.1.1.2. Resultados de los ensayos de laboratorio

• Granulometría

A continuación, dentro del ensayo de granulometría realizado en laboratorio, se obtuvo los resultados mostrados en tabla 4, teniendo porcentajes de grava (G%) de 0 a 0.05%, arena (S%) de 79.30 a 91.04% y limo(M%) de 8.91 a 20.69%, lo cual indica que existe mayor presencia de arena en las muestras estudiadas.

De igual manera se tiene los resultados del coeficiente de uniformidad que se encuentran en un rango de 3.49 a 13.27 y de coeficiente de curvatura de 0.54 a 1.39, lo cual nos indica que una de las muestran es mal graduada debido a que el Cu es menor a 4, considerando que el Cu mide la uniformidad de las muestras es decir su tamaño.

Tabla 14: Resultados ensayo de granulometría

Muestra	02		(Clasificación				
N° Mu	Pozo	Grava G%	Arena S%	Limo M%	Cu	Cc	SUCS	AASHTO
1	MT1	0,03	86,63	13,34	7,78	1,07	SM	A-2-4
2	MT2	0,02	81,99	17,99	6,09	0,88	SM	A-2-4
3	MT3	0,01	84,11	15,88	3,49	1,39	SM	A-2-4
4	MT4	0,00	83,79	16,21	12,35	1,01	SM	A-2-4
5	MT5	0,00	88,52	11,48	6,14	1,02	SW-SM	A-2-4
6	MT6	0,00	82,92	17,08	7,35	0,95	SM	A-2-4
7	MT7	0,00	82,28	17,72	6,84	0,82	SM	A-2-4
8	MT8	0,01	85,91	14,08	3,88	1,18	SM	A-2-4
9	MT9	0,05	91,04	8,91	10,00	1,28	SW-SM	A-1-b
10	MT10	0,00	89,49	10,51	4,04	1,02	SM	A-2-4
11	MT11	0,00	79,51	20,49	13,27	1,12	SM	A-2-4
12	MT12	0,01	79,30	20,69	9,46	0,54	SM	A-2-4

Además, como se puede observar en la tabla, en base a los resultados obtenidos también se puede determinar el tipo de suelo, en este caso 10 de las muestras corresponden a arenas limosas, 2 corresponden a arenas mal graduadas con limo según la norma SUCS y según la norma AASHTO pertenecen al grupo A-2-4.

• Límites de Atterberg (Límite líquido – Límite plástico)

Tabla 15: Resultados del ensayo de límites de Atterberg

N° Muestra	Pozo	Límite Líquido LL %	Límite Plástico LP%	Índice Plástico IP%
1	MT1	24.49	22.50	1.99
2	MT2	23.63	21.75	1.89
3	MT3	24.20	22.40	1.80
4	MT4	23.61	22.67	0.94
5	MT5	20.75	20.17	0.58
6	MT6	21.54	21.24	0.30
7	MT7	21.32	19.98	1.35
8	MT8	21.73	20.07	1.66
9	MT9	25.01	23.36	1.65
10	MT10	24.77	23.27	1.50
11	MT11	21.39	20.25	1.15
12	MT12	22.04	20.98	1.06

Los resultados de límite líquido y plástico se muestran en la tabla 5, dentro de los resultados de límite líquido se obtuvo valores que van del 20 al 25% y de límite plástico del 19.98 al 23.36%, obteniéndose además un índice de plasticidad de 0.30 a 1.99%, estos valores al ser menores al 50% se consideran como suelos de baja plasticidad.

• Gravedad Específica

La tabla 6 muestra los resultados de gravedad específica que oscilan en un rango de 2.651 a 2.679, es decir que las muestras estudiadas corresponden a arenas limosas.

Tabla 16: Resultados ensayo de gravedad específica

N° Muestra	Pozo	Grave dad es pe cífica Gs
1	MT1	2.671
2	MT2	2.656
3	MT3	2.677
4	MT4	2.679
5	MT5	2.651
6	MT6	2.652
7	MT7	2.665
8	MT8	2.664
9	MT9	2.656
10	MT10	2.677
11	MT11	2.652
12	MT12	2.661

Autor: Christian Garcés

• Proctor modificado de tipo "B"

Los resultados obtenidos mediante el ensayo de Proctor modificado se muestran en la tabla 7.

El contenido de humedad óptimo se encuentra en un rango del 14.30 al 17.50%, los valores de densidad seca máxima oscilan entre 1.564 a 1.789 gr/cm³ y se obtuvo un grado de compactación entre el 67 al 80 % considerado un grado de compactación bueno.

Tabla 17: Resultados ensayo de compactación

ra			Compactación	n
N° Muestra	Pozo	ω % óptimo	Densidad seca máxima γdmáx(gr/cm³)	Grado de compactación Gc %
1	MT1	15.20	1.716	73.44
2	MT2	15.70	1.677	73.31
3	MT3	15.80	1.597	72.28
4	MT4	17.50	1.605	73.48
5	MT5	15.10	1.789	71.11
6	MT6	17.50	1.564	67.80
7	MT7	14.30	1.666	71.24
8	MT8	14.80	1.716	76.76
9	MT9	15.40	1.712	75.26
10	MT10	15.00	1.650	73.98
11	MT11	15.50	1.622	79.10
12	MT12	15.40	1.567	77.59

• California Bearing Radio (CBR)

En la tabla 8 se encuentran los resultados obtenidos del ensayo de CBR, los valores de CBR máximos encontrados para el 95% de la densidad seca máxima van de 15.20 a 33.20%, clasificándose como suelo bueno para ser usado como subbase o base a aquellos que se encuentran entre el 20 y 50%, y como suelo regular para subrasante los inferiores al 20%. [19]

Tabla 18: Resultados ensayo de CBR

ra		CBR %							
Muestra	02	95% γd máx							
N° Mu	Pozo	0.1 in	0.2 in	Máximo					
1	MT1	16.30	27.60	27.60					
2	MT2	22.10	24.10	24.10					
3	MT3	19.00	22.50	22.50					
4	MT4	18.30	20.30	20.30					
5	MT5	18.60	20.40	20.40					
6	MT6	14.50	16.10	16.10					
7	MT7	28.70	33.20	33.20					
8	MT8	27.10	31.70	31.70					
9	MT9	14.10	15.20	15.20					
10	MT10	14.30	15.60	15.60					
11	MT11	18.90	20.10	20.10					
12	MT12	12.20	17.00	17.00					

Tabla 19: Propiedades Índice de los suelos de la parroquia Sigchos

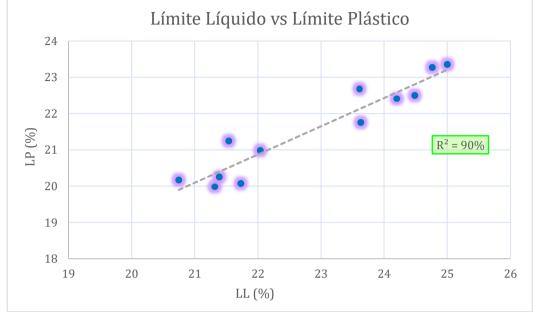
[a]								Cl:f							Densidad d	le Campo	
Muestra	oz	Humedad natural		Gra	nulomet	па		Clasii	icación	Límite Líquido	Límite Plástico			Relación de	Porosidad	Grado de saturación	Grado de saturación
N° M	Poze	ω %	Grava Arena Limo Cu Cc SUCS AASHTO	LL %	LP%	IP%	específica Gs	vacíos e	n%	del agua Gw%	del aire Ga%						
1	MT1	24,19	0,03	86,63	13,34	7,78	1,07	SM	A-2-4	24,49	22,50	1,99	2,671	1,10	52,49	58,35	41,65
2	MT2	24,07	0,02	81,99	17,99	6,09	0,88	SM	A-2-4	23,63	21,75	1,89	2,656	1,15	53,59	59,93	40,07
3	MT3	18,82	0,01	84,11	15,88	3,49	1,39	SM	A-2-4	24,20	22,40	1,80	2,677	1,26	55,80	46,87	53,13
4	MT4	21,74	0,00	83,79	16,21	12,35	1,01	SM	A-2-4	23,61	22,67	0,94	2,679	1,23	55,25	50,03	49,97
5	MT5	25,67	0,00	88,52	11,48	6,14	1,02	SW-SM	A-2-4	20,75	20,17	0,58	2,651	1,09	52,16	63,45	36,55
6	MT6	25,56	0,00	82,92	17,08	7,35	0,95	SM	A-2-4	21,54	21,24	0,30	2,652	1,51	60,17	45,78	54,22
7	MT7	26,15	0,00	82,28	17,72	6,84	0,82	SM	A-2-4	21,32	19,98	1,35	2,665	1,20	54,61	59,87	40,13
8	MT8	23,78	0,01	85,91	14,08	3,88	1,18	SM	A-2-4	21,73	20,07	1,66	2,664	1,00	50,08	61,37	38,63
9	MT9	23,96	0,05	91,04	8,91	10,00	1,28	SW-SM	A-1-b	25,01	23,36	1,65	2,656	1,06	51,47	60,38	39,62
10	MT10	23,89	0,00	89,49	10,51	4,04	1,02	SM	A-2-4	24,77	23,27	1,50	2,677	1,18	54,19	55,08	44,92
11	MT11	15,64	0,00	79,51	20,49	13,27	1,12	SM	A-2-4	21,39	20,25	1,15	2,652	1,08	51,90	40,18	59,82
12	MT12	15,81	0,01	79,30	20,69	9,46	0,54	SM	A-2-4	22,04	20,98	1,06	2,661	1,19	54,40	36,73	63,27

Tabla 20: Propiedades Mecánicas del suelo de la parroquia Sigchos

- E		Densidad	de Campo		Compactación	n		DCP		
Muestra	Pozo	Densidad	Densidad seca	0.4	Densidad seca	Grado de		95% γd máx		
N° Mu	Po	húmeda in situ γm (gr/cm³)	in situ γd (gr/cm³)	ω % óptimo	máxima γdmáx(gr/cm³)	compactación Gc %	0.1 in	0.2 in	Máximo	DN mm/golpe
1	MT1	1.565	1.260	15.20	1.716	73.44	16.30	27.60	27.60	10.94
2	MT2	1.551	1.230	15.70	1.677	73.31	22.10	24.10	24.10	10.93
3	MT3	1.433	1.154	15.80	1.597	72.28	19.00	22.50	22.50	14.06
4	MT4	1.462	1.179	17.50	1.605	73.48	18.30	20.30	20.30	12.65
5	MT5	1.599	1.272	15.10	1.789	71.11	18.60	20.40	20.40	12.03
6	MT6	1.331	1.060	17.50	1.564	67.80	14.50	16.10	16.10	19.39
7	MT7	1.530	1.187	14.30	1.666	71.24	28.70	33.20	33.20	7.77
8	MT8	1.630	1.317	14.80	1.716	76.76	27.10	31.70	31.70	8.38
9	MT9	1.597	1.288	15.40	1.712	75.26	14.10	15.20	15.20	29.16
10	MT10	1.512	1.221	15.00	1.650	73.98	14.30	15.60	15.60	31.03
11	MT11	1.483	1.283	15.50	1.622	79.10	18.90	20.10	20.10	18.63
12	MT12	1.408	1.216	15.40	1.567	77.59	12.20	17.00	17.00	17.88

3.1.2. FASE 2

Las correlaciones obtenidas con base a los resultados de propiedades índice y mecánicas de la fase 1, se resumen en la tabla 11.


Tabla 21: Resumen de correlaciones

N°	Ecuación	Coeficiente de correlación (R ² %)	Tipo de función	N° de muestra	Fig ·
	Correlación Propied	ades Índice			
1	LP = 0.778(LL) + 3.751	90	Lineal	12	15
2	$Gw = 47.567 \ln(Wnat) - 92.838$	93	Logarítmica	11	16
3	$LP = 5575.7(Gs)^2 - 29626(Gs) + 39374$	73	Polinómica	10	17
4	$Ga = 131.29 e^{-0.048(Wnat)}$	93	Exponencial	11	18
5	$Finos\% = 2042.9(Gw)^{-1.26}$	81	Potencial	10	19
6	$LL = 6.7084 e^{0.0146(ARENA\%)}$	74	Exponencial	11	20
7	$n = -36.688(\gamma d_{in situ}) + 98.685$	98	Lineal	12	21
_	Correlación Propiedades ín	-	l	l	I
8	$\gamma d_{insitu} = -0.0269(n) + 2.6682$	80	Lineal	12	22
9	$\gamma d_{m\acute{a}x} = 2.800(\gamma h_{in\ situ})^2 - 7.493(\gamma h_{in\ situ}) + 6.676$	93	Polinómica	11	23
10	$Wopt = 17.736(\gamma d_{in situ})^{-0.649}$	80	Potencial	10	24
11	$\gamma d_{insitu} = 1.3301(e)^{-0.558}$	97	Potencial	12	25
12	$Gc = 99.598 e^{-0.256(e)}$	75	Exponencial	10	26
13	$\gamma d_{m\acute{a}x} = 1.541 + 0.1031(LL) - 0.1045(LP)$	78	Múltiple	10	27
14	Wopt = 0.8165 - 1.357(LL) + 2.1394(LP)	81	Múltiple	10	28
15	$Yd_{max} = 2.604 - 0.0293(LL) - 0.0179(Finos)$	83	Múltiple	10	29
	Correlación DN y Propiedade	s Índice y Me	cánicas		
16	$DN = 3.0524(LP)^2 - 127.34(LP) + 1336.4$	68	Polinómica	10	30
17	$DN = 273.443 - 411.836\log(LL) + 14.033(LP)$	77	Múltiple logarítmica	10	31
18	$DN = 0.066(Ga)^{1.367}$	76	Potencial	10	32
19	$DN = 0.4125(Finos)^2 - 13.451(Finos) + 119.85$	80	Polinómica	10	33
20	$DN = -126.690 + 2.289(ARENA) - 44.267yd_{insitu}$	84	Múltiple Logarítmica	10	34
	Correlación CBR y Propiedado	es Índice y Me	ecánicas		
21	$CBR = 95.125(DN)^{-0.558}$	87	Potencial	12	35
22	$CBR = 0.0388 e^{3.8474(\gamma d_{m\acute{a}x})}$	95	Exponencial	10	36
23	$CBR = 1.9963(W_{optm})^2 - 68.677(W_{optm}) + 607.18$	78	Polinómica	10	37
24	CBR = 79.066 - 1.052(Wnat) - 3.650(LP)	74	Múltiple Lineal	10	38

3.1.2.1. Correlación N°1: Límite Líquido vs Límite Plástico

Límite Líquido vs Límite Plástico

Fig 16: Correlación LL vs LP

Autor: Christian Garcés

Ecuación:

LP = 0.778(LL) + 3.751

Coeficiente de determinación R²: 90%

Número de muestras: 12

Análisis y discusión:

En la figura 15, mediante una línea de tendencia lineal entre el límite líquido y límite plástico se obtuvo un coeficiente de determinación del 90%, comprobando que las variables analizas tienen una correlación excelente.

La relación entre las variables como se puede observar es directamente proporcional, la relación entre las dos variables señala que conforme el límite líquido aumente el límite plástico también aumentará.

3.1.2.2.Correlación N°2: Humedad Natural vs Grado de Saturación del agua

Húmedad Natural vs Grado de saturación del agua 65 Grado de saturación del agua (%) 60 55 $R^2 = 93\%$ 50 n = 11 45 40 35 10 15 20 25 30 Humedad natural (%)

Fig 17: Correlación Wnat vs Gw

Autor: Christian Garcés

Ecuación:

 $Gw = 47.567 \ln(Wnat) - 92.838$

Coeficiente de determinación R²: 93%

Número de muestras: 11

Análisis y discusión:

En la figura 16 se observa una relación directamente proporcional entre la humedad natural y el grado de saturación del agua, mostrando una línea de tendencia logarítmica y dando como resultado un coeficiente de determinación de 93%, es decir excelente.

En base a la figura, se puede entender que conforme la humedad natural aumente el grado de saturación del agua aumentará también, debido a la mayor presencia del líquido en el suelo.

3.1.2.3. Correlación N°3: Límite Plástico vs Gravedad Específica

Fig 18: Correlación LP vs Gs

Autor: Christian Garcés

Ecuación:

$$LP = 5575.7(Gs)^2 - 29626(Gs) + 39374$$

Coeficiente de determinación R²: 73%

Número de muestras: 10

Análisis y discusión:

Entre la gravedad específica de sólidos y el límite plástico, se tiene un coeficiente de determinación del 73%, considerado como bueno, esto a partir de una correlación con una curva de regresión polinómica de grado dos, con 10 de las muestras estudiadas.

La relación es directamente proporcional y muestra que entre mayor sea la gravedad específica el límite líquido aumentará, esta relación es posible debido a que con la gravedad específica se puede determinar la cantidad de sólidos presentes en el suelo.

3.1.2.4.Correlación N°4: Grado de Saturación del aire vs Humedad Natural

GRADO DE SATURACIÓN DEL AIRE vs CONTENIDO DE HUMEDAD NATURAL 65 Grado de saturación del aire (%) 60 55 50 $R^2 = 93\%$ 45 40 35 30 15 17 19 25 27 Humedad natural (%)

Fig 19: Correlación Ga vs Wnat

Autor: Christian Garcés

Ecuación:

 $Ga = 131.29 e^{-0.048(Wnat)}$

Coeficiente de determinación R²: 93%

Número de muestras: 11

Análisis y discusión:

En la figura 18 se presenta la correlación entre la humedad natural y el grado de saturación del aire mediante una línea de tendencia exponencial, dando como resultado un coeficiente de determinación del 93% es decir excelente, el número de muestras que se ajustan a la curva de regresión son 11.

La relación entre las dos variables es inversamente proporcional, mientras mayor sea la humedad presente en el suelo menor grado de saturación del aire tendrá, puesto a que los vacíos presentes en el suelo se llenan de agua.

3.1.2.5. Correlación N°5: Porcentaje de Finos vs Grado de Saturación del agua

GRADO DE SATURACIÓN DEL AGUA vs % DE FINOS 23 21 19 17 SON 15 13 11 $R^2 = 81\%$ 7 5 30 35 45 50 60 65 70 55 Grado de saturación del agua (%)

Fig 20: Correlación % FINOS vs Gw%

Autor: Christian Garcés

Ecuación:

 $Finos\% = 2042.9(Gw)^{-1.26}$

Coeficiente de determinación R²: 81%

Número de muestras: 10

Análisis y discusión:

En la figura 19 se observa una correlación potencial entre el grado de saturación del agua y el porcentaje de finos presente en el suelo, el resultado de dicha correlación se obtiene un coeficiente de determinación del 81%, a partir de una línea de tendencia inversamente proporcional.

El coeficiente de determinación encontrado se considera bueno, del grafico se puede deducir que entre mayor es el grado de saturación del agua menor será el porcentaje de finos presente en suelo, esto puede ser posible los suelos de tipo arenosos suelen saturarse más rápido que los suelos arcillosos.

3.1.2.6.Correlación N°6: Límite Líquido vs Arena %

LÍMITE LÍQUIDO vs ARENA % 26 25 $R^2 = 74\%$ Límite líquido (%) 24 23 22 21 20 80 90 95 75 85 ARENA%

Fig 21: Correlación LL vs %ARENA

Autor: Christian Garcés

Ecuación:

 $LL = 6.7084 e^{0.0146(ARENA\%)}$

Coeficiente de determinación R²: 74%

Número de muestras: 11

Análisis y discusión:

A partir de una correlación con una curva de regresión exponencial entre el límite líquido y el porcentaje de arena, se obtiene un coeficiente de determinación del 74% considerado como bueno.

La curva de regresión es directamente proporcional, puesto que entre mayor sea el porcentaje de arena en el suelo, mayor será el límite líquido debido a que absorben el agua más rápido y por ende tienden a saturarse más pronto.

3.1.2.7. Correlación N°7: Porosidad vs Densidad seca in titu

POROSIDAD vs DENSIDAD SECA IN SITU 61 59 57 55 53 Porosidad (%) 51 $R^2 = 98,53\%$ 49 47 45 1,00 1,05 1,10 1,15 1,20 1,25 1,35 1,30 yd in situ (gr/cm3)

Fig 22: Correlación n vs $\gamma d_{in \, situ}$

Autor: Christian Garcés

Ecuación:

 $n = -36.688(\gamma d_{in\,situ}) + 98.685$

Coeficiente de determinación R²: 98%

Número de muestras: 12

Análisis y discusión:

La figura 21, muestra una curva de regresión lineal, entre la densidad seca in situ y la porosidad, mostrando un coeficiente de correlación del 98% considerado como excelente.

Las variables son inversamente proporcionales, a medida que la densidad seca sea mayor, menor porosidad presenta el suelo, además las dos variables muestran un coeficiente de determinación alto, puesto a que están estrechamente relacionadas.

3.1.2.8. Correlación N°8: Humedad óptima vs Densidad seca in situ

HUMEDAD ÓPTIMA VS DENSIDAD SECA IN SITU 18,00 17,50 17,00 Humedad ótima (%) 16,50 16,00 $R^2 = 80\%$ 15,50 15,00 14,50 14,00 1,15 1,00 1,05 1,10 1,20 1,25 1,30 1,35 yd in situ (gr/cm3)

Fig 23: Correlación Woptm vs $\gamma d_{in \, situ}$

Autor: Christian Garcés

Ecuación:

 $Wopt = 17.736(\gamma d_{in\,situ})^{-0.649}$

Coeficiente de determinación R²: 80%

Número de muestras: 10

Análisis y discusión:

La figura 22 muestra un coeficiente de determinación del 80% considerado como aceptable, este resultado es posible a partir de una línea de tendencia potencial entre 10 de las muestras estudiantes.

La gráfica muestra que entre mayor sea la humedad óptima del suelo, menor será la densidad seca in situ del mismo, debido a que los vacíos de aire presenten en el suelo se llenan de agua para lograr una compactación adecuada.

3.1.2.9. Correlación N°9: Densidad seca máxima vs Densidad húmeda in situ

DENSIDAD HÚMEDA IN SITU vs DENSIDAD SECA MÁXIMA 1,85 1,80 $R^2 = 93\%$ yd máx (gr/cm3) 1,75 1,70 1,65 1,60 1,55 1,50 1,20 1,40 1,60 1,30 1,50 1,70 γh in situ (gr/cm3)

Fig 24: Correlación yd máx vs yd in situ

Autor: Christian Garcés

Ecuación:

$$\gamma d_{m\acute{a}x} = 2.7995(\gamma h_{in\,situ})^2 - 7.493(\gamma h_{in\,situ}) + 6.676$$

Coeficiente de determinación R²: 93%

Número de muestras: 11

Análisis y discusión:

En la figura 23 se muestra una relación entre la densidad humedad in situ y la densidad seca máxima, a partir de una curva de regresión polinómica entre 11 de las muestras estudiadas, el coeficiente de determinación que resulta de dicho análisis es de 93%, que se considera como excelente.

Las variables se ajustan de forma excelente a la línea de tendencia, entre mayor sea la densidad húmeda in situ la densidad seca será mayor, puesto que la muestra es estudiada en laboratorio bajo condiciones de humedad controladas.

3.1.2.10. Correlación N°10: Relación de vacíos vs Densidad seca in situ

DENSIDAD SECA IN-SITU vs RELACIÓN DE VACÍOS 1,40 1,35 1,30 yd in situ (gr/cm3) 1,25 $R^2 = 0.9858$ 1,20 1,15 1.10 1,05 1.00 0.90 1.10 1.30 1,50 1,70 Relación de vacíos

Fig 25: Correlación e vs yd in situ

Autor: Christian Garcés

Ecuación:

 $\gamma d_{in\,situ} = 1.3301(e)^{-0.558}$

Coeficiente de determinación R²: 98%

Número de muestras: 12

Análisis y discusión:

Mediante una curva de regresión potencial entre la relación de vacíos y la densidad seca in situ, se obtiene un coeficiente de determinación del 98% considerado como bueno.

La relación de las variables es inversamente proporcional y muestra que conforme la relación de vacíos de un suelo sea menor, la densidad seca in situ será también lo será, debido a que cuando el suelo tiene un volumen mayor de vacíos cuando este es más suelto y menos compacto.

3.1.2.11. Correlación N°11: Grado de compactación vs Relación de vacíos

Grado de compactación vs RELACIÓN DE VACÍOS 81,00 79,00 77,00 75,00 $R^2 = 75\%$ 73,00 71,00 69.00 67,00 65.00 0.90 1.10 1.30 1.50 1,70 Relación de vacíos

Fig 26: Correlación Gc vs e

Autor: Christian Garcés

Ecuación:

 $Gc = 99.598 e^{-0.256(e)}$

Coeficiente de determinación R²: 75%

Número de muestras: 10

Análisis y discusión:

En la figura 25 se muestra la correlación entre la relación de vacíos y el grado de compactación, obteniendo un coeficiente de determinación del 75% considerado como bueno, este valor es resultado de la curva de regresión potencial que se ajusta de mejor manera a las muestras estudiadas.

La relación de las variables es inversamente proporcional, lo cual indica que entre menor sea la relación de vacíos del suelo, mayor será el grado de compactación, debido a que los vacíos en el mismo disminuyen conforme se compacta el suelo, esto porque con la compactación se busca disminuir los vacíos existentes en un suelo.

3.1.2.12. Correlación N°12: Densidad Seca in situ vs Porosidad

POROSIDAD vs DENSIDAD SECA IN SITU 1,40 1,35 1,30 1,25 yd In situ 1,20 1,15 $R^2 = 98,53\%$ 1,10 1,05 1.00 48 50 52 54 56 58 60 62 n

Fig 27: Correlación yd in situ vs n

Autor: Christian Garcés

Ecuación:

$$\gamma d_{in \, situ} = -0.0269(n) + 2.6682$$

Coeficiente de determinación R²: 98%

Número de muestras: 12

Análisis y discusión:

La figura 26, muestra una curva de regresión lineal, entre la porosidad y la densidad seca in situ, mostrando un coeficiente de correlación del 98% considerado como excelente, la correlación fue posible con las 12 muestras estudiadas.

Las variables son inversamente proporcionales, a medida que la densidad seca aumenta, menor porosidad presenta el suelo, además las dos variables muestran un coeficiente de determinación alto, puesto a que están estrechamente relacionadas.

3.1.2.13. Correlación N°13: Densidad máxima vs Límite líquido-Límite plástico

Densidad Seca Máxima vs. Límite Líquido -Límite Plástico 2,50 Densidad seca máxima (gr/cm3) 18 LP% 2,00 20 22 1,50 24 26 1,00 0.50 21,00 21,50 22,00 22,50 23,00 23,50 24,00 24,50 25,00 Límite Líquido (%)

Fig 28: Correlación yd máx vs LL - LP

Autor: Christian Garcés

Ecuación:

$$\gamma d_{max} = 1.541 + 0.1031(LL) - 0.1045(LP)$$

Coeficiente de determinación R²: 78%

Número de muestras: 10

Análisis y discusión:

En la figura 27, se muestra la correlación múltiple entre la densidad seca máxima, el límite líquido y el límite plástico, el coeficiente de determinación hallado es del 78% considerado como bueno.

En la figura se muestra la relación directamente proporcional que existe entre las variables, entre mayor sea el límite líquido, mayor será la densidad seca máxima y el límite plástico disminuirá, esta correlación resulta útil debido a que representa un ahorro de tiempo y dinero, puesto que solo con los resultados del límite de Atterrberg se puede predecir la densidad seca máxima del suelo.

3.1.2.14. Correlación N°14: Humedad óptima vs Límite líquido-Límite plástico

Contenido de Humedad Óptimo vs. Límite Líquido - Límite Plástico 42 Contenido de Humedad óptimo (%) 36 LP% 28 22 18 20 6 21 22 23 24 Límite Líquido (%)

Fig 29: Correlación Wopt vs LL – LP

Autor: Christian Garcés

Ecuación:

$$Wopt = 0.8165 - 1.357(LL) + 2.1394(LP)$$

Coeficiente de determinación R²: 81%

Número de muestras: 10

Análisis y discusión:

Mediante la correlación múltiple entre el contenido de humedad óptimo, el límite líquido y el límite plástico se obtiene un coeficiente determinación del 81%, mismo que se logró mediante un análisis lineal de las variables.

De la gráfica se puede apreciar que conforme el límite líquido disminuye y el límite plástico aumenta, el contenido de humedad óptimo también aumentará, la relación entre las variables es inversamente proporcional.

3.1.2.15. Correlación N°15: Densidad máxima vs Límite líquido-Finos%

Densidad seca máxima vs. Límite Líquido -Finos% 1,750 1,700 16 %Finos 1,650 7,650 May (gt/cm3) 1,600 1,550 1,500 1,450 19 22 25 1,450 28 1,400 1,350 21,00 22,00 22.50 23.00 23,50 21,50 24,00 24,50 25,00 Límite Líquido (%)

Fig 30: Correlación yd máx vs LL – %Finos

Autor: Christian Garcés

Ecuación:

$$Yd_{m\acute{a}x} = 2.604 - 0.0293(LL) - 0.0179(Finos)$$

Coeficiente de determinación R²: 83%

Número de muestras: 10

Análisis y discusión:

En la figura 29, se muestra la correlación múltiple entre la densidad seca máxima, el límite líquido y el porcentaje de finos, el coeficiente de determinación hallado es del 83% considerado como bueno.

En la figura se muestra la relación inversamente proporcional que existe entre las variables, entre menor sea el límite líquido, mayor será la densidad seca máxima y el porcentaje de finos disminuirá. La densidad seca máxima depende del porcentaje de finos presente en el suelo y del límite líquido encontrado en laboratorio.

3.1.2.16. Correlación N°16: Índice de penetración vs Límite Plástico

ÍNDICE DE PENATRECIÓN VS LÍMITE PLÁSTICO 32 28 $R^2 = 68\%$ 24 20 DN 16 12 8 4 0 19,00 19,50 20,00 20,50 21,00 21,50 22,00 22,50 23,00 23,50 24,00 Lp

Fig 31: Correlación DN vs LP

Autor: Christian Garcés

Ecuación:

$$DN = 3.0524(LP)^2 - 127.34(LP) + 1336.4$$

Coeficiente de determinación R²: 68%

Número de muestras: 10

Análisis y discusión:

En la figura 30 se observa la relación directamente proporcional entre el límite plástico y el índice de penetración, del mismo se obtuvo una curva de regresión polinómica de grado dos dando lugar a un coeficiente de determinación del 68%, considerado como aceptable, este valor es el menor que se obtuvo de todas la correlaciones, sin embargo esto no representa que estas variables no se relacionen entre sí, puesto que el suelo al volverse más plástico su resistencia al corte disminuye haciendo que las partículas del suelo se separen con facilidad y permitan una penetración mayor.

3.1.2.17.Correlación N°17: Índice de penetración vs Límite Líquido-Límite plástico

Índice de Penetración vs Límite Líquido - Límite **Plástico** 220 ndice de Penetración (mm/golpe) 200 LP% 180 32 160 140 30 120 28 100 26 80 24 60 40 20 21,00 21,50 22,00 22.50 23,00 23,50 24,00 25,00 24,50 Límite Líquido (%)

Fig 32: Correlación DN vs LL – LP

Autor: Christian Garcés

Ecuación:

 $DN = 273.443 - 411.836 \log(LL) + 14.033(LP)$

Coeficiente de determinación R²: 77%

Número de muestras: 10

Análisis y discusión:

En la figura 31, se puede apreciar que, mediante una correlación múltiple logarítmica, se obtiene un coeficiente de determinación del 77%, considerado como bueno, el número de variable que se ajustan a esta correlación son 10.

La relación de las variables es inversamente proporcional, a medida que el límite liquido disminuye, el índice de penetración aumenta y el límite plástico disminuye también, esto se debe a que el suelo disminuye la resistencia al corte cuando el suelo tiende a volverse plástico.

3.1.2.18. Correlación N°18: Índice de penetración vs Grado de compactación

ÍNDICE DE PENETRACIÓN vs GRADO DE SATURACIÓN **DEL AIRE** 25 20 15 NO 10 $y = 0.0662x^{1.3656}$ $R^2 = 0.7581$ 5 0 36 41 46 51 31 56 61 66 Ga

Fig 33: Correlación DN vs Gc%

Autor: Christian Garcés

Ecuación:

 $DN = 0.066(Ga)^{1.367}$

Coeficiente de determinación R²: 76%

Número de muestras: 10

Análisis y discusión:

En la figura 32 se muestra la correlación entre el grado de saturación del aire y el índice de penetración, obteniendo un coeficiente de determinación del 76% considerado como bueno, este valor es resultado de la curva de regresión potencial que se ajusta de mejor manera a las muestras estudiadas.

La relación de las variables es directamente proporcional, lo cual indica que entre mayor sea el grado de saturación del aire, mayor será el índice de penetración, debido a que entre mayores vacíos exista en el suelo menor será la resistencia al corte, debido a que las partículas se encuentran más sueltas y permiten mayor mm de penetración.

3.1.2.19. Correlación N°19: Índice de penetración vs Finos%

ÍNDICE DE PENETRACIÓN vs % de FINOS 35,00 30,00 $v = 0.4125x^2 - 13.451x + 119.85$ $R^2 = 0.8049$ 25,00 Z 20,00 15,00 10.00 5,00 0,00 7,00 9,00 11,00 13,00 15,00 21,00 23,00 17,00 19,00 **FINOS**

Fig 34: Correlación DN vs Finos

Autor: Christian Garcés

Ecuación:

$$DN = 0.4125(Finos)^2 - 13.451(Finos) + 119.85$$

Coeficiente de determinación R²: 80%

Número de muestras: 10

Análisis y discusión:

En la figura 33 se muestra la correlación entre el porcentaje de finos y el índice de penetración, obteniendo un coeficiente de determinación del 80% considerado como bueno, este valor es resultado de la curva de regresión polinómica de grado dos que se ajusta de mejor manera a las muestras estudiadas.

La relación de las variables es inversamente proporcional, indica que entre menor sea el porcentaje finos, mayor será el índice de penetración, esta correlación es posible debido a que las variables se ajustan pese a que el índice de penetración al ser un ensayo realizado en campo puede variar en los resultados dependiendo de las condiciones en las cuales se realiza.

3.1.2.20.Correlación N°20: Índice de penetración vs Arena% - Densidad seca in situ

Índice de Penetración vs. ARENA- Densidad seca in situ 80 (ndice de penetración (mm/golpe) γd in situ 0.5 0.7 0.9 1.1 1.3 0 84,00 85,00 86,00 89,00 90,00 82,00 83,00 87,00 88,00 91,00 92,00 Arena (%)

Fig 35: Correlación DN vs %Arena - yd in situ

Autor: Christian Garcés

Ecuación:

$$DN = -126.690 + 2.289(ARENA) - 44.267yd_{insitu}$$

Coeficiente de determinación R²: 84%

Número de muestras: 10

Análisis y discusión:

En la figura 34 se muestra la correlación múltiple lineal entre el porcentaje de arena, el índice de penetración y la densidad seca in situ obteniendo un coeficiente de determinación del 84% considerado como bueno.

La relación de las variables es directamente proporcional, indica que entre mayor sea el porcentaje de arena, el índice de penetración aumentará y la densidad seca in situ también lo hará, esta relación es posible debido a que la arena la ser granos gruesos tienden a presentar espacios entre las partículas por ende permiten una mayor penetración.

3.1.2.21. Correlación N°21: CBR vs Índice de penetración

ÍNDICE DE PENETRACIÓN vs %CBR mayor 35 30 $R^2 = 87\%$ 25 CBR 20 15 10 7 9 5 13 15 17 19 21 11 23 25 27 31 33 DN

Fig 36: Correlación CBR mayor vs DN

Autor: Christian Garcés

Ecuación:

 $CBR = 95.081(DN)^{-0.558}$

Coeficiente de determinación R²: 87%

Número de muestras: 12

Análisis y discusión:

Entre el índice de penetración y el CBR mayor se encuentra un coeficiente de determinación del 87%, a partir de una curva de regresión exponencial de segundo grado, el número de muestras que se ajustan a la curva fueron 12, logrando un coeficiente considerado como bueno.

La relación entre las variables es inversamente proporcional, de la misma se deduce que entre mayor se la penetración en el suelo menor será el porcentaje de CBR, esto puede interpretarse de otra forma, es decir si el suelo presentase una consistencia mayormente densa menor será el CBR debido a que la resistencia al corte disminuye.[20]

3.1.2.22. Correlación N°22: CBR vs Densidad seca máxima

DENSIDAD SECA MÁXIMA vs %CBR mayor 41.00 $= 0.0388e^{3.8474x}$ 36,00 $R^2 = 0.9507$ 31,00 26,00 21,00 16,00 11,00 6,00 1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 vd max

Fig 37: Correlación CBR mayor vs yd máx

Autor: Christian Garcés

Ecuación:

 $CBR = 0.0388 e^{3.847(\gamma d_{m\acute{a}x})}$

Coeficiente de determinación R²: 95%

Número de muestras: 10

Análisis y discusión:

La relación entre la densidad seca máxima y el CBR muestra un coeficiente de determinación del 95%, mismo que se considera como bueno y se obtuvo a partir de la correlación entre 10 de las muestras.

La línea de tendencia que se obtiene de las variables es directamente proporcional, mostrando una curva de regresión potencial, de la cual se deduce que entre mayor sea la densidad seca máxima del suelo el porcentaje de CBR será mayor, puesto el suelo se vuelve más denso debido al aumento del volumen de sólidos.

3.1.2.23. Correlación N°23: CBR vs Humedad óptima

CBR máximo vs HUMEDAD ÓPTIMA 35 30 25 CBR máximo 20 15 $y = 1,9333x^2 - 66,724x + 592,28$ 10 $R^2 = 0.7618$ 5 15 15 16 16 14 17 17 18 18 W optm

Fig 38: Correlación CBR mayor vs Woptm

Autor: Christian Garcés

Ecuación:

$$CBR = 1.9963(W_{optm})^2 - 68.677(W_{optm}) + 607.18$$

Coeficiente de determinación R²: 76%

Número de muestras: 10

Análisis y discusión:

Entre la humedad optima y el CBR mayor se encuentra un coeficiente de determinación del 76%, a partir de una curva de regresión polinómica de segundo grado, el número de muestran que se ajustan a la curva fueron 10, el coeficiente obtenido es considerado como bueno.

De la gráfica se deduce que entre mayor sea la humedad optima, el porcentaje de CBR será menor, esto debido a que el suelo satura de agua, haciendo que este se vuelva plástico.

3.1.2.24.Correlación N°24: CBR vs Humedad natural – Límite plástico

CBR mayor vs Humedad Natural - Límite Plástico 90 80 70 LP% **CBR (%)** 50 12 14 16 40 18 30 20 16 18 20 22 24 26 **Humedad Natural (%)**

Fig 39: Correlación CBR mayor vs Wnat - LP

Autor: Christian Garcés

Ecuación:

CBR = 79.066 - 1.052(Wnat) - 3.650(LP)

Coeficiente de determinación R²: 74%

Número de muestras: 10

Análisis y discusión:

En la figura 38, se obtiene un coeficiente determinación del 74% considerado como buena, esto es posible a partir de una correlación múltiple entre el CBR mayor, humedad natural y el límite plástico.

El coeficiente de determinación obtenido muestra que las variables se ajustan entre sí, la relación entre ellas es directamente proporcional mientras la humedad natural aumenta y el límite plástico disminuye, el porcentaje de CBR será mayor. [21]

3.1.3. FASE 3

TOTAL:

1626

144

La fase 3 corresponde al diseño del pavimento flexible mediante el método descrito por la norma AASHTO 93.

Los resultados obtenidos muestran el diseño del pavimento flexible utilizando el valor de CBR obtenido en laboratorio de un tramo de vía y otro, utilizando el CBR obtenido mediante las correlaciones analizadas.

3.1.3.1. Diseño de Pavimento (cálculo del TPDA)

• Tráfico promedio diario anual – (TPDA)

El TPDA se obtuvo mediante un conteo manual del flujo vehicular, donde se seleccionó una de las vías estudiadas (calle Doctor Hugo Arguello), el conteo de tráfico vehicular se realizó durante 24 horas por 7 días como lo indica el Ministerio de Transporte y Obras Públicas.

A continuación, se muestran los resultados obtenidos del conteo vehicular.

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS ТЕМА: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI." ELABORADO POR: Christian Garcés SENTIDO: AMBOS TUTOR: COTOPAXI Ing. Mg. Lórena Pérez PROVINCIA: RESUMEN SEMANAL DEL CONTEO VEHICULAR **PESADOS** TOTAL DÍA LIVIANOS **BUSES** 2D 2DA 2DB V3A TOTAL POR DÍA 3A LUNES 282 27 89 4 14 114 423 0 MARTES 55 264 22 3 118 404 53 7 0 MIÉRCOLES 23 232 23 0 93 4 0 120 375 **JUEVES** 226 26 0 114 8 4 0 126 378 **VIERNES** 220 21 0 124 7 4 0 135 376 SÁBADO 227 0 79 4 0 83 324 14 0 **DOMINGO** 57 175 11 2 0 0 59 245

Tabla 22: Conteo de flujo vehicular

Autor: Christian Garcés

755

2525

609

De los resultados obtenidos se establece el lunes como el día de mayor flujo vehicular con un total de 423 vehículos en comparación a los demás días, y el de menor flujo vehicular el domingo con un total de 245 vehículos.

En el siguiente diagrama de barras se muestra el comportamiento vehicular durante los 7 días de la semana.

COMPORTAMIENTO DIARIO DEL TRÁFICO 423 450 404 376 375 400 VEHÍCULO DIARIO 324 350 300 245 250 200 150 100 50 0 LUNES MARTES MIERCOLES **JUEVES** VIERNES SÁBADO DOMINGO DÍAS

Fig 40: Comportamiento diario del tráfico

Autor: Christian Garcés

De la figura 25, se determina que los días de mayor flujo vehicular son los lunes y martes, con una circulación de vehículos mayor a 400 en comparación a los demás días.

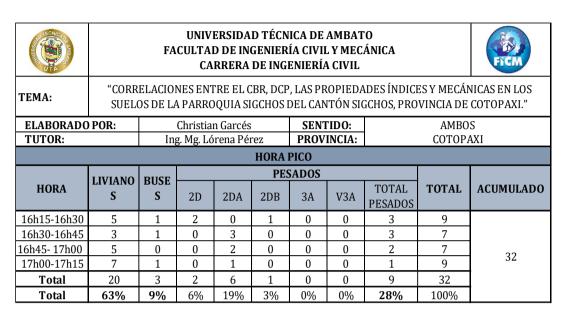

Entre el lunes y martes, se determina como día de mayor flujo vehicular el lunes teniendo un total de 423 vehículos, del mismo se establece la hora pico de 16:15 pm a 17:15 pm.

Fig 41: Comportamiento horario (lunes)

Autor: Christian Garcés

Tabla 23: Hora Pico

Autor: Christian Garcés

En la tabla 13 se muestra el flujo vehicular desde las 16:15 pm hasta las 17:15 pm del lunes, dando como resultado un total acumulado de 32 vehículos, de los cuales el 63% corresponden a vehículos livianos, 9% a buses y el 28% a transporte pesado.

En la figura 27, mediante un gráfico circular se aprecia de mejor manera la distribución por tipo de vehículo del tráfico en la hora pico del lunes.

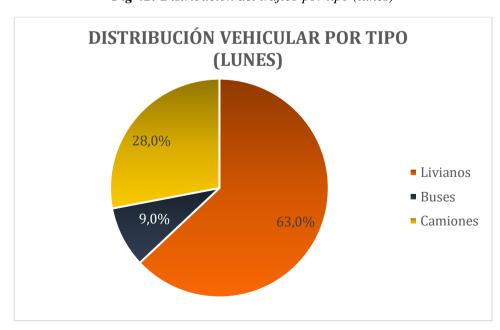


Fig 42: Distribución del tráfico por tipo (lunes)

Autor: Christian Garcés

• Factor de hora pico (FHP)

El factor de hora pico se calcula mediante la siguiente ecuación:

$$FHP = \frac{VHMD}{N * Q_{15m\acute{a}x}}$$

Donde:

VHMD: volumen horario de máxima demanda.

N: número de periodos en el transcurso de la hora de máxima demanda.

Q_{15 máx}: flujo máximo en el transcurso de 15 min.

$$FHP = \frac{9}{4 * 32}$$

$$FHP = 0.889$$

Se considera el factor de hora pico igual a 1

• Tráfico promedio diario anual actual – (TPDA actual)

Se calcula el TPDA actual para los diferentes tipos de vehículos, para ello consideramos el valor k de 0.15 según la tabla 14, donde, k igual a porcentaje de reducción esperado entre la 30va hora

Tabla 24: Valor k según la zona

ZONA	k
Urbana	8-12%
Rural	12 - 18%

Fuente: Norma de Diseño Geométrico de Carreteras, MTOP-2003.

Para el cálculo de TPDA actual se utiliza la siguiente ecuación:

$$TPDA_{actual} = \frac{VHP * FHP}{k}$$

Livianos:

$$TPDA_{livianos} = \frac{20*1}{0.15}$$

$$TPDA_{livianos} = 133 veh/día$$

Buses:

$$TPDA_{Buses} = \frac{3*1}{0.15}$$

$$TPDA_{Buses} = 20 \ veh/dia$$

Camiones:

$$TPDA_{camiones} = \frac{9*1}{0.15}$$

$$TPDA_{camiones} = 60 \ veh/dia$$

TPDA actual:

$$TPDA_{actual} = TPDA_{livianos} + TPDA_{Buses} + TPDA_{camiones}$$
 $TPDA_{actual} = 133 + 20 + 60$ $TPDA_{actual} = 213 \ veh/dia$

A continuación, se presenta una tabla resumen de los resultados de TPDA obtenidos.

Tabla 25: Resumen TPDA actual

Tipo de vehículo	Hora Pico	TPDA Actual
Livianos	20	133
Buses	3	20
Camiones	60	
Tota	213	

Autor: Christian Garcés

• Tráfico atraído (Ta)

El cálculo de tráfico atraído se obtuvo con la siguiente ecuación:

$$Ta = 10\% * TPDA$$

Livianos:

$$Ta_{livianos} = 0.10 * 133$$

$$Ta_{livianos} = 13 veh/día$$

Buses:

$$Ta_{buses} = 0.10 * 20$$

$$Ta_{buses} = 2 veh/dia$$

Camiones:

$$Ta_{camiones} = 0.10 * 60$$

$$Ta_{camiones} = 6 veh/día$$

• Tráfico generado (Tg)

El cálculo del tráfico generado se obtuvo con la siguiente ecuación:

$$Tg = 20\% * TPDA$$

Livianos:

$$Ta_{livianos} = 0.20 * 133$$

$$Ta_{livianos} = 27veh/día$$

Buses:

$$Ta_{buses} = 0.20 * 20$$

$$Ta_{buses} = 4 veh/dia$$

Camiones:

$$Ta_{camiones} = 0.20 * 60$$

$$Ta_{camiones} = 12 veh/día$$

• Tráfico desarrollado (Td)

El tráfico desarrollado se obtuvo con la siguiente ecuación:

$$Td = 5\% * TPDA$$

Livianos:

$$Ta_{livianos} = 0.05 * 133$$

$$Ta_{livianos} = 7 veh/día$$

Buses:

$$Ta_{buses} = 0.05 * 20$$

$$Ta_{buses} = 1 veh/dia$$

Camiones:

$$Ta_{camiones} = 0.05 * 60$$

$$Ta_{camiones} = 3 veh/día$$

• Cálculo TPDA total

En la siguiente tabla se muestra el resumen de los resultados obtenidos para el cálculo del TPDA actual total dando como resultado 288 vehículos por día.

$$TPDA_{Total} = TPDA_{actual} + Tg + Ta + Td$$
 $TPDA_{Total} = 213 + 43 + 21 + 11$ $TPDA_{Total} = 288 \ veh/d$ ía

Tabla 26: Tráfico actual calculado

Tráfico actual del proyecto								
Típo de vehículo	TPDA Actual	desarroll						
Livianos	133	27	13	7	180			
Buses	20	4	2	1	27			
Camiones	60	12	6	3	81			
Total	213	43	21	11	288			

Autor: Christian Garcés

• Periodo de diseño

El periodo de diseño se seleccionó con base al tipo de carretera mediante la tabla proporcionada por la norma AASHTO, obteniéndose para una vía pavimentada de bajo volumen de tránsito un periodo de diseño comprendido entre 15 a 25 años, del cual se toma un valor intermedio de 20 años.

Tabla 27: Periodo de diseño

Tipo de carretera	Periodo de Diseño
Urbana - alto volumen de tránsito	30 - 50
Rural - alto volumen de tránsito	20 - 50
Pavimentada - bajo volumen de tránsito	15 - 25
Revestida - bajo volumen de tránsito	10 - 20

Fuente: Guía para el diseño de pavimento flexible, AASHTO 1993[16]

• Tráfico futuro (Tf)

Para el cálculo del tráfico futuro se seleccionó el porcentaje de la tasa de crecimiento, considerando el periodo de diseño de 20 años. Los porcentajes de la tasa de crecimiento anual del tráfico se obtienen de la tabla proporcionada por la MTOP.

Tabla 28: Tasa de crecimiento anual del tráfico

TASA DE CRECIMIENTO ANUAL DEL TRÁFICO (%)								
PERIODO	ERIODO LIVIANOS BUSES CAMION							
2015 - 2020	3.97	1.97	1.94					
2020 - 2025	3.57	1.78	1.74					
2025 - 2030	3.25	1.62	1.58					
2030 - 2035	3.25	1.62	1.58					
2035 - 2040	3.25	1.62	1.58					
2040 - 2045	3.25	1.62	1.58					

Fuente: Norma de Diseño Geométrico de Carreteras, MTOP-2013.[22]

Con los datos proporcionados por la tabla anterior, se realizó el cálculo del tráfico futuro utilizando la siguiente ecuación:

$$Tf = TPDA_{TOTAL} * (1+i)^n$$

Livianos:

$$Tf_{livianos} = 180 * \left(1 + \frac{3.25}{100}\right)^{20}$$

$$Tf_{livianos} = 341 \, veh/d$$
í a

Buses:

$$Tf_{buses} = 27 * \left(1 + \frac{1.62}{100}\right)^{20}$$

$$Tf_{buses} = 37 veh/día$$

Camiones:

$$Tf_{camiones} = 180 * \left(1 + \frac{1.58}{100}\right)^{20}$$

$$Tf_{camiones} = 111 \, veh/d$$
ía

El tráfico futuro total para el 2043 se obtiene de la suma del tráfico futuro para los diferentes tipos de vehículo.

$$Tf_{Total} = 341 + 37 + 111$$

$Tf_{Total} = 489 veh/dia$

En la siguiente tabla se muestra un resumen del tráfico futuro proyectado para el 2043, obteniéndose un total de 489 veh/día.

Tabla 29: Tráfico proyectado para dentro de 20 años

A ~ a	% TASA DE CRECIMIENTO			TRÁ	FICO FUTU	JRO	TPDA
Año	Liviano	Bus	Camión	Liviano	Bus	Camión	Total
2023	3.57	1.78	1.74	180	27	81	288
2024	3.57	1.78	1.74	186.43	27.48	82.41	296
2025	3.57	1.78	1.74	193.08	27.97	83.84	305
2026	3.25	1.62	1.58	198.13	28.33	84.90	311
2027	3.25	1.62	1.58	204.57	28.79	86.24	320
2028	3.25	1.62	1.58	211.21	29.26	87.60	328
2029	3.25	1.62	1.58	218.08	29.73	88.99	337
2030	3.25	1.62	1.58	225.17	30.21	90.39	346
2031	3.25	1.62	1.58	232.48	30.70	91.82	355
2032	3.25	1.62	1.58	240.04	31.20	93.27	365
2033	3.25	1.62	1.58	247.84	31.71	94.75	374
2034	3.25	1.62	1.58	255.90	32.22	96.24	384
2035	3.25	1.62	1.58	264.21	32.74	97.77	395
2036	3.25	1.62	1.58	272.80	33.27	99.31	405
2037	3.25	1.62	1.58	281.67	33.81	100.88	416
2038	3.25	1.62	1.58	290.82	34.36	102.47	428
2039	3.25	1.62	1.58	300.27	34.92	104.09	439
2040	3.25	1.62	1.58	310.03	35.48	105.74	451
2041	3.25	1.62	1.58	320.11	36.06	107.41	464
2042	3.25	1.62	1.58	330.51	36.64	109.10	476
2043	3.25	1.62	1.58	341.25	37.23	110.83	489

Autor: Christian Garcés

• Clasificación de la vía en función al tráfico futuro

Con base al tráfico proyectado para el 2043(489), se selecciona el tipo de carretera, para ello se utiliza la tabla proporcionada por la MTOP, obteniéndose de esta manera una vía colectora de tercer orden

Tabla 30: Clasificación de carretera

Función	Clase de carretera	TPDA
Corredor arterial	RI ó RII	Más de 8000
Corregor arteriar	I	De 3000 a 8000
Coloatora	II	De 1000 a 3000
Colectora	III	De 300 a 1000
Vaginal	IV	De 100 a 300
Vecinal	V	Menos de 100

Fuente: MTOP 2013[22]

3.1.3.2. Diseño del Pavimento Flexible Método AASHTO 93

El pavimento se diseñó siguiendo los parámetros estipulados en la norma AASHTO 93, mismos que se describen a continuación:

• Cálculo del factor de daño (FD)

El factor de daño se calcula con base a los pesos según el tipo de vehículo, estos datos son proporcionados por la norma NEVI-12.

TIPO CAMIÓN DE 2 EJES PEQUEÑO Ι 2 D Ι CAMIÓN DE 2 EJES MEDIANOS 2DA CAMIÓN DE 2 EJES I 2DB 18 12,20 2,60 4,10 27 12,20 2,60 4,10 3-A CAMIÓN DE 3 EJES Ι 31 12,20 2,60 4,10 CAMIÓN DE 4 EJES

Fig 43: Distribución máxima de carga por eje

Fuente: NEVI-12, Norma para estudios y diseños viales[22]

A continuación, se indica el cálculo de factor de daño para buses y camiones.

$$FD_{bus} = \left(\frac{4 \ Ton}{6.6}\right)^{4} + \left(\frac{8 \ Ton}{8.2}\right)^{4}$$

$$FD_{bus} = 1.041$$

$$FD_{2DA} = \left(\frac{3 \ Ton}{6.6}\right)^{4} + \left(\frac{7 \ Ton}{8.2}\right)^{4}$$

$$FD_{bus} = 1.308$$

Tabla 31: Factor de daño en base al tipo de vehículo

	FACTOR DE DAÑO SEGÚN EL TIPO DE VEHÍCULO									
TIDO	SIM	IPLE	SIMPLE	E DOBLE	TAN	DEM	TRIDEM		FACTOR DE	
TIPO	P (Ton)	$(P/6.6)^4$	P (Ton)	$(P/8.2)^4$	P (Ton)	$(P/15)^4$	P (Ton)	$(P/23)^4$	DAÑO	
BUS	4	0.135	8	0.906	-	-	-	-	1.041	
2DA	3	0.043	-	-	-	-	-	1	1,308	
ZDA	7	1.265	-	•	-	-	-	1	1.506	
2DB	7	1.265	11	3.238	-	1	ı	ı	4.504	
3 - A	7	1.265	-	-	20	3.160	-	-	4.426	
4- C	7	1.265	-	ı	-	1	24	1.186	2.451	

Fuente: MTOP 2013[22]

• Factor de distribución por carril

Para el diseño se considera un carril por sentido al tratarse de una vía de tercer orden en una zona rural, por lo tanto, el W18 es del 100% como lo indica la norma MTOP.

Tabla 32: Factor de distribución por carril

N° de carriles por sentido	% W18 en el carril de diseño
1	100
2	80 - 100
3	60 - 80
4 o más	50 - 75

Fuente: Guía para el diseño de pavimento flexible, AASHTO 1993[16]

• Número de ejes equivalentes

Con la ecuación que se muestra a continuación, se realiza el calculó de los ejes equivalentes acumulados.

$$W_{18} = (Fd * TPDA_{buses} * 365) + (Fd * TPADA_{pesados} * 365)$$

Número de ejes equivalentes

$$W_{18} = (1.041 * 37 * 365) + (1.308 * 111 * 365)$$

$$W_{18} = 6.71E + 0.4$$

Número de ejes equivalentes acumulados

$$W_{18\,Acumulado} = (6.71E + 04) + (1.14E + 06)$$

 $W_{18\,Acumulado} = 1.21E + 06$

Número de ejes equivalentes por dirección

$$W_{18 \, Total} = (1.21E + 06) * 0.5$$

$$W_{18Acumulado} = 6.04E + 05$$

A continuación, se muestra un resumen del número de ejes equivalentes proyectado para el 2043.

Tabla 33: Resumen de ejes equivalentes

A == a	% TASA	DE CRECI	MIENTO	TRÁ	TRÁFICO FUTURO		TPDA	W10 manaial	W18	W18 por
Año	Liviano	Bus	Camión	Liviano	Bus	Camión	Total	W18 parcial	acumulado	dirección
2023	3.57	1.78	1.74	180	27	81	288	4.89E+04	4.89E+04	2.45E+04
2024	3.57	1.78	1.74	186	27	82	296	4.94E+04	9.83E+04	4.92E+04
2025	3.57	1.78	1.74	193	28	84	305	5.07E+04	1.49E+05	7.45E+04
2026	3.25	1.62	1.58	198	28	85	311	5.12E+04	2.00E+05	1.00E+05
2027	3.25	1.62	1.58	205	29	86	320	5.21E+04	2.52E+05	1.26E+05
2028	3.25	1.62	1.58	211	29	88	328	5.30E+04	3.05E+05	1.53E+05
2029	3.25	1.62	1.58	218	30	89	337	5.39E+04	3.59E+05	1.80E+05
2030	3.25	1.62	1.58	225	30	90	346	5.44E+04	4.14E+05	2.07E+05
2031	3.25	1.62	1.58	232	31	92	355	5.57E+04	4.69E+05	2.35E+05
2032	3.25	1.62	1.58	240	31	93	365	5.62E+04	5.26E+05	2.63E+05
2033	3.25	1.62	1.58	248	32	95	374	5.75E+04	5.83E+05	2.92E+05
2034	3.25	1.62	1.58	256	32	96	384	5.80E+04	6.41E+05	3.21E+05
2035	3.25	1.62	1.58	264	33	98	395	5.93E+04	7.00E+05	3.50E+05
2036	3.25	1.62	1.58	273	33	99	405	5.98E+04	7.60E+05	3.80E+05
2037	3.25	1.62	1.58	282	34	101	416	6.11E+04	8.21E+05	4.11E+05
2038	3.25	1.62	1.58	291	34	102	428	6.16E+04	8.83E+05	4.41E+05
2039	3.25	1.62	1.58	300	35	104	439	6.30E+04	9.46E+05	4.73E+05
2040	3.25	1.62	1.58	310	35	106	451	6.39E+04	1.01E+06	5.05E+05
2041	3.25	1.62	1.58	320	36	107	464	6.48E+04	1.07E+06	5.37E+05
2042	3.25	1.62	1.58	331	37	109	476	6.61E+04	1.14E+06	5.70E+05
2043	3.25	1.62	1.58	341	37	111	489	6.71E+04	1.21E+06	6.04E+05

Autor: Christian Garcés

• Confiabilidad (R)

Se asume un nivel de confiabilidad del 85% como lo indica la norma AASHTO al tratarse de una vía colectora de tercer orden en una zona rural.

Tabla 34: Nivel de confiabilidad

Clasificación	Nivel de confianza Recomendado				
Ciasificación	Urbano	Rural			
Interestatal y Autopista	85 - 99.9	80 - 99.9			
Arterias principales	80 - 99	75 - 95			
Calles colectoras	80 -95	75 - 95			
Calles locales	50 - 80	50 - 80			

Fuente: Guía para el diseño de pavimento flexible, AASHTO 1993[16]

• Desviación estándar global (So)

La desviación estándar para pavimentos flexibles se encuentra y un rango de 0.40 a 0.50 por ende, consideramos una desviación de 0.45.

Tabla 35: Desviación estándar normal

Desviación Estándar Normal (So)						
Pavimentos rígidos 0.30 - 0.40						
Pavimentos flexibles	0.40 - 0.50					

Fuente: Guía para el diseño de pavimento flexible, AASHTO 1993[23]

• Desviación estándar normal (Zr)

La desviación estándar normal se selecciona con relación al nivel de confiabilidad, en este caso se considera un nivel de confiabilidad del 85%, por lo tanto, según la norma AASHTO le corresponde una desviación de -1.037.

Tabla 36: Desviación estándar normal (Zr)

Confiabilidad (R)	Desviación Estandar (Zr)
50	0
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.34
92	-1.405
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
98	-2.054
99	-2.327
100	-3.09
100	-3.75

Fuente: Guía para el diseño de pavimento flexible, AASHTO 1993[24]

• Cálculo de índice de serviciabilidad

Al tratarse de carreteras de importancia media y caminos de menor tránsito, se considera un índice inicial de 4.2 y final de 2.0, según lo indica la norma AASHTO 93, teniendo como resultado un índice de serviciabilidad de 2.2.

$$\Delta PSI = 4.2 - 2.0$$

$$\Delta PSI = 2.2$$

• Módulo de resiliencia subrasante (Mr)

Se toma un valor de CBR de 15.2% que corresponde al a muestra MT9, la ecuación para realizar el cálculo se selecciona con base a la tabla 18, considerando que el porcentaje de CBR se encuentra entre 7.2% a 20%.

$$Mr(PSI) = 3000 (15.20)^{0.65}$$

$$Mr(PSI) = 17592.18 \, psi \rightarrow 17.59 \, ksi$$

3.1.3.2.1. Coeficientes estructurales de cada capa

• Coeficiente estructural de la carpeta asfáltica (a1)

El valor mínimo recomendado de estabilidad de Marshall para vehículos pesados es de 1800 lb, como lo señala la norma AASHTO 93.

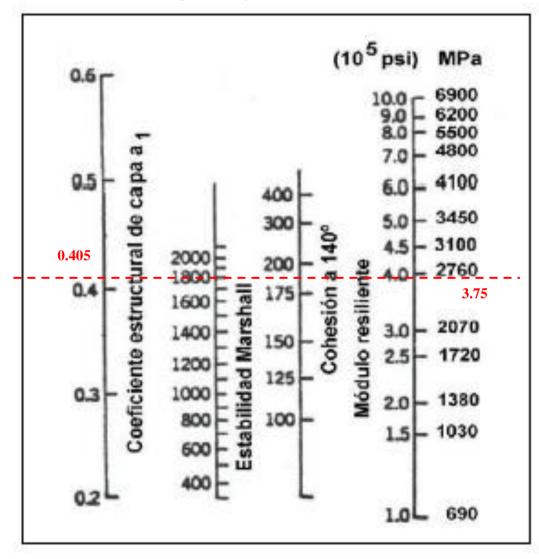


Fig 44: Coeficiente estructural al

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[23]

ightharpoonup Mr = 37500 psi

a1 = 0.405

• Coeficiente estructural de la base (a2)

Se optó por utilizar el valor mínimo recomendado para bases como lo indica la norma AASHTO 93, es decir del 80%.

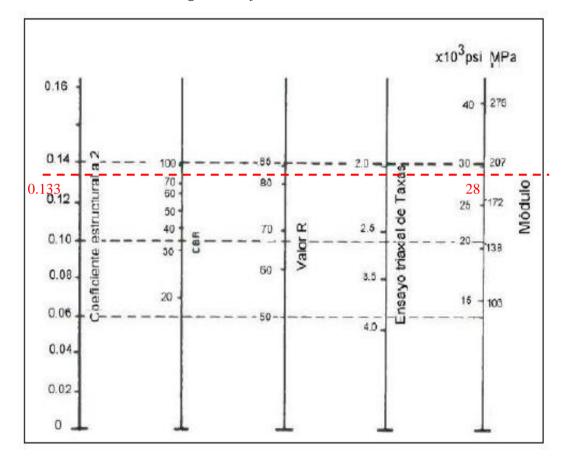


Fig 45: Coeficiente estructural a2

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[23]

- \triangleright CBR = 80%
- ightharpoonup Mr = 28000 psi
- a2 = 0.133

• Coeficiente estructural de la subrasante (a3)

Para el coeficiente de la subrasante se optó por utilizar el valor mínimo recomendado como lo indica la norma AASHTO 93, es decir del 30%.

0.20 -90 100 0.14 20 = 70 80 50 Triaxial de Texas (3) 70 3-0.12 40 0.10860 0.10 20 Valor -13 50 12 Coeficiente 11 10 0.08 10 40 0.06 $\bar{30}$ 5 5. 25

Fig 46: Coeficiente estructural a3

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[16]

- ightharpoonup CBR = 30%
- ightharpoonup Mr = 14900 psi
- a3 = 0.108

• Coeficiente de drenaje

Con base a los datos proporcionados por el INAMHI, se considera una calidad de drenaje buena, y con base a la tabla 9 el agua tarda en ser eliminada 1día.

Tabla 37: Calidad de drenaje

Calidad del drenaje	Agua eliminada en:		
Excelento	2 horas		
Buena	1 día		
Regular	1 semana		
Pobre	1 mes		
Deficiente	Agua no drenada		

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[23]

Dado que se considera una calidad de drenaje buena, se considera un coeficiente de drenaje de 1.

Tabla 38: Coeficiente de drenaje

Calidad de	% de tienpo en que el pavimento está expuesto a niveles de humedad próximos a la saturación						
drenaje	<1%						
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.2			
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1			
Regular	1.25 - 1 15	1.15 - 1 05	1.00 - 0.80	0.8			
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.6			
Muy pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.4			

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[23]

• Espesores mínimos

Los espesores mínimos recomendados según la norma AASHTO 93, se obtienen con base al número de ejes equivalentes, para ello utiliza la tabla de espesores mínimos que se muestra a continuación.

Tabla 39: Espesores mínimos

Eje W 8.2 Ton	Carpeta asfáltica D1 (cm)	Capa base D2 (cm)
Menos de 50000	3.0	10.0
50001 a 150000	5.0	10.0
150001 a 500000	6.5	10.0
500001 a 2000000	7.5	15.0
2000001 a 7000000	9.0	15.0
>7000000	10.0	15.0

Fuente: Guía para el diseño de pavimento flexible AASHTO 93[23]

El número de ejes que se obtuvo para el diseño es de 603854.75, por lo tanto, se considera los siguientes espesores.

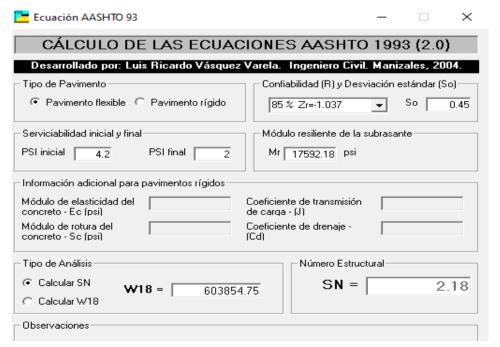

- Espesor mínimo de la carpeta asfáltica = 5cm
- Espesor mínimo de la capa base = 15cm

Tabla 40: Resumen de datos para el diseño del paquete estructural

Datos para el diseño de pavimento					
Tipo de pavimento	Flexible				
Clasificación de la vía	Clase	III			
Tráfico promedio diario anual para 2043	489	9			
Periodo de diseño	20 ar	íos			
Descripción	Símbolo	Valores			
W18 Diseño	W18	603854.75			
CBR Diseño	CBR %	15.2			
Confiabilidad	R %	85			
Desviación estándar normal	Zr	-1.037			
Desviación estándar global	So	0.45			
Índice de serviciabilidad	PSI	2.2			
Módulo de resiliencia de la subrasante	Mr (Psi)	17592.18			
Módulo de resiliencia de la carpeta asfáltica	Mr CA (psi)	37500			
Módulo de resiliencia de la base	Mr B (psi)	28000			
Módulo de resiliencia de la subbase	Mr SB (psi)	14900			
Coeficiente estructural de la carpeta asfáltica	a1 (cm)	0.405			
Coeficiente estructural de la base	a2 (cm)	0.133			
Coeficiente estructural de la subbase	a3 (cm)	0.108			
Conficiente de drancie	m2	1			
Coeficiente de drenaje	m3	1			

Autor: Christian Garcés

3.1.3.2.2. Cálculo de los espesores del paquete estructural

Autor: Software AASHTO 93. [25]

Tabla 41: Diseño del pavimento para el CBR de laboratorio

DISEÑO DE PAVIMENTOS FLEXIBLES METODO AASHTO 1993

PROYECTO : Diseño de pavimento CBR del laboratorio

TRAMO : MT 9
FECHA : 26 de diciembre del 2023 SECCION a km

DATO	S DE ENTRAD)A :		
1. CARACTERISTICAS DE MATERIALES				DATOS
A. MODULO DE ELASTICIDAD DE LA MEZCLA ASI	EALTICA (kai)			375.00
B. MODULO DE ELASTICIDAD DE LA BASE GRANI				28.00
C. MODULO DE ELASTICIDAD DE LA SUB-BASE (I	·			14.9
2 DATOS DE TRAFICO Y PRODIEDADES DE	I A CUDDACANTI			
2. DATOS DE TRAFICO Y PROPIEDADES DE	LA SUBRASANTI	=		
A. NUMERO DE EJES EQUIVALENTES TOTAL (W1	8)			603,855
B. FACTOR DE CONFIABILIDAD (R)				8500%
DESVIACION ESTANDAR NORMAL (Zr)				-1.037
DESVIACION ESTANDAR GLOBAL (So)				0.45
C. MODULO DE RESILIENCIA DE LA SUBRASANT	E (Mr, ksi)			17.59
D. SERVICIABILIDAD INICIAL (pi)				4.2
E. SERVICIABILIDAD FINAL (pt) F. PERIODO DE DISEÑO (Años)				2.0
3. DATOS PARA ESTRUCTURACION DEL REI	FUERZO			
A. COEFICIENTES ESTRUCTURALES DE CAPA				
Concreto Asfáltico Convencional (a ₁)				0.405
Base granular (a2)				0.133
Subbase (a3)				0.108
B. COEFICIENTES DE DRENAJE DE CAPA				
Base granular (m2)				1.000
Subbase (m3)				1.000
DATO	OS DE SALIDA	١:		
NUMERO ESTRUCTURAL REQUERIDO TOTAL	(SN _{REQ})	2.18		
NUMERO ESTRUCTURAL CARPETA ASFALTI		1.13		
NUMERO ESTRUCTURAL BASE GRANULAR	***************************************	1.03	•••••	
NUMERO ESTRUCTURAL SUB BASE (SN $_{SB}$)		0.02		
ESTRUCTO	URA DEL PAV	IMENTO		
			LIECTA	
	TEORICO	ESPESOR	UESTA SN*	
ESPESOR CARPETA ASFALTICA (cm)	7.1 cm	5.0 cm	0.80	
ESPESOR BASE GRANULAR (cm)	19.7 cm	15.0 cm	0.79	
ESPESOR SUB BASE GRANULAR (cm)	0.5 cm	15.0 cm	0.64	
		35.0 cm	2.22	
ESPESOR TOTAL (cm)			4.44	

Autor: Christian Garcés

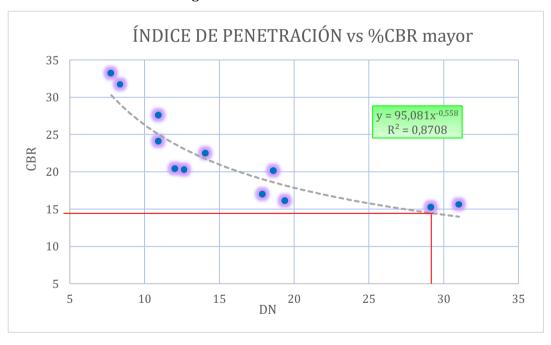
Se comprobó mediante la siguiente ecuación:

$$\sum SN(calculado) \geq SN Programa$$

 $2.43 \ge 2.18$

$2.22 \ge 2.18$ SI CUMPLE!

Los espesores del paquete estructural son los siguientes.


Tabla 42: Espesores del paquete estructural

		Mr	Espesores (cm)		
CBR	(%)	PSI	Carpeta asfáltica Base Subb		Subbase
Laboratorio	15.2	17592.18	5	15	20

Autor: Christian Garcés

Cálculo de espesores utilizando el CBR de laboratorio

Fig 47: Correlación CBR vs DN

Autor: Christian Garcés

 $CBR = 95.125DN^{-0.558}$

 $CBR = 95.125 (15.20)^{-0.558}$

CBR = 14.49 %

Con el CBR calculado se obtiene el módulo de resiliencia de la subrasante.

$$Mr(PSI) = 3000 (14.49)^{0.65}$$

 $Mr(PSI) = 17050.39 \ psi \rightarrow 17.05 \ ksi$

Se calcula el número estructural de la subrasante.

Se calcula para el módulo de resiliencia de la subrasante de 17050.39 un SN de 2.21.

Tabla 43: Diseño del pavimento para el CBR de correlaciones

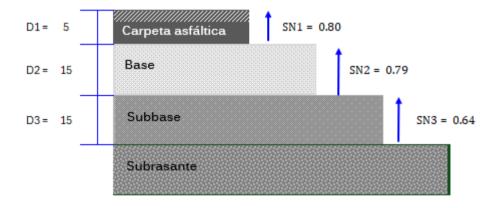
DISEÑO DE PAVIMENTOS FLEXIBLES METODO AASHTO 1993				
PROYECTO : Diseño de pavimento CBR del labo SECCION : km a km	ratorio	TRAMO : FECHA :	MT 9 26 de diciembr	e del 2023
DATOS	DE ENTRAD	A :		
1. CARACTERISTICAS DE MATERIALES				DATOS
A. MODULO DE ELASTICIDAD DE LA MEZCLA ASFAL B. MODULO DE ELASTICIDAD DE LA BASE GRANUL				375.00 28.00
C. MODULO DE ELASTICIDAD DE LA SUB-BASE (ksi	-			14.90
2 DATOS DE TRAFICO Y PRODIEDADES DE LA	CUDDACANTE			
2. DATOS DE TRAFICO Y PROPIEDADES DE LA	SUBRASANTE	•••••		
A. NUMERO DE EJES EQUIVALENTES TOTAL (W18)		•••••		603,855
B. FACTOR DE CONFIABILIDAD (R)				8500%
DESVIACION ESTANDAR NORMAL (Zr) DESVIACION ESTANDAR GLOBAL (So)				-1.037 0.45
C. MODULO DE RESILIENCIA DE LA SUBRASANTE (Mr, ksi)			17.05
D. SERVICIABILIDAD INICIAL (pi)				4.2
E. SERVICIABILIDAD FINAL (pt)				2.0
F. PERIODO DE DISEÑO (Años)				20
3. DATOS PARA ESTRUCTURACION DEL REFU	ERZO			
A COEFICIENTES ESTRUCTURALES DE CAPA				
Concreto Asfáltico Convencional (a ₁)				0.405
Base granular (a2)				0.133
Subbase (a3) B. COEFICIENTES DE DRENAJE DE CAPA				0.108
Base granular (m2)				1.000
Subbase (m3)				1.000
DATOS	DE SALIDA	:		
NUMERO ESTRUCTURAL REQUERIDO TOTAL	ON \	0.04	7	
NUMERO ESTRUCTURAL REQUERIDO TOTAL (2.21	-	
NUMERO ESTRUCTURAL CARPETA ASFALTICA		1.53 0.67	~	
NUMERO ESTRUCTURAL BASE GRANULAR (S	INBG)		-	
NUMERO ESTRUCTURAL SUB BASE (SN _{SB})	•••••	0.01		
ESTRUCTUF	RA DEL PAVI	MENTO		
	TEORICO	ESPESOR	PUESTA SN*	
ESPESOR CARPETA ASFALTICA (cm)	9.6 cm	5.0 cm	0.80	
ESPESOR BASE GRANULAR (cm)	12.8 cm	15.0 cm	0.79	
ESPESOR SUB BASE GRANULAR (cm)	0.2 cm	15.0 cm	0.64	
ESPESOR TOTAL (cm)		35.0 cm	2.22	
DISEÑADO POR : Christian Garces				fm

Autor: Christian Garcés

Se comprobó mediante la siguiente ecuación:

$$\sum SN(calculado) \ge SN Programa$$

 $2.22 \geq\ 2.21$


$2.22 \ge 2.21$ SI CUMPLE!

Los espesores del paquete estructural son los siguientes.

Tabla 44: Espesores paquete estructural CBR laboratorio y CBR correlaciones

		Mr	Espesores (cm)		
CBR (%)		PSI	Carpeta Base Subba		Subbase
Laboratorio	15.2	17592.18	5	15	15
Correlación	14.49	17050.39	5	15	15

Autor: Christian Garcés

3.2. Verificación de la Hipótesis

3.2.1. Hipótesis

Existe una correlación entre el CBR, DCP, y las propiedades índice y mecánicas en los suelos de la parroquia Sigchos del cantón Sigchos, provincia de Cotopaxi.

3.2.2. Verificación

Si existe una correlación entre el CBR, DCP y las propiedades índice y mecánicas en los suelos de la parroquia Sigchos del cantón Sigchos, provincia de Cotopaxi.

Una vez realizado el análisis respectivo de las diferentes propiedades del suelo de la parroquia Sigchos mediante correlaciones de regresión simple y múltiple, con líneas de tendencia polinómicas, lineales, exponenciales, potenciales y logarítmicas, se obtuvo coeficientes de determinación R² mayores al 74%, de un total de 24 correlaciones analizadas, siendo la correlación 26, la de menor R² con un valor de 68%.

CAPÍTULO IV.- CONCLUSIONES Y RECOMENDACIONES

4.1.Conclusiones

- Se estableció las propiedades índices y mecánicas tomadas de las 12 muestras de suelo de la parroquia Sigchos del cantón Sigchos permitiendo clasificar a los suelos como A-2-4 (grava y arenas limosas y arcillosas) y A-1-b (fragmentos de piedra, grava y arena) por medio de la clasificación AASHTO, mientras para la clasificación SUCS se clasificó como SM (arena limosa) es decir mezcla de arena y limos y SW-SM (arena bien graduada con limos de baja plasticidad).
- Se correlacionó el CBR de laboratorio, DCP y las propiedades índice y mecánicas de los suelos teniendo como resultado 18 correlaciones simples, la correlación simple con mayor porcentaje de aceptación es la número 7 entre la porosidad (n) y la Densidad seca in situ (γ d) de la muestra 12, la que contiene el coeficiente de determinación de $r^2=98\%$, denominada como excelente y reflejando que las variables son inversamente proporcionales es decir si aumenta la densidad seca, menor será la porosidad.
- Se concluye que las correlaciones encontradas en el presente trabajo experimental se emplearan en suelos con características similares o parecidas a las que se indican en esta investigación, es decir en este caso se obtuvo suelos de tipo arena limosas y arenas bien graduadas con limos, además dentro de los limites líquidos se obtuvo un rango que va de 20 al 25%, por ende las ecuaciones con esta variable se aplicaran a suelos con estas características mencionadas.
- Se determinó mediante correlaciones múltiples entre tres variables, coeficientes de determinación considerándose como buenas ha aquellas que sobrepasen el 70 % el coeficiente de determinación, la muestra con mayor porcentaje de aceptación es la correlación Múltiples logarítmica número 20 de la muestra 10 entre el (DN) índice de penetración, % de Arena y la (γ d) densidad seca en in situ con un coeficiente de $r^2 = 84\%$, considerado como bueno y demuestras una relación de variables directamente proporcional es

- decir que entre mayor sea el porcentaje de arena, el índice de penetración aumentara y la densidad seca in situ también.
- Se empleó los resultados encontrados de las propiedades mecánicas en el diseño de pavimentos flexibles obteniéndose dos diseños de pavimento, el primer diseño se obtuvo utilizando el CBR determinado en laboratorio de la muestra MT9 de 15.20% del cual se calculó espesores de 5 cm para la carpeta asfáltica y 15 cm para las capas base y subbase, mientras que con el CBR encontrado de las correlaciones de 14.49 % se obtuvo espesores similares de 5 y 15 cm para la carpeta asfáltica y las base y subbase según corresponde, demostrando la fiabilidad de las ecuaciones obtenidas.

4.2. Recomendaciones

- Se recomienda que, para la realización de los respectivos ensayos, se utilice normas actualizadas y que sean admitidas en el país y en el caso de no existir una norma para algún ensayo determinado acceder a fuentes bibliográficas confiables para encontrar una norma que se asemeje a las que se utiliza comúnmente.
- Se recomienda la manipular correctamente los equipos de laboratorio, debido a que algunos son delicados como es el caso de probetas, cono dinámico y el equipo MULTISPEED utilizado en la determinación del CBR.
- Se recomienda que las muestras utilizadas para los diferentes ensayos sean obtenidas en condiciones ambientales óptimas, a fin de evitar resultados erróneos.
- Se recomienda realizar más estudios sobre correlaciones, este trabajo al pertenecer a un proyecto macro del todo el Ecuador, abarca una zona específica por ende es necesario continuar con la realización del estudio en las demás zonas del Ecuador.
- Se recomienda a la Universidad Técnica de Ambato mejorar las instalaciones y equipos que se encuentran en laboratorio para mejor las condiciones en las cuales los tesistas realizan las respetivas investigaciones.

BIBLIOGRAFÍA

- [1] D. C. Bojacá Torres and S. X. Campagnoli Martínez, "CBR cíclico como método alternativo para la determinación del módulo resiliente en suelos blandos de subrasante," *Cienc. e Ing. Neogranadina*, vol. 32, no. 2, pp. 85–98, 2022, doi: 10.18359/rcin.5896.
- [2] J. F. Contreras-Ávila and A. E. García-García, "Correlación del penetrómetro dinámico de cono (P.D.C.) con ensayo de relación de soporte de California (C.B.R.) para suelos en la localidad de Engativá de la ciudad de Bogotá, utilizando la norma del Instituto Nacional de Vías." 2019. Accessed: Jul. 21, 2023. [Online]. Available: https://hdl.handle.net/10983/23933
- [3] S. López and M. Benz, "Comparación de los ensayos de penetrómetro de cono dinámico de energía variable PANDA® ensayo de placa de carga estática y dinámica," *XVI Pan-American Conf. Soil Mech. Geotech. Eng.*, pp. 1552–1561, 2019, doi: 10.3233/STAL190206.
- [4] J. Morales Vivanco, C. Wahr Daniel, and C. Cassanova Chia, "Diseño Con Cono De Penetración Dinámico En Vías Secundarias," pp. 0–15, 2016.
- [5] D. A. Rosas, D. Burgos, J. W. Branch, and A. Corbi, "Automatic determination of the Atterberg limits with machine learning," *DYNA*, vol. 89, no. 224, pp. 34–42, 2022, doi: 10.15446/dyna.v89n224.102619.
- [6] S. D. Mohammadi, M. R. Nikoudel, H. Rahimi, and M. Khamehchiyan, "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils," *Eng. Geol.*, vol. 101, no. 3–4, pp. 195–203, 2008, doi: 10.1016/j.enggeo.2008.05.006.
- [7] F. P. Portilla Yandún, "Correlación entre el CBR de laboratorio, el índice DCP y propiedades físicas y mecánicas de suelos granulares," *ConcienciaDigital*, vol. 5, no. 4.1, pp. 45–59, 2022, doi: 10.33262/concienciadigital.v5i4.1.2396.
- [8] C. A. Mejía Vera, J. R. Gilces Delgado, E. H. Ortiz Hernández, and J. J. García Vínces, "Análisis comparativo de suelo de campo y laboratorio para la medición de su capacidad portante con ensayos de Valor de Soporte de California (CBR) y Cono Dinámico de Penetración (DCP) en la Universidad Técnica de

- Manabí.," Rev. Investig. en Energía, Medio Ambient. y Tecnol. RIEMAT ISSN 2588-0721, vol. 4, no. 2, p. 79, 2020, doi: 10.33936/riemat.v4i2.2491.
- [9] E. A. Sandoval Vallejo and W. A. Rivera Mena, "Correlación del CBR con la resistencia a la compresión inconfnada," *Cienc. e Ing. Neogranadina*, vol. 29, no. 1, pp. 135–152, 2019, doi: 10.18359/rcin.3478.
- [10] M. L. Aragundi Demera, C. M. Delgado Romero, E. H. Ortiz Hernández, and D. A. Delgado Gutiérrez, "Estudio para determinar la capacidad portante del suelo como parámetro geotécnico, aplicando el ensayo de cono dinámico de penetración (DCP), en los terrenos aledaños a la Facultad de Ciencias Matemáticas Físicas y Químicas," Rev. Investig. en Energía, Medio Ambient. y Tecnol. RIEMAT ISSN 2588-0721, vol. 4, no. 2, p. 39, 2020, doi: 10.33936/riemat.y4i2.2193.
- [11] M. Garzón, L. Hernán, G. Cuasapaz, and D. Patricio, "CORRELACIÓN ENTRE EL PENETRÓMETRO DINÁMICO DE CONO Y LA RELACIÓN DE SOPORTE DE CALIFORNIA EN CAMPO PARA EL SUELO DE SUBRASANTE DE LA VIA PORTOVIEJO-MANTA," *Rev. Gac. Técnica*, vol. 21, no. 1, pp. 27–43, 2020, doi: 10.13140/RG.2.2.12491.54569.
- [12] M. Sanchez, D. Pavon, and E. Tejeda, "Propuesta de espesores mínimos de superficie y coeficientes de equivalencia de espesores para el diseño de pavimentos flexibles," *Rev. Arquit. e Ing.*, vol. 14, no. 2020, p. 15, 2020.
- [13] G. S. R. Massenlli and C. E. L. de Paiva, "Influencia de la deflexión superficial en pavimentos flexibles con subrasante de baja resistencia," *Ingeniare. Rev. Chil. Ing.*, vol. 27, no. 4, pp. 613–624, 2019, doi: 10.4067/s0718-33052019000400613.
- [14] G. Duque Escobar and C. E. Escobar, "Relaciones Gravimétricas Y Volumétricas Del Suelo," *Univ. Nac. Colomb. Geomecánica. Capitulo 2*, pp. 29–47, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/53252/11/relacionesgravimetricasyvolumetric asdelsuelo.pdf
- [15] E. Y. Materiales, "S GRANULOMÉTRICO POR TAMIZADO ASTM D422

- AASHTO T88)," pp. 1-5.
- [16] AASHTO, Guia para el diseño de una estructura de pavimento. 1993.
- [17] J. J. Bester, D. Kruger, and A. Hinks, "Construction and demolition waste in South Africa," *Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste*. pp. 63–70, 2004.
- [18] "AASHTO T180 Proctor Modificado | PDF | Densidad | Peso del cuerpo humano." https://es.scribd.com/doc/61445252/AASHTO-T180-Proctor-Modificado (accessed Jul. 20, 2023).
- [19] O. A. Afolabi and O. D. Afolayan, "Strength modelling of soil geotechnical properties from index properties," *Jordan J. Civ. Eng.*, vol. 12, no. 4, pp. 619–628, 2018.
- [20] F. Viscarra Agreda, "El cono dinámico de penetración y su aplicación en la evaluación de suelos," *iCIVIL*, p. 18, 2006, [Online]. Available: https://www.academia.edu/28667223/EL_CONO_DINÁMICO_DE_PENETR ACIÓN_Y_SU_APLICACIÓN_EN_LA_EVALUACIÓN_DE_SUELOS
- [21] N. B Shirur and S. G Hiremath, "Establishing Relationship between Cbr Value and Physical Properties of Soil," *IOSR J. Mech. Civ. Eng.*, vol. 11, no. 5, pp. 26–30, 2014, doi: 10.9790/1684-11512630.
- [22] MTOP, "Volumen N° 2 Libro A Norma para estudios Y diseños viales; Norma Ecuatoriana Vial NEVI-12 MTOP," *Minist. Transp. Y Obras Públicas Del Ecuador*, vol. NEVI-12-MT, p. 382, 2013.
- [23] A. A. of State Highway and T. Officials, *AASHTO Guide for Design of Pavement Structures*, 1993. The Association, 1993. [Online]. Available: https://books.google.com.ec/books?id=1HRB12tBQNMC
- [24] A. A. of State Highway and T. Officials, *Mechanistic-empirical Pavement Design Guide: A Manual of Practice*. American Association of State Highway and Transportation Officials, 2008. [Online]. Available: https://books.google.com.ec/books?id=3%5C_h7Hbn5AZgC

[25] P. N. Fhwa-hi-, "Diseño de sobrecarpetas en pavimentos existentes (aashto-93) y software dipav 2.0," no. 13129.

ANEXOS

ANEXO A.- ESTUDIOS DE SUELOS

Tabla 45: Densidad de Campo muestra #1

Calibración de la arena de Ottawa ysand

Volumen del hueco de la masa Vm

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE DETERMINACIÓN DE CAMPO

1,582

1395,01

g/cm³

cm³

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHSO	Capa Vegetal:	5	cm
ID Muestra:	P1	Profundidad:	100	cm

Norma: AASHTO T191 2014 **Coordenadas:** 17 M 734420 9922167,51

Norma:	AASH10 1191 2014	Coordenadas:	1 / IVI	/34420 992216/,51
	DETERMINACIÓN	DEL SUELO EXTRAÍ	DO	
Peso de la masa d	el suelo + recipiente		2185	g
Peso de recipiente	e (funda plastica)		1,5	ga
Peso de la masa d	el suelo (Wm)		2183,5	Øa
]	DETERMINACIÓN DEL VOLUME	N DE LA PERFORACI	ÓN EN EL SUE	LO
Peso inicial frasc	o + cono + arena		6128,9	g _Q
Peso final frasco	+ cono + arena		2232	ga
Peso de la arena e	en el cono		1690	g
Peso de la arena e	en el hueco		2206,9	QQ

		,	
DETERMINACIÓN DEL CONTENIDO DE HU	MEDAD		
Recipiente Número	60	62	-
Peso muestra húmeda + recipiente (Wm + Wr)	162,00	166,60	g
Peso muestra seca + recipiente (Ws + Wr)	136,50	140,20	g
Peso del agua (Ww)	25,50	26,40	g
Peso del recipiente (Wr)	30,50	31,70	g
Peso de la muestra seca (Ws)	106,00	108,50	g
Contenido de humedad (ω)	24,06	24,33	%
Promedio contenido de humedad (ω)	24,1	19	%

DETERMINACIÓN DE LAS FASES DEL SUELO						
			Volúm	enes	Ma	asas
cm ³		g	Vv =	45,24		
Vv	Va Aire Wa		Va =	18,84	Wa =	0,00
Vm	Vw Agua Ww	Wm	Vw =	26,40	Ww =	26,40
	Vs Sólidos Ws		Vs =	40,94	Ws =	108,50
-	<u></u>	-	Vm=	86.19	Wm=	134.90

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,565	g/cm³		
Densidad seca (yd)	1,260	g/cm³		
Contenido de humedad (ω)	24,19	%		
Relación de vacíos (e = Vv / Vs)	1,10	1		
Porosidad (n = Vv/Vm)	52,49	%		
Grado de saturación de agua (Gw = Vw/Vv)	58,35	%		
Grado de saturación de aire (Ga = Va/Vv)	41,65	%		

Tabla 46: Densidad de Campo muestra #2

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHSO	Capa Vegetal:	5	cm
ID Muestra:	P2	Profundidad:	100	cm
Norma:	AASHTO T191 2014	Coordenadas:	17 M	733977.1 9922378.65

DETERMINACIÓN DEL SUELO EXTRAÍDO					
Peso de la masa del suelo + recipiente	2130	g			
Peso de recipiente (funda plastica)	1,5	g			
Peso de la masa del suelo (Wm)	2128,5	g			
DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO					

DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO						
Peso inicial frasco + cono + arena	6131	g				
Peso final frasco + cono + arena	2270	g				
Peso de la arena en el cono	1690	g				
Peso de la arena en el hueco	2171	g				
Calibración de la arena de Ottawa γsand	1,582	g/cm³				
Volumen del hueco de la masa Vm	1372,31	cm³				

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD					
Recipiente Número	16	18	-		
Peso muestra húmeda + recipiente (Wm + Wr)	160,90	147,80	g		
Peso muestra seca + recipiente (Ws + Wr)	134,00	123,50	g		
Peso del agua (Ww)	26,90	24,30	g		
Peso del recipiente (Wr)	31,00	30,70	g		
Peso de la muestra seca (Ws)	103,00	92,80	g		
Contenido de humedad (ω)	26,12	26,19	%		
Promedio contenido de humedad (ω)	2	6,15	%		

DETERMINACIÓN DE LAS FASES DEL SUELO						
Volúmenes Masas						
cm ³		g	Vv =	44,88		
Vv	Va Aire Wa		Va =	17,98	Wa =	0,00
Vm	Vw Agua Ww	Wm	Vw =	26,90	Ww =	26,90
	Vs Sólidos Ws		$V_S =$	38,87	Ws =	103,00
			Vm =	83,75	Wm =	129,90

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO					
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,551	g/cm³			
Densidad seca (yd)	1,230	g/cm³			
Contenido de humedad (ω)	26,15	%			
Relación de vacíos (e = Vv / Vs)	1,15	-			
Porosidad (n = Vv/Vm)	53,59	%			
Grado de saturación de agua (Gw = Vw/Vv)	59,93	%			
Grado de saturación de aire (Ga = Va/Vv)	40,07	%			

Tabla 47: Densidad de Campo muestra #3

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm
ID Muestra:	Р3	Profundidad:	100	cm
Norma:	A ASHTO T191 2014	Coordenadas	17 M	735105 2 9922398 85

DETERMINACIÓN DEL SUELO) EXTRAÍDO		
Peso de la masa del suelo + recipiente	19	010	g
Peso de recipiente (funda plastica)	1	,5	g
Peso de la masa del suelo (Wm)	19	08,5	g
	•		,,,
DETERMINACIÓN DEL VOLUMEN DE LA PE	RFORACIÓN EN EL S	SUELO	
Peso inicial frasco + cono + arena	6.	.32	g
Peso final frasco + cono + arena	23	2335	
Peso de la arena en el cono	10	1690	
Peso de la arena en el hueco	210	2107,29	
Calibración de la arena de Ottawa γsand	1,	1,582	
Volumen del hueco de la masa Vm	133	1332,04	
	<u> </u>		
DETERMINACIÓN DEL CONTENIO	O DE HUMEDAD		
Recipiente Número	77	78	-
Peso muestra húmeda + recipiente (Wm + Wr)	165,30	174,20	g
Peso muestra seca + recipiente (Ws + Wr)	139,60	146,30	g
Peso del agua (Ww)	25,70	27,90	g
Peso del recipiente (Wr)	32,50	31,20	g
Peso de la muestra seca (Ws)	107,10	115,10	g
Contenido de humedad (ω)	24,00	24,24	%
Promedio contenido de humedad (ω)	24	,12	%

DETERMINACIÓN DE LAS FASES DEL SUELO						
			Volúm	enes	Ma	asas
cm ³		g	Vv =	54,84		
Vv	Va Aire Wa		Va =	29,14	Wa =	0,00
Vm	Vw Agua Ww	Wm	Vw =	25,70	Ww =	25,70
	Vs Sólidos Ws		Vs =	43,43	Ws =	115,10
•		=	Vm =	98 27	Wm=	140.80

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,433	g/cm³		
Densidad seca (yd)	1,154	g/cm³		
Contenido de humedad (ω)	24,12	%		
Relación de vacíos (e = Vv / Vs)	1,26	-		
Porosidad (n = Vv/Vm)	55,80	%		
Grado de saturación de agua (Gw = Vw/Vv)	46,87	%		
Grado de saturación de aire (Ga = Va/Vv)	53,13	%		

Tabla 48: Densidad de Campo muestra #4

Volumen del hueco de la masa Vm

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE DETERMINACIÓN DE CAMPO

1318,77

cm³

Proyecto:"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm
ID Muestra:	P4	Profundidad:	100	cm
Norma:	AASHTO T191 2014	Coordenadas:	17 M	735356.6 9922727.73

DETERMINACIÓN DEL SUELO EXTRAÍDO				
Peso de la masa del suelo + recipiente	1930	g		
Peso de recipiente (funda plastica)	1,5	g		
Peso de la masa del suelo (Wm)	1928,5	g		
DETERMINACIÓN DEL VOLUMEN DE LA PERFORA	CIÓN EN EL SUELO			
Peso inicial frasco + cono + arena	6132	g		
Peso final frasco + cono + arena	2356	g		
Peso de la arena en el cono	1690	g		
Peso de la arena en el hueco	2086,29	g		
Calibración de la arena de Ottawa γsand	1,582	g/cm³		

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD				
Recipiente Número	44	40	-	
Peso muestra húmeda + recipiente (Wm + Wr)	159,60	163,00	g	
Peso muestra seca + recipiente (Ws + Wr)	134,80	137,40	g	
Peso del agua (Ww)	24,80	25,60	g	
Peso del recipiente (Wr)	31,10	31,00	g	
Peso de la muestra seca (Ws)	103,70	106,40	g	
Contenido de humedad (ω)	23,92	24,06	%	
Promedio contenido de humedad (@)	23.9	99	%	

DETERMINACIÓN DE LAS FASES DEL SUELO					
		Volúm	enes	Ma	asas
cm ³	g	Vv =	49,57		
V _V Va Aire	Wa	Va =	24,77	Wa =	0,00
Vm Vw Agua	Ww Wm	Vw =	24,80	Ww =	24,80
Vs Sólidos	Ws	Vs =	40,15	Ws =	106,40
	•	Vm=	89,72	Wm =	131,20

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (γm)	1,462	g/cm³		
Densidad seca (yd)	1,179	g/cm³		
Contenido de humedad (ω)	23,99	%		
Relación de vacíos ($e = Vv / Vs$)	1,23	-		
Porosidad (n = Vv/Vm)	55,25	%		
Grado de saturación de agua (Gw = Vw/Vv)	50,03	%		
Grado de saturación de aire (Ga = Va/Vv)	49,97	%		

Tabla 49: Densidad de Campo muestra #5

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm
ID Muestra:	P5	Profundidad:	100	cm

Norma: AASHTO T191 2014 Coordenadas: 17 M 735905,3 9923620,22

DETERMINACIÓN DEL SUELO EXTRAÍDO				
Peso de la masa del suelo + recipiente	2215	g		
Peso de recipiente (funda plastica)	1,5	g		
Peso de la masa del suelo (Wm)	2213,5	g		

DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO				
Peso inicial frasco + cono + arena	6132	g		
Peso final frasco + cono + arena	2252	g		
Peso de la arena en el cono	1690	g		
Peso de la arena en el hueco	2190,29	g		
Calibración de la arena de Ottawa ysand	1,582	g/cm³		
Volumen del hueco de la masa Vm	1384,51	cm³		

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD					
Recipiente Número	75	74	-		
Peso muestra húmeda + recipiente (Wm + Wr)	159,70	165,80	g		
Peso muestra seca + recipiente (Ws + Wr)	133,10	138,60	g		
Peso del agua (Ww)	26,60	27,20	g		
Peso del recipiente (Wr)	31,20	30,80	g		
Peso de la muestra seca (Ws)	101,90	107,80	g		
Contenido de humedad (ω)	26,10	25,23	%		
Promedio contenido de humedad (ω)	25,67		%		

DETERMINACIÓN DE LAS FASES DEL SUELO						
			Volúm	enes	M	asas
cm³		g	Vv =	41,92		
Vv Va	Aire Wa		Va =	15,32	Wa =	0,00
Vm Vv Vw	Agua Ww	Wm	Vw =	26,60	Ww =	26,60
Vs	Sólidos Ws		Vs =	38,45	Ws =	101,90
	<u>.</u>	-	Vm=	80.37	Wm=	128.50

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,599	g/cm³		
Densidad seca (yd)	1,272	g/cm³		
Contenido de humedad (ω)	25,67	%		
Relación de vacíos (e = Vv / Vs)	1,09	-		
Porosidad (n = Vv/Vm)	52,16	%		
Grado de saturación de agua (Gw = Vw/Vv)	63,45	%		
Grado de saturación de aire (Ga = Va/Vv)	36,55	%		

Tabla 50: Densidad de Campo muestra #6

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm
ID Muestra:	P6	Profundidad:	100	cm

Norma: AASHTO T191 2014 Coordenadas: 17 M 736603,8 9923920,52

DETERMINACIÓN DEL SUELO EXTRAÍDO				
Peso de la masa del suelo + recipiente	1945	g		
Peso de recipiente (funda plastica)	1,5	g		
Peso de la masa del suelo (Wm)	1943,5	g		

DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO				
Peso inicial frasco + cono + arena	6136,94	g		
Peso final frasco + cono + arena	2137	g		
Peso de la arena en el cono	1690	g		
Peso de la arena en el hueco	2309,94	g		
Calibraciòn de la arena de Ottawa γsand	1,582	g/cm³		
Volumen del hueco de la masa Vm	1460,14	cm³		

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD				
Recipiente Número	17	23	-	
Peso muestra húmeda + recipiente (Wm + Wr)	161,70	159,40	g	
Peso muestra seca + recipiente (Ws + Wr)	134,90	133,40	g	
Peso del agua (Ww)	26,80	26,00	g	
Peso del recipiente (Wr)	31,00	30,70	g	
Peso de la muestra seca (Ws)	103,90	102,70	g	
Contenido de humedad (ω)	25,79	25,32	%	
Promedio contenido de humedad (ω)	25,56		%	

DETERMINACIÓN DE LAS FASES DEL SUELO					
		Volúm		Ma	asas
cm³	g	Vv =	58,54		
V _m V _v V _a Aire Wa V _w Agua Ww	Wa	Va =	31,74	Wa =	0,00
	Ww Wm	Vw =	26,80	Ww =	26,80
Vs Sólidos	Ws	Vs =	38,75	Ws =	102,70
· -	•	Vm =	97,29	Wm =	129,50

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,331	g/cm³		
Densidad seca (yd)	1,060	g/cm³		
Contenido de humedad (ω)	25,56	%		
Relación de vacíos ($e = Vv / Vs$)	1,51	-		
Porosidad (n = Vv/Vm)	60,17	%		
Grado de saturación de agua (Gw = Vw/Vv)	45,78	%		
Grado de saturación de aire (Ga = Va/Vv)	54,22	%		

Tabla 51: Densidad de Campo muestra #7

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA GOMES(BOMBEROS)	Capa Vegetal:	5	cm
ID Muestra:	P7	Profundidad:	100	cm

Norma: AASHTO T191 2014 Coordenadas: 17 M 734815,8 9922442,94

DETERMINACIÓN DEL SUELO EXTRAÍDO				
Peso de la masa del suelo + recipiente	2213	g		
Peso de recipiente (funda plastica)	1,5	g		
Peso de la masa del suelo (Wm)	2211.5	g		

DETERMINACIÓN DEL VOLUMEN DE LA PERFORACIÓN EN EL SUELO				
Peso inicial frasco + cono + arena	6137	g		
Peso final frasco + cono + arena	2160	g		
Peso de la arena en el cono	1690	g		
Peso de la arena en el hueco	2286,94	g		
Calibraciòn de la arena de Ottawa γsand	1,582	g/cm³		
Volumen del hueco de la masa Vm	1445,60	cm³		

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD					
Recipiente Número	105	11	-		
Peso muestra húmeda + recipiente (Wm + Wr)	155,40	167,60	g		
Peso muestra seca + recipiente (Ws + Wr)	126,10	138,60	g		
Peso del agua (Ww)	29,30	29,00	g		
Peso del recipiente (Wr)	31,20	30,80	g		
Peso de la muestra seca (Ws)	94,90	107,80	g		
Contenido de humedad (ω)	30,87	26,90	%		
Promedio contenido de humedad (ω)		39	%		

DETERMINACIÓN DE LAS FASES DEL SUELO							
		Volúm	Volúmenes Masas		asas		
cm³	g	Vv =	48,94				
Vv Va Aire	Wa	Va =	19,64	Wa =	0,00		
Vm Vw Agua	Ww Wm	Vw =	29,30	Ww =	29,30		
Vs Sólidos	Ws	Vs =	40,68	Ws =	107,80		
		Vm =	89,62	Wm=	137,10		

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO						
Densidad húmeda o Peso Volumètrico del suelo (γm)	1,530	g/cm³				
Densidad seca (γd)	1,187	g/cm³				
Contenido de humedad (ω)	27,18	%				
Relación de vacíos (e = Vv / Vs)	1,20	-				
Porosidad (n = Vv/Vm)	54,61	%				
Grado de saturación de agua (Gw = Vw/Vv)	59,87	%				
Grado de saturación de aire (Ga = Va/Vv)	40,13	%				

Tabla 52: Densidad de Campo muestra #8

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

VIA GOMES(BOMBEROS) Vía: Capa Vegetal:

ID Muestra:	P8		Profundidad:	100	cm	
Norma:	AASHTO T191 2014		Coordenadas:	17 M	734422,9	9922776,32
		CIÓN DEL S	UELO EXTRAÍI			ı
Peso de la masa del				223		g
Peso de recipiente				1,:		g
Peso de la masa del	l suelo (Wm)			2229	9,5	g
Di	ETERMINACIÓN DEL VOI	LUMEN DE L	A PERFORACIÓ	ÓN EN EL SI	UELO	
Peso inicial frasco				613		g
Peso final frasco +	cono + arena			228	30	g
Peso de la arena en	el cono			169	90	g
Peso de la arena en	el hueco			2163	5,57	g
Calibración de la a	rena de Ottawa γsand			1,5	82	g/cm³
Volumen del hueco	de la masa Vm			1367	,62	cm ³
	DETERMINACIÓ	N DEL CONT	ENIDO DE HUN			ī
Recipiente Número				31	29	-
	da + recipiente (Wm + Wr)			155,20	159,70	g
	+ recipiente (Ws + Wr)			130,90	135,40	g
Peso del agua (Ww				24,30	24,30	g
Peso del recipiente				31,00	30,80	g
Peso de la muestra				99,90	104,60	g
Contenido de hume	()			24,32	23,23	%
Promedio contenido	o de humedad (ω)			23,	/8	%
	DETERMINAC	TÓN DE LAS	FASES DEL SU	FLO		
	DETERMINAC	JON DE LAS	Volúmo		М	asas
cm ³		σ	Vv =	39,60		шошо
Ī	Va Aire Wa	ľ	Va =	15,30	Wa =	0,00
Vm Vv	Vw Agua Ww	Wm	Vw =	24,30	Ww =	24,30
'	Va Aire Wa Vw Agua Ww Vs Sólidos Ws	1	Vs =	39,47	Ws =	-
"		1	Vm =	79,07	Wm=	
			<u>'</u>	•		
	DETERMINACIÓN DE		DADES ÍNDICE	DEL SUELO)	
	Peso Volumètrico del suelo (γm)			1,630	g/cm³
Densidad seca (γd)					1,317	g/cm³
Contenido de hume	()		-		23,23	%
Relación de vacíos			-		1,00	-
Porosidad (n = Vv			<u> </u>		50,08	%
	n de agua ($Gw = Vw/Vv$)				61,37	%
Grado de saturación	n de aire (Ga = Va/Vv)				38,63	%

Tabla 53: Densidad de Campo muestra #9

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA SIGCHILAS (ESTADIO DE SIGCHO) Capa Vegetal: ID Muestra: Profundidad: 100

Norma:	AASHTO T191 2014	Coordenadas:	17 M	734732,9	9921648,4
	DETERMINACIÓ!	N DEL SUELO EXTRAÍ	DO		
Peso de la masa	a del suelo + recipiente		225	1	g
Peso de recipie	nte (funda plastica)		1,5		g
Peso de la masa	a del suelo (Wm)		2249		g
	DETERMINACIÓN DEL VOLUM	EN DE LA PERFORACI	ÓN EN EL S	UELO	
Peso inicial fra	sco + cono + arena		613	6134 g	
Peso final frasc	o + cono + arena		221	5	g
Peso de la aren	a en el cono		1690 g		g
Peso de la aren	a en el hueco		2228,57 g		g
Calibración de	la arena de Ottawa γsand		1,58	32	g/cm³
Volumen del hu	eco de la masa Vm		1408	,70	cm³
	DETERMINACIÓN DE	L CONTENIDO DE HU	MEDAD		
Recipiente Nún	nero		60	62	-
Peso muestra hi	ámeda + recipiente (Wm + Wr)		161,10	153,60	g
Peso muestra se	Peso muestra seca + recipiente (Ws + Wr)		136,10	129,80	g
Peso del agua (Ww)		25,00	23,80	g
Peso del recipio	ente (Wr)		30,90	31,30	g
Peso de la mues	stra seca (Ws)		105,20	98,50	g

DETERMINACION DEL CONTENIDO DE HUMEDAD						
Recipiente Número	60	62	-			
Peso muestra húmeda + recipiente (Wm + Wr)	161,10	153,60	g			
Peso muestra seca + recipiente (Ws + Wr)	136,10	129,80	g			
Peso del agua (Ww)	25,00	23,80	g			
Peso del recipiente (Wr)	30,90	31,30	g			
Peso de la muestra seca (Ws)	105,20	98,50	g			
Contenido de humedad (ω)	23,76	24,16	%			
Promedio contenido de humedad (ω)	23,96 %		%			

DETERMINACIÓN DE LAS FASES DEL SUELO						
		Volúmenes		M	lasas	
cm³	g	Vv =	39,42			
Vv Va Aire W	Va	Va =	15,62	Wa =	0,00	
Vm Vw Agua W	Vw Wm	Vw =	23,80	Ww =	23,80	
Vs Sólidos W	Vs	Vs =	37,17	Ws =	98,50	
		Vm =	76,59	Wm=	122,30	

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO					
Densidad húmeda o Peso Volumètrico del suelo (γm)	1,597	g/cm³			
Densidad seca (yd)	1,288	g/cm³			
Contenido de humedad (ω)	24,16	%			
Relación de vacíos (e = Vv / Vs)	1,06	-			
Porosidad (n = Vv/Vm)	51,47	%			
Grado de saturación de agua (Gw = Vw/Vv)	60,38	%			
Grado de saturación de aire (Ga = Va/Vv)	39,62	%			

Tabla 54: Densidad de Campo muestra #10

1,512

1,221

24,59

1,18

54,19

55,08

44,92

g/cm³

g/cm³

%

%

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	IGCHILAS (ESTADIO DE SIG	Capa Vegetal:	5	cm
ID Muestra:	P10	Profundidad:	100	cm

v 1a.	IOCIILAS (LSTADIO DE SIO		Capa vegetai.	3	CIII	
ID Muestra:	P10		Profundidad:	100	cm	
Norma:	AASHTO T191 2014		Coordenadas:	17 M	733968,3	9921381,
	DETERMINACI	IÓN DEL SU	JELO EXTRAÍ	DO		
Peso de la masa	del suelo + recipiente			214	8	g
Peso de recipier	te (funda plastica)			1,5		g
Peso de la masa	del suelo (Wm)			2146		g
	,			,		
	DETERMINACIÓN DEL VOLU	MEN DE LA	A PERFORACIO	ÓN EN EL SU	JELO	
Peso inicial fras	co + cono + arena			613	0	g
Peso final frasco	o + cono + arena			219	15	g
Peso de la arena				169	0	g
Peso de la arena	en el hueco			2245		g
Calibración de l	a arena de Ottawa γsand			1,58	32	g/cm³
Volumen del hue	co de la masa Vm			1419	,30	cm³
	DETERMINACIÓN I	DEL CONT	ENIDO DE HUN			
Recipiente Núm				16	18	-
	meda + recipiente (Wm + Wr)			175,90		g
	ca + recipiente (Ws + Wr)			148,60		g
Peso del agua (V				27,30	26,90	g
Peso del recipie				30,90	31,00	g
Peso de la muest				117,70		g
Contenido de hu	medad (ω)			23,19	24,59	%
Promedio conter	nido de humedad (ω)			23,8	39	%
	DETERMINACIÓ	NDELAC	EACEC DEL CH	FIO		
	DETERMINACIO	IN DE LAS	Volúm		M:	asas
cm ³		g	Vv =	48,84		
Ī	Vv Va Aire Wa Vw Agua Ww Vs Sólidos Ws	5	Va =	21,94	Wa =	0,00
Vm	Vv Vw Agua Ww	Wm	Vw =	26,90	Ww =	26,90
	Vs Sólidos Ws		Vs =	41,28	Ws =	109,40
<u> </u>			Vm=	90,12	Wm=	136,30
	DETERMINACIÓN DE LA	AS PROPIEI	DADES ÍNDICE	DEL SUELO)	

Autor: Christian Garcés

Densidad húmeda o Peso Volumètrico del suelo (ym)

Densidad seca (yd)

Contenido de humedad (ω)

Porosidad (n = Vv/Vm)

Relación de vacíos (e = Vv / Vs)

Grado de saturación de agua (Gw = Vw/Vv)

Grado de saturación de aire (Ga = Va/Vv)

Tabla 55: Densidad de Campo muestra #11

59,82

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	HOSPITAL SIGCHOS	Capa Vegetal:	5	cm
ID Muestra:	P11	Profundidad:	100	cm

Vía:	HOSPITAL SIGCHOS		Capa Vegetal:	5	cm	
ID Muestra:	P11		Profundidad:	100	cm	
Norma:	AASHTO T191 2014		Coordenadas:	17 M	735262,5	9922727,73
	DETERMINACIÓN	N DEL SU	JELO EXTRAÍI	00		
Peso de la masa d	el suelo + recipiente			206	55	g
Peso de recipiente	(funda plastica)			1,:	5	g
Peso de la masa d	Peso de la masa del suelo (Wm) 2063,					
	,			,		
	DETERMINACIÓN DEL VOLUME	EN DE LA	A PERFORACIO			
Peso inicial frasco				613		g
Peso final frasco -				235		g
Peso de la arena e				157		g
Peso de la arena e				220		g
	arena de Ottawa γsand			1,5		g/cm³
Volumen del huec	o de la masa Vm			1391	,28	cm³
D. I.I. I. M.	DETERMINACIÓN DEI	L CONTI	ENIDO DE HUN			T T
Recipiente Númer				78	77	-
	eda + recipiente (Wm + Wr)			162,70	157,60	g
	+ recipiente (Ws + Wr)			144,90	140,50	g
Peso del agua (W				17,80	17,10	g
Peso del recipient				30,50	31,70	g
Peso de la muestra				114,40	108,80	g
Contenido de hum				15,56	15,72	%
Promedio contenio	do de humedad (ω)			15,	64	%
	DETERMINACIÓN I	DELACI	EACEC DEL CU	EI O		
	DETERMINACION	DE LAS	FASES DEL SU Volúm		M	asas
cm ³	g		Volum Vv =	44,30	171	asas
I	Va Aire Wa		Va =	26,50	Wa =	0,00
V _m V	v Va Aire Wa Wn Wn	n	Vw =	17,80	Ww =	17,80
, , , , , , , , , , , , , , , , , , ,	v Va Aire Wa Wu Wu Vs Sólidos Ws		Vs =	41,06	Ws =	108,80
l I	VS Dondos WS		Vm =	85,36	Wm=	126,60
		l	VIII —	05,50	VVIII —	120,00
	DETERMINACIÓN DE LAS I	PROPIEI	DADES ÍNDICE	DEL SUELO)	
Densidad húmeda	o Peso Volumètrico del suelo (ym)	1101111		DLL SCLL	1,483	g/cm³
Densidad seca (yo	10 /				1,283	g/cm³
Contenido de hum					16,36	%
Relación de vacíos (e = Vv / Vs)					1,08	-
Porosidad (n = V	v/Vm)				51,90	%
Grado de saturacio	ón de agua (Gw = Vw/Vv)				40,18	%
G 1 1						

Autor: Christian Garcés

Grado de saturación de aire (Ga = Va/Vv)

Tabla 56: Densidad de Campo muestra #12

"CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS Proyecto: SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: HOSPITAL SIGCHOS Capa Vegetal: ID Muestra: P12 Profundidad: 100 cm

Norma:	AASHTO T191 2014	Coordenadas:	17 M	735784	9923037,42	
	DETERMINACIÓN	DEL SUELO EXTRAÍI	00			
Peso de la masa	del suelo + recipiente		181	4	g	
Peso de recipier	nte (funda plastica)		1,5	5	g	
Peso de la masa	del suelo (Wm)		1812	2,5	g	
	DETERMINACIÓN DEL VOLUME	N DE LA PERFORACIO	ÓN EN EL SU	JELO		
Peso inicial fras	sco + cono + arena		613	5	g	
Peso final frasco	o + cono + arena		240	9	g	
Peso de la arena	en el cono		169	0	g	
Peso de la arena	en el hueco		2036	,25	g	
Calibración de l	a arena de Ottawa γsand		1,582		g/cm³	
Volumen del hu	eco de la masa Vm		1287,14		cm ³	
	DETERMINACIÓN DEI	CONTENIDO DE HUN	MEDAD			
Recipiente Núm			44	40	-	
Peso muestra hú	meda + recipiente (Wm + Wr)		167,50	161,80	g	
Peso muestra se	ca + recipiente (Ws + Wr)		148,80	144,00	g	
Peso del agua (V	Ww)		18,70	17,80	g	
Peso del recipie	ente (Wr)		31,00	30,90	g	
Peso de la mues	tra seca (Ws)		117,80	113,10	g	
Contenido de hu			15,87	15,74	%	
Promedio conte	nido de humedad (ω)		15,8	31	%	
DETERMINACIÓN DE LAC FACEC DEL CITELO						

DETERMINACIÓN DE LAS FASES DEL SUELO						
			Volúm	enes	Ma	asas
cm ³		g	Vv =	50,92		
V _V Va	Aire Wa		Va =	32,22	Wa =	0,00
Vm Vw Vw	Agua Ww	Wm	Vw =	18,70	Ww =	18,70
Vs	Sólidos Ws		Vs =	42,68	Ws =	113,10
_			Vm =	93,60	Wm =	131,80

DETERMINACIÓN DE LAS PROPIEDADES ÍNDICE DEL SUELO				
Densidad húmeda o Peso Volumètrico del suelo (ym)	1,408	g/cm³		
Densidad seca (yd)	1,216	g/cm³		
Contenido de humedad (ω)	16,53	%		
Relación de vacíos ($e = Vv / Vs$)	1,19	-		
Porosidad (n = Vv/Vm)	54,40	%		
Grado de saturación de agua (Gw = Vw/Vv)	36,73	%		
Grado de saturación de aire (Ga = Va/Vv)	63,27	%		

Tabla 57: Contenido de Humedad muestra #1

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P1	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	734420,0	9922167,5

Recipiente Número	44	40	
Peso muestra húmeda + recipiente (Wm + Wr)	162,00	166,60	g
Peso muestra seca + recipiente (Ws + Wr)	136,50	140,20	g
Peso del agua (Ww)	25,50	26,40	g
Peso del recipiente (Wr)	30,50	31,70	g
Peso de la muestra seca (Ws)	106,00	108,50	g
Contenido de humedad (ω)	24,06	24,33	%
Promedio contenido de humedad (ω)	24,19		%

Autor: Christian Garcés

Tabla 58: Contenido de Humedad muestra #2

ATU	

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P2	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	733977,1	9922378,7

Recipiente Número	60	62	
Peso muestra húmeda + recipiente (Wm + Wr)	155,40	167,60	g
Peso muestra seca + recipiente (Ws + Wr)	129,10	143,60	g
Peso del agua (Ww)	26,30	24,00	g
Peso del recipiente (Wr)	31,20	30,80	g
Peso de la muestra seca (Ws)	97,90	112,80	g
Contenido de humedad (ω)	26,86	21,28	%
Promedio contenido de humedad (ω)	24,07		%

Tabla 59: Contenido de Humedad muestra #3

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm	
ID Muestra:	P3	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	735105,2	9922398,9

Recipiente Número	31	29	
Peso muestra húmeda + recipiente (Wm + Wr)	165,30	174,20	g
Peso muestra seca + recipiente (Ws + Wr)	149,60	146,30	g
Peso del agua (Ww)	15,70	27,90	g
Peso del recipiente (Wr)	32,50	31,20	g
Peso de la muestra seca (Ws)	117,10	115,10	g
Contenido de humedad (ω)	13,41	24,24	%
Promedio contenido de humedad (ω)	18,82		%

Autor: Christian Garcés

Tabla 60: Contenido de Humedad muestra #4

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm	
ID Muestra:	P4	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	735356,6	9922727,7

Recipiente Número	105	11	
Peso muestra húmeda + recipiente (Wm + Wr)	159,60	163,00	g
Peso muestra seca + recipiente (Ws + Wr)	134,80	141,40	g
Peso del agua (Ww)	24,80	21,60	g
Peso del recipiente (Wr)	31,10	31,00	g
Peso de la muestra seca (Ws)	103,70	110,40	g
Contenido de humedad (ω)	23,92	19,57	%
Promedio contenido de humedad (ω)	21,74		%

Tabla 61: Contenido de Humedad muestra #5

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P5	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	735905,3	9923620,2

Recipiente Número	60	62	
Peso muestra húmeda + recipiente (Wm + Wr)	159,70	165,80	g
Peso muestra seca + recipiente (Ws + Wr)	133,10	138,60	g
Peso del agua (Ww)	26,60	27,20	g
Peso del recipiente (Wr)	31,20	30,80	g
Peso de la muestra seca (Ws)	101,90	107,80	g
Contenido de humedad (ω)	26,10	25,23	%
Promedio contenido de humedad (ω)	25,67		%

Autor: Christian Garcés

Tabla 62: Contenido de Humedad muestra #6

UNIVERSIDAD TÉCNICA DE AMBATO
FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA
CARRERA DE INGENIERÍA CIVIL
ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P6	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	736603,8	9923920,5

Recipiente Número	16	18	
Peso muestra húmeda + recipiente (Wm + Wr)	161,70	159,40	g
Peso muestra seca + recipiente (Ws + Wr)	134,90	133,40	g
Peso del agua (Ww)	26,80	26,00	g
Peso del recipiente (Wr)	31,00	30,70	g
Peso de la muestra seca (Ws)	103,90	102,70	g
Contenido de humedad (ω)	25,79	25,32	%
Promedio contenido de humedad (ω)	25,56		%

Tabla 63: Contenido de Humedad muestra #7

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA GÓMEZ (BOMBEROS)	Capa Vegetal:	5	cm	
ID Muestra:	P7	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	734815,8	9922442,9

Recipiente Número	16	18	
Peso muestra húmeda + recipiente (Wm + Wr)	160,90	147,80	g
Peso muestra seca + recipiente (Ws + Wr)	134,00	123,50	g
Peso del agua (Ww)	26,90	24,30	g
Peso del recipiente (Wr)	31,00	30,70	g
Peso de la muestra seca (Ws)	103,00	92,80	g
Contenido de humedad (ω)	26,12	26,19	%
Promedio contenido de humedad (ω)	26,15		%

Autor: Christian Garcés

Tabla 64: Contenido de Humedad muestra #8

ECNIC SERVICE
UTA

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA GÓMEZ (BOMBEROS)	Capa Vegetal:	5	cm	
ID Muestra:	P8	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	734422,9	9922776,3

Recipiente Número	17	23	
Peso muestra húmeda + recipiente (Wm + Wr)	155,20	159,70	g
Peso muestra seca + recipiente (Ws + Wr)	130,90	135,40	g
Peso del agua (Ww)	24,30	24,30	g
Peso del recipiente (Wr)	31,00	30,80	g
Peso de la muestra seca (Ws)	99,90	104,60	g
Contenido de humedad (ω)	24,32	23,23	%
Promedio contenido de humedad (ω)	23,78		%

Tabla 65: Contenido de Humedad muestra #9

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA SIGCHILAS (ESTADIO DE SIGCH	Capa Vegetal:	5	cm	
ID Muestra:	P9	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	734732,9	9921648,4

Recipiente Número	75	74	
Peso muestra húmeda + recipiente (Wm + Wr)	161,10	153,60	g
Peso muestra seca + recipiente (Ws + Wr)	136,10	129,80	g
Peso del agua (Ww)	25,00	23,80	g
Peso del recipiente (Wr)	30,90	31,30	g
Peso de la muestra seca (Ws)	105,20	98,50	g
Contenido de humedad (ω)	23,76	24,16	%
Promedio contenido de humedad (ω)	23,96		%

Autor: Christian Garcés

Tabla 66: Contenido de Humedad muestra #10

TECNICA AND
UTA

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA SIGCHILAS (ESTADIO DE SIGCH	Capa Vegetal:	5	cm	
ID Muestra:	P10	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	733968,3	9921381,7

Recipiente Número	78	77	
Peso muestra húmeda + recipiente (Wm + Wr)	175,90	167,30	g
Peso muestra seca + recipiente (Ws + Wr)	148,60	140,40	g
Peso del agua (Ww)	27,30	26,90	g
Peso del recipiente (Wr)	30,90	31,00	g
Peso de la muestra seca (Ws)	117,70	109,40	g
Contenido de humedad (ω)	23,19	24,59	%
Promedio contenido de humedad (ω)	23,89		%

Tabla 67: Contenido de Humedad muestra #11

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA HOSPITAL BÁSICO DE SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P11	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	735262,5	9922727,7

Recipiente Número	44	40	
Peso muestra húmeda + recipiente (Wm + Wr)	162,70	157,60	g
Peso muestra seca + recipiente (Ws + Wr)	144,90	140,50	g
Peso del agua (Ww)	17,80	17,10	g
Peso del recipiente (Wr)	30,50	31,70	g
Peso de la muestra seca (Ws)	114,40	108,80	g
Contenido de humedad (ω)	15,56	15,72	%
Promedio contenido de humedad (ω)	15,64		%

Autor: Christian Garcés

Tabla 68: Contenido de Humedad muestra #12

TECNIC, OF
UTA ST

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONTENIDO DE HUMEDAD NATURAL

Proyecto: "CORRELACIÓN ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VÍA HOSPITAL BÁSICO DE SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P12	Profundidad:	100	cm	
Norma:	AASHTO T265 2015	Coordenadas:	17 M	735784,0	9923037,4

Recipiente Número	77	78	
Peso muestra húmeda + recipiente (Wm + Wr)	167,50	161,80	g
Peso muestra seca + recipiente (Ws + Wr)	148,80	144,00	g
Peso del agua (Ww)	18,70	17,80	g
Peso del recipiente (Wr)	31,00	30,90	g
Peso de la muestra seca (Ws)	117,80	113,10	g
Contenido de humedad (ω)	15,87	15,74	%
Promedio contenido de humedad (ω)	15,81		%

Tabla 69: Granulometría muestra #1

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHSO		Capa Vegetal:	5	cm
ID Muestra:	P1		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	734419,99	9922167,5

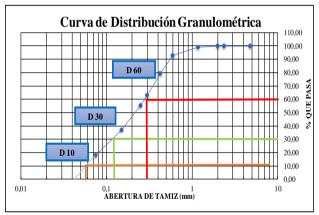
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,30	0,30	0,03	99,97
8	2,36	1,20	1,50	0,15	99,85
10	2	0,80	2,30	0,23	99,77
16	1,18	3,20	5,50	0,55	99,45
30	0,6	81,70	87,20	8,72	91,28
40	0,425	152,30	239,50	23,95	76,05
50	0,3	174,60	414,10	41,42	58,58
60	0,25	59,90	474,00	47,41	52,59
100	0,15	165,80	639,80	63,99	36,01
200	0,075	226,60	866,40	86,66	13,34
BANDEJA		133,40	999,80	100,00	

RESULTADOS			
D10 (mm)	0,09	Cu = D60 / D10	7,78
D30 (mm)	0,26	$Cc = D30^2 / (D60 * D10)$	1,07
D60 (mm)	0,7	Tamaño Nominal Máximo (TNM)	0,6
Error Permitido	1,00%	Error Calculado	0,02%

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,03	87	13			
AASHTO	0,12	87	13,34			

Tabla 70: Granulometría muestra #2



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHSO		Capa Vegetal:	5	cm
ID Muestra:	P2		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	733977,07	9922378,7

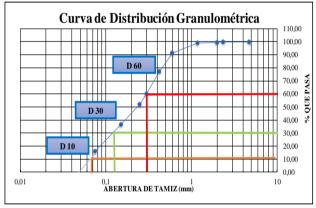
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,20	0,20	0,02	99,98
8	2,36	1,30	1,50	0,15	99,85
10	2	1,80	3,30	0,33	99,67
16	1,18	7,80	11,10	1,11	98,89
30	0,6	61,40	72,50	7,27	92,73
40	0,425	135,10	207,60	20,81	79,19
50	0,3	163,90	371,50	37,24	62,76
60	0,25	75,60	447,10	44,81	55,19
100	0,15	179,30	626,40	62,78	37,22
200	0,075	191,80	818,20	82,01	17,99
BANDEJA		179,50	997,70	100,00	

	RESULTADOS				
D10 (mm)	0,069	Cu = D60 / D10	6,09		
D30 (mm)	0,16	$Cc = D30^2 / (D60 * D10)$	0,88		
D60 (mm)	0,42	Tamaño Nominal Máximo (TNM)	0,6		
Error Permitido	1,00%	Error Calculado	0,23%		

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0,02	82	18		
AASHTO	0,13	82	17,99		

Tabla 71: Granulometría muestra #3



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO		Capa Vegetal:	5	cm
ID Muestra:	Р3		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	735105,22	9922398,9

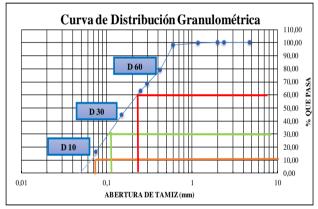
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA	PESO	PESO RETENIDO	% RETENIDO	% QUE PASA
# IANIL	(mm)	RETENIDO (g)	ACUMULADO (g)	ACUMULADO	70 QUE LASA
4	4,76	0,08	0,08	0,01	99,99
8	2,36	2,50	2,58	0,26	99,74
10	2	1,50	4,08	0,41	99,59
16	1,18	4,10	8,18	0,82	99,18
30	0,6	77,90	86,08	8,64	91,36
40	0,425	143,80	229,88	23,08	76,92
50	0,3	166,60	396,48	39,80	60,20
60	0,25	82,30	478,78	48,07	51,93
100	0,15	151,60	630,38	63,29	36,71
200	0,075	207,50	837,88	84,12	15,88
BANDEJA		158,20	996,08	100,00	

	RESULTADOS			
D10 (mm)	0,083	Cu = D60 / D10	3,49	
D30 (mm)	0,183	$Cc = D30^2 / (D60 * D10)$	1,39	
D60 (mm)	0,29	Tamaño Nominal Máximo (TNM)	0,6	
Error Permitido	1,00%	Error Calculado	0,39%	

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0,01	84	16		
AASHTO	0,25	84	15,88		

Tabla 72: Granulometría muestra #4



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO		Capa Vegetal:	5	cm
ID Muestra:	P4		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	735356,58	9922727,7

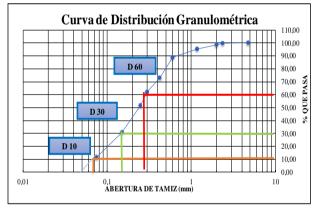
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA	PESO	PESO RETENIDO	% RETENIDO	0/ OHE DAGA
# IANILL	(mm)	RETENIDO (g)	ACUMULADO (g)	ACUMULADO	% QUE PASA
4	4,76	0,00	0,00	0,00	100,00
8	2,36	0,00	0,00	0,00	100,00
10	2	0,00	0,00	0,00	100,00
16	1,18	1,00	1,00	0,10	99,90
30	0,6	19,10	20,10	2,01	97,99
40	0,425	188,20	208,30	20,87	79,13
50	0,3	103,70	312,00	31,26	68,74
60	0,25	56,00	368,00	36,87	63,13
100	0,15	182,40	550,40	55,15	44,85
200	0,075	285,80	836,20	83,79	16,21
BANDEJA		161,80	998,00	100,00	

RESULTADOS			
D10 (mm)	0,085	Cu = D60 / D10	12,35
D30 (mm)	0,3	$Cc = D30^2 / (D60 * D10)$	1,01
D60 (mm)	1,05	Tamaño Nominal Máximo (TNM)	0,425
Error Permitido	1,00%	Error Calculado	0,20%

PORCENTAJE DE MATERIAL					
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)					
SUCS	0,00	84	16		
AASHTO 0,00 84 16,21					

Tabla 73: Granulometría muestra #5



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS		Capa Vegetal:	5	cm
ID Muestra:	P5		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	735905,33	9923620,2

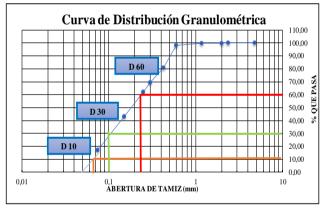
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,00	0,00	0,00	100,00
8	2,36	3,08	3,08	0,31	99,69
10	2	11,50	14,58	1,46	98,54
16	1,18	30,00	44,58	4,47	95,53
30	0,6	68,20	112,78	11,30	88,70
40	0,425	156,30	269,08	26,95	73,05
50	0,3	110,90	379,98	38,06	61,94
60	0,25	102,70	482,68	48,34	51,66
100	0,15	206,00	688,68	68,98	31,02
200	0,075	195,10	883,78	88,52	11,48
BANDEJA		114,65	998,43	100,00	

RESULTADOS				
D10 (mm)	0,07	Cu = D60 / D10	6,14	
D30 (mm)	0,175	$Cc = D30^2 / (D60 * D10)$	1,02	
D60 (mm)	0,43	Tamaño Nominal Máximo (TNM)	0,6	
Error Permitido	1,00%	Error Calculado	0,16%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,00	89	11			
AASHTO	0,31	88	11,48			

Tabla 74: Granulometría muestra #6



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS		Capa Vegetal:	5	cm
ID Muestra:	P6		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	736603,8	4 9923920,5

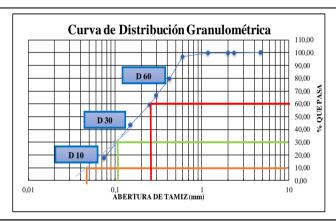
Peso Muestra Seca: 1000 g

# T	ABERTURA	PESO	PESO RETENIDO	% RETENIDO	av over paga
# TAMIZ	(mm)	RETENIDO (g)	ACUMULADO (g)	ACUMULADO	% QUE PASA
4	4,76	0,00	0,00	0,00	100,00
8	2,36	0,00	0,00	0,00	100,00
10	2	0,40	0,40	0,04	99,96
16	1,18	2,10	2,50	0,25	99,75
30	0,6	17,30	19,80	1,98	98,02
40	0,425	172,90	192,70	19,31	80,69
50	0,3	114,40	307,10	30,77	69,23
60	0,25	72,00	379,10	37,98	62,02
100	0,15	190,20	569,30	57,04	42,96
200	0,075	258,30	827,60	82,92	17,08
BANDEJA		170,50	998,10	100,00	

RESULTADOS				
D10 (mm)	0,034	Cu = D60 / D10	7,35	
D30 (mm)	0,09	$Cc = D30^2 / (D60 * D10)$	0,95	
D60 (mm)	0,25	Tamaño Nominal Máximo (TNM)	0,425	
Error Permitido	1,00%	Error Calculado	0,19%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,00	83	17			
AASHTO	0,00	83	17,08			

Tabla 75: Granulometría muestra #7



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA GOMES(BOMBEROS)		Capa Vegetal:	5	cm
ID Muestra:	P7		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	734815	,8 9922442,9

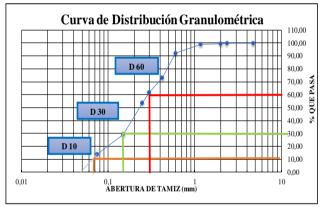
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,00	0,00	0,00	100,00
8	2,36	0,20	0,20	0,02	99,98
10	2	0,60	0,80	0,08	99,92
16	1,18	3,00	3,80	0,38	99,62
30	0,6	26,10	29,90	3,00	97,00
40	0,425	172,90	202,80	20,35	79,65
50	0,3	128,20	331,00	33,22	66,78
60	0,25	75,20	406,20	40,76	59,24
100	0,15	156,40	562,60	56,46	43,54
200	0,075	257,30	819,90	82,28	17,72
BANDEJA		176,57	996,47	100,00	

RESULTADOS				
D10 (mm)	0,057	Cu = D60 / D10	6,84	
D30 (mm)	0,135	$Cc = D30^2 / (D60 * D10)$	0,82	
D60 (mm)	0,39	Tamaño Nominal Máximo (TNM)	0,425	
Error Permitido	1,00%	Error Calculado	0,35%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,00	82	18			
AASHTO	0,02	82	17,72			

Tabla 76: Granulometría muestra #8



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA GOMES(BOMBEROS)		Capa Vegetal:	5	cm
ID Muestra:	P8		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	734422	2,9 9922776,3

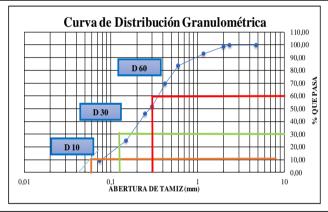
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,10	0,10	0,01	99,99
8	2,36	3,30	3,40	0,34	99,66
10	2	2,00	5,40	0,54	99,46
16	1,18	5,10	10,50	1,05	98,95
30	0,6	67,90	78,40	7,85	92,15
40	0,425	191,40	269,80	27,03	72,97
50	0,3	113,70	383,50	38,42	61,58
60	0,25	80,30	463,80	46,47	53,53
100	0,15	243,20	707,00	70,83	29,17
200	0,075	150,60	857,60	85,92	14,08
BANDEJA		140,50	998,10	100,00	

RESULTADOS				
D10 (mm)	0,08	Cu = D60 / D10	3,88	
D30 (mm)	0,171	$Cc = D30^2 / (D60 * D10)$	1,18	
D60 (mm)	0,31	Tamaño Nominal Máximo (TNM)	0,6	
Error Permitido	1,00%	Error Calculado	0,19%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,01	86	14			
AASHTO	0,33	86	14,08			

Tabla 77: Granulometría muestra #9



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA SIGCHILAS (ESTADIO DE SIGCHO)		Capa Vegetal:	5	cm
ID Muestra:	P9		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	734732,8	66 9921648,4

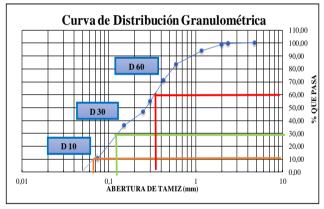
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,50	0,50	0,05	99,95
8	2,36	2,10	2,60	0,26	99,74
10	2	11,90	14,50	1,45	98,55
16	1,18	55,30	69,80	6,99	93,01
30	0,6	94,60	164,40	16,46	83,54
40	0,425	140,70	305,10	30,55	69,45
50	0,3	178,20	483,30	48,39	51,61
60	0,25	58,70	542,00	54,27	45,73
100	0,15	206,80	748,80	74,97	25,03
200	0,075	161,00	909,80	91,09	8,91
BANDEJA		88,98	998,78	100,00	

RESULTADOS				
D10 (mm)	0,13	Cu = D60 / D10	10,00	
D30 (mm)	0,465	$Cc = D30^2 / (D60 * D10)$	1,28	
D60 (mm)	1,3	Tamaño Nominal Máximo (TNM)	1,18	
Error Permitido	1,00%	Error Calculado	0,12%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,05	91	9			
AASHTO	0,21	91	8,91			

Tabla 78: Granulometría muestra #10



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA SIGCHILAS (ESTADIO DE SIGCHO)		Capa Vegetal:	5	cm
ID Muestra:	P10		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	733968,3	4 9921381,7

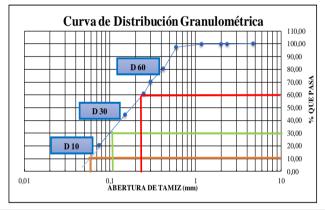
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	4,76	0,00	0,00	0,00	100,00
8	2,36	3,50	3,50	0,35	99,65
10	2	8,40	11,90	1,19	98,81
16	1,18	47,20	59,10	5,92	94,08
30	0,6	104,30	163,40	16,38	83,62
40	0,425	125,30	288,70	28,94	71,06
50	0,3	162,50	451,20	45,23	54,77
60	0,25	79,50	530,70	53,20	46,80
100	0,15	106,50	637,20	63,88	36,12
200	0,075	255,50	892,70	89,49	10,51
BANDEJA		104,80	997,50	100,00	

RESULTADOS				
D10 (mm)	0,099	Cu = D60 / D10	4,04	
D30 (mm)	0,201	$Cc = D30^2 / (D60 * D10)$	1,02	
D60 (mm)	0,4	Tamaño Nominal Máximo (TNM)	1,18	
Error Permitido	1,00%	Error Calculado	0,25%	

PORCENTAJE DE MATERIAL						
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)						
SUCS	0,00	89	11			
AASHTO	0,35	89	10,51			

Tabla 79: Granulometría muestra #11



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	HOSPITAL SIGCHOS		Capa Vegetal:	5 cm
ID Muestra:	P11		Profundidad:	100 cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	735262,45 9922727,7

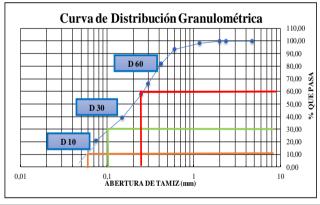
Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA	PESO (-)	PESO RETENIDO ACUMULADO (g)	% RETENIDO ACUMULADO	% QUE PASA
4	(mm)	RETENIDO (g)	(8)		100.00
4	4,76	0,00	0,00	0,00	100,00
8	2,36	0,10	0,10	0,01	99,99
10	2	1,00	1,10	0,11	99,89
16	1,18	2,40	3,50	0,35	99,65
30	0,6	23,70	27,20	2,72	97,28
40	0,425	168,10	195,30	19,54	80,46
50	0,3	100,50	295,80	29,59	70,41
60	0,25	95,30	391,10	39,13	60,87
100	0,15	166,90	558,00	55,82	44,18
200	0,075	236,80	794,80	79,51	20,49
BANDEJA		204,80	999,60	100,00	

RESULTADOS						
D10 (mm)	0,101	Cu = D60 / D10	13,27			
D30 (mm)	0,39	$Cc = D30^2 / (D60 * D10)$ 1,12				
D60 (mm)	1,34	Famaño Nominal Máximo (TNM) 0,425				
Error Permitido	1,00%	Error Calculado	0,04%			

PORCENTAJE DE MATERIAL							
Grava (G%) Arena (S%) Limo y Arcilla (Finos %)							
SUCS	0,00	80	20				
AASHTO	0,01	80	20,49				

Tabla 80: Granulometría muestra #12



Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXL."

Vía:	HOSPITAL SIGCHOS		Capa Vegetal:	5	cm
ID Muestra:	P11		Profundidad:	100	cm
Norma:	AASHTO T 88 2013	Coordenadas:	17 M	735784,01	9923037,4

Peso Muestra Seca: 1000 g

# TAMIZ	ABERTURA	PESO (-)	PESO RETENIDO	% RETENIDO	% QUE PASA
	(mm)	RETENIDO (g)	ACUMULADO (g)	ACUMULADO	
4	4,76	0,10	0,10	0,01	99,99
8	2,36	1,50	1,60	0,16	99,84
10	2	2,40	4,00	0,40	99,60
16	1,18	15,00	19,00	1,90	98,10
30	0,6	49,40	68,40	6,85	93,15
40	0,425	112,10	180,50	18,08	81,92
50	0,3	157,10	337,60	33,81	66,19
60	0,25	84,50	422,10	42,27	57,73
100	0,15	186,60	608,70	60,96	39,04
200	0,075	183,30	792,00	79,31	20,69
BANDEJA		206,60	998,60	100,00	

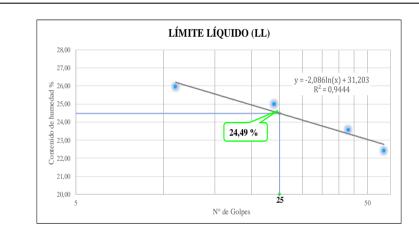
RESULTADOS						
D10 (mm)	0,037	Cu = D60 / D10	9,46			
D30 (mm)	0,084	$Cc = D30^2 / (D60 * D10)$				
D60 (mm)	0,35	Tamaño Nominal Máximo (TNM)	0,6			
Error Permitido	1,00%	Error Calculado	0,14%			

PORCENTAJE DE MATERIAL								
Grava (G%) Arena (S%) Limo y Arcilla (Finos G								
SUCS	0,01	79	21					
AASHTO	0,15	79	20,69					

Tabla 81: Límites de Atterberg muestra #1

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL LÍMITES DE ATTERBERG

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXL"


 Vía:
 VIA LAS PAMPAS - SIGCHOS
 Capa Vegetal:
 5
 cm

 ID Muestra:
 P1
 Profundidad:
 100
 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 734419,99 9922167,5

AASHTO T 90 2014

LÍMITE LÍQUIDO(LL)									
Número de Golpes	1	1	2	24		43		57	
Identificación de Cápsula	4	32	65	67	15	17	78	74	
Peso de Cápsula	11,16	11,26	10,92	11,43	11,54	11,50	11,61	11,58	g
Peso de muestra húmeda + cápsula	29,57	31,32	35,25	36,04	35,77	37,46	33,04	32,73	g
Peso de muestra seca + cápsula	25,78	27,17	30,39	31,11	31,15	32,51	29,11	28,86	g
Peso del agua	3,79	4,14	4,86	4,93	4,62	4,95	3,93	3,86	g
Peso de la muestra seca	14,63	15,91	19,47	19,68	19,61	21,02	17,50	17,28	g
Contenido de humedad (ω)	25,88	26,02	24,94	25,03	23,58	23,55	22,47	22,34	%
Promedio de contenido de humedad (ω) 25,95		24,98 23,56 22,41				%			
Límite Líquido (LL)		24,49						%	

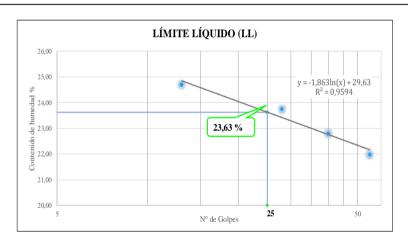
	LÍMITE PLÁSTICO (LP)							
	Recipiente Número	65	63	53	43	37		
	Peso muestra húmeda + recipiente	9,15	8,60	8,80	8,45	9,11	g	
	Peso muestra seca + recipiente	8,62	8,16	8,35	8,00	8,61	g	
	Peso del agua	0,53	0,44	0,45	0,44	0,50	g	
	Peso del recipiente	6,26	6,20	6,34	6,08	6,38	g	
	Peso de la muestra seca	2,36	1,96	2,02	1,92	2,24	g	
	Contenido de humedad (ω)	22,46	22,46	22,13	23,08	22,37	%	
	Promedio contenido de humedad (ω)	22,50					%	
	Límite Plástico (Lp)	22,50					%	
	Límite Líquido (LL) Índice Plástico (IP)		24,49					
				1,99			%	
	CLA	SIFICACIÓN	DEL SUELO					

SUCS	AASHTO
SM	A-2-4

Tabla 82: Límites de Atterberg muestra #2

Proyecto:

"CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


 Vía:
 VIA LAS PAMPAS - SIGCHOS
 Capa Vegetal:
 5 cm

 ID Muestra:
 P2
 Profundidad:
 100 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 733977,07 9922378,7

AASHTO T 90 2014

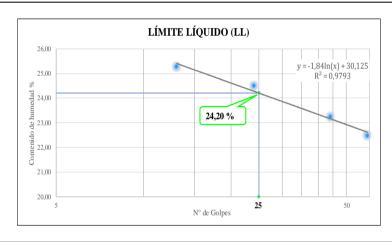
		Li	MITE LÍQU	IDO(LL)					
Número de Golpes	1	3	2	8	4	0	5	5	
Identificación de Cápsula	41	62	33	73	2	3	7	8	
Peso de Cápsula	11,03	11,02	11,08	11,18	17,75	17,98	17,48	17,67	g
Peso de muestra húmeda + cápsula	30,34	28,51	32,76	34,16	39,95	37,34	35,54	32,46	g
Peso de muestra seca + cápsula	26,59	24,98	28,49	29,87	35,79	33,78	32,31	29,78	g
Peso del agua	3,75	3,53	4,27	4,29	4,16	3,56	3,23	2,68	g
Peso de la muestra seca	15,56	13,96	17,41	18,69	18,04	15,80	14,83	12,11	g
Contenido de humedad (ω)	24,10	25,29	24,52	22,96	23,06	22,53	21,79	22,14	%
Promedio de contenido de humedad (ω)	24.	,69	23	,74	22	,80	21	,96	%
Límite Líquido (LL)				23	,63				%

	LÍMITE PLÁST	TCO (LP)				
Recipiente Número	26	47	52	60	62	
Peso muestra húmeda + recipiente	8,96	8,68	8,77	9,38	8,38	g
Peso muestra seca + recipiente	8,48	8,22	8,32	8,82	7,97	g
Peso del agua	0,48	0,46	0,45	0,56	0,41	g
Peso del recipiente	6,24	6,18	6,26	6,19	6,10	g
Peso de la muestra seca	2,24	2,05	2,06	2,63	1,87	g
Contenido de humedad (ω)	21,48	22,25	21,68	21,34	21,99	%
Promedio contenido de humedad (ω)		•	21,75			%
Límite Plástico (Lp)			21,75			%
Límite Líquido (LL)			23,63			%
Índice Plástico (IP)			1,89			%
CL	ASIFICACIÓN	DEL SUELO)			

SUCS	AASHTO
SM	A-2-4

Tabla 83: Límites de Atterberg muestra #3

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXL"


 Vía:
 VIA TOPALIVI CENTRO
 Capa Vegetal:
 5 cm

 ID Muestra:
 P4
 Profundidad:
 100 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 735105,22 9922398,9

AASHTO T 90 2014

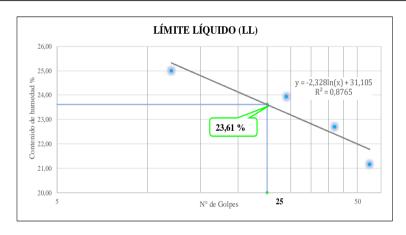
		Li	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	3	2	24	4	4	5	9	
Identificación de Cápsula	41	62	33	73	2	3	7	8	
Peso de Cápsula	11,10	11,14	11,15	11,25	17,81	18,05	17,54	17,77	g
Peso de muestra húmeda + cápsula	39,89	33,75	37,52	35,15	32,34	33,13	29,45	27,61	g
Peso de muestra seca + cápsula	34,07	29,20	32,31	30,46	29,61	30,28	27,27	25,80	g
Peso del agua	5,81	4,55	5,21	4,68	2,74	2,85	2,19	1,81	g
Peso de la muestra seca	22,97	18,06	21,16	19,22	11,79	12,23	9,72	8,04	g
Contenido de humedad (ω)	25,31	25,21	24,63	24,36	23,20	23,27	22,47	22,47	%
Promedio de contenido de humedad (ω)	25.	,26	24	,50	23	,24	22	,47	%
Límite Líquido (LL)				24	,20				%

LÍ	MITE PLÁST	ICO (LP)				
Recipiente Número	26	47	52	60	62	
Peso muestra húmeda + recipiente	8,60	8,75	9,00	8,76	8,81	g
Peso muestra seca + recipiente	8,15	8,27	8,56	8,29	8,29	g
Peso del agua	0,46	0,48	0,44	0,47	0,52	g
Peso del recipiente	6,24	6,18	6,26	6,19	6,10	g
Peso de la muestra seca	1,91	2,09	2,30	2,11	2,19	g
Contenido de humedad (ω)	23,85	23,21	19,11	22,14	23,71	%
Promedio contenido de humedad (ω)			22,40			%
Límite Plástico (Lp)			22,40			%
Límite Líquido (LL)			24,20			%
Índice Plástico (IP)			1,80			%

CLASIFICACIÓN DEL SUELO

SUCS	AASHTO
SM	A-2-4

Tabla 84: Límites de Atterberg muestra #4


Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA TOPALIVI CENTRO Capa Vegetal: 5 cm ID Muestra: P4 Profundidad: 100 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 735356,58 9922727,7

AASHTO T 90 2014

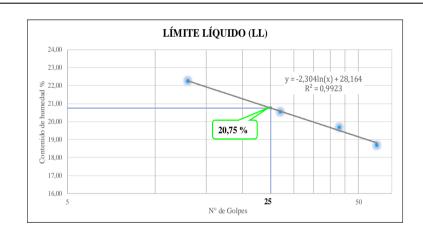
		L	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	2	2	29	4	12	5	55	
Identificación de Cápsula	4	32	65	67	15	17	78	74	
Peso de Cápsula	11,16	11,26	10,92	11,43	11,54	11,50	11,61	11,58	g
Peso de muestra húmeda + cápsula	32,51	35,13	33,46	34,87	31,79	32,98	30,54	28,82	g
Peso de muestra seca + cápsula	28,22	30,38	29,18	30,27	28,05	29,00	27,18	25,86	g
Peso del agua	4,29	4,75	4,28	4,60	3,74	3,98	3,36	2,96	g
Peso de la muestra seca	17,06	19,12	18,26	18,85	16,51	17,50	15,57	14,28	g
Contenido de humedad (ω)	25,14	24,84	23,44	24,41	22,65	22,74	21,59	20,73	%
Promedio de contenido de humedad (ω)	24	,99	23	,92	22	,69	21	,16	%
Límite Líquido (LL)		,		23	,61			·	%

	LÍMITE PLÁST	ICO (LP)				
Recipiente Número	65	63	53	43	37	
Peso muestra húmeda + recipiente	9,48	8,75	8,32	9,17	8,35	g
Peso muestra seca + recipiente	8,89	8,26	7,96	8,61	7,98	g
Peso del agua	0,58	0,48	0,37	0,56	0,37	g
Peso del recipiente	6,26	6,20	6,34	6,08	6,38	g
Peso de la muestra seca	2,64	2,07	1,62	2,52	1,60	g
Contenido de humedad (ω)	22,09	23,26	22,63	22,11	23,26	%
Promedio contenido de humedad (ω)			22,67	•		%
Límite Plástico (Lp)			22,67			%
Límite Líquido (LL)			23,61			%
Índice Plástico (IP)		•	0,94		•	%
CI	LASIFICACIÓN	DEL SUELO)			

SUCS	AASHTO
SM	A-2-4

Tabla 85: Límites de Atterberg muestra #5

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


 Vía:
 VIA YALO-SIGCHOS
 Capa Vegetal:
 5 cm

 ID Muestra:
 P5
 Profundidad:
 100 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 735905,33 9923620,2

AASHTO T 90 2014

		Li	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	3	2	27	4	3	5	8	
Identificación de Cápsula	41	62	33	73	2	3	7	8	
Peso de Cápsula	11,03	11,02	11,08	11,18	17,75	17,98	17,48	17,67	g
Peso de muestra húmeda + cápsula	30,77	28,56	28,62	28,05	38,55	39,55	29,01	28,27	g
Peso de muestra seca + cápsula	27,29	25,27	25,64	25,17	35,14	36,00	27,19	26,62	g
Peso del agua	3,48	3,29	2,99	2,87	3,42	3,55	1,83	1,66	g
Peso de la muestra seca	16,26	14,25	14,56	13,99	17,39	18,02	9,70	8,94	g
Contenido de humedad (ω)	21,39	23,09	20,51	20,54	19,67	19,71	18,82	18,54	%
Promedio de contenido de humedad (ω)	22	,24	20	,53	19	,69	18	,68	%
Límite Líquido (LL)				20	,75				%

Li	MITE PLÁST	ICO (LP)					
Recipiente Número	26	47	52	60	62		
Peso muestra húmeda + recipiente	8,95	9,30	8,71	8,95	8,22	g	
Peso muestra seca + recipiente	8,48	8,77	8,29	8,49	7,83	g	
Peso del agua	0,47	0,53	0,42	0,46	0,39	g	
Peso del recipiente	6,16	6,09	6,18	6,12	6,03	g	
Peso de la muestra seca	2,32	2,68	2,11	2,38	1,80	g	
Contenido de humedad (ω)	20,19	19,92	19,84	19,34	21,56	%	
Promedio contenido de humedad (ω)			20,17			%	
Límite Plástico (Lp)			20,17			%	
Límite Líquido (LL)			20,75			%	
Índice Plástico (IP)			0,58			%	
CLA	SIFICACIÓN	DEL SUELO					

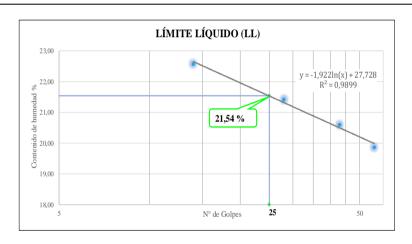
SUCS	AASHTO
SW-SM	A-2-4

Tabla 86: Límites de Atterberg muestra #6

Vía:

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL LÍMITES DE ATTERBERG

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


VIA YALO-SIGCHOS Capa Vegetal: 5 cm

 ID Muestra:
 P6
 Profundidad:
 100
 cm

 Norma:
 AASHTO T 89 2013
 Coordenadas:
 17 M
 736603.84
 9923920.5

AASHTO T 90 2014

		Li	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	4	2	28	4	3	5	6	
Identificación de Cápsula	4	32	65	67	15	17	78	74	
Peso de Cápsula	11,16	11,26	10,92	11,43	11,54	11,50	11,61	11,58	g
Peso de muestra húmeda + cápsula	33,82	31,33	30,95	29,85	32,24	30,12	28,45	29,80	g
Peso de muestra seca + cápsula	29,75	27,54	27,47	26,55	28,76	26,89	25,68	26,76	g
Peso del agua	4,07	3,79	3,48	3,30	3,48	3,23	2,77	3,04	g
Peso de la muestra seca	18,59	16,28	16,55	15,13	17,22	15,39	14,07	15,18	g
Contenido de humedad (ω)	21,89	23,28	21,03	21,82	20,21	20,98	19,69	20,03	%
Promedio de contenido de humedad (ω)	22	,59	21	,42	20	,59	19	,86	%
Límite Líquido (LL)				21	,54				%

]	LÍMITE PLÁST	TCO (LP)				
Recipiente Número	65	63	53	43	37	
Peso muestra húmeda + recipiente	9,26	8,63	8,93	9,37	8,56	g
Peso muestra seca + recipiente	8,76	8,14	8,48	8,84	8,18	g
Peso del agua	0,50	0,49	0,46	0,53	0,37	g
Peso del recipiente	6,26	6,20	6,34	6,08	6,38	g
Peso de la muestra seca	2,50	1,94	2,14	2,76	1,80	g
Contenido de humedad (ω)	20,01	25,21	21,26	19,04	20,68	%
Promedio contenido de humedad (ω)		•	21,24	•	•	%
Límite Plástico (Lp)			21,24			%
Límite Líquido (LL)			21,54			%
Índice Plástico (IP)			0,30			%
CL	ASIFICACIÓN	DEL SUELO	1			•

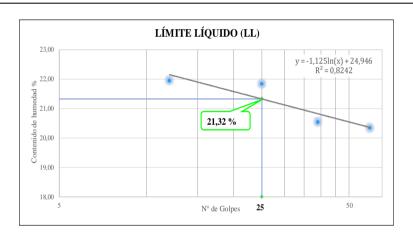
SUCS	AASHTO
SM	A-2-4

Tabla 87: Límites de Atterberg muestra #7

Vía:

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL LÍMITES DE ATTERBERG

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


VIA GOMES(BOMBEROS) Capa Vegetal: 5 cm stra: P7 Profundidad: 100 cm

 ID Muestra:
 P7
 Profundidad:
 100
 cm

 Norma:
 AASHTO T 89 2013
 Coordenadas:
 17 M
 734815,8
 9922442,9

AASHTO T 90 2014

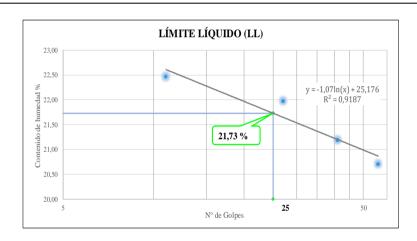
		Li	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	2	2	.5	3	9	5	9	
Identificación de Cápsula	4	32	65	67	15	17	78	74	
Peso de Cápsula	11,10	11,20	10,80	11,30	11,40	11,50	11,60	11,50	g
Peso de muestra húmeda + cápsula	31,05	35,32	30,06	33,91	27,15	27,32	31,91	34,12	g
Peso de muestra seca + cápsula	27,47	30,97	26,61	29,86	24,47	24,62	28,48	30,30	g
Peso del agua	3,59	4,35	3,45	4,05	2,68	2,70	3,43	3,82	g
Peso de la muestra seca	16,37	19,77	15,81	18,56	13,07	13,12	16,88	18,80	g
Contenido de humedad (ω)	21,91	21,99	21,84	21,82	20,48	20,59	20,35	20,32	%
Promedio de contenido de humedad (ω)	21	,95	21	,83	20	,54	20	,33	%
Límite Líquido (LL)				21	,32				%

LÍ	MITE PLÁST	ICO (LP)					
Recipiente Número	26	47	52	60	62		
Peso muestra húmeda + recipiente	8,79	8,85	8,78	8,69	8,43	g	
Peso muestra seca + recipiente	8,39	8,47	8,44	7,97	8,17	g	
Peso del agua	0,40	0,38	0,34	0,72	0,26	g	
Peso del recipiente	6,16	6,09	6,18	6,12	6,03	g	
Peso de la muestra seca	2,23	2,38	2,25	1,86	2,15	g	
Contenido de humedad (ω)	17,92	16,06	15,14	38,66	12,11	%	
Promedio contenido de humedad (ω)			19,98			%	
Límite Plástico (Lp)			19,98			%	
Límite Líquido (LL)			21,32			%	
Índice Plástico (IP)			1,35			%	
CLAS	IFICACIÓN	DEL SUELO					

SUCS	AASHTO
SM	A-2-4

Tabla 88: Límites de Atterberg muestra #8

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


 Vía:
 VIA GOMES(BOMBEROS)
 Capa Vegetal:
 5
 cm

 ID Muestra:
 P8
 Profundidad:
 100
 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 734422,9 9922776,3

AASHTO T 90 2014

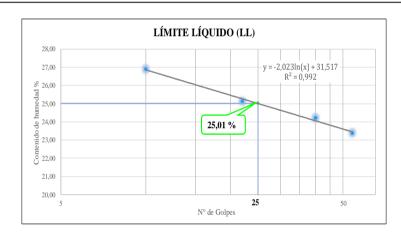
		L	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	1	2	27	4	1	5		
Identificación de Cápsula	41	62	33	73	2	3	7	8	
Peso de Cápsula	11,03	11,02	11,08	11,18	17,75	17,98	17,48	17,67	g
Peso de muestra húmeda + cápsula	34,64	33,73	31,35	29,62	36,21	35,67	32,35	31,18	g
Peso de muestra seca + cápsula	30,26	29,61	27,61	26,38	32,98	32,58	29,76	28,90	g
Peso del agua	4,38	4,12	3,74	3,24	3,23	3,09	2,59	2,28	g
Peso de la muestra seca	19,23	18,59	16,53	15,20	15,23	14,60	12,28	11,23	g
Contenido de humedad (ω)	22,77	22,16	22,62	21,32	21,21	21,16	21,10	20,31	%
Promedio de contenido de humedad (ω)	22	,47	21	,97	21	,19	20	,70	%
Límite Líquido (LL)				21	,73		•		%

LÍ	MITE PLÁST	ICO (LP)					
Recipiente Número	65	63	53	43	37		Г
Peso muestra húmeda + recipiente	9,36	8,54	8,94	8,71	9,10	g	
Peso muestra seca + recipiente	8,85	8,16	8,46	8,28	8,66	g	
Peso del agua	0,50	0,39	0,49	0,42	0,44	g	
Peso del recipiente	6,26	6,20	6,34	6,08	6,38	g	
Peso de la muestra seca	2,59	1,96	2,12	2,20	2,29	g	
Contenido de humedad (ω)	19,48	19,64	22,95	19,13	19,17	%	
Promedio contenido de humedad (ω)			20,07			%	
Límite Plástico (Lp)			20,07			%	ĺ
Límite Líquido (LL)			21,73			%	
Índice Plástico (IP)			1,66			%	
 CLAS	SIFICACIÓN	DEL SUELO					

SUCS	AASHTO
CM	A 2 4

Tabla 89: Límites de Atterberg muestra #9

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


 Vía:
 VÍA SIGCHILAS (ESTADIO DE SIGCHOS)
 Capa Vegetal:
 5
 cm

 ID Muestra:
 P9
 Profundidad:
 100
 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 734732,86 9921648,4

AASHTO T 90 2014

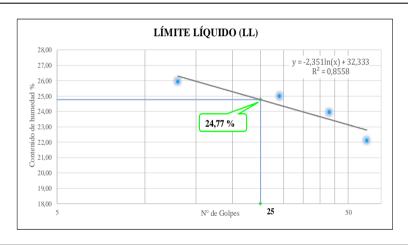
		Li	ÍMITE LÍQU	IDO(LL)					
Número de Golpes	1	.0	2	22	4	0	54		
Identificación de Cápsula	4	32	65	67	15	17	78	74	
Peso de Cápsula	11,16	11,26	10,92	11,54	11,54	11,50	11,61	11,58	g
Peso de muestra húmeda + cápsula	30,75	29,32	33,52	34,13	31,88	34,27	32,75	33,54	g
Peso de muestra seca + cápsula	26,53	25,56	28,85	29,72	27,94	29,79	28,80	29,32	g
Peso del agua	4,22	3,76	4,67	4,40	3,94	4,48	3,95	4,22	g
Peso de la muestra seca	15,37	14,30	17,93	18,19	16,40	18,30	17,19	17,74	g
Contenido de humedad (ω)	27,48	26,32	26,06	24,20	23,99	24,46	22,95	23,79	%
Promedio de contenido de humedad (ω)	26.	,90	25	,13	24	,22	23	,37	%
Límite Líquido (LL)		·		25	,01	·		·	%

1	LÍMITE PLÁST	ICO (LP)				
Recipiente Número	26	47	52	60	62	
Peso muestra húmeda + recipiente	9,40	8,52	8,76	9,17	8,62	g
Peso muestra seca + recipiente	8,82	8,01	8,29	8,62	8,13	g
Peso del agua	0,58	0,51	0,48	0,56	0,49	g
Peso del recipiente	6,16	6,09	6,18	6,12	6,03	g
Peso de la muestra seca	2,66	1,92	2,10	2,50	2,10	g
Contenido de humedad (ω)	21,86	26,81	22,58	22,16	23,37	%
Promedio contenido de humedad (ω)			23,36			%
Límite Plástico (Lp)			23,36			%
Límite Líquido (LL)			25,01			%
Índice Plástico (IP)			1,65			%
CL	ASIFICACIÓN	DEL SUELO	ı			

SW-SM A-1-b	SUCS	AASHTO
	SW-SM	A-1-b

Tabla 90: Límites de Atterberg muestra #10

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


 Vía:
 VIA SIGCHILAS (ESTADIO DE SIGCHOS)
 Capa Vegetal:
 5
 cm

 ID Muestra:
 P10
 Profundidad:
 100
 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 733968,34 9921381,7

AASHTO T 90 2014

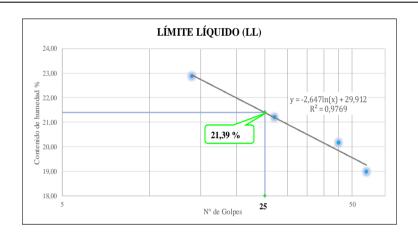
LÍMITE LÍQUIDO(LL)										
Número de Golpes	1	3	2	29	4	3	5	8		
Identificación de Cápsula	41	62	33	73	2	3	7	8		
Peso de Cápsula	11,03	11,02	11,08	11,18	17,75	17,98	17,48	17,67	g	
Peso de muestra húmeda + cápsula	32,67	30,89	31,68	29,91	34,83	33,21	36,66	34,35	g	
Peso de muestra seca + cápsula	28,32	26,70	27,62	26,11	31,49	30,30	33,18	31,34	g	
Peso del agua	4,35	4,19	4,06	3,80	3,34	2,91	3,48	3,01	g	
Peso de la muestra seca	17,29	15,68	16,54	14,93	13,74	12,32	15,70	13,67	g	
Contenido de humedad (ω)	25,16	26,72	24,55	25,46	24,31	23,62	22,17	22,03	%	
Promedio de contenido de humedad (ω)	25,94 25,00		23,96 22			,10	%			
Límite Líquido (LL)				24	,77				%	

LÍMITE PLÁSTICO (LP)								
Recipiente Número	65	63	53	43	37			
Peso muestra húmeda + recipiente	8,68	8,68 8,21 9,60 8,50 8,81						
Peso muestra seca + recipiente	8,22	7,82	9,01	8,04	8,36	g		
Peso del agua	0,46	0,39	0,59	0,46	0,45	g		
Peso del recipiente	6,26	6,20	6,34	6,08	6,38	g		
Peso de la muestra seca	1,96	1,62	2,67	1,96	1,98	g		
Contenido de humedad (ω)	23,60	24,26	22,27	23,42	22,78	%		
Promedio contenido de humedad (ω) 23,27								
Límite Plástico (Lp)		%						
Límite Líquido (LL)		%						
Índice Plástico (IP)		%						
CLAS	SIFICACIÓN	DEL SUELO						

SUCS	AASHTO
SM	A-2-4

Tabla 91: Límites de Atterberg muestra #11

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


Vía: VIA HOSPITAL SIGCHOS Capa Vegetal: 5 cm

 ID Muestra:
 P7
 Profundidad:
 100 cm

 Norma:
 AASHTO T 89 2013
 Coordenadas:
 17 M
 735262,45
 9922727,7

AASHTO T 90 2014

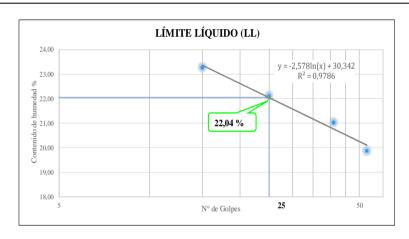
LÍMITE LÍQUIDO(LL)										
Número de Golpes	1	4	2	27		5	56			
Identificación de Cápsula	41	62	33	73	2	3	7	8		
Peso de Cápsula	11,03	11,02	11,08	11,18	17,75	17,98	17,48	17,67	g	
Peso de muestra húmeda + cápsula	32,55	30,42	33,19	29,74	37,52	38,69	29,37	30,46	g	
Peso de muestra seca + cápsula	28,59	26,77	29,22	26,58	34,26	35,15	27,47	28,42	g	
Peso del agua	3,96	3,65	3,97	3,16	3,26	3,53	1,90	2,03	g	
Peso de la muestra seca	17,56	15,75	18,14	15,40	16,51	17,17	9,99	10,75	g	
Contenido de humedad (ω)	22,53	23,20	21,89	20,52	19,76	20,57	19,03	18,92	%	
Promedio de contenido de humedad (ω)	22,87 21,20		20,16 18,98			,98	%			
Límite Líquido (LL)				21	,39				%	

LÍMITE PLÁSTICO (LP)						
Recipiente Número	26	47	52	60	62	
Peso muestra húmeda + recipiente	9,35	9,35 8,36 9,22 8,74 8,55				
Peso muestra seca + recipiente	8,85	7,99	8,72	8,33	8,12	g
Peso del agua	0,50	0,38	0,50	0,42	0,42	g
Peso del recipiente	6,24	6,18	6,26	6,19	6,10	g
Peso de la muestra seca	2,61	1,81	2,46	2,14	2,02	g
Contenido de humedad (ω)	19,28	20,99	20,50	19,54	20,92	%
Promedio contenido de humedad (ω)	20,25				%	
Límite Plástico (Lp)	20,25				%	
Límite Líquido (LL)	21,39				%	
Índice Plástico (IP)			1,15			%

CLASIFICACIÓN DEL SUELO

SUCS	AASHTO
SM	A-2-4

Tabla 92: Límites de Atterberg muestra #12


Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA HOSPITAL SIGCHOS Capa Vegetal: 5 cm ID Muestra: P12 Profundidad: 100 cm

Norma: AASHTO T 89 2013 Coordenadas: 17 M 735784,01 9923037,4

AASHTO T 90 2014

LÍMITE LÍQUIDO(LL)										
Número de Golpes	1	5	2	25		1	5	3		
Identificación de Cápsula	4	32	65	67	15	17	78	74		
Peso de Cápsula	11,16	11,26	10,92	11,54	11,54	11,50	11,61	11,58	g	
Peso de muestra húmeda + cápsula	30,48	31,46	32,59	31,30	29,69	30,06	28,77	26,61	g	
Peso de muestra seca + cápsula	26,81	27,67	28,54	27,84	26,53	26,84	25,97	24,08	g	
Peso del agua	3,67	3,79	4,05	3,46	3,16	3,22	2,80	2,53	g	
Peso de la muestra seca	15,65	16,41	17,62	16,30	14,99	15,34	14,36	12,50	g	
Contenido de humedad (ω)	23,44	23,10	22,99	21,22	21,08	20,99	19,50	20,24	%	
Promedio de contenido de humedad (ω)	23,27 22,10		21,03 19,87			,87	%			
Límite Líquido (LL)				22	,04				%	

	LÍMITE PLÁSTICO (LP)								
	Recipiente Número	65	63	53	43	37			
Pes	so muestra húmeda + recipiente	8,54	8,54 8,94 9,37 8,63 9,16				g		
Pes	so muestra seca + recipiente	8,16	8,47	8,83	8,18	8,70	g		
Pes	so del agua	0,39	0,48	0,55	0,45	0,47	g		
Pes	so del recipiente	6,26	6,20	6,34	6,08	6,38	g		
Pes	so de la muestra seca	1,90	2,27	2,49	2,10	2,32	g		
Co	ntenido de humedad (ω)	20,41	20,92	21,95	21,42	20,20	%		
	Promedio contenido de humedad (ω)		20,98				%		
	Límite Plástico (Lp)		20,98						
	Límite Líquido (LL)		22,04						
	Índice Plástico (IP)			1,06			%		

CLASIFICACIÓN DEL SUELO

SUCS	AASHTO
SM	A-2-4

Tabla 93: Gravedad Específica muestra #1

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P1	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17 M	736161,62	9923735

D ' ' ' NI'	2	i
Recipiente Número	3	
Temperatura del agua + suelo	24,00	°C
Peso del recipiente + suelo seco	164,80	g
Peso del recipiente (Wr)	116,60	g
Peso del suelo seco (Ws)	48,20	g
Peso picnómetro + agua (Wbw)	670,30	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	718,50	g
Peso del picnómetro + agua + suelo (Wbws)	700,40	g
Desplazamiento de agua (Dw)	18,10	g
Factor de correcón por temperatura (K)	0,99909	
Gravedad específica (Gs)	2,661	

Calibración del Picnómetro			
Temperatura	Masa (g)		
° C	Masa (g)		
18	670,56		
19	670,43		
20	670,30		
21	670,16		
22	670,01		
23	669,85		
24	669,69		
25	669,52		
26	669,35		
27	669,17		
28	668,98		
29	668,79		
30	668,58		

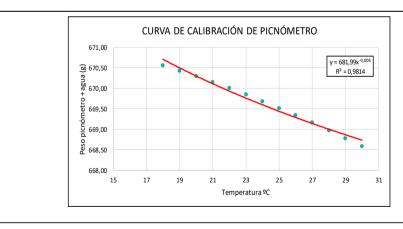


Tabla 94: Gravedad Específica muestra #2

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA LAS PAMPAS -SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P2	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	736162	736162

Recipiente Número	28	
Temperatura del agua + suelo	23,00	°C
Peso del recipiente + suelo seco	250,60	g
Peso del recipiente (Wr)	202,50	g
Peso del suelo seco (Ws)	48,10	g
Peso picnómetro + agua (Wbw)	670,30	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	720,10	g
Peso del picnómetro + agua + suelo (Wbws)	702,00	g
Desplazamiento de agua (Dw)	18,10	g
Factor de correcón por temperatura (K)	0,99933	
Gravedad específica (Gs)	2,656	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	670,56	
19	670,43	
20	670,30	
21	670,16	
22	670,01	
23	669,85	
24	669,69	
25	669,52	
26	669,35	
27	669,17	
28	668,98	
29	668,79	
30	668,58	

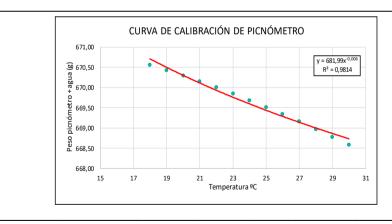


Tabla 95: Gravedad Específica muestra #3

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm	
ID Muestra:	P3	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734937	9921865

Recipiente Número	25	
Temperatura del agua + suelo	25,00	°C
Peso del recipiente + suelo seco	194,17	g
Peso del recipiente (Wr)	145,30	g
Peso del suelo seco (Ws)	48,87	g
Peso picnómetro + agua (Wbw)	646,40	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	695,27	g
Peso del picnómetro + agua + suelo (Wbws)	676,90	g
Desplazamiento de agua (Dw)	18,37	g
Factor de correcón por temperatura (K)	0,99884	
Gravedad específica (Gs)	2,657	

Calibración de	el Picnómetro
Temperatura ° C	Masa (g)
18	646,65
19	646,53
20	646,40
21	646,26
22	646,12
23	645,97
24	645,81
25	645,65
26	645,48
27	645,31
28	645,13
29	644,94
30	644,75

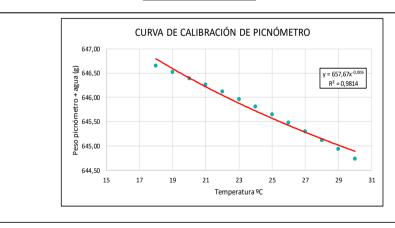


Tabla 96: Gravedad Específica muestra #4

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA TOPALIVI CENTRO	Capa Vegetal:	5	cm	
ID Muestra:	P4	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734937	9921865

Recipiente Número	2A	
Temperatura del agua + suelo	24,00	°C
Peso del recipiente + suelo seco	118,30	g
Peso del recipiente (Wr)	68,80	g
Peso del suelo seco (Ws)	49,50	g
Peso picnómetro + agua (Wbw)	670,30	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	719,80	g
Peso del picnómetro + agua + suelo (Wbws)	701,20	g
Desplazamiento de agua (Dw)	18,60	g
Factor de correcón por temperatura (K)	0,99909	
Gravedad específica (Gs)	2,659	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	670,56	
19	670,43	
20	670,30	
21	670,16	
22	670,01	
23	669,85	
24	669,69	
25	669,52	
26	669,35	
27	669,17	
28	668,98	
29	668,79	
30	668,58	

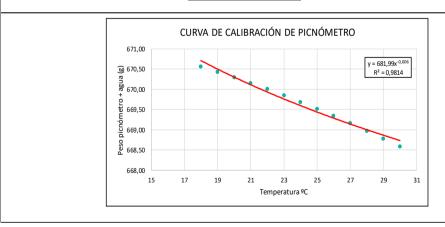


Tabla 97: Gravedad Específica muestra #5

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P5	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	736162	9923735

Recipiente Número	2A	
Temperatura del agua + suelo	26,00	°C
Peso del recipiente + suelo seco	115,00	g
Peso del recipiente (Wr)	68,80	g
Peso del suelo seco (Ws)	46,20	g
Peso picnómetro + agua (Wbw)	670,50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	716,70	g
Peso del picnómetro + agua + suelo (Wbws)	699,30	g
Desplazamiento de agua (Dw)	17,40	g
Factor de correcón por temperatura (K)	0,99858	
Gravedad específica (Gs)	2,651	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	670,76	
19	670,63	
20	670,50	
21	670,36	
22	670,21	
23	670,05	
24	669,89	
25	669,72	
26	669,55	
27	669,37	
28	669,18	
29	668,98	
30	668,78	

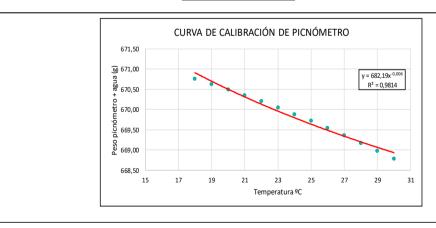


Tabla 98: Gravedad Específica muestra #6

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXL"

Vía:	VIA YALO-SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P6	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	736162	9923735

Recipiente Número	3	
Temperatura del agua + suelo	24,00	°C
Peso del recipiente + suelo seco	166,00	g
Peso del recipiente (Wr)	116,90	g
Peso del suelo seco (Ws)	49,10	g
Peso picnómetro + agua (Wbw)	646,50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	695,60	g
Peso del picnómetro + agua + suelo (Wbws)	677,10	g
Desplazamiento de agua (Dw)	18,50	g
Factor de correcón por temperatura (K)	0,99909	
Gravedad específica (Gs)	2,652	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	646,75	
19	646,63	
20	646,50	
21	646,36	
22	646,22	
23	646,07	
24	645,91	
25	645,75	
26	645,58	
27	645,41	
28	645,23	
29	645,04	
30	644,84	

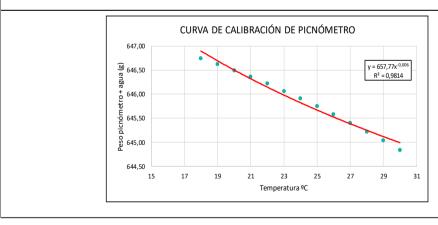


Tabla 99: Gravedad Específica muestra #7

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA GOMES(BOMBEROS)	Capa Vegetal:	5	cm	
ID Muestra:	P7	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734797,32	9922487,2

Recipiente Número	28	
Temperatura del agua + suelo	26,00	°C
Peso del recipiente + suelo seco	250,00	g
Peso del recipiente (Wr)	202,50	g
Peso del suelo seco (Ws)	47,50	g
Peso picnómetro + agua (Wbw)	646,50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	694,00	g
Peso del picnómetro + agua + suelo (Wbws)	676,20	g
Desplazamiento de agua (Dw)	17,80	g
Factor de correcón por temperatura (K)	0,99858	
Gravedad específica (Gs)	2,665	

Calibración del Picnómetro		
Temperatura ° C	Masa (g)	
18	646,75	
19	646,63	
20	646,50	
21	646,36	
22	646,22	
23	646,07	
24	645,91	
25	645,75	
26	645,58	
27	645,41	
28	645,23	
29	645,04	
30	644,84	

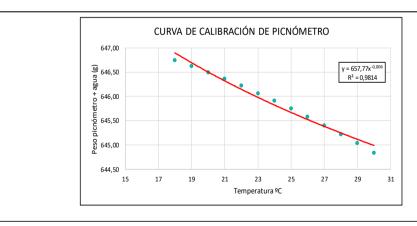


Tabla 100: Gravedad Específica muestra #8

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA GOMES(BOMBEROS)	Capa Vegetal:	5	cm	
ID Muestra:	P8	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734797	9922487

Recipiente Número	25	
Temperatura del agua + suelo	24,00	°C
Peso del recipiente + suelo seco	194,10	g
Peso del recipiente (Wr)	145,30	g
Peso del suelo seco (Ws)	48,80	g
Peso picnómetro + agua (Wbw)	670,30	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	719,10	g
Peso del picnómetro + agua + suelo (Wbws)	700,80	g
Desplazamiento de agua (Dw)	18,30	g
Factor de correcón por temperatura (K)	0,99909	
Gravedad específica (Gs)	2,664	

Calibración del Picnómetro			
Temperatura ° C	Masa (g)		
18	670,56		
19	670,43		
20	670,30		
21	670,16		
22	670,01		
23	669,85		
24	669,69		
25	669,52		
26	669,35		
27	669,17		
28	668,98		
29	668,79		
30	668,58		

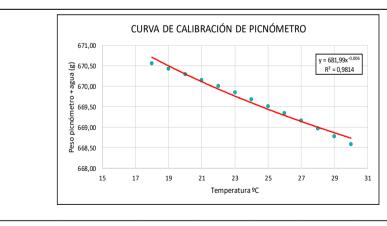


Tabla 101: Gravedad Específica muestra #9

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA SIGCHILAS (ESTADIO DE SIGCHOS)	Capa Vegetal:	5	cm	
ID Muestra:	P9	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734419	9921507

Recipiente Número	3	
Temperatura del agua + suelo	25,00	°C
Peso del recipiente + suelo seco	165,00	gg
Peso del recipiente (Wr)	116,60	g
Peso del suelo seco (Ws)	48,40	g
Peso picnómetro + agua (Wbw)	646,50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	694,90	g
Peso del picnómetro + agua + suelo (Wbws)	676,70	g
Desplazamiento de agua (Dw)	18,20	g
Factor de correcón por temperatura (K)	0,99884	
Gravedad específica (Gs)	2,656	

Calibración del Picnómetro					
()					

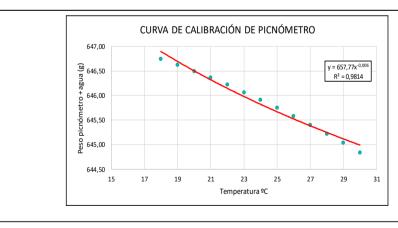


Tabla 102: Gravedad Específica muestra #10

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA SIGCHILAS (ESTADIO DE SIGCHOS)	Capa Vegetal:	5	cm	
ID Muestra:	P10	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	734419	9921507

Recipiente Número	2A	
Temperatura del agua + suelo	23,00	°C
Peso del recipiente + suelo seco	117,90	gg
Peso del recipiente (Wr)	68,80	g
Peso del suelo seco (Ws)	49,10	g
Peso picnómetro + agua (Wbw)	646,50	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	695,60	g
Peso del picnómetro + agua + suelo (Wbws)	677,20	g
Desplazamiento de agua (Dw)	18,40	g
Factor de correcón por temperatura (K)	0,99933	
Gravedad específica (Gs)	2,667	

Calibración de	el Picnómetro
Temperatura ° C	Masa (g)
18	646,75
19	646,63
20	646,50
21	646,36
22	646,22
23	646,07
24	645,91
25	645,75
26	645,58
27	645,41
28	645,23
29	645,04
30	644,84

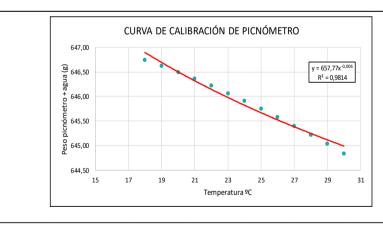


Tabla 103: Gravedad Específica muestra #11

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA HOSPITAL SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P11	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	735742,77	9923014,7

Recipiente Número	2A	
Temperatura del agua + suelo	25,00	°C
Peso del recipiente + suelo seco	115,80	g
Peso del recipiente (Wr)	68,80	g
Peso del suelo seco (Ws)	47,00	g
Peso picnómetro + agua (Wbw)	646,40	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	693,40	g
Peso del picnómetro + agua + suelo (Wbws)	675,70	g
Desplazamiento de agua (Dw)	17,70	g
Factor de correcón por temperatura (K)	0,99884	
Gravedad específica (Gs)	2,652	

Calibración del Picnómetro						
Temperatura ° C	Masa (g)					
18	646,65					
19	646,53					
20	646,40					
21	646,26					
22	646,12					
23	645,97					
24	645,81					
25	645,65					
26	645,48					
27	645,31					
28	645,13					
29	644,94					
30	644,75					

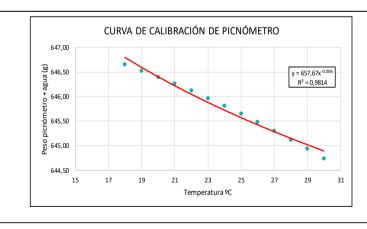


Tabla 104: Gravedad Específica muestra #12

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:	VIA HOSPITAL SIGCHOS	Capa Vegetal:	5	cm	
ID Muestra:	P12	Profundidad:	100	cm	
Norma:	AASHTO T100 2015	Coordenadas:	17M	735743	9923015

Recipiente Número	25	
Temperatura del agua + suelo	24,00	°C
Peso del recipiente + suelo seco	195,10	g
Peso del recipiente (Wr)	145,30	g
Peso del suelo seco (Ws)	49,80	g
Peso picnómetro + agua (Wbw)	670,30	g
Peso del suelo seco (Ws) + picnómetro + agua (Wbw)	720,10	g
Peso del picnómetro + agua + suelo (Wbws)	701,40	g
Desplazamiento de agua (Dw)	18,70	g
Factor de correcón por temperatura (K)	0,99909	
Gravedad específica (Gs)	2,661	

Calibración del Picnómetro						
Temperatura ° C	Masa (g)					
18	670,56					
19	670,43					
20	670,30					
21	670,16					
22	670,01					
23	669,85					
24	669,69					
25	669,52					
26	669,35					
27	669,17					
28	668,98					
29	668,79					
30	668,58					

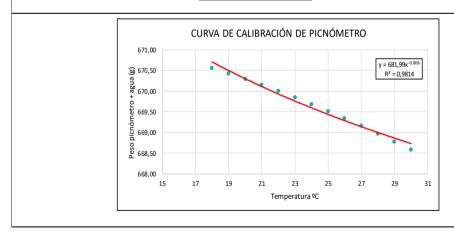


Tabla 105: Proctor modificado muestra #1

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA LAS PAMPAS -SIGCHOS Capa Vegetal: 5 cm ID Muestra: P1 Profundidad: 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 734420,0 9922167,5

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56 Altura de		le Caída	18"	Peso del Molde		15598	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³	
Energía de Compactación		55986		lb pie/pie ³	Øint	15,2	h	12,5	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	00	g
		PRO	CESO DE C	OMPACTAC	CIÓN				
Ensayo Número		1		2		3		4	
Humedad inicial añadida	5'	%	10	0%	15	5%	20)%	%
P. molde+Suelo húmedo	192	204	19	830	20	159	19	996	g
Peso suelo húmedo Wm	3606		42	232	4561		43	98	g
Peso unitario húmedo γm	1,5	590	1,	866	2,011		1,939		g/cm³
	DE	TERMINAC:	IÓN DE CO	NTENIDOS	DE HUMEI	OAD			
Recipiente número	11ch	12ch	2h	6ch	17	16	22	28	
Peso del recipiente Wr	41,33	41,31	40,41	41,32	24,89	24,46	24,17	23,24	g
Peso muestra húmeda + recipiente	273,80	281,63	263,82	263,21	142,41	150,11	167,01	146,94	g
Peso muestra seca + recipiente (Ws +	257,77	266,09	239,55	239,83	124,63	131,46	141,19	125,46	g
Peso de la muestra seca (Ws)	216,45	224,78	199,14	198,51	99,75	107,00	117,01	102,22	g
Peso del agua (Ww)	16,03	15,54	24,27	23,38	17,78	18,66	25,82	21,48	g
Contenido de humedad (ω)	7,41	6,91	12,19	11,78	17,83	17,44	22,07	21,01	%
Promedio contenido de humedad (ω)	7,	16	11	,98	17	,63	21	,54	%
Peso Volumétrico Seco γd 1,484			1,666 1,709 1,595			595	g/cm³		
DETER	RMINACIÓ!	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD ÓI	PTIMA		
Cont. Humedad pron	nedio ω				15,	200			%
Peso Volumétrico Seco yd 1,716								g/cm³	

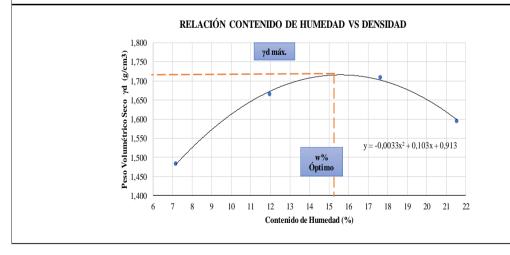


Tabla 106: Proctor modificado muestra #2

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA LAS PAMPAS -SIGCHOS
 Capa Vegetal:
 5 cm

 ID Muestra:
 P2
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 733977,1 9922378,7

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura d	le Caída	18"	Peso del Molde		15595	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³	•
Energía de Compactación		55986		lb pie/pie³	Øint	15,2	h	12,5	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g
		PRO	CESO DE C	OMPACTAC	CIÓN				
Ensayo Número		1		2		3		4	
Humedad inicial añadida	5'	%	10	0%	15	5%	20)%	%
P. molde+Suelo húmedo	192	265	19	638	20	170	20000		g
Peso suelo húmedo Wm	3670		40	4043 4575		44	.05	g	
eso unitario húmedo γm		518	1,782 2,017		1,942		g/cm³		
	DE	TERMINAC:	IÓN DE CO	NTENIDOS	DE HUMEI	OAD			
Recipiente número	11ch	12ch	2h	6ch	17	16	22	28	
Peso del recipiente Wr	41,33	41,31	40,41	41,32	24,89	24,46	24,17	23,24	g
Peso muestra húmeda + recipiente	237,95	247,88	237,99	298,39	185,37	169,34	147,95	152,73	g
Peso muestra seca + recipiente (Ws +	226,67	235,63	218,75	271,45	161,96	148,80	125,64	130,85	g
Peso de la muestra seca (Ws)	185,35	194,32	178,34	230,13	137,07	124,34	101,47	107,62	g
Peso del agua (Ww)	11,28	12,25	19,23	26,94	23,41	20,55	22,31	21,88	g
Contenido de humedad (ω)	6,09	6,30	10,78	11,70	17,08	16,52	21,99	20,33	%
Promedio contenido de humedad (ω)	6,	19	11	,24	16	,80	21	,16	%
Peso Volumétrico Seco γd	1,524		-,	1,602 1,727		1,603		g/cm³	
DETER	RMINACIÓ!	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA		
Cont. Humedad pron	nedio ω		15,70				%		
Peso Volumétrico Se	Peso Volumétrico Seco γd 1,677								g/cm ³

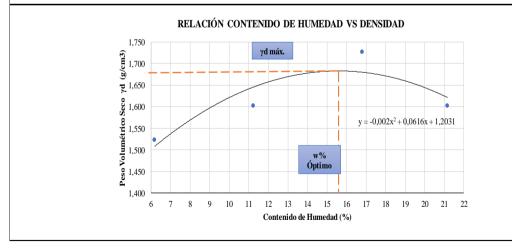


Tabla 107: Proctor modificado muestra #3

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA TOPALIVI CENTRO
 Capa Vegetal:
 5 cm

 ID Muestra:
 P3
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 735105,2 9922398,9

		ESPEC	IFICACION	ES DEL PRO	OCTOR					
Número de Golpes	56	Altura d	le Caída	18"	Peso de	l Molde	12974	g		
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2256,39	cm³		
Energía de Compactación		55986		lb pie/pie ³	Øint	15,1	h 12,6		cm	
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g	
		PRO	CESO DE C	OMPACTAC	CIÓN					
Ensayo Número		1		2 3 4						
Humedad inicial añadida	10	1%	1:	5%	20)%	25	25%		
P. molde+Suelo húmedo	168	337	17	173	17	243	17	17116		
Peso suelo húmedo Wm	38	63	4	199	42	.69	4142		g	
Peso unitario húmedo γm	1,7	'12	1,	861	1,8	392	1,8	336	g/cm³	
	DE	TERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD				
Recipiente número	9 ch	8 ch	4 ch	10 ch	2 ch	6 ch	3 ch	5 ch		
Peso del recipiente Wr	41,27	41,44	40,74	40,74	40,40	41,29	40,75	40,95	g	
Peso muestra húmeda + recipiente	251,93	235,98	263,70	246,45	288,98	280,76	282,46	261,67	g	
Peso muestra seca + recipiente (Ws +	231,97	217,56	233,33	218,21	246,80	240,83	234,78	217,49	g	
Peso de la muestra seca (Ws)	190,70	176,13	192,59	177,47	206,40	199,53	194,03	176,54	g	
Peso del agua (Ww)	19,95	18,41	30,37	28,24	42,17	39,93	47,68	44,18	g	
Contenido de humedad (ω)	10,46	10,45	15,77	15,91	20,43	20,01	24,57	25,03	%	
Promedio contenido de humedad (ω)	10	,46	15	5,84	20	,22	24	,80	%	
Peso Volumétrico Seco γd	-,-	550	,	606	-,-	574	1,4	g/cm³		
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	J MEDAD Ó I	PTIMA			
Cont. Humedad pron	nedio ω				15	,80			%	
Peso Volumétrico Se	eco vd			•	1.5	597		•	g/cm ³	

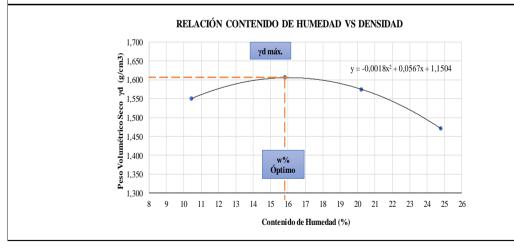


Tabla 108: Proctor modificado muestra #4

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA TOPALIVI CENTRO
 Capa Vegetal:
 5 cm

 ID Muestra:
 P4
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 735356,6 9922727,7

		ESPEC	IFICACION	ES DEL PRO	OCTOR					
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	12980	g		
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2256,39	cm ³		
Energía de Compactación		55986		lb pie/pie ³	Øint	15,1	h	12,6	cm	
Peso Inicial Deseado	60	00	60	000	60	000	60	00	g	
		PRO	CESO DE C	COMPACTAC	CIÓN					
Ensayo Número		1		2 3 4			4			
Humedad inicial añadida	10)%	1:	5%	20%		25	i%	%	
P. molde+Suelo húmedo	168	878	17	168	17375		172	17200		
Peso suelo húmedo Wm	38	98	4	188	43	195	42	4220		
Peso unitario húmedo γm	1,7	28	1,	856	1,9	948	3 1,870		g/cm³	
	DE	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD				
Recipiente número	9 ch	8 ch	4 ch	10 ch	2 ch	6 ch	3 ch	5 ch		
Peso del recipiente Wr	41,27	41,44	40,74	40,74	40,40	41,29	40,75	40,95	g	
Peso muestra húmeda + recipiente	279,59	252,18	232,57	287,35	243,95	257,13	247,99	286,75	g	
Peso muestra seca + recipiente (Ws +	254,29	232,10	205,63	252,16	209,55	220,38	205,27	237,38	g	
Peso de la muestra seca (Ws)	213,01	190,66	164,89	211,42	169,15	179,09	164,51	196,43	g	
Peso del agua (Ww)	25,30	20,08	26,94	35,18	34,40	36,75	42,72	49,38	g	
Contenido de humedad (ω)	11,88	10,53	16,34	16,64	20,34	20,52	25,97	25,14	%	
Promedio contenido de humedad (ω)	11	,20	16	5,49	20	,43	25	,55	%	
Peso Volumétrico Seco γd	1,5	553	1,	593	1,6	517	1,490			
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA			
Cont. Humedad promedio ω			17,50						%	
Peso Volumétrico Seco yd					1.0	605			g/cm ³	

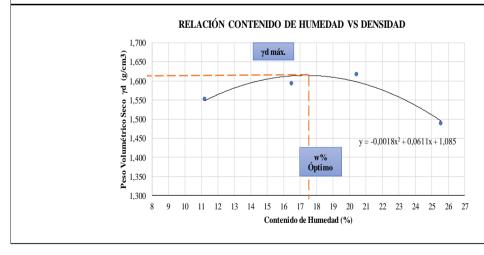


Tabla 109: Proctor modificado muestra #5

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA

SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA YALO-SIGCHOS Capa Vegetal: 5 cm ID Muestra: P5 Profundidad: 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 735905,3 9923620,2

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	15599	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³	
Energía de Compactación		55986		lb pie/pie ³	Øint	15,2	h	12,5	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g
		PRO	CESO DE C	OMPACTA	CIÓN				
Ensayo Número		1		2	3			4	
Humedad inicial añadida	4	%	8	%	20)%	24	1%	%
P. molde+Suelo húmedo	19	066	19	257	19	854	19	758	g
Peso suelo húmedo Wm	34	67	3658 4255 4159					.59	g
Peso unitario húmedo γm	1,5	529	1,613 1,87			376	1,8	334	g/cm³
· · · · · · · · · · · · · · · · · · ·	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD			
Recipiente número	17	16	26	28	38	44	8	22	
Peso del recipiente Wr	24,73	24,31	23,11	23,11	25,38	26,26	26,95	24,18	g
Peso muestra húmeda + recipiente	146,99	145,58	145,12	139,04	167,25	171,60	174,09	164,77	g
Peso muestra seca + recipiente (Ws +	140,30	138,56	135,34	129,44	146,67	149,28	149,23	139,94	g
Peso de la muestra seca (Ws)	115,57	114,24	112,23	106,33	121,29	123,02	122,28	115,76	g
Peso del agua (Ww)	6,69	7,02	9,77	9,60	20,58	22,32	24,86	24,83	g
Contenido de humedad (ω)	5,78	6,14	8,71	9,03	16,96	18,14	20,33	21,45	%
Promedio contenido de humedad (ω)	5,	96	8,	,87	17	,55	20	,89	%
Peso Volumétrico Seco γd	142	1,4	481	1,5	596	1,5	517	g/cm³	
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	J MEDAD Ó I	PTIMA		
Cont. Humedad prom	Cont. Humedad promedio ω			15,100					
Peso Volumétrico Seco γd		1,789						g/cm ³	

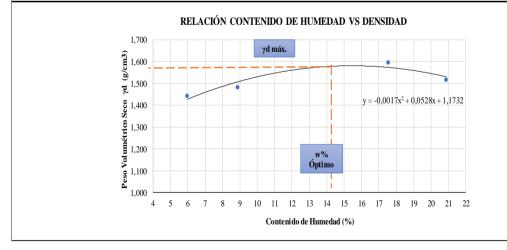


Tabla 110: Proctor modificado muestra #6

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA YALO-SIGCHOS
 Capa Vegetal:
 5 cm

 ID Muestra:
 P6
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 736603,8 9923920,5

		ESPEC	IFICACION	ES DEL PRO	OCTOR					
Número de Golpes	56	Altura o	le Caída	18"	Peso de	el Molde	15597	g		
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³		
Energía de Compactación		55986	lb pie/pie³		Øint	15,2	h	12,5	cm	
Peso Inicial Deseado	60	00	6000 6000 6000							
		PRO	CESO DE C	COMPACTAC	CIÓN					
Ensayo Número		1		2		3		4		
Humedad inicial añadida	6	%	1:	2%	18	3%	24	1%	%	
P. molde+Suelo húmedo	19)97	19	400	19	968	19'	793	g	
Peso suelo húmedo Wm	35	500 3803 4371 4196					96	g		
Peso unitario húmedo γm	1,5	543	1,	677	1,927 1,850			350	g/cm³	
	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	DAD				
Recipiente número	17	16	26	28	38	44	8	22		
Peso del recipiente Wr	24,73	24,31	23,11	23,11	25,38	26,26	26,95	24,18	g	
Peso muestra húmeda + recipiente	154,65	175,12	161,39	147,95	157,69	181,36	157,36	177,56	g	
Peso muestra seca + recipiente (Ws +	146,32	164,36	145,65	133,98	137,32	156,38	130,97	146,36	g	
Peso de la muestra seca (Ws)	121,59	140,05	122,54	110,87	111,94	130,11	104,02	122,18	g	
Peso del agua (Ww)	8,33	10,76	15,74	13,97	20,37	24,99	26,39	31,21	g	
Contenido de humedad (ω)	6,85	7,68	12,84	12,60	18,20	19,20	25,37	25,54	%	
Promedio contenido de humedad (ω)	7,	27	12	2,72	18	,70	25	,46	%	
Peso Volumétrico Seco γd 1,439 1,487 1,623					523	1,4	175	g/cm³		
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	J MEDAD Ó I	PTIMA			
Cont. Humedad prom	nedio ω		17,50						%	
Peso Volumétrico Seco yd					1.5	564			g/cm³	



Tabla 111: Proctor modificado muestra #7

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA GOMES(BOMBEROS)
 Capa Vegetal:
 5 cm

 ID Muestra:
 P7
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 734815,8 9922442,9

		ESPEC	IFICACION	ES DEL PRO	OCTOR					
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	15598	g		
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³		
Energía de Compactación		55986	lb pie/pie³		Øint	15,2	h	12,5	cm	
Peso Inicial Deseado	60	00	60	6000 6000 6000						
		PRO	CESO DE C	OMPACTAC	CIÓN					
Ensayo Número		1	2 3				4			
Humedad inicial añadida	5	%	10)%	15	5%	20)%	%	
P. molde+Suelo húmedo	19	268	19	704	20	034	19	941	g	
Peso suelo húmedo Wm	36	70	4106 4436 4343					g		
Peso unitario húmedo γm	1,6	518	1,	810	1,956 1,915			915	g/cm³	
	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD				
Recipiente número	10ch	8ch	1ch	3ch	4ch	5ch	9ch	7ch		
Peso del recipiente Wr	40,73	41,44	40,58	40,56	40,75	40,94	41,25	40,81	g	
Peso muestra húmeda + recipiente	236,99	257,72	234,06	247,93	239,09	259,76	259,29	286,60	g	
Peso muestra seca + recipiente (Ws +	225,73	245,19	214,79	227,46	211,73	229,41	221,49	244,73	g	
Peso de la muestra seca (Ws)	185,01	203,75	174,21	186,90	170,98	188,47	180,24	203,92	g	
Peso del agua (Ww)	11,26	12,52	19,27	20,47	27,37	30,35	37,79	41,88	g	
Contenido de humedad (ω)	6,09	6,15	11,06	10,95	16,00	16,10	20,97	20,54	%	
Promedio contenido de humedad (ω)	6,	12	11	,01	16	,05	20	,75	%	
Peso Volumétrico Seco γd 1,525 1,631					1,6	585	1,5	586	g/cm³	
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA			
Cont. Humedad prom	14,30						%			
Peso Volumétrico Seco γd				1,666						

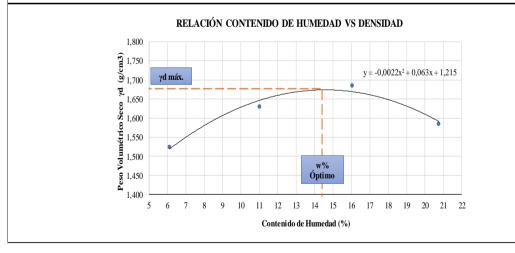


Tabla 112: Proctor modificado muestra #8

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA GOMES(BOMBEROS)
 Capa Vegetal:
 5 cm

 ID Muestra:
 P8
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 734422,9 9922776,3

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	15600	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2268,23	cm³	
Energía de Compactación		55986		lb pie/pie ³ Øint 15,2		15,2	h	12,5	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g
		PRO	CESO DE C	OMPACTA	CIÓN				
Ensayo Número		1		2	į	3		4	
Humedad inicial añadida	5	%	10	0%	15	5%	20)%	%
P. molde+Suelo húmedo	19:	200	19	856	20	034	199	987	g
Peso suelo húmedo Wm	36	000	42	4256 4434		4387		g	
Peso unitario húmedo γm	1,5	587	1,	876	1,955 1,9			934	g/cm³
	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD			
Recipiente número	10ch	8ch	1ch	3ch	4ch	5ch	9ch	7ch	
Peso del recipiente Wr	40,73	41,44	40,58	40,56	40,75	40,94	41,25	40,81	g
Peso muestra húmeda + recipiente	205,47	238,95	189,36	268,95	227,37	276,95	218,76	269,88	g
Peso muestra seca + recipiente (Ws +	196,15	227,35	174,37	246,86	201,36	244,32	188,26	229,19	g
Peso de la muestra seca (Ws)	155,43	185,90	133,79	206,30	160,62	203,39	147,02	188,38	g
Peso del agua (Ww)	9,32	11,61	15,00	22,10	26,00	32,63	30,50	40,69	g
Contenido de humedad (ω)	5,99	6,24	11,21	10,71	16,19	16,04	20,74	21,60	%
Promedio contenido de humedad (ω)	6,	12	10),96	16	,12	21	,17	%
Peso Volumétrico Seco γd	étrico Seco γd 1,496 1,691 1,684 1,596					596	g/cm³		
DETER	RMINACIÓ:	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA		
Cont. Humedad pron	nedio ω		14,80						%
Peso Volumétrico Seco yd					1.3	716			g/cm³

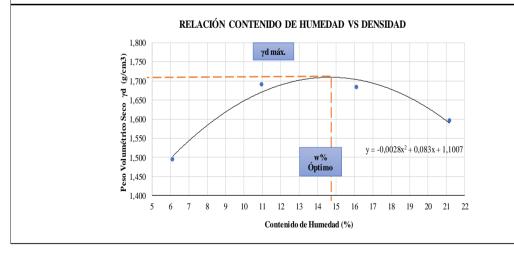


Tabla 113: Proctor modificado muestra #9

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA SIGCHILAS (ESTADIO DE SIGCHOS)
 Capa Vegetal:
 5
 cm

 ID Muestra:
 P9
 Profundidad:
 100
 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 734732,9 9921648,4

		ESPEC	IFICACION	ES DEL PRO	OCTOR								
Número de Golpes	56	Altura o	le Caída	18"	Peso de	l Molde	15595	g					
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2250,08	cm³					
Energía de Compactación		55986	lb pie/pie³		Øint	15,2	h	12,4	cm				
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g				
		PRO	CESO DE C	COMPACTAC	CIÓN								
Ensayo Número		1		2	į	3	4	4					
Humedad inicial añadida	5	%	10	0%	15	5%	20)%	%				
P. molde+Suelo húmedo	19:	245	19	730	20	100	200	043	g				
Peso suelo húmedo Wm	36	50	4135 4505 4448					48	g				
Peso unitario húmedo γm	1,6	522	1,	838	2,002 1,977			977	g/cm³				
	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	OAD							
Recipiente número	10CH	8CH	1CH	3CH	4CH	5CH	9CH	7CH					
Peso del recipiente Wr	40,73	41,44	40,58	40,56	40,75	40,94	41,25	40,81	g				
Peso muestra húmeda + recipiente	265,50	245,10	238,47	260,54	176,32	168,24	145,37	169,65	g				
Peso muestra seca + recipiente (Ws +	251,31	235,30	218,35	238,95	157,24	150,39	126,94	147,57	g				
Peso de la muestra seca (Ws)	210,58	193,86	177,77	198,39	116,50	109,46	85,69	106,76	g				
Peso del agua (Ww)	14,19	9,80	20,12	21,59	19,08	17,85	18,43	22,08	g				
Contenido de humedad (ω)	6,74	5,06	11,32	10,88	16,38	16,31	21,51	20,68	%				
Promedio contenido de humedad (ω)	5,	90	11	,10	16	,34	21	,09	%				
Peso Volumétrico Seco γd 1,532 1,654 1,721					1,6	532	g/cm³						
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA						
Cont. Humedad prom	nedio ω		15,40						%				
Peso Volumétrico Seco yd					1.3	712							

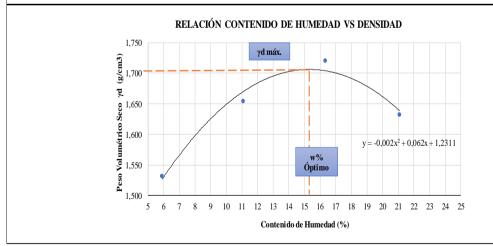


Tabla 114: Proctor modificado muestra #10

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

 Vía:
 VIA SIGCHILAS (ESTADIO DE SIGCHOS)
 Capa Vegetal:
 5 cm

 ID Muestra:
 P10
 Profundidad:
 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 733968,3 9921381,7

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura d	le Caída	18"	Peso de	el Molde	15600	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen del Molde		2250,08	cm³	
Energía de Compactación		55986	lb pie/pie³		Øint	15,2	h	12,4	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	00	g
		PRO	CESO DE C	OMPACTA	CIÓN				
Ensayo Número		[2		3	4	1	
Humedad inicial añadida	5'	%	10	0%	13	5%	20	1%	%
P. molde+Suelo húmedo	19	147	19	538	19	957	198	g	
Peso suelo húmedo Wm	35	47	39	938	43	357	42	g	
Peso unitario húmedo γm	1,5	76	1,	750	1,9	936	1,8	881	g/cm³
	DE	TERMINAC	IÓN DE CO	NTENIDOS	DE HUME	DAD			
Recipiente número	10CH	8CH	1CH	3CH	4CH	5CH	9CH	7CH	
Peso del recipiente Wr	40,73	41,44	40,58	40,56	40,75	40,94	41,25	40,81	g
Peso muestra húmeda + recipiente	249,35	273,99	215,37	245,95	267,85	265,74	186,00	197,47	g
Peso muestra seca + recipiente (Ws +	237,25	260,15	198,65	226,67	237,74	234,95	160,13	170,35	g
Peso de la muestra seca (Ws)	196,52	218,71	158,07	186,11	197,00	194,02	118,88	129,55	g
Peso del agua (Ww)	12,10	13,84	16,72	19,27	30,11	30,79	25,87	27,11	g
Contenido de humedad (ω)	6,16	6,33	10,58	10,36	15,28	15,87	21,77	20,93	%
Promedio contenido de humedad (ω)	6,	24	10),47	15	,58	21.	,35	%
Peso Volumétrico Seco γd	84	1,	584	1,0	575	1,5	550	g/cm³	
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA		
	Cont. Humedad promedio ω			15,00					
Peso Volumétrico Seco γd				1,650					

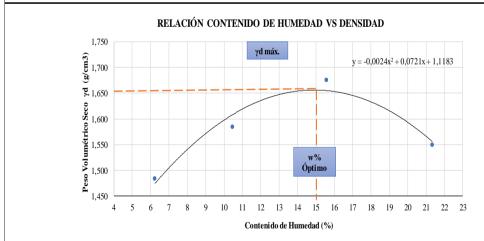


Tabla 115: Proctor modificado muestra #11

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA HOSPITAL DE SIGCHOS Capa Vegetal: 5 cm ID Muestra: P11 Profundidad: 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 735262,5 9922727,7

		ESPEC	IFICACION	ES DEL PRO	OCTOR				
Número de Golpes	56	Altura o	le Caída	18"	Peso de	el Molde	16826	g	
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2220,57	cm³	
Energía de Compactación		55986		lb pie/pie ³	Øint 15,1		h	12,4	cm
Peso Inicial Deseado	60	00	60	000	60	000	60	000	g
		PRO	CESO DE C	OMPACTA	CIÓN				
Ensayo Número		1		2	3			4	
Humedad inicial añadida	6	%	12	2%	18%		24	1%	%
P. molde+Suelo húmedo	20-	461	20	875	21	035	20	970	g
Peso suelo húmedo Wm	36	35	4049 4209 4144				.44	g	
Peso unitario húmedo γm	1,6	537	1,823 1,895			1,8	366	g/cm³	
	DE'	FERMINAC	IÓN DE CO	NTENIDOS	DE HUMEI	DAD			
Recipiente número	m1	m2	m3	m4	m5	m7	m6	m8	
Peso del recipiente Wr	1,97	2,03	1,95	2,00	1,91	1,97	2,06	2,00	g
Peso muestra húmeda + recipiente	114,70	109,82	118,50	112,05	91,94	87,56	163,50	170,53	g
Peso muestra seca + recipiente (Ws +	107,00	101,85	105,11	98,67	77,30	73,72	132,61	138,29	g
Peso de la muestra seca (Ws)	105,03	99,81	103,15	96,66	75,38	71,75	130,55	136,29	g
Peso del agua (Ww)	7,70	7,97	13,40	13,39	14,64	13,83	30,88	32,24	g
Contenido de humedad (ω)	7,33	7,99	12,99	13,85	19,42	19,28	23,66	23,65	%
Promedio contenido de humedad (ω)	7,	66	13	,42	19	,35	23	,66	%
Peso Volumétrico Seco γd	521	1,0	608	1,5	588	1,5	509	g/cm³	
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	J MEDAD Ó I	PTIMA		
Cont. Humedad prom	Cont. Humedad promedio ω			15,50					
Peso Volumétrico Seco γd					1,0	522			g/cm³

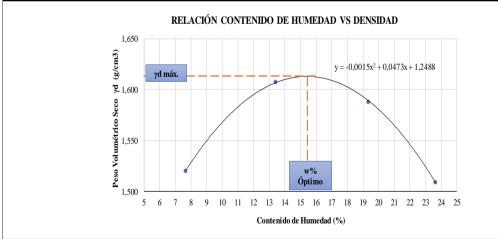


Tabla 116: Proctor modificado muestra #12

ENSAYO DE COMPACTACIÓN (PROCTOR MODIFICADO "B")

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía: VIA HOSPITAL DE SIGCHOS Capa Vegetal: 5 cm ID Muestra: P12 Profundidad: 100 cm

Norma: AASHTO T 180 2018 Coordenadas: 17 M 735784,0 9923037,4

		ESPEC	IFICACION	ES DEL PRO	OCTOR					
Número de Golpes	56	Altura d	le Caída	18"	Peso de	l Molde	16820	g		
Número de Capas	5	Peso del	Martillo	10 lb	Volumen	del Molde	2220,57	cm³		
Energía de Compactación		55986		lb pie/pie ³	Øint	15,1	h	12,4	cm	
Peso Inicial Deseado	60	00	6	000	60	000	60	000	g	
		PRO	CESO DE C	COMPACTAC	CIÓN					
Ensayo Número		1		2		3 4				
Humedad inicial añadida	6	%	1	2%	18%		24	1%	%	
P. molde+Suelo húmedo	20:	273	20	742	20	20984 20805			g	
Peso suelo húmedo Wm	34	53	3!	922	41	.64	3985			
Peso unitario húmedo γm	1,5	555	1,	766	1,8	1,875 1,795		g/cm³		
	DE	TERMINAC:	IÓN DE CO	NTENIDOS	DE HUMEI	OAD				
Recipiente número	m1	m2	m3	m4	m5	m7	m6	m8	,	
Peso del recipiente Wr	1,97	2,03	1,95	2,00	1,91	1,97	2,06	2,00	g	
Peso muestra húmeda + recipiente	95,45	120,75	96,75	100,53	85,65	96,24	114,85	126,94	g	
Peso muestra seca + recipiente (Ws +	89,56	113,55	85,45	88,58	72,38	81,68	92,35	102,35	g	
Peso de la muestra seca (Ws)	87,59	111,51	83,50	86,58	70,47	79,70	90,29	100,35	g	
Peso del agua (Ww)	5,89	7,20	11,29	11,95	13,27	14,56	22,50	24,59	g	
Contenido de humedad (ω)	6,72	6,46	13,52	13,80	18,82	18,27	24,92	24,51	%	
Promedio contenido de humedad (ω)	6,	59	13	3,66	18	,55	24	,71	%	
Peso Volumétrico Seco γd		159	,	554		582	1,439			
DETER	RMINACIÓ	N GRÁFICA	DE LA DE	NSIDAD MÁ	XIMA Y HU	JMEDAD Ó	PTIMA			
Cont. Humedad prom	nedio ω		15,40						%	
Peso Volumétrico Seco yd					1.5	567			g/cm³	

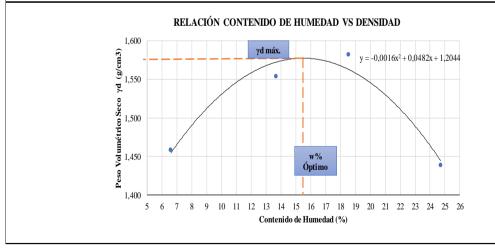
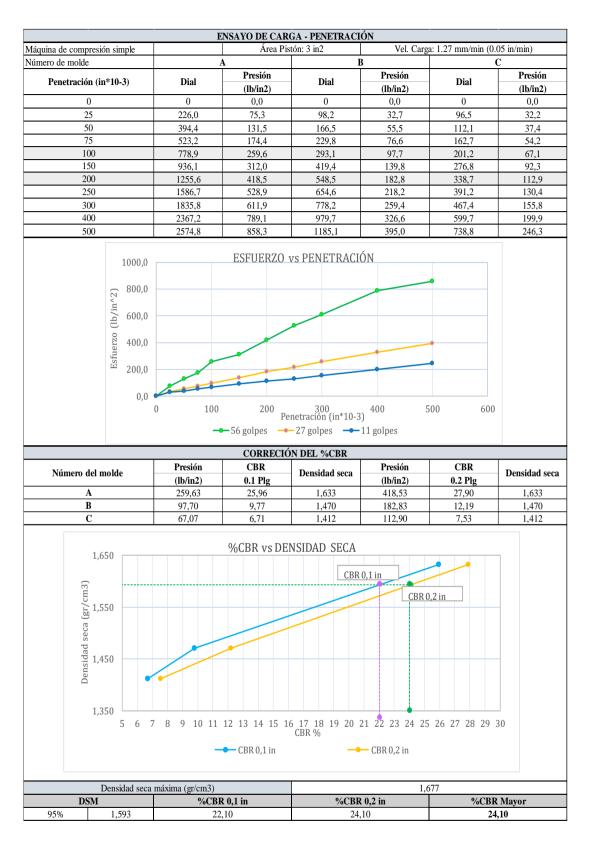


Tabla 117: CBR muestra #1

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO PARA DETERMINAR CBR

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

***	X77 A X A	C D L L M L C	araguoa		7 4 1					
Vía:	VIA LA	S PAMPAS -	SIGCHOS	_	Vegetal:	5	cm			
ID Muestra:		P1			ndidad:	100	cm			
Norma:	AA	SHTO T 193			enadas:	17 M	734420	9922168		
	ı		ESPECIFICAC					ı		
Altura de caída:	18 in	Número de ca		5	Densidad		1,716	gr/cm3		
Peso del martillo:	10 lb	Peso de la mu	ž l				15,20	%		
N	Iolde		A			3	<u> </u>	7		
Dim	ensiones		Díametro:	15,2	Díametro:	15,2	Díametro:	15		
			Altura:	12,5	Altura:	12,5	Altura:	12,5		
			PROCESO DE			_	1			
Número de golpes:			5			.7		1		
Muestra húmeda + mole	de (gr)		132			333	_	592		
Masa molde (gr) Masa de la muestra húmeda (gr)			87			43		46		
			44			90		146		
Volumen de la muestra	` /		2268		-	8,23	+	8,93		
Peso unitario húmedo (/m)(gr/cm3)		1,9			935	1,8	332		
				O DE HUME		36.11	I B 1:	36.11		
NIG de mesimiente			Bandeja 1	Molde 2	Bandeja	Molde	Bandeja 5	Molde		
Número de recipiente	Masa del recipiente (Wr) (gr)				3	41 242	40.684	6		
Masa suelo húmedo + recip. (Wm+Wr)(gr)			40,784 266,251	40,729 244,957	40,718 277,235	41,243 281,955	262,449	40,395		
Masa suelo seco + recip. (Ws+Wr)(gr)			236,037	218,072	243,301	248,369	232,071	266,184 235,77		
Masa del suelo seco (Ws) (gr)			195,253	177,343	202,583	248,309	191,387	195,375		
Masa del agua (Ww) (g	, , ,		30,214	26,885	33,934	33,586	30,378	30,414		
Contenido de humedad			15,47	15,16	16,75	16,22	15,87	15,57		
Contenido de humdad p	· /	%)	15,47			.48		,72		
Peso volumétrico seco (,-,	1,720 1,662				1,583			
,	1 / 6 - 7		DESPÚES DE				, , , ,			
Muestra húmeda + mole	de (gr)		1329		1	384	11'	711		
Masa molde (gr)	(8)		87		69	43	75	46		
Masa de la muestra hún	neda (gr)		455			41		65		
Volúmen de la muestra	(cm3)		2268	3,23	226	8,23	220	8,93		
Peso unitario húmedo (/m)(gr/cm3)		2,0	09	1,9	958	1,8	386		
	/\U		CONTENID	O DE HUME	DAD					
			Superior	Inferior	Superior	Inferior	Superior	Inferior		
Número de recipiente			1	2	3	4	5	6		
Masa del recipiente (Wi) (gr)		40.78	40.73	40.72	41.24	40,68	40,40		
Masa suelo húmedo + r	, , ,	Wr)(gr)	176,00	135,45	186,79	174,96	185,91	175,10		
Masa suelo seco + recip. (Ws+Wr)(gr)		162,52	112,74	155,45	147,34	152,48	146,80			
Masa del suelo seco (Ws) (gr)		121,74	72,01	114,73	106,10	111,80	106,41			
Masa del agua (Ww) (g	r)		13,48	22,71	31,34	27,62	33,43	28,30		
Contenido de humedad	(W %)		11,07	31,54	27,32	26,03	29,90	26,60		
Contenido de humdad p	romedio (W	%)	21,	30	26	,67	28	,25		
Peso volumétrico seco (γd)(gr/cm3)		1,6	56	1,5	546	1,4	170		


Tabla 118: CBR muestra #2

Proyecto:

Via: VIA LAS PAMPAS - SIGCHOS Capa Vegetal: 5 cm ID Muestra: P2 P2 Profundidat: 100 cm Norma: AASHTO T 193 - 2013 Coordenadas: 17 M 733977 9922379 ESPECIFICACIONES TÉCNICAS Altura de caída: 18 in Número de capas 5 Densidad seca Máx.: 1,677 g/cm3 Peso del martillo: 10 lb Peso de la muestra: 6000 gr W% óptimo: 15,70 % Peso del martillo: 10 lb Peso de la muestra: 15 Dámetro: 15,11 Dámetro: 15,12 Altura: 12,2									
Norma: AASHTO T 193 - 2013 Coordenadas: 17 M 733977 9922379	Vía:	VIA LA		SIGCHOS	_	_	5	cm	
SPECIFICACIONES TÉCNICAS Altura de caída: 18 in Número de capas 5 Densidad seca Máx.: 1,677 gr/cm3 Feso del martillo: 10 lb Peso de la muestra : 6000 gr W% óptimo: 15,70 % W% óptimo: 15,70 W% óptimo: 12,27 W% óptimo: 12,27 W% óptimo: 13,33 12053 10352 W% óptimo: 13,33 12053 10352 W% óptimo: 13,33 W% optimo: 13,575 W% optimo: 13,694 W% optimo: 1,572 W% optimo: 1,694 W% optimo: 1,572 W% opti	ID Muestra:		P2		Profu	ndidad:	100	cm	
Altura de caída: 18 in	Norma:	AA	SHTO T 193	- 2013	Coord	enadas:	enadas: 17 M		9922379
Peso del martillo: 10 10 Peso de la muestra: 6000 gr W% óptimo: 15,70 %			F	SPECIFICAC	CIONES TÉC	NICAS			
Mokle Diametro: Diametro: Diametro: Diametro: 15,1 Diametro: 15,1 Diametro: 15,1 Altura: 12,5 Altura: 12,2 Altura: 12,7	Altura de caída:	18 in	Número de ca	apas	5	Densidad	seca Máx.:	1,677	gr/cm3
Dimensiones	Peso del martillo:	10 lb	Peso de la mu	iestra:	6000 gr	W% ć	ptimo:	15,70	%
Natura: 12,5 Altura: 12,2 Altura: 12,7		Molde		A	A]	3	(C
Altura: 12,5 Altura: 12,2 Altura: 12,7	Dimensiones		Díametro:	15	Díametro:	15,1	Díametro:	15,1	
Número de golpes: 56 27 11				7-		12,2	Altura:	12,7	
Muestra húmeda + molde (gr) 13133 12053 10352 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 3831 3701 3575 Volumen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (ym)(gr/cm3) 1,734 1,694 1,572 CONTENIDO DE HUMEDAD CONTENIDO DE HUMEDAD CONTENIDO DE HUMEDAD CONTENIDO DE HUMEDAD Madeja Molde Bandeja Molde Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 25,71 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42			I	PROCESO DE	E COMPACT	ACIÓN			
Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 3831 3701 3575 Volumen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (ym)(gr/cm3) 1,734 1,694 1,572 CONTENIDO DE HUMEDAD Mimero de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 25,71 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 100,91 102,71 119,11 121,36 124,88 120,52 Masa suelo seco + recip. (Ws+Wr)(gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del suelo seco (Ws) (gr) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humedad (W %) 2,79 4,93 8,15 17,12 6,74 7,13	Número de golpes:			5	56	2	.7	1	.1
Masa de la muestra húmeda (gr) 3831 3701 3575	Muestra húmeda + mol	de (gr)		13	133	120)53	10:	352
Volumen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,734 1,694 1,572	Ψ,			93	802	83	52	67	'77
Peso unitario húmedo (γm)(gr/cm3)	Masa de la muestra húr	neda (gr)		38	331			35	75
CONTENIDO DE HUMEDAD Bandeja Molde Bandeja Molde Molde Número de recipiente 1 2 3 4 5 6 6 Masa del recipiente (Wr) (gr) 25,71 24,12 25,21 24,64 26,57 24,12 24,64 26,57 24,12 25,21 24,64 26,57 24,12	Volumen de la muestra	(cm3)		220	8,93	218	4,76	227	4,30
Bandeja Mokle Bandeja Mokle Bandeja Mokle Múmero de recipiente 1	Peso unitario húmedo (γm)(gr/cm3)						594	1,5	572
Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 25,71 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 100,91 102,71 119,11 121,36 124,88 120,52 Masa suelo seco (ws) (gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del suelo seco (Ws) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad (W %) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humedad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (γd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húme				CONTENID	O DE HUME	DAD			
Masa del recipiente (Wr) (gr) 25,71 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 100,91 102,71 119,11 121,36 124,88 120,52 Masa suelo seco + recip. (Ws+Wr)(gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (yd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (ym)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente <td></td> <td></td> <td></td> <td>Bandeja</td> <td>Molde</td> <td>Bandeja</td> <td>Molde</td> <td>Bandeja</td> <td>Molde</td>				Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Masa suelo húmedo + recip. (Wm+Wr)(gr) 100,91 102,71 111,11 121,36 124,88 120,52 Masa suelo seco + recip. (Ws+Wr)(gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad (W%) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humdad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (yd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (ym)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente	Número de recipiente			1	2	3	4	5	6
Masa suelo seco + recip. (Ws+Wr)(gr) 98,87 99,02 112,03 107,22 118,67 114,10 Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad (W%) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humedad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (yd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (ym)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12	1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		25,71	24,12	25,21	24,64	26,57	24,12
Masa del suelo seco (Ws) (gr) 73,16 74,90 86,82 82,58 92,10 89,98 Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad (W%) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humedad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (γd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12				100,91			121,36		· · · · · · · · · · · · · · · · · · ·
Masa del agua (Ww) (gr) 2,04 3,69 7,08 14,14 6,21 6,42 Contenido de humedad (W %) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humedad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (γd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96			r)	98,87	99,02	112,03	107,22	118,67	114,10
Contenido de humedad (W %) 2,79 4,93 8,15 17,12 6,74 7,13 Contenido de humdad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (γd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 <td></td> <td>, , , ,</td> <td></td> <td></td> <td></td> <td>1</td> <td>· · · · · ·</td> <td></td> <td>· ·</td>		, , , ,				1	· · · · · ·		· ·
Contenido de humdad promedio (W%) 3,86 12,64 6,94 Peso volumétrico seco (γd)(gr/cm3) 1,670 1,504 1,470 DESPÚES DE LA SATURACIÓN Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del agua (W									,
DESPÚES DE LA SATURACIÓN 1,504 1,470 1,470		· /							
DESPÚES DE LA SATURACIÓN 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731			%)			· · · · · · · · · · · · · · · · · · ·			
Muestra húmeda + molde (gr) 13406 12408 10714 Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 </td <td>Peso volumétrico seco</td> <td>(γd)(gr/cm3)</td> <td></td> <td colspan="2">,</td> <td colspan="2">7</td> <td>1,4</td> <td>170</td>	Peso volumétrico seco	(γd)(gr/cm3)		,		7		1,4	1 70
Masa molde (gr) 9302 8352 6777 Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Inferior Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Inferior Inferior Superior Inferior I]	1		1		_	
Masa de la muestra húmeda (gr) 4104 4056 3937 Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 <t< td=""><td>Muestra húmeda + mol</td><td>de (gr)</td><td></td><td>134</td><td>406</td><td>124</td><td>408</td><td>10</td><td>714</td></t<>	Muestra húmeda + mol	de (gr)		134	406	124	408	10	714
Volúmen de la muestra (cm3) 2208,93 2184,76 2274,30 Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W%) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79	- 0								
Peso unitario húmedo (γm)(gr/cm3) 1,858 1,856 1,731 CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79		· · ·			-				
CONTENIDO DE HUMEDAD Superior Inferior Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79	Volúmen de la muestra	(cm3)						+	
Superior Inferior Superior Inferior Superior Inferior Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79	Peso unitario húmedo (γm)(gr/cm3)					356	1,7	731
Número de recipiente 1 2 3 4 5 6 Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79						DAD	ı		•
Masa del recipiente (Wr) (gr) 27,62 24,12 25,21 24,64 26,57 24,12 Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W%) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79				Superior	Inferior	Superior	Inferior	-	Inferior
Masa suelo húmedo + recip. (Wm+Wr)(gr) 96,21 97,86 98,72 102,47 105,96 106,80 Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79				1	2	3	4	5	6
Masa suelo seco + recip. (Ws+Wr)(gr) 89,45 84,59 79,46 87,93 89,20 88,30 Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W%) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79	Masa del recipiente (W	r) (gr)		27,62	24,12	25,21	24,64	26,57	24,12
Masa del suelo seco (Ws) (gr) 61,83 60,47 54,25 63,29 62,63 64,18 Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79	1 \ /\&/		96,21	97,86	98,72	102,47	105,96	106,80	
Masa del agua (Ww) (gr) 6,76 13,27 19,26 14,54 16,76 18,50 Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79			89,45	84,59		87,93	89,20	88,30	
Contenido de humedad (W %) 10,93 21,94 35,50 22,97 26,76 28,83 Contenido de humdad promedio (W%) 16,44 29,24 27,79			,	60,47	54,25	,		· · · · · · · · · · · · · · · · · · ·	
Contenido de humdad promedio (W%) 16,44 29,24 27,79				,	-		,		
		` /			<i>j</i> -		, , ,	-,	
Peso volumétrico seco (γd)(gr/cm3)		` `	%)	16	,44	29	,24		,
	Peso volumétrico seco	(γd)(gr/cm3)		1,5	596	1,4	136	1,355	


Autor: Christian Garcés

Tabla 119: CBR muestra #3

Vía:	VIA	TOPALIVI CI	ENTRO	Cana V	Vegetal:	5	cm	
ID Muestra:	,	P3	211110	_	ndidad:	100	cm	
Norma:	Λ Λ	SHTO T 193 -	2013		enadas:	17 M	735105	9922399
Norma.	AA		ESPECIFICACIONES TÉCN			1 / IVI	733103	7744377
Altura de caída:	18 in	Número de ca		5		seca Máx.:	1,597	gr/cm3
Peso del martillo:	10 lb	Peso de la mu				W% óptimo:		gr/cm3 %
	Molde	r cso de la me	A		+	В	15,80	70
-	violue		Díametro:	15,2	Díametro:	15	Díametro:	15,2
Din	nensiones		Altura:	12,5	Altura:	12,5	Altura:	12,5
		T	PROCESO DE			12,3	Pattura.	12,3
Número de golpes:				6		.7	T 1	1
Muestra húmeda + mol	de (or)		_)50		483		960
Masa molde (gr)	uc (gi)			39		i45		43
Masa de la muestra húr	neda (or)			11		38	***	17
Volumen de la muestra			_	8,23		8,93		8,23
Peso unitario húmedo (γm)(gr/cm3)			1,9			783	1,7	
r eso unitario numedo (ym)(gr/cm3)			O DE HUME	<u> </u>	. 03	1,7	, 1	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (W	r) (gr)		40.5	41	41.1	41	41.3	40.5
Masa suelo húmedo + 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/r)(gr)	277.195	274.968	281,864	284.859	249,901	260,483
Masa suelo seco + recip		/ (0 /	244,011	242,058	258,655	250,949	221,199	230,16
Masa del suelo seco (W		/	203,511	201,058	217,555	209,949	179,899	189,66
Masa del agua (Ww) (g	r)		33,184	32,91	23,209	33,91	28,702	30,323
Contenido de humedad			16,31	16,37	10,67	16,15	15,95	15,99
Contenido de humdad p	oromedio (W9	6)	16,34		13,41		15.	,97
Peso volumétrico seco	(γd)(gr/cm3)		1,634		1,572		1,5	527
		I	DESPÚES DE	LA SATURA	CIÓN			
Muestra húmeda + mol	de (gr)		130	13083 11657		657	11105	
Masa molde (gr)			87	39	75	7545		43
Masa de la muestra húr	neda (gr)		434	13,5	41	12	41	62
Volúmen de la muestra	(cm3)		226	8,23	220	8,93	226	8,23
Peso unitario húmedo (γm)(gr/cm3)		1,9	015	1,8	362	1,8	335
			CONTENIDO	O DE HUME	DAD			
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (W	r) (gr)		40,50	41,00	41,10	41,00	41,30	40,50
	Masa suelo húmedo + recip. (Wm+Wr)(gr)		259,10	270,57	243,17	230,83	256,72	247,07
	Masa suelo seco + recip. (Ws+Wr)(gr)		223,93	232,58	207,92	209,53	195,70	208,30
Masa del suelo seco (W	s) (gr)		183,43	191,58	166,82	168,53	154,40	167,80
Masa del agua (Ww) (g	r)		35,18	38,00	35,24	21,30	61,02	38,77
Contenido de humedad	(W %)		19,18	19,83	21,13	12,64	39,52	23,10
Contenido de humdad j	promedio (W%	6)	19	,50	16	,88	31.	,31
Peso volumétrico seco	(γd)(gr/cm3)		1,6	502	1,5	593	1,397	


Autor: Christian Garcés

Tabla 120: CBR muestra #4

Vía:	VIA T	OPALIVI CI	ENTRO	Capa V	Vegetal:	5	cm	
ID Muestra:		P4		_	ndidad:	100	cm	
Norma:	AAS	HTO T 193	- 2013	Coord	enadas: 17 M		735357	9922728
- 103			SPECIFICAC			-,		,,,,,,,
Altura de caída:	18 in	Número de ca		5	1	seca Máx.:	1,605	gr/cm3
Peso del martillo:	10 lb	Peso de la mi	1	6000 gr	W% ó	ptimo:	17,50	%
M	olde		A	U	1	3	(2
ъ.			Díametro:	15,11	Díametro:	15,3	Díametro:	15,1
Dime	ensiones		Altura:	17,8	Altura:	12,6	Altura:	12,7
		I	PROCESO DE	COMPACT	ACIÓN			
Número de golpes:			5	6	2	7	1	1
Muestra húmeda + mold	e (gr)		140)92	130)76	109	907
Masa molde (gr)			79	75	96	30	78	69
Masa de la muestra húm	eda (gr)		61	17	34	46	30	38
Volumen de la muestra (em3)		319	1,82	231	6,56	227	4,30
Peso unitario húmedo (γm)(gr/cm3)		1,9	16	1,4	88	1,3	336	
			CONTENID	O DE HUME	DAD			
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr)	· · ·		7,89	8,23	7,89	8,23	7,89	8,23
Masa suelo húmedo + re		, .c.,	75,12	71,4	75,12	71,4	75,12	71,4
Masa suelo seco + recip.	· / · · /		71,28	66,7	74,28	65,7	71,28	67,7
Masa del suelo seco (Ws	, ,,		63,39	58,47	66,39	57,47	63,39	59,47
Masa del agua (Ww) (gr			3,84	4,7	0,84	5,7	3,84	3,7
Contenido de humedad (6,06	8,04	1,27	9,92	6,06	6,22
Contenido de humdad pr)	7,05		5,59			14
Peso volumétrico seco (γ	d)(gr/cm3)		1,790		1,409		1,259	
			DESPÚES DE LA SATURACIÓN 14127 13145				1	
Muestra húmeda + mold	e (gr)					_		198
Masa molde (gr)				75		30		69
Masa de la muestra húm	Ψ,			52		15		29
Volúmen de la muestra (1,82		6,56		4,30
Peso unitario húmedo (γι	n)(gr/cm3)		1,9		1,5	017	1,4	164
				O DE HUME	1	T.C.:	T a ·	T.C.:
N/ 1			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente	()		1	2	3	4	5	6
Masa del recipiente (Wr)		\/ \	24,07	26,72	25,17	25,11	7,89	8,23
Masa suelo húmedo + recip. (Wm+Wr)(gr)		84,45	84,64	91,48	92,93	83,78	78,70	
Masa suelo seco + recip. (Ws+Wr)(gr) Masa del suelo seco (Ws) (gr)		74,38	76,06	80,78	90,70	70,60	69,05	
`	, , ,		50,31	49,34 8,58	55,61	65,59 2,23	62,71	60,82
Masa del agua (Ww) (gr) Contenido de humedad (10,07 20,02	8,58 17,39	10,70 19,24	3,40	13,18 21,02	9,65 15,87
Contenido de humdad pr		\		.70		.32	18.	
)		524		,-		<u>'</u>
Peso volumétrico seco (γd)(gr/cm3)		1,0	124	1,363		1,236		

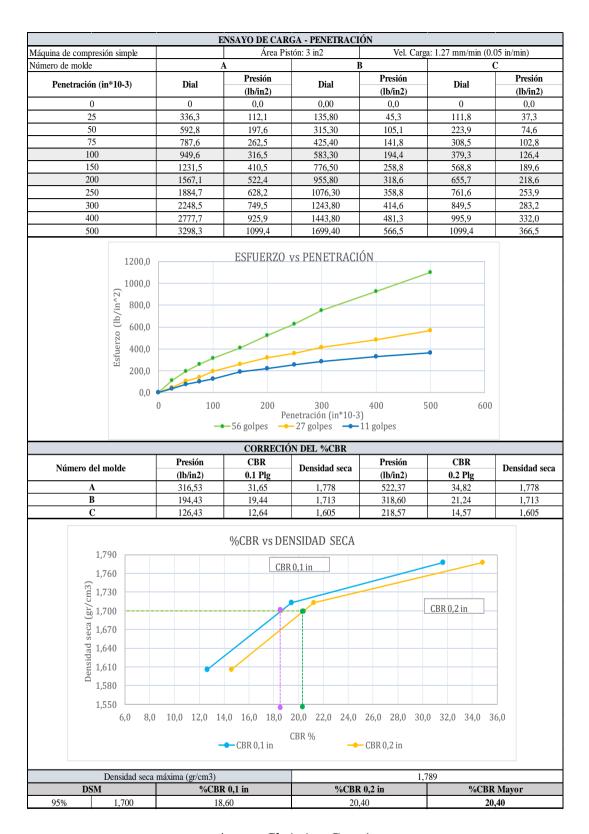

Autor: Christian Garcés

Tabla 121: CBR muestra #5

Vía:	VIA	YALO-SIG	CHOS	Capa V	Vegetal:	5	cm	
ID Muestra:		P5		Profu	ndidad:	100	cm	
Norma:	AAS	SHTO T 193	- 2013	Coord	enadas:	17 M	735905	9923620
]	ESPECIFICAC	CIONES TÉC	NICAS			
Altura de caída:	18 in	Número de ca	apas	5	Densidad	seca Máx.:	1,789	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	iestra:	5000 gr	W% ó	ptimo:	15,10	%
N	l olde		A	L]	3	(7
Dime	ensiones		Díametro:	15	Díametro:	15,2	Díametro:	15,2
Dilli	chsiones		Altura:	12,5	Altura:	12,5	Altura:	12,5
			PROCESO DE	COMPACT	<u>ACIÓN</u>		_	
Número de golpes:			5	6	2	7	1	1
Muestra húmeda + mok	de (gr)		131			978	111	
Masa molde (gr)			87			46	69	
Masa de la muestra hún			44			32		26
Volumen de la muestra (cm3)		2208			8,23		8,23	
Peso unitario húmedo (γm)(gr/cm3)		1,9			054	1,8	363	
				O DE HUME			T	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr			40,414	40,701	40,677	40,723	41,236	40,726
Masa suelo húmedo + r			262,492	280,226	275,247	286,928	270,057	283,821
Masa suelo seco + recip Masa del suelo seco (W	, , , ,	(r)	251,4	248,913	252,98	255,104	249,83	246,181
Masa del agua (Ww) (g	, , , ,		210,986 11,092	208,212 31,313	212,303 22,267	214,381 31.824	208,594 20,227	205,455 37,64
Contenido de humedad	/		5,26	15,04	10,49	14,84	9,70	18,32
Contenido de humdad p	` /	%)	10.15			.67	14	
Peso volumétrico seco (,	· · · · · · · · · · · · · · · · · · ·	1.814		1,734			
1 eso volumenteo seco ((gi/ciii3)		DESPÚES DE LA SATURACIÓN		/		1,634	
Muestra húmeda + mok	de (or)		131			986	111	284
Masa molde (gr)	ac (gr)		87			46	69	
Masa de la muestra hún	neda (or)		44			40	43	
Volúmen de la muestra	Ψ,		2208			8,23	226	
Peso unitario húmedo ((/		2.0		1.9		1,9	,
()(<u>B</u>)		, .	O DE HUME				
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr) (gr)		40.41	40,70	40.68	40.72	41.24	40.73
Masa suelo húmedo + recip. (Wm+Wr)(gr)		262,58	253,04	254.62	282,41	284,86	294.79	
Masa suelo seco + recip. (Ws+Wr)(gr)		232,61	225,37	226,42	248,75	261,63	232,89	
Masa del suelo seco (W	s) (gr)		192,20	184,66	185,74	208,02	220,39	192,16
Masa del agua (Ww) (gr			29,97	27,68	28,21	33,66	23,23	61,90
Contenido de humedad	(W %)		15,59	14,99	15,19	16,18	10,54	32,21
Contenido de humdad p	romedio (W	%)	15,	29	15	,68	21	,38
Peso volumétrico seco (γd)(gr/cm3)		1,741		1,692		1,577	

Autor: Christian Garcés


Tabla 122: CBR muestra #6

Proyecto:

Vía:	VIA YALO-SIGCHOS			Capa V	Vegetal:	5	cm		
ID Muestra:			P6		Profu	ndidad:	100	cm	
Norma:		AAS	SHTO T 193 -	2013	Coord	enadas:	17 M	736604	9923921
- 10				SPECIFICAC			-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77-07-
Altura de caída:		18 in	Número de ca		5		seca Máx.:	1,564	gr/cm3
Peso del martillo:		10 lb	Peso de la mu		6000 gr	W% (óptimo:	17.50	%
	Mo	olde		A		1	В	(7
				Díametro:	15,2	Díametro:	15	Díametro:	15
Di	Dimensiones			Altura:	12.7	Altura:	12.8	Altura:	12.7
			P	ROCESO DE	J.		,-	1	-=,-
Número de golpes:				6		27	1	1	
Muestra húmeda + me	olde	(gr)		113	330	10	094	100)92
Masa molde (gr)					29	58	355	62	52
Masa de la muestra hu	úme	da (gr)		44	01	42	239	38	40
Volumen de la muestr		Ψ,		230	4,52	226	1,95	224	4,28
Peso unitario húmedo (γm)(gr/cm3)			1,9	010	1,	874	1,7		
	ess amaric nameue (/m)(g. ems)			CONTENIDO	O DE HUME	DAD			
				Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente				1	2	3	4	5	6
Masa del recipiente (V	Wr)	(gr)		25,71	24,64	25,21	24,12	26,57	24,12
Masa suelo húmedo +	- rec	ip. (Wm+W	r)(gr)	245,85	256,21	252,43	242,26	243,31	245,51
Masa suelo seco + rec	cip.	(Ws+Wr)(gr	.)	213,38	219,29	215,68	207,34	200,40	205,59
Masa del suelo seco (Ws)	(gr)		187,67	194,65	190,47	183,22	173,83	181,47
Masa del agua (Ww)	(gr)			32,47	36,92	36,75	34,92	42,91	39,92
Contenido de humeda	ıd (V	V %)		17,30	18,97	19,29	19,06	24,69	22,00
Contenido de humdad	l pro	medio (W%	5)	18,13		19,18		23,34	
Peso volumétrico seco	ο (γο	d)(gr/cm3)		1,617		1,	1,572		887
			I	DESPÚES DE	LA SATURA	CIÓN			
Muestra húmeda + me	olde	(gr)		113	345	10	123	10	117
Masa molde (gr)				69	29	58	355	62	52
Masa de la muestra hu	úme	da (gr)		44	16	42	268	38	65
Volúmen de la muestr	ra (c	m3)		230-	4,52	226	1,94	224	4,27
Peso unitario húmedo	(γn	n)(gr/cm3)		1,9	16	1,	887	1,7	'22
				CONTENID	O DE HUME	DAD			
				Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente				1	2	3	4	5	6
Masa del recipiente (V	Wr)	(gr)		30,82	30,97	34,47	31,62	32,61	31,79
Masa suelo húmedo +	nelo húmedo + recip. (Wm+Wr)(gr)		156,39	158,93	203,58	205,28	212,69	234,73	
Masa suelo seco + rec	Iasa suelo seco + recip. (Ws+Wr)(gr)		133,57	126,96	168,11	172,66	178,08	189,94	
Masa del suelo seco (Masa del suelo seco (Ws) (gr)		102,75	95,99	133,64	141,04	145,47	158,15	
Masa del agua (Ww)	Masa del agua (Ww) (gr)		22,82	31,97	35,47	32,62	34,61	44,79	
Contenido de humedad (W %)		22,21	33,31	26,54	23,13	23,79 28,32			
Contenido de humdad	l pro	medio (W%	5)	27	,76	24	,83	26	,06
Peso volumétrico seco	ο (γ	d)(gr/cm3)		1,5	500	1,511		1,366	

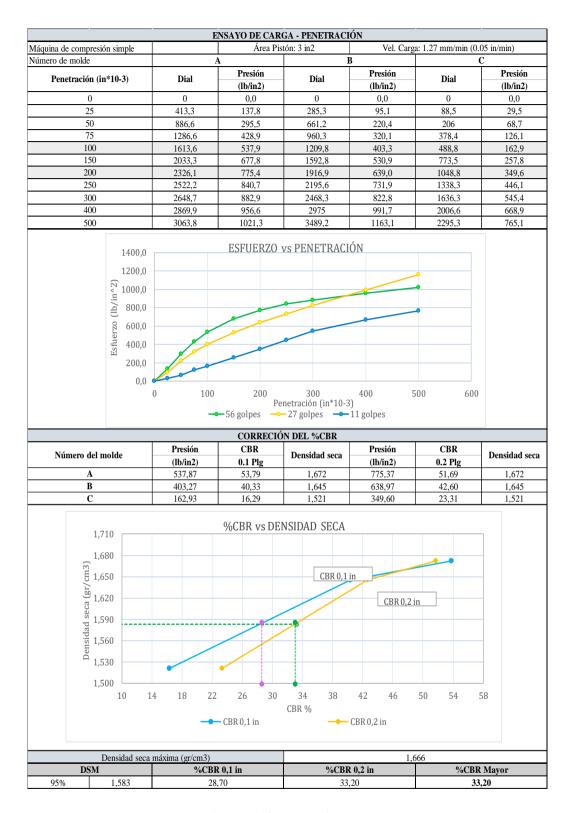

Autor: Christian Garcés

Tabla 123: CBR muestra #7

						ŕ		
Vía:	VIA G	OMES(BOM	BEROS)	Capa V	Vegetal:	5	cm	
ID Muestra:		P7		Profu	ndidad:	100	cm	
Norma:	AAS	HTO T 193	- 2013	Coord	enadas:	17 M	734816	9922443
		F	SPECIFICAC	IONES TÉC	NICAS			
Altura de caída:	18 in	Número de ca		5	1	seca Máx.:	1,666	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	iestra:	6000 gr	W% óptimo:		14,30	%
M	olde		Α	1	I	3	(2
Dima	nsiones		Díametro:	15,2	Díametro:	15,2	Díametro:	15
Dime	nsiones		Altura:	12,5	Altura:	12,5	Altura:	12,5
		I	PROCESO DE	COMPACT	ACIÓN			
Número de golpes:	Número de golpes:			6	2	.7	1	1
Muestra húmeda + molde	e (gr)		131	159	118	845	110	070
Masa molde (gr)				36		46		43
Masa de la muestra húme	Ψ,			23	· -	.99		27
	Volumen de la muestra (cm3)			8,23	+	8,23	+	8,93
Peso unitario húmedo (γm)(gr/cm3)				950	- /-	395	1,8	368
			1	DE HUME	1		1	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr)	(U)		40,38	40,70	40,69	40,70	41,23	40,71
Masa suelo húmedo + rec	_		268,11	284,47	269,88	261,10	265,76	292,61
Masa suelo seco + recip.	, ,,,)	239,27	251,93	238,16	239,95	218,04	258,87
Masa del suelo seco (Ws	, ,,,,		198,90	211,23	197,48	199,24	176,82	218,16
Masa del agua (Ww) (gr) Contenido de humedad (28,83 14,50	32,55 15,41	31,71 16,06	21,16 10.62	47,71 26,98	33,74 15,46
Contenido de humdad pr)				,34		,22
Peso volumétrico seco (y	,)	14,95 1.696		1.672		1.541	
r eso volumetrico seco (y	u)(gi/ciii3)	1	DESPÚES DE		, ,	112	1,341	
Muestra húmeda + molde	a (m)			235		898	111	59,5
Masa molde (gr)	(gi)			36	-	46	-	943
Masa de la muestra húme	eda (or)			98,5		52		17
Volúmen de la muestra (d	Ψ,			8,23	_	8.23		8.93
Peso unitario húmedo (γι	- /			983		019		909
· ·	7(8 - 7			DE HUME			, ,,	
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr)	(gr)		40,50	41,00	41,10	41,00	41,30	40,50
Masa suelo húmedo + recip. (Wm+Wr)(gr)		r)(gr)	299,41	285,45	265,79	280,02	270,64	261,69
Masa suelo seco + recip. (Ws+Wr)(gr)		253,02	246,57	234,47	238,61	212,70	223,91	
Masa del suelo seco (Ws) (gr)		212,52	205,57	193,37	197,61	171,40	183,41	
Masa del agua (Ww) (gr)			46,39	38,87	31,32	41,40	57,94	37,78
Contenido de humedad (W %)		21,83	18,91	16,20	20,95	33,81	20,60	
Contenido de humdad pr	omedio (W%)	20.	,37	18	,57		,20
Peso volumétrico seco (γ	d)(gr/cm3)		1,648		1,618		1,501	

Autor: Christian Garcés


Tabla 124: CBR muestra #8

Proyecto:

Vía:	VIA G	OMES(BOM	BEROS)	_	Vegetal:	5	cm	
ID Muestra:		P8		Profu	ndidad:	100	cm	
Norma:	AA	SHTO T 193 -	- 2013	Coord	enadas: 17 M		734423	9922776
		E	SPECIFICAC	IONES TÉC	NICAS			
Altura de caída:	18 in	Número de ca	ipas	5	Densidad	seca Máx.:	1,716	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	uestra: 6000 gr		W% ó	ptimo:	14,80	%
N	Iolde		A	1]	B		<u> </u>
Dimensiones		Díametro:	15,3	Díametro:	15,2	Díametro:	15,1	
Dillik	chisiones		Altura:	12,5	Altura:	12,6	Altura:	12,7
		F	ROCESO DE	COMPACT	ACIÓN			
Número de golpes:				6		.7		1
Muestra húmeda + mold	le (gr)			038		892		403
Masa molde (gr)				84		33		-03
Masa de la muestra húm				54	_	59		000
Volumen de la muestra (8,17		6,38		4,30
Peso unitario húmedo (γm)(gr/cm3)		1,9			175	1,7	759	
			ı	O DE HUME			1	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr)			31,13	31,76	44,55	42,93	44,34	45,36
Masa suelo húmedo + re		, .C ,	95,02	94,68	195,28	226,91	256,78	329,6
Masa suelo seco + recip.		.)	88,15	88,32	188,73	203,98	226,29	282,91
Masa del suelo seco (Ws			57,02	56,56	144,18	161,05	181,95	237,55
Masa del agua (Ww) (gr			6,87	6,36	6,55	22,93	30,49	46,69
Contenido de humedad (Contenido de humdad pr	. ,		12,05	11,24	4,54	14,24	16,76	19,65 ,21
	•)	11,65 1,775		9,39			
Peso volumétrico seco (γα)(gr/cm3)	T	, .		1,623		1,2	188
Manager 1 days days and 11	I - ()			ESPÚES DE LA SATURACIÓN 12134 11297		207	111	C10
Muestra húmeda + mold Masa molde (gr)	ie (gr)			84		33		640
(8 /	ada (au)			50		.64		237
Masa de la muestra húm Volúmen de la muestra (8,17	1	6,37		4.30
Peso unitario húmedo (γ	/)23		052		4,30 363
Peso unitario numedo (y	m)(gr/cm3)			D DE HUME		732	1,0	503
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1 Superior	2	3	4	5	6
_) (m)		•	_		44.52		
	Masa del recipiente (Wr) (gr)		30,51 98.73	30,24 108,27	44,13 136,71	133,82	32,61 272,52	31,79 274,38
Masa suelo húmedo + recip. (Wm+Wr)(gr) Masa suelo seco + recip. (Ws+Wr)(gr)		98,73 87,78	96,39	112,69	115,93	204,00	224,73	
Masa del suelo seco (Ws) (gr)		57,27	66,15	68,56	71,41	171,39	192,94	
Masa del agua (Ww) (gr	, , , , ,		10,95	11,88	24,02	17,89	68,52	49,65
Contenido de humedad (/		19,12	17,96	35,04	25,05	39,98	25,73
Contenido de humdad pr	,	5)	,	,54				
		• /		707	30,04 1,501		32,86 1.402	
Peso volumétrico seco (γd)(gr/cm3)		1,7	01	1,.	,01	1,402		

Autor: Christian Garcés

Tabla 125: CBR muestra #9

Vía:	IA SIGCHIL	AS (ESTADIO	DE SIGCHO	Capa V	Vegetal:	5	cm	
ID Muestra:		P9		Profu	ndidad:	100	cm	
Norma:	AAS	SHTO T 193	- 2013	Coord	enadas:	17 M	734733	9921648
]	ESPECIFICAC	CIONES TÉC	NICAS			
Altura de caída:	18 in	Número de ca	npas	5	Densidad	seca Máx.:	1,712	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	iestra:	5000 gr	W% ó	ptimo:	15,40	%
N	/Iolde		A	L	I	3	(
Dim	ensiones		Díametro:	15,2	Díametro:	15,2	Díametro:	15
Dilli	ensiones		Altura:	12,5	Altura:	12,5	Altura:	12,5
			PROCESO DE	COMPACT	ACIÓN			
Número de golpes:			50	6	2	.7	1	1
	Muestra húmeda + molde (gr)			37		307		713
Masa molde (gr)			873		***	43		45
Masa de la muestra hún			459			64		68
Volumen de la muestra (cm3)		2268		1	8,23	1	8,93	
Peso unitario húmedo (γm)(gr/cm3)			2,0			924	1,8	387
				O DE HUME			1	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente	\		1	2	3	4	5	6
Masa del recipiente (Wi	/ (0 /	T \	40,60	41,20	40,70	40,70	40,37	40,69
Masa suelo húmedo + r Masa suelo seco + recip			272,00 240,42	290,00	246,05	269,12 227.30	266,26	259,17
Masa del suelo seco (W		(1)	199,82	254,73	227,87	186,60	234,83 194,46	220,43 179,74
Masa del agua (Ww) (g			31,58	213,53 35,27	187,17 18,17	41,81	31,43	38,74
Contenido de humedad			15,80	16,52	9,71	22,41	16,16	21,55
Contenido de humdad p	` /	%)	16,16				.86	
Peso volumétrico seco	,		1.745		1.658		1.588	
	(1-)(8)		DESPÚES DE		, .			
Muestra húmeda + mol	de (gr)		1338			357	118	306
Masa molde (gr)	(8-)		87:	-		43	4	45
Masa de la muestra hún	neda (gr)		464	6,3	44	14	42	61
Volúmen de la muestra			2268	3,23	226	8,23	220	8,93
Peso unitario húmedo (ym)(gr/cm3)		2,0	-	1,9	946	1,9)29
	, , <u>, , , , , , , , , , , , , , , , , </u>		CONTENID	O DE HUME	DAD			
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr) (gr)			40,60	41,20	40,70	40,70	40,37	40,69
Masa suelo húmedo + recip. (Wm+Wr)(gr)		263,15	267,66	263,97	236,52	253,20	281,92	
Masa suelo seco + recip. (Ws+Wr)(gr)		218,69	226,13	219,47	198,79	207,38	232,49	
Masa del suelo seco (Ws) (gr)		178,09	184,93	178,77	158,09	167,02	191,81	
Masa del agua (Ww) (g	r)		44,46	41,53	44,50	37,72	45,82	49,43
Contenido de humedad (W %)		24,97	22,46	24,89	23,86	27,43	25,77	
Contenido de humdad promedio (W%)		23,71		24,38		26,60		
Peso volumétrico seco (γd)(gr/cm3)		1,6	56	1,565		1,524		


Autor: Christian Garcés

Tabla 126: CBR muestra #10

						,			
Vía: IA SIG	GCHIL!	AS (ESTADIO	DE SIGCHO	Capa V	Vegetal:	5	cm		
ID Muestra:		P10		Profu	ndidad:	100	cm		
Norma:	AAS	HTO T 193	- 2013	Coord	enadas:	17 M	733968	9921382	
110111411	- 11 10		SPECIFICAC			1, 1,1	,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Altura de caída: 18	in	Número de ca		5		seca Máx.:	1,650	gr/cm3	
		Peso de la mu	•	6000 gr		W% óptimo:		%	
Molde			Δ		1	В	15,00	7	
			Díametro:	15	Díametro:	15,1	Díametro:	15,2	
Dimensione	S		Altura:	17.9	Altura:	17.8	Altura:	17,7	
		F	PROCESO DE	- 7-		2.,,0		,,	
Número de golpes:	Número de golnes:				56 27			1	
Muestra húmeda + molde (gr)				573		790		797	
Masa molde (gr)				45	68	357		84	
Masa de la muestra húmeda (gr	.)			28	+	33		13	
Volumen de la muestra (cm3)	-		316	3,19	318	7,60	321	1,81	
Peso unitario húmedo (γm)(gr/cm3)			1,9	006	1,8	361		116	
· · · · · · · · · · · · · · · · · · ·			CONTENIDO	O DE HUME	DAD				
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde	
Número de recipiente			1	2	3	4	5	6	
Masa del recipiente (Wr) (gr)			26,60	25,80	31,10	33,40	33,50	31,40	
Masa suelo húmedo + recip. (W	Vm+Wı	·)(gr)	151,79	169,64	146,23	192,71	165,72	183,22	
Masa suelo seco + recip. (Ws+	Wr)(gr)		132,55	150,63	124,92	171,40	142,81	165,53	
Masa del suelo seco (Ws) (gr)			105,95	124,83	93,82	138,00	109,31	134,13	
Masa del agua (Ww) (gr)			19,24	19,01	21,31	21,31	22,91	17,69	
Contenido de humedad (W %)			18,16	15,23	22,71	15,44	20,96	13,19	
Contenido de humdad promedio)	16,69		19,08			,07	
Peso volumétrico seco (γd)(gr/c	m3)		1,633		1,563		1,466		
]	DESPÚES DE	LA SATURA	CIÓN				
Muestra húmeda + molde (gr)			127	713	128	808	08 138		
Masa molde (gr)			66	45	68	357	82	84	
Masa de la muestra húmeda (gr	.)		60	68	59	51	55	28	
Volúmen de la muestra (cm3)				3,19	318	7,60	321	1,81	
Peso unitario húmedo (γm)(gr/c	em3)		1,9	18	1,8	367	1,7	21	
			CONTENIDO	O DE HUME	DAD				
			Superior	Inferior	Superior	Inferior	Superior	Inferior	
Número de recipiente			1	2	3	4	5	6	
Masa del recipiente (Wr) (gr)			30,40	31,00	31,20	31,30	30,80	30,70	
Masa suelo húmedo + recip. (Wm+Wr)(gr)			146,85	170,87	162,40	127,70	198,74	166,82	
Masa suelo seco + recip. (Ws+	Wr)(gr)		132,21	150,56	140,13	110,62	165,52	132,97	
Masa del suelo seco (Ws) (gr)			101,81	119,56	108,93	79,32	134,72	102,27	
Masa del agua (Ww) (gr)			14,64	20,31	22,27	17,08	33,22	33,85	
ontenido de humedad (W %)		14,38	16,99	20,44	21,53	24,66 33,1			
Contenido de humdad promedio (W%)		15,68		20,99		28,88			
Peso volumétrico seco (γd)(gr/c	cm3)		1,6	658 1,543			1,335		

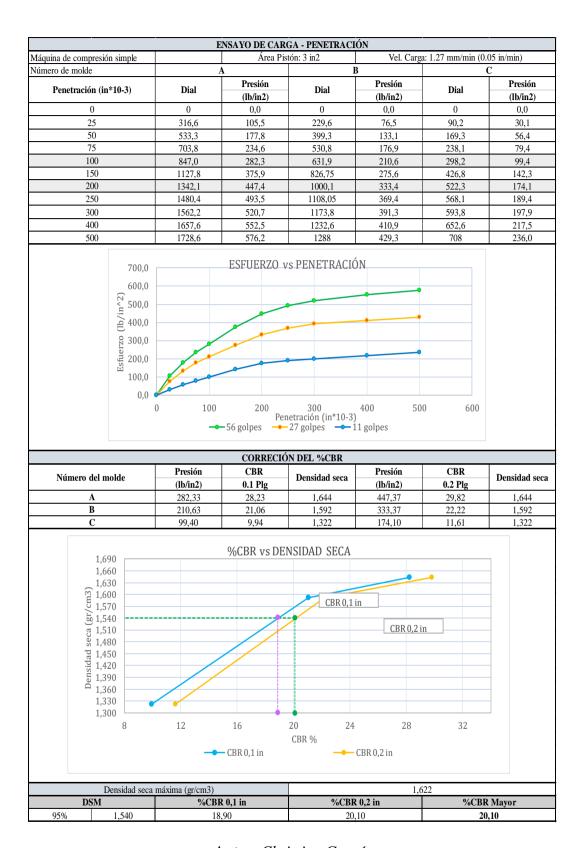
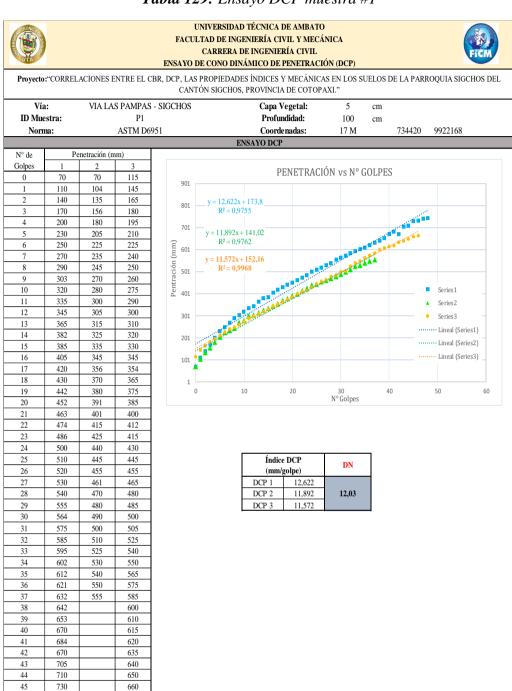

Autor: Christian Garcés

Tabla 127: CBR muestra #11

Vía:	VIA HO	OSPITAL DE	SIGCHOS	Capa V	Vegetal:	5	cm	
ID Muestra:		P11		Profu	ndidad:	100	cm	
Norma:	AA	SHTO T 193	- 2013	Coord	enadas:	17 M	735262	9922728
		F	SPECIFICAC	CIONES TÉC	NICAS			
Altura de caída:	18 in	Número de ca	apas	5	Densidad	seca Máx.:	1,622	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	uestra: 6000 gr		W% ć	ptimo:	15,50	%
N	1olde		A	1]	3	(С
Dim	ensiones		Díametro:	15,1	Díametro:	15,1	Díametro:	15,2
Dim	ensiones		Altura:	18	Altura:	17,9	Altura:	18
		I	ROCESO DE	COMPACT	ACIÓN			
Número de golpes:			5	6	2	:7	1	1
Muestra húmeda + mold	le (gr)		149	981	14	777	152	282
Masa molde (gr)			87	53	87	32	98	356
Masa de la muestra húmeda (gr)			62	28	60	45	54	126
Volumen de la muestra ((cm3)		322	3,42	320	5,51	326	6,25
Peso unitario húmedo (γm)(gr/cm3)			1,9	932	1,8	386	1,6	561
		CONTENID	O DE HUME	DAD				
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr			36,40	34,40	30,70	30,90	30,90	31,10
Masa suelo húmedo + re			109,98	143,91	122,62	98,01	105,12	92,45
Masa suelo seco + recip		r)	99,52	128,75	109,35	88,37	94,53	83,93
Masa del suelo seco (W			63,12	94,35	78,65	57,47	63,63	52,83
Masa del agua (Ww) (gr	,		10,46	15,16	13,27	9,64	10,59	8,52
Contenido de humedad			16,57	16,07	16,87	16,77	16,64	16,13
Contenido de humdad p		6)	16,32		16,82			,39
Peso volumétrico seco (γd)(gr/cm3)	_	1,661		1,614		1,4	427
			<u>DESPÚES DE</u>					
Muestra húmeda + mold	le (gr)			925		756		789
Masa molde (gr)				53		32		356
Masa de la muestra húm				72		24	_	933
Volúmen de la muestra (3,41		5,50	+	6,25
Peso unitario húmedo (γ	m)(gr/cm3)			015	<u> </u>	379	1,5	510
				O DE HUME		1		
			Superior	Inferior	Superior	Inferior	Superior	Inferior
Número de recipiente			1	2	3	4	5	6
1	Masa del recipiente (Wr) (gr)		26,50	24,70	31,10	33,20	32,20	31,80
Masa suelo húmedo + recip. (Wm+Wr)(gr)		132,20	132,60	187,70	144,60	124,30	180,80	
Masa suelo seco + recip. (Ws+Wr)(gr)		116,50	116,10	161,50	126,50	106,30	151,90	
Masa del suelo seco (W	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		90,00	91,40	130,40	93,30	74,10	120,10
fasa del agua (Ww) (gr)		15,70	16,50	26,20	18,10	18,00	28,90	
Contenido de humedad (W %)		17,44	18,05	20,09	19,40	24,29	24,06	
	Contenido de humdad promedio (W%)			,75		,75	24,18	
Peso volumétrico seco (γd)(gr/cm3)			1,6	526	1,5	69	1,216	

Autor: Christian Garcés


Tabla 128: CBR muestra #12


Proyecto:

Vía:	VIIA IIC	CDITAL DE	CICCLIOC	Como I	Vocatalı	-		
	VIA HC	OSPITAL DE :	SIGCHOS	_	Vegetal:	5	cm	
ID Muestra:		P12			ndidad:	100	cm	
Norma:	AA	SHTO T 193 -			enadas:	17 M	735784	9923037
			SPECIFICAC					
Altura de caída:	18 in	Número de ca		5		seca Máx.:	1,567	gr/cm3
Peso del martillo:	10 lb	Peso de la mu	iestra:	6000 gr		ptimo:	15,40	%
M	lolde		A	\		3	(3
Dimensiones			Díametro:	15,2	Díametro:	15,2	Díametro:	15
Dine			Altura:	12,5	Altura:	12,5	Altura:	12,5
		F	ROCESO DE					
Número de golpes:				6		7	_	1
Muestra húmeda + molde	e (gr))59		745		289
Masa molde (gr)				36		46		43
Masa de la muestra húm	-			23	_	99		46
Volumen de la muestra (8,23	-	8,23	_	8,93
Peso unitario húmedo (γι	Peso unitario húmedo (γm)(gr/cm3)			006	, , ,	307	1,7	786
			1	O DE HUME			1	
			Bandeja	Molde	Bandeja	Molde	Bandeja	Molde
Número de recipiente			1	2	3	4	5	6
Masa del recipiente (Wr)		* * * * * * * * * * * * * * * * * * * *	30,31	34,65	26,11	31,26	30,49	46,69
Masa suelo húmedo + re			250,19	257,86	221,32	258,24	256,78	329,6
Masa suelo seco + recip.		r)	219,88	223,21	195,21	226,98	206,29	272,91
Masa del suelo seco (Ws	, , ,		189,57	188,56	169,1	195,72	175,8	226,22
Masa del agua (Ww) (gr)			30,31	34,65	26,11	31,26	50,49	56,69
Contenido de humedad (Contenido de humdad pr		/ \	15,99	18,38	15,44	15,97	28,72	25,06
		0)	17,18		15,71 1,562			,89
Peso volumétrico seco (γ	a)(gr/cm3)		1,626 1, DESPÚES DE LA SATURACIÓN		002	1,4	108	
M . 1 / 1 . 11	()	1			1	70.2	11/	217
Muestra húmeda + molde	e (gr)			067		793		317
Masa molde (gr) Masa de la muestra húmo	- d- ()			36		46 47		74
	· · · ·							• •
Volúmen de la muestra (8,23 009		8,23 328		8,93 799
Peso unitario húmedo (γι	m)(gr/cm3)			O DE HUME		528	1,/	199
				Inferior		Inferior	Cunarior	Inferior
Número de recipiente			Superior 1	2	Superior 3	4	Superior 5	6
Número de recipiente Masa del recipiente (Wr)	(or)		30,31	34,65	26,11	31,26	30,49	46,69
		In)(on)						
Masa suelo húmedo + recip. (Wm+Wr)(gr) Masa suelo seco + recip. (Ws+Wr)(gr)		130,70 112,89	108,29 98.89	136,76 118,60	133,82 119,81	115,04 88,34	110,68 102,12	
Masa del suelo seco (Ws	, , , ,	1)	82,58	64,24	92,49	88,55	57,85	
Masa del agua (Ww) (gr)	, ,,,		17,81	9,40	18,16	14,01	26,70	55,43 8,56
Contenido de humedad (21.57	14.63	19,63	15.82	46.15	15.44
		(۵)	,	,	- , ,	- , -	-, -	- /
Contenido de humdad promedio (W%) Peso volumétrico seco (γd)(gr/cm3)		18,10 1,617		17,73		30,80		
1 CSO VOIGINETICO SECO ()	u)(gi/ciii3)		1,0) 1 <i>(</i>	1,553		1,375	

Autor: Christian Garcés

Tabla 129: Ensayo DCP muestra #1

Tabla 130: Ensayo DCP muestra #2

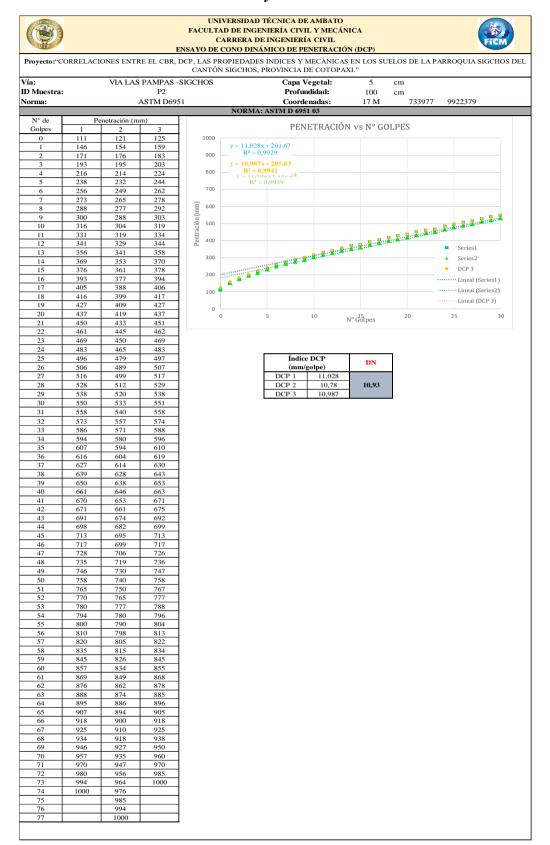


Tabla 131: Ensayo DCP muestra #3

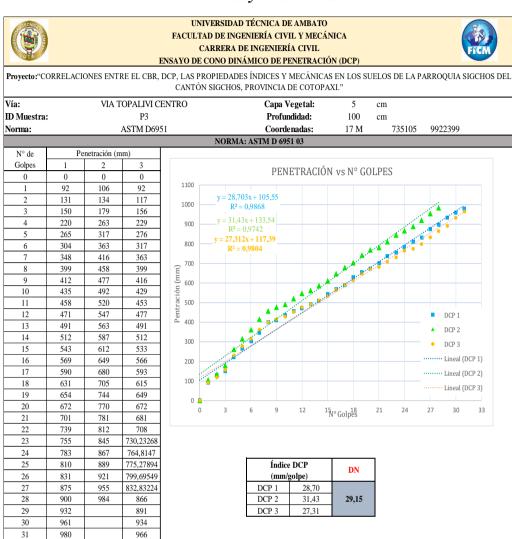


Tabla 132: Ensayo DCP muestra #4

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Vía:		VIA T	OPALIVI C	ENTRO	Capa Vegetal:	5	cm	
ID Muestra:			P4		Profundidad:	100	cm	
Norma:		1	ASTM D695	51	Coordenadas:	17 M	735357	9922728
					NORMA: ASTM D 6951 03			
N° de	Pe	netración (m	m)			,		
Golpes	1	2	3		PENETRACIO	ON vs N° G0	DLPES	
0	85	75	95	1100				
1	110	105	114		y = 30,241x + 42,835			
2	140	130	145	1000	$R^2 = 0.9874$			
3	165	155	170	000	20 465 42 244			■ ▶
4	185	179	188	900	y = 29,465x + 42,344 $R^2 = 0.9934$. 🥍	<u>*****</u>
5	210	200	220	800	R = 0,7754			
6	235	235	250		y = 33,371x + 56,056			
7	260	250	278	700	$R^2 = 0.9964$			
8	282	275	309	nm		and the		
9	305	300	340	u 600				
10	330	320	370	ıció				
11	352	350	400	Pentración (mm)		1		
12	375	375	430	□ 400				DCP 1
13	400	400	468	400				▲ DCP 2
14	430	430	505	300				DCP 3
15	455	452	540		A REAL PROPERTY OF THE PARTY OF			
16	484	480	578	200				······ Lineal (DCP 1)
17	515	510	618		_ <u> </u>			····· Lineal (DCP 2)
18	547	542	650	100	and the second s			Lineal (DCP 3)
10	500		605					

DN	-	Índice (mm/
	30,241	DCP 1
31,03	29,465	DCP 2
	33,371	DCP 3

 15 N° Golpes 20

Tabla 133: Ensayo DCP muestra #5

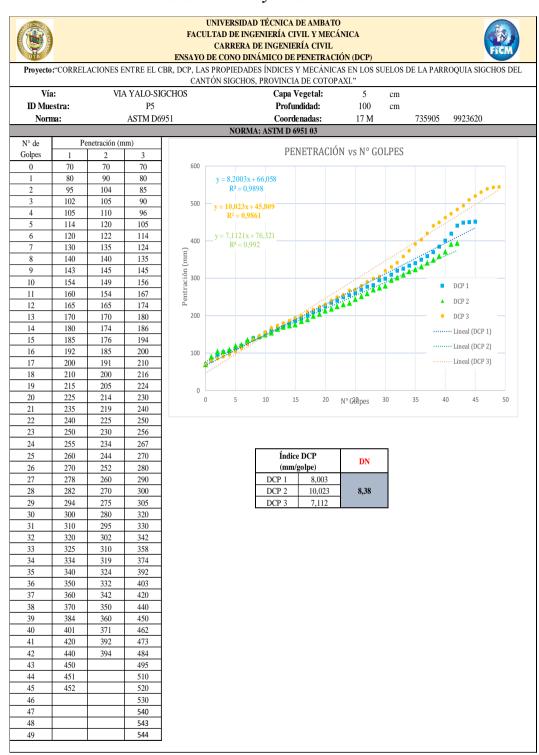
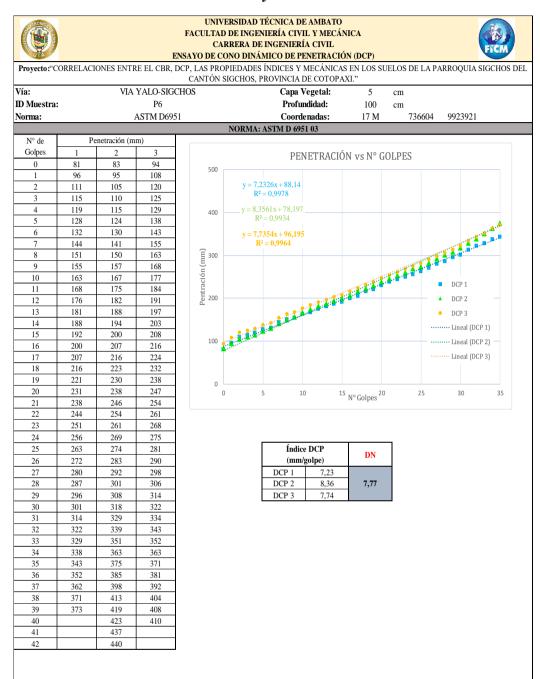
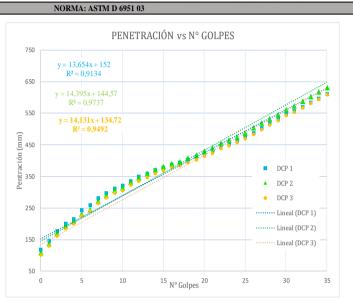



Tabla 134: Ensayo DCP muestra #6

Tabla 135:Ensayo DCP muestra #7


UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

via:	VIA GOMES(BOMBEROS)	Capa vegetai:	5	cm	
ID Muestra:	P7	Profundidad:	100	cm	
Norma:	ASTM D6951	Coordenadas:	17 M	734816	9922443

Norma:			ASTM D695
N° de	Pe	netración (m	m)
Golpes	1	2	3
0	118	108	101
1	146	137	130
2	175	169	160
3	199	194	185
4	215	209	200
5	243	231	225
6	258	245	240
7	280	271	264
8	297	290	282
9	311	306	297
10	320	314	305
11	335	332	322
12	348	345	335
13	358	359	347
14	369	370	358
15	378	380	367
16	387	390	377
17	393	396	383
18	402	407	393
19	410	417	402
20	422	429	414
21	430	439	423
22	443	454	437
23	452	464	446
24	462	475	457
25	474	487	469
26	487	503	483
27	502	518	498
28	517	532	513
29	531	545	526
30	547	561	542
31	556	573	553
32	570	587	567
33	583	603	581
34	595	617	594
35	609	630	608
36	621	644	621
37	642	660	639
38	659	677	656
39	675	691	671
40	405	565	473
41	417	582	488
42	731	745	726
43	748	763	744
44	768	781	763
45	790	799	783
46	816	820	806
47	837	840	827
48	866	865	854
49	887	887	875
50	910	907	897
51 52	928	923	914
	948 977	944	934 960
53	9//	966	
54	L	982	979

	Indice DCP (mm/golpe)				
DCP 1	13,65				
DCP 2	14,40	14,06			
DCP 3	14,13				

Tabla 136: Ensayo DCP muestra #8

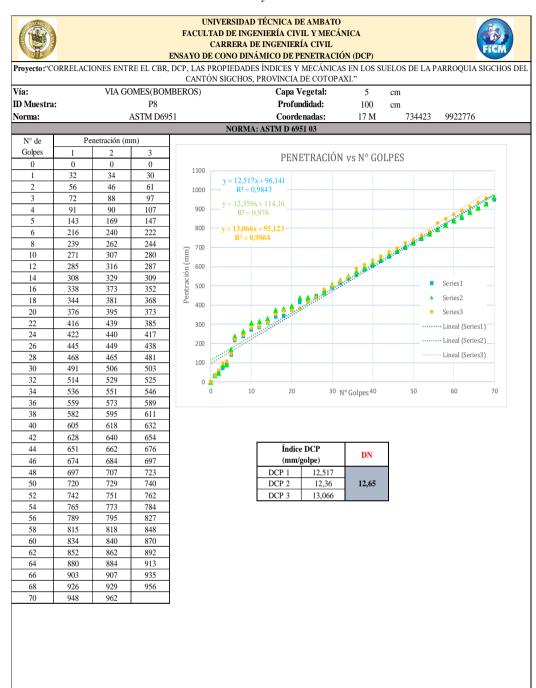


Tabla 137: Ensayo DCP muestra #9

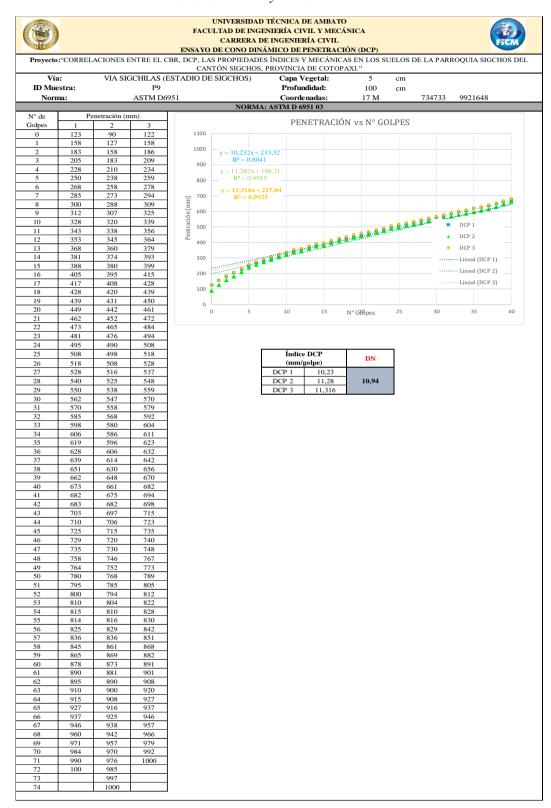
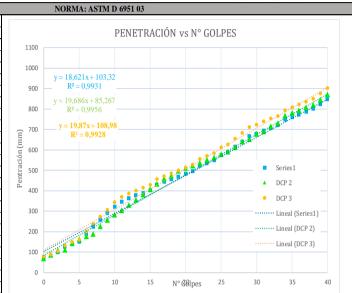


Tabla 138: Ensayo DCP muestra #10

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)

Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."


Vía:	VIA SIGCHILAS (ESTADIO DE SIGCHOS)	Capa Vegetal:	5	cm		
ID Muestra:	P10	Profundidad:	100	cm		
Norman	A CTM D C 0 5 1	Coordonadaa	17 M	722060	0021292	

Norma:			ASTM D695
270.1			`
N° de		enetración (m	
Golpes	1	2	3
0	74	69	79
1	83	87	88
2	99	108	105
3	125	112	133
4	140	145	149
5	152	164	161
6	189	177	201
7	223	189	237
8	256	226	272
9	289	256	307
10	324	284	344
11	347	305	369
12	363	331	386
13	376	357	401
14	390	382	415
15	403	407	429
16	429	434	457
17	443	459	471
18	456	472	485
19	469	498	499
20	482	511	513
21	495	524	527
22	522	537	555
23	535	550	569
24	548	562	583
25	575	580	612
26	588	592	626
27	614	612	654
28	641	640	682
29	667	-	710
		652	710
30	679	678	
31	694	691	738
32	707	717	752
33	720	730	766
34	747	768	794
35	760	781	808
36	773	794	822
37	786	807	837
38	800	820	851
39	824	845	877
40	848	871	902
41	852	884	906
42	871	897	927
43	892	926	949
44	900	948	957
45	920	961	979
46	934	974	994

987


958

47

Índice (mm/s	e DCP golpe)	DN
DCP 1	18,62	
DCP 2	19,69	19,39
DCP 3	19,87	

Tabla 139: Ensayo DCP muestra #11

588,0

595,0

619,0

632.0

644.0

669.0

694,0

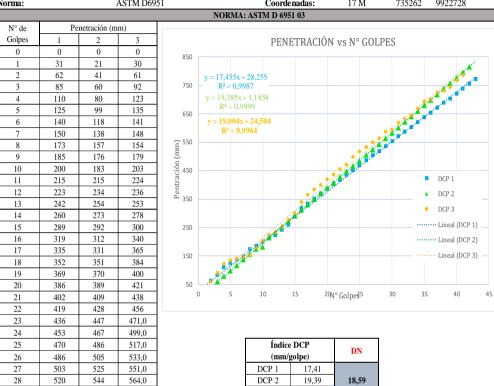
700,0

725,0

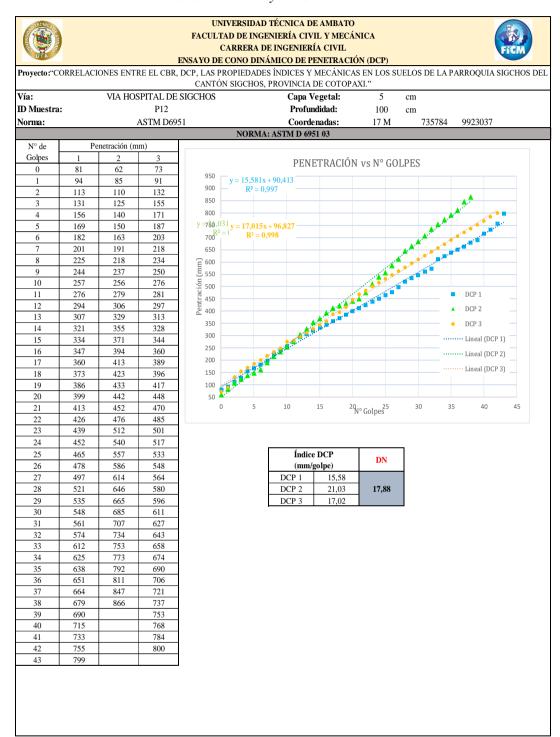
732,0

743,0 768.0

787.0


UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA CARRERA DE INGENIERÍA CIVIL

ENSAYO DE CONO DINÁMICO DE PENETRACIÓN (DCP)


Proyecto: "CORRELACIONES ENTRE EL CBR, DCP, LAS PROPIEDADES ÍNDICES Y MECÁNICAS EN LOS SUELOS DE LA PARROQUIA SIGCHOS DEL CANTÓN SIGCHOS, PROVINCIA DE COTOPAXI."

Capa Vegetal: P11 Profundidad: cm ASTM D6951 Coordenadas: 17 M

Índice (mm/g		DN
DCP 1	17,41	
DCP 2	19,39	18,59
DCP 3	18,97	

Tabla 140: Ensayo DCP muestra #12

ANEXO B.- CONTEO MANUAL DEL TRAFICO VEHICULAR

Tabla 141: Conteo manual del tráfico vehicular – Lunes

) MANU				-		I
SECNIO	Lugar: C	alle Doct					Dirino			H.
() The state of t	Dirección:	Parro quia	Sigchos-C	anton Sigcl	nos-Provine	cia de Coto	paxi			
(8)		: Ambos S 0 +500 km	Sentidos							FICM
		nes, 20 de N	lo v ie m bre	de12023			Realizad	lo por: Ch	ris tian	
					PESA	DOS				
	LIVIANO							TTOTAL	TOTAL	A C UM ULAD O P O R
HORA	S	BUSES	2D	2DA	2DB	3A	V3A	PESAD		HORA
								OS		
00h00-00h15 00h15-00h30	0	0	0	0	0	0	0	0	0	
00h30-00h45	0	0	0	0	0	0	0	0	0	j
00h45-01h00	0	0	0	0	0	0	0	0	0	
0 lh00-0 lh 15 0 lh15-0 lh30	0	0	0	0	0	0	0	0	0	
01h30-01h45	0	0	0	0	0	0	0	0	0	1
01h45-02h00 02h00-02h15	0	0	0	0	0	0	0	0	0	
02h15-02h30	0	0	0	0	0	0	0	0	0	0
02h30-02h45 02h45-03h00	0	0	0	0	0	0	0	0	0	Ĭ
03h00-03h15	0	0	0	1	0	0	0	1	1	
03h15-03h30	2	0	0	0	0	0	0	0	2	1
03h30-03h45 04h45-04h00	0	0	0	0	0	0	0	0	0	
04h00-04h15	0	1	0	0	0	0	0	0	1	
04h15-04h30 04h30-04h45	2	0	0	0	0	0	0	0	3	4
04h45-05h00	0	0	0	1	0	0	0	1	1	
05h00-05h15	1 5	0	0	1	0	0	0	1	2	
05h15-05h30 05h30-05h45	5	0	0	0	0	0	0	0	6	8
05h45-06h00 06h00-06h15	6	0	0	0	0	0	0	0	6	
06h00-06h15 06h15-06h30	6	1	0	0	0	0	0	0	8	24
06h30-06h45	4	0	0	0	0	0	0	0	4	21
06h45-07h00 07h00-07h15	5	0	0	0	2	0	0	3	7 8	
07h15-07h30	3	0	0	2	0	0	0	2	5	21
07h30-07h45 07h45-08h00	4	0	0	1 2	0	0	0	2 2	6 7	- '
07h45-08h00 08h00-08h15	4	0	0	0	0	0	0	0	4	
08h15-08h30 08h30-08h45	7	0	0	2	0	0	0	2	9	22
08h30-08h45 08h45-09h00	3 4	0	0	2	0	0	0	3 2	7 6	
09h00-09h15	3	0	0	2	0	0	0	2	5	
09h15-09h30 09h30-09h45	4 5	2	0	5	0	0	0	1 5	7 11	27
09h45-10h00	1	1	0	0	0	0	0	0	2	
10h00-10h15 10h15-10h30	7	0	0	0	0	0	0	0	5 7	
10h30-10h45	4	0	0	2	1	1	0	4	8	25
10h45-11h00 11h00-11h15	3	0	0	0	0	0	0	3	4	
11h15-11h30	3	0	0	1	0	0	0	1	4	23
11h30-11h45 11h45-12h00	5 6	0	0	0	0	0	0	0 2	5 8	-3
12h00-12h15	4	0	0	0	1	0	0	1	5	
12h15-12h30 12h30-12h45	3	1	0	3	0	0	0	0	7 2	22
12h45- 13h00	4	1	0	0	1	0	0	1	6	
13h00-13h15 13h15-13h30	3	0	0	5	0	0	0	5	8	
13h30-13h45	4	0	0	1	0	0	0	1	7 2	23
13h45-14h00	4	0	0	2	1	0	0	3	7	
14h00-14h15 14h15-14h30	5	0	0	2	0	0	0	2	8 7	
14h30-14h45	3	0	0	2	0	0	0	2	5	24
14h45- 15h00 15h00-15h15	6	0	0	3	0	0	0	3	7 9	
15h15-15h30	3	1	0	3	0	1	0	4	8	28
15h30-15h45	3	0	0	4	0	0	0	4	7	
15h45- 16h00 16h00-16h15	4	0	0	1	0	2	0	3	7	
16h15-16h30	5	1	2	0	1	0	0	3	9	27
16h30-16h45 16h45-17h00	3 5	0	0	3 2	0	0	0	3 2	7	
17h00-17h15	7	1	0	1	0	0	0	1	9	
17h15-17h30 17h30-17h45	2	2	0	2	0	0	0	2	7 6	32
17h45-18h00	3	0	0	0	0	0	0	0	3	
18h00-18h15 18h15-18h30	7 5	0	0	2	0	0	0	3	9	
18h30-18h45	3	1	0	0	0	0	0	0	4	25
18h45- 19h00 19h00- 19h15	4 2	0	0	2	0	0	0	2	6	
19h15-19h30	6	0	0	0	0	0	0	0	6	22
19h30-19h45	4	1	0	2	0	0	0	2	7	
19h45-20h00 20h00-20h15	5	0	0	0	0	0	0	0	5 3	
20h15-20h30	3	0	0	1	0	0	0	1	4	21
20h30-20h45 20h45-21h00	6	0	0	2 2	0	0	0	2	4 8	
2 lh00-2 lh 15	5	0	0	0	0	0	0	0	5	
2 lh 15 - 2 lh 30 2 lh 30 - 2 lh 45	5	0	0	2	0	0	0	2	5 2	21
21h30-21h45 21h45-22h00	1	1	0	0	0	0	0	0	2	
22h00-22h15	3	0	0	0	0	0	0	0	3	
22h15-22h30 22h30-22h45	2	0	0	0	0	0	0	0	2	12
22h45-23h00	2	0	0	0	0	0	0	0	2	
23h00-23h15	2	0	0	0	0	0	0	0	2	
23h15-23h30				0	0	0	0	0	1	9
23h30-23h45	1	0	0							
	1 1 282	0 0 27	0	0 89	0 14	0 7	0	114	1	

Tabla 142: Conteo manual del tráfico vehicular – Martes

A CHIC				EO MANU	AL DEL T	RÁFICO D	IARIO				
1500		le Doctor l			-in-in-de-Co					Es	
	Dirección: Parroquia Sigchos-Canton Sigchos-Provincia de Cotopaxi Sentidos: Ambos Sentidos										
ATU	Estación: 0 +500 km										
	Fecha: Martes 21de Noviembre del 2023 Realizado por: Christian Ariel										
					PESA	DOS				ACUMULAD	
HORA	LIVIANOS	BUSES						mom 4.1	TOTAL	OPOR	
			2D	2DA	2DB	3A	V3A	TOTAL PESADOS		HORA	
00h00-00h15	0	0	0	0	0	0	0	0	0		
00h15-00h30	1	0	0	0	0	0	0	0	1		
00h30-00h45 00h45-01h00	0	0	0	0	0	0	0	0	0		
0 lh00-0 lh 15	0	0	0	0	0	0	0	0	0		
0 lh 15-0 lh 30 0 lh 30-0 lh 45	0	0	0	0	0	0	0	0	0	1	
01h45-02h00	0	0	0	0	0	0	0	0	0		
02h00-02h15	0	0	0	0	0	0	0	0	0		
02h15-02h30 02h30-02h45	0	0	0	0	0	0	0	0	0	1	
02h45-03h00	0	0	0	0	0	0	0	0	0		
03h00-03h15 03h15-03h30	0	0	0	0	0	0	0	0	1		
03h30-03h45	1	0	0	0	0	0	0	0	1	1	
04h45-04h00 04h00-04h15	0	0	0	0	0	0	0	0	0		
04h15-04h30	0	2	2	0	0	0	0	2	4	2	
04h30-04h45	2	0	1	0	0	0	0	1	3	2	
04h45-05h00 05h00-05h15	2	0	0	0	0	0	0	0	2		
05h15-05h30	1	0	1	1	0	0	0	2	3	10	
05h30-05h45 05h45-06h00	2	0	2	0	0	0	0	3	2		
06h00-06h15	5	0	0	0	1	0	0	1	6		
06h15-06h30 06h30-06h45	1	1	2	0	0	0	0	2	4	15	
06h30-06h45 06h45-07h00	0	1	0	2	0	0	0	2	5 2		
07h00-07h15	6	0	0	0	0	0	0	0	6		
07h15-07h30 07h30-07h45	3 4	0	0	3	0	0	0	3	5 7	17	
07h45-08h00	3	0	2	0	0	0	0	2	5		
08h00-08h15 08h15-08h30	7	0	0	3	0	0	0	3	7		
08h30-08h45	4	0	3	0	1	0	0	4	8	24	
08h45-09h00 09h00-09h15	5	1	0	0	0	0	0	2	6		
09h00-09h15 09h15-09h30	3 5	0	0	0	0	0	0	0	5	0.7	
09h30-09h45	3	0	2	1	0	0	0	3	6	27	
09h45-10h00 10h00-10h15	4	0	0	2	0	0	0	2	6		
10h15-10h30	5	0	1	0	0	0	0	1	6	25	
10h30-10h45 10h45-11h00	3 4	0	0	0	0	0	0	5	- 8 - 5		
11h00-11h15	3	0	0	0	0	0	0	0	3		
1lh15-1lh30 1lh30-1lh45	4	1	2	2	0	0	0	4	5	22	
11h45- 12h00	3	0	0	0	0	0	0	1	4		
12h00-12h15	4	0	0	1	0	0	0	1	5		
12h15-12h30 12h30-12h45	5	0	0	3	0	0	0	3	7	23	
12h45-13h00	4	1	0	0	0	0	0	0	5		
13h00-13h15 13h15-13h30	8	0	3	3	0	0	0	6	8 10		
13h30-13h45	3	0	0	0	0	0	0	0	3	26	
13h45- 14h00	2	0	2	2	0	0	0	4	6		
14h00-14h15 14h15-14h30	3 5	0	2	0	0	0	0	2	5 7	2.4	
14h30-14h45	5	1	0	1	0	0	0	1	7	24	
14h45-15h00 15h00-15h15	5	0	0	0	0	0	0	1	5		
15h15-15h30	5	0	4	0	0	0	0	4	9	25	
15h30-15h45 15h45-16h00	2	0	0	1 3	0	0	0	5	9		
15h45- 16h00 16h00-16h15	3	0	0	1	0	0	0	1	4		
16h15-16h30	5	1	2	0	0	0	0	2	8	25	
16h30-16h45 16h45-17h00	3 4	2	0	2	0	0	0	5 1	8 7		
17h00-17h15	2	0	2	1	0	0	0	3	5		
17h15-17h30 17h30-17h45	8	0	0	2	0	0	0	3	7	28	
17h45-18h00	4	0	1	0	0	0	0	1	5		
18h00-18h15 18h15-18h30	6	0	2	0	0	0	0	2	8		
18h30-18h45	2	1	1	1	0	0	0	2	5	22	
18h45- 19h00	7	0	0	0	0	0	0	0	7		
19h00-19h15 19h15-19h30	5	0	0	0	0	0	0	0	5	24	
19h30-19h45	4	0	2	2	0	0	0	4	8	24	
19h45-20h00 20h00-20h15	3	0	0	0	0	0	0	0	3		
20h15-20h30	3	1	1	0	1	0	0	2	6	18	
20h30-20h45 20h45-21h00	3	0	0	0	0	0	0	0	3	-	
2 lh00-2 lh 15	2	0	0	0	0	0	0	0	2		
2 lh 15 - 2 lh 30	4	0	0	1	0	0	0	1	5	15	
21h30-21h45 21h45-22h00	3 2	0	0	0	0	0	0	0	3		
22h00-22h15	3	0	0	0	0	0	0	0	3		
22h15-22h30 22h30-22h45	2	0	0	0	0	0	0	0	1	15	
22h45-23h00	1	0	1	0	0	0	0	1	2		
	2	0	0	0	0	0	0	0	3		
23h00-23h15 23h15-23h30	2							U		10	
23h00-23h15 23h15-23h30 23h30-23h45	3	0	0	0	0	0	0	0	1	10	
23h15-23h30					0		0	0		10	

Tabla 143: Conteo manual del tráfico vehicular – Miércoles

	Lugar: Calle Doctor Hugo Arguello Dirección: Parroquia Sigehos-Canton Sigehos-Provincia de Cotopaxi Sentidos: Ambos Sentidos									
W STA	Estación: 0+500 km Feacha: Miercoles 22 de Noviembre del 2023 Realizado por: Christian Ariel									FICM
	reacha. Whe	icoles 22 de	No vielilibre d	e12023			Kealizado	por: Chris	tian Anei	
ORA	LIVIANOS	BUSES	2D	2DA	2DB	3A	V3A	TOTAL PESADOS	TOTAL	O POR HORA
00h00-00h15	0	0	0	0	0	0	0	0	0	
00h15-00h30 00h30-00h45	0	0	0	0	0	0	0	0	0	
00h45-01h00	0	0	0	0	0	0	0	0	0	
0 lh 00-0 lh 15 0 lh 15-0 lh 30	0	0	0	0	0	0	0	0	0	
01h30-01h45	0	0	0	0	0	0	0	0	0	0
01h45-02h00 02h00-02h15	0	0	0	0	0	0	0	0	0	
02h15-02h30	0	0	0	0	0	0	0	0	0	0
02h30-02h45 02h45-03h00	0	0	0	0	0	0	0	0	0	
03h00-03h15 03h15-03h30	0	0	0	0	0	0	0	0	0	
03h30-03h45	0	0	0	0	0	0	0	0	0	2
04h45-04h00 04h00-04h15	0	0	0	0	0	0	0	0	0	
04h15-04h30	0	1	0	1	0	0	0	1	2	1
04h30-04h45 04h45-05h00	0	0	0	0	0	0	0	0	1	
05h00-05h15	1	0	0	2	0	0	0	2	3	
05h15-05h30 05h30-05h45	1 2	0	0	3	0	0	0	3 0	2	8
05h45-06h00	5	0	0	1	0	0	0	1	6	
06h00-06h15 06h15-06h30	3 5	0	0	0	0	0	0	0	6	
06h30-06h45	3	0	0	3	0	0	0	3	6	16
06h45-07h00 07h00-07h15	3	0	0	2	2	0	0	4	7	
07h15-07h30 07h30-07h45	4	0	0	2	0	0	0	2	6	25
07h30-07h45 07h45-08h00	3 5	0	0	3	0	0	0	3	7 6	
08h00-08h15 08h15-08h30	5	0	0	1	0	0	0	1	6	
08h30-08h45	3 5	0	0	1	0	0	0	1	6	25
08h45-09h00 09h00-09h15	6	0	0	3	0	0	0	3	7	
09h15-09h30	4	0	0	0	0	0	0	0	4	24
09h30-09h45 09h45-10h00	0 4	2	0	3 0	2	0	0	3	5	
10h00-10h15	3	0	0	2	0	0	0	2	5	
10h15-10h30 10h30-10h45	5	0	0	2	0	0	0	2	5	23
10h45-11h00	2	0	0	1	0	0	0	1	3	
11h00-11h15 11h15-11h30	2	1	0	0	0	0	0	0	3	
11h30-11h45	4	0	0	5	0	0	0	5	9	19
11h45- 12h00 12h00- 12h15	6	0	0	3	0	0	0	3	9	
12h15-12h30	0	0	0	1	0	0	0	1	1	24
12h30-12h45 12h45-13h00	4	0	0	2	0	0	0	2 2	4	
13h00-13h15 13h15-13h30	5	0	0	3	0	0	0	2 3	7 6	
13h30-13h45	1	0	0	1	0	0	0	1	2	18
13h45 - 14h00 14h00 - 14h15	5	0	0	2	0	0	0	3	7	
14h 15 - 14h 30	3	0	0	2	0	0	0	2	5	27
14h30-14h45 14h45-15h00	2	0	0	3	0	0	0	3	7	
15h00-15h15	7	0	0	4	0	0	0	4	11	
15h15-15h30 15h30-15h45	3	0	0	3	0	0	0	3	6	25
15h45-16h00	4	2	0	0	0	1	0	1	7	
16h00-16h15 16h15-16h30	3	0	0	4	0	0	0	2	8	
16h30-16h45	4	0	0	0	1	1	0	2	6	20
16h45 - 17h00 17h00 - 17h15	2	0	0	2	0	0	0	3	5 5	
17h15-17h30 17h30-17h45	3 2	0	0	1	0	0	0	1 2	4	24
17h45-18h00	7	0	0	0	0	0	0	0	7	
18h00-18h15	3	0	0	0	0	0	0	4 0	7	
18h15-18h30 18h30-18h45	5	0	0	1	1	0	0	2	8	22
18h45 - 19h00 19h00 - 19h15	2 2	0	0	0	0	0	0	0	3	
19h 15 - 19h 30	4	0	0	0	0	0	0	0	4	16
19h30-19h45 19h45-20h00	3 4	0	0	0	0	0	0	3	4	
20h00-20h15	2	0	0	0	1	1	0	2	4	
20h15-20h30 20h30-20h45	1 2	0	0	2	0	0	0	2	4	18
20h45-21h00	3	0	0	0	1	0	0	1	4	
2 lh00-2 lh 15 2 lh 15-2 lh 30	3	0	0	0	0	0	0	0 2	5	
2 lh30-2 lh45	2	0	0	0	0	0	0	0	2	11
21h45-22h00 22h00-22h15	2	2	0	0	0	0	0	0	3	
22h15-22h30	2	0	0	0	0	0	0	0	2	14
22h30-22h45 22h45-23h00	1	0	0	0	0	0	0	1	2	-
23h00-23h15	3	0	0	1	1	0	0	2	5	
23h15-23h30 23h30-23h45	1	0	0	0	0	0	0	0	1	11
23h45-00h00	0	0	0	0	0	0	0	0	0	
SUB. TOT	232	23	0	93	23 12	4	0	120	l	

Tabla 144: Conteo manual del tráfico vehicular – Jueves

TEGNIC				EO MANU	AL DEL TI	RÁFICO DI	IARIO					
65	Lugar: Cal Dirección: P	le Doctor l arroquia Sigo	Hugo Argu hos-Canton	ello Sigchos-Pro	vincia de Cot	орахі						
	Sentidos:	Ambos Sen	tidos							-N -I T		
ATU	Estación: 0 +		iambra dal 2	023			Paalizada	nor: Chris	tion Arial			
	Fecha: Jueves, 23 de Noviembre del 2023 Realizado por: Christian Ariel											
HORA	LIVIANOS	BUSES	2D	2DA	PES A	3A	V3A	TOTAL PESADOS	TOTAL	ACUMULAD POR HORA		
00h00-00h15	0	0	0	0	0	0	0	0	0			
00h15-00h30	0	0	0	0	0	0	0	0	0			
00h30-00h45 00h45-01h00	0	0	0	0	0	0	0	0	0			
00h45-01h00 01h00-01h15	0	0	0	0	0	0	0	0	0			
01h15-01h30	0	0	0	0	0	0	0	0	0	1		
01h30-01h45	0	0	0	0	0	0	0	0	0			
01h45-02h00 02h00-02h15	0	0	0	0	0	0	0	0	0			
02h15-02h30	0	0	0	0	0	0	0	0	0	0		
02h30-02h45 02h45-03h00	0	0	0	0	0	0	0	0	0	Ĭ		
02h45-03h00 03h00-03h15	0	0	0	0	0	0	0	0	0			
03h15-03h30	0	0	0	0	0	0	0	0	0	0		
03h30-03h45	1	0	0	1	0	0	0	1	2	Ĭ		
04h45-04h00 04h00-04h15	0	0	0	0	0	0	0	0	1			
04h15-04h30	0	1	0	0	0	0	0	0	1	4		
04h30-04h45	2	0	0	3	0	0	0	3	5	7		
04h45-05h00 05h00-05h15	2	0	0	0	0	0	0	0	2			
05h15-05h30	1	0	0	1	0	0	0	1	2	9		
05h30-05h45	3	0	0	3	0	0	0	3	6	9		
05h45-06h00 06h00-06h15	3	0	0	0	0	0	0	0	1			
06h15-06h30	2	0	0	2	0	0	0	2	4	13		
06h30-06h45	7	0	0	1	0	0	0	1	8	13		
06h45-07h00 07h00-07h15	6	2	0	2	0	0	0	3	9			
07h00-07h15 07h15-07h30	4	0	0	2	0	0	0	2	6	20		
07h30-07h45	1	0	0	1	1	0	0	2	3	30		
07h45-08h00 08h00-08h15	1	0	0	3	0	0	0	3	4			
08h15-08h30	1 4	0	0	1	0	0	0	1	6	4-		
08h30-08h45	4	0	0	3	0	0	0	3	7	15		
08h45-09h00	1	0	0	2	0	0	0	2	3			
09h00-09h15 09h15-09h30	4	0	0	5	0	0	0	5 1	5			
09h30-09h45	3	0	0	1	0	1	0	2	5	25		
09h45-10h00	2	2	0	1	0	0	0	1	5			
10h00-10h15 10h15-10h30	3 4	0	0	1	0	0	0	1	5	ł		
10h30-10h45	2	1	0	4	0	0	0	4	7	19		
10h45-11h00	1	0	0	1	1	0	0	2	3			
11h00-11h15 11h15-11h30	4	0	0	3 0	0	0	0	3 0	7			
11h30-11h45	1	0	0	1	0	0	0	1	2	22		
11h45-12h00	3	0	0	2	0	0	0	2	5			
12h00-12h15 12h15-12h30	3	0	0	0	0	0	0	0	3			
12h15-12h30 12h30-12h45	3	0	0	2	0	0	0	2	5	14		
12h45-13h00	2	3	0	0	0	1	0	1	6			
13h00-13h15 13h15-13h30	5 6	1	0	3	0	0	0	3	7 10			
13h30-13h45	1	0	0	1	0	0	0	1	2	22		
13h45- 14h00	2	0	0	1	0	0	0	1	3			
14h00-14h15	5	0	0	2	0	0	0	2	8			
14h15-14h30 14h30-14h45	2	1	0	3	0	0	0	3	6	23		
14h45-15h00	2	0	0	1	1	0	0	2	4			
15h00-15h15	2	2	0	2	0	0	0	2	6			
15h15-15h30 15h30-15h45	2	0	0	3	0	0	0	3	5	22		
15h45-16h00	4	0	0	0	1	1	0	2	6			
16h00-16h15	3	0	0	1	0	0	0	1	4			
16h15-16h30 16h30-16h45	2	0	0	4	0	0	0	2 4	6	20		
16h45- 17h00	3	1	0	0	0	0	0	0	4			
17h00-17h15	2	0	0	3	0	0	0	3	5			
17h15-17h30 17h30-17h45	3	0	0	3	0	0	0	3	4	22		
17h30-17h45 17h45- 18h00	4	0	0	1	0	0	0	1	5			
18h00-18h15	2	0	0	0	1	0	0	1	3			
18h15-18h30 18h30-18h45	6	0	0	2	0	0	0	2	5	18		
18h30-18h45 18h45-19h00	3	2	0	1	0	0	0	1	6			
19h00-19h15	5	0	0	1	0	0	0	1	6			
19h15-19h30 19h30-19h45	3	0	0	0	0	0	0	2	5	26		
19h30-19h45 19h45-20h00	3	0	0	1	0	0	0	1	4			
20h00-20h15	2	0	0	2	1	0	0	3	5			
20h15-20h30	3	0	0	3	0	0	0	3	6	19		
20h30-20h45 20h45-21h00	5 2	0	0	1	0	0	0	1	3			
2 lh00-2 lh15	3	0	0	1	0	0	0	1	4			
2 lh 15 - 2 lh 30	4	0	0	2	0	0	0	2	6	19		
21h30-21h45 21h45-22h00	3 2	0	0	0	0	0	0	0	5			
21h45-22h00 22h00-22h15	3	0	0	0	0	0	0	0	3			
22h15-22h30	1	0	0	2	0	0	0	2	3	16		
22h30-22h45	6	0	0	0	0	0	0	0	6			
22h45-23h00 23h00-23h15	0 4	0	0	0	0	0	0	0	5			
23h15-23h30	2	0	0	2	0	0	0	2	4	14		
23h30-23h45	1	0	0	0	0	0	0	0	1	14		
23h45-00h00	0 226	0 26	0	0	0 8	0	0	0 126	0			
S UB. TOT												

Tabla 145: Conteo manual del tráfico vehicular – Viernes

SECNICALO	Lugar: Calle Doctor Hugo Arguello Dirección: Parroquia Sigehos-Canton Sigehos-Provincia de Cotopaxi Sentidos: Ambos Sentidos															
UTA	Estación:0+	+500 km es, 24 de Nov		023			Realizado	nor: Chris	ian Ariel							
	I cena. vieni	C3, 24 dC 110	temore del 2	023	PESA		Tre unzudo	portentis	11101							
HORA	LIVIANOS	BUSES	2D	2DA	2DB	3A	V3A	TOTAL PESADOS	TOTAL	ACUM ULADO POR HORA						
00h00-00h15 00h15-00h30	0	0	0	0	0	0	0	0	0							
00h30-00h45	1	0	0	0	0	0	0	0	1							
00h45-01h00 01h00-01h15	0	0	0	0	0	0	0	0	0	2						
01h15-01h30	0	0	0	0	0	0	0	0	0	_						
0 lh30-0 lh45 0 lh45-02h00	0	0	0	0	0	0	0	0	0	•						
02h00-02h15	0	0	0	0	0	0	0	0	0	0						
02h15-02h30 02h30-02h45	0	0	0	0	0	0	0	0	0							
02h45-03h00 03h00-03h15	0	0	0	0	0	0	0	0	0	0						
03h15-03h30	0	0	0	0	0	0	0	0	0	ĺ						
03h30-03h45 04h45-04h00	0	0	0	0	0	0	0	0	0							
04h00-04h15	2	0	0	0	0	0	0	0	2	2						
04h15-04h30 04h30-04h45	2	0	0	1	0	0	0	1	4	•						
04h45-05h00	1	0	0	1	0	0	0	1	2							
05h00-05h15 05h15-05h30	2	0	0	2	0	0	0	2	4	9						
05h30-05h45	1 2	0	0	2	0	0	0	2	3							
05h45-06h00 06h00-06h15	0	0	0	0	0	0	0	0	0	10						
06h15-06h30 06h30-06h45	1 5	0	0	2	0	0	0	2	3							
06h45-07h00	7	2	0	4	0	0	0	4	13							
07h00-07h15 07h15-07h30	3 2	0	0	1 2	0	0	0	3	5	28						
07h30-07h45	3	0	0	3	0	0	0	3	6							
07h45-08h00 08h00-08h15	3	0	0	3	0	0	0	3	6	24						
08h15-08h30	4	0	0	2	0	0	0	2	6							
08h30-08h45 08h45-09h00	5	0	0	1	0	0	0	1	4							
09h00-09h15	2	0	0	2	0	0	0	2 2	4	20						
09h15-09h30 09h30-09h45	4	0	0	2	0	0	0	1	5							
09h45- 10h00 10h00-10h15	3 4	0	0	0	0	0	0	2	5 5	21						
10h15-10h30	3	0	0	3	0	0	0	3	6	21						
10h30-10h45 10h45-11h00	1 4	0	0	3	0	0	0	3	7							
11h00-11h15	1	0	0	0	0	0	0	0	1	16						
11h15-11h30 11h30-11h45	3	0	0	2	0	0	0	2	5 6							
11h45-12h00	4	1	0	2	0	1	0	3	8							
12h00-12h15 12h15-12h30	0	0	0	2	0	0	0	2	2 2	21						
12h30-12h45 12h45-13h00	7 5	3	0	3 2	1	0	0	4 2	12 10							
13h00-13h15	2	0	0	1	0	0	0	1	3	27						
13h15-13h30 13h30-13h45	3 2	0	0	3	0	0	0	3	5 5							
13h45-14h00	5	0	0	2	0	0	0	2	7							
14h00-14h15 14h15-14h30	2	0	0	3	0	0	0	3	5	22						
14h30-14h45	1	1	0	3	0	0	0	3	5							
14h45-15h00 15h00-15h15	4	0	0	1	0	0	0	1	7 5	22						
15h15-15h30 15h30-15h45	3	0	0	2 2	0	0	0	2 2	5 5							
15h45-16h00	3	1	0	2	1	0	0	3	7							
16h00-16h15 16h15-16h30	4 3	0	0	1	0	0	0	2	5	23						
16h30-16h45	6	0	0	4	0	1	0	5	11							
16h45 - 17h00 17h00 - 17h15	4	0	0	1	0	0	0	2	5	25						
17h15-17h30 17h30-17h45	5	0	0	2	0	0	0	2	7							
17h30-17h45 17h45-18h00	2 3	0	0	2	0	0	0	2	4 5							
18h00-18h15 18h15-18h30	5	0	0	3	0	0	0	2 3	8	20						
18h30-18h45	2	0	0	1	0	0	0	1	3							
18h45 - 19h00 19h00 - 19h15	2	0	0	3	1	0	0	3	6	24						
19h15-19h30	3	0	0	1	0	0	0	1	4							
19h30-19h45 19h45-20h00	4 2	0	0	1	0	0	0	1	3							
20h00-20h15 20h15-20h30	4 2	1	0	2	0	0	0	2	7	20						
20h30-20h45	2	0	0	1	0	0	0	1	4							
20h45-21h00 21h00-21h15	2	0	0	1	0	0	0	1	3 2	12						
21h15-21h30	4	0	0	2	0	0	0	2	6	12						
2 lh30-2 lh45 2 lh45- 22h00	4	0	0	0	0	0	0	0	5							
22h00-22h15	2	1	0	0	0	0	0	0	3	15						
22h15-22h30 22h30-22h45	2 2	0	0	2	0	0	0	2	3							
22h45-23h00	0	0	0	0	0	0	0	0	0							
23h00-23h15 23h15-23h30	3	0	0	0	0	0	0	0	1	11						
23h30-23h45 23h45-00h00	1 0	0	0	0	0	0	0	0	1 0							
S UB.TOT	220	21	0	124	7	4	0	135	J							
TOTAL	220	21			13 76	5										

Tabla 146: Conteo manual del tráfico vehicular – Sábado

STECHICA	CONTEO MANUAL DEL TRÁFICO DIARIO										
	Lugar: Calle Doctor Hugo Arguello Dirección: Parroquia Sigchos-Canton Sigchos-Provincia de Cotopaxi										
		Ambos Sen	tidos							FICM	
	Estación: 0 + 500 km Fecha: Sábado, 25 de Noviembre del 2023 Realizado por: Christian Ariel										
					PESA	DOS					
HORA	LIVIANOS	BUSES	2D	2DA	2DB	3A	V3A	TOTAL PESADOS	TOTAL	ACUMULADO POR HORA	
00h00-00h15	1	0	0	0	0	0	0	0	1		
00h15-00h30 00h30-00h45	3 0	0	0	0	0	0	0	0	0		
00h45-01h00	0	0	0	0	0	0	0	0	0		
0 lh00-0 lh 15 0 lh 15-0 lh 30	0	0	0	0	0	0	0	0	0	3	
0 lh30-0 lh45 0 lh45-02h00	1	0	0	0	0	0	0	0	2	3	
02h00-02h15	0	0	0	0	0	0	0	0	0		
02h15-02h30 02h30-02h45	1	0	0	0	0	0	0	0	1	3	
02h45-03h00	1	0	0	0	0	0	0	0	1		
03h00-03h15 03h15-03h30	0	0	0	0	0	0	0	0	0		
03h30-03h45	0	0	0	0	0	0	0	0	0	3	
04h45-04h00 04h00-04h15	0	0	0	0	0	0	0	0	0		
04h15-04h30	0	0	0	0	0	0	0	0	0	0	
04h30-04h45 04h45-05h00	1	0	0	0	0	0	0	0	2		
05h00-05h15	0	0	0	0	0	0	0	0	0		
05h15-05h30 05h30-05h45	3	0	0	1	0	0	0	1	3	3	
05h45-06h00 06h00-06h15	2	0	0	0	0	0	0	2	4		
06h15-06h30	3	0	0	0	0	0	0	0	3	12	
06h30-06h45 06h45-07h00	3	1	0	3	0	0	0	3	7 5	"-	
07h00-07h15	0	0	0	0	0	0	0	0	0		
07h15-07h30 07h30-07h45	2 4	0	0	2	0	0	0	1 2	6	15	
07h45-08h00	4	0	0	0	0	0	0	0	4		
08h00-08h15 08h15-08h30	3	0	0	2	0	0	0	2	5		
08h30-08h45	3	0	0	1	0	0	0	1	4	15	
08h45-09h00 09h00-09h15	3	0	0	0	0	0	0	3	3		
09h15-09h30	5	1	0	2	0	0	0	2	8	16	
09h30-09h45 09h45-10h00	3 2	0	0	2	0	0	0	2	5 4		
10h00-10h15	0	0	0	0	0	0	0	0	0		
10h15-10h30 10h30-10h45	6	0	0	2	0	0	0	2	8	17	
10h45-11h00 11h00-11h15	4 2	0	0	1	0	0	0	1	5		
11h00-11h15 11h15-11h30	2	0	0	1	0	0	0	1	3	24	
11h30-11h45 11h45-12h00	6	0	0	2	0	0	0	3	9		
12h00-12h15	0	0	0	0	0	0	0	0	0		
12h15-12h30 12h30-12h45	3	0	0	1	0	0	0	1	5	15	
12h45- 13h00	3	1	0	1	0	0	0	1	5		
13h00-13h15 13h15-13h30	2	0	0	0	0	0	0	0	2	45	
13h30-13h45	10	0	0	3	0	0	0	3	13	15	
13h45- 14h00 14h00- 14h15	2	0	0	0	0	0	0	0	3 2		
14h15-14h30	3	1	0	1 2	0	0	0	1 2	5	20	
14h30-14h45 14h45-15h00	4	0	0	0	0	0	0	0	6 4		
15h00-15h15 15h15-15h30	2 4	0	0	2	0	0	0	2	6		
15h30-15h45	5	1	0	2	1	0	0	3	9	17	
15h45- 16h00 16h00-16h15	4	2	0	3	0	0	0	3	9		
16h15-16h30	4	0	0	4	0	0	0	4	8	27	
16h30-16h45 16h45-17h00	3 2	0	0	1	0	0	0	1	4		
17h00-17h15	1	0	0	0	0	0	0	0	1		
17h15-17h30 17h30-17h45	3	0	0	1	0	0	0	2	5	17	
17h45- 18h00	4	0	0	0	0	0	0	0	4		
18h00-18h15 18h15-18h30	4	0	0	2	0	0	0	2	6	47	
18h30-18h45	6	0	0	0	0	0	0	0	6	17	
18h45- 19h00 19h00- 19h15	3 4	0	0	0	0	0	0	0	3		
19h15-19h30	5	0	0	2	0	0	0	2	7	19	
19h30-19h45 19h45-20h00	3	0	0	0	0	0	0	0	3		
20h00-20h15 20h15-20h30	2	0	0	0	0	0	0	0	2		
20h30-20h45	6	0	0	2	0	0	0	2	3	16	
20h45-21h00 21h00-21h15	3	0	0	0	0	0	0	0	3 2		
21h15-21h30	4	0	0	1	0	0	0	1	5	14	
2 lh30-2 lh45 2 lh45-22h00	3	0	0	1	0	0	0	1	3		
22h00-22h15	0	0	0	2	0	0	0	2	2		
22h15-22h30 22h30-22h45	3 4	0	0	1	0	0	0	1	5 5	14	
22h45-23h00	2	0	0	0	0	0	0	0	2		
23h00-23h15 23h15-23h30	5	0	0	0	0	0	0	0	5 2		
23h30-23h45	2	0	0	0	0	0	0	0	2	17	
23h45-00h00 S UB.TOT	0 227	0	0	79	0 4	0	0	0 83	0		

Tabla 147: Conteo manual del tráfico vehicular - Domingo

	Dirección: Parroquia Sigchos-Canton Sigchos-Provincia de Cotopaxi Sentidos: Ambos Sentidos Estación: 0.8500 km									
410	Estación: 0 + 500 km Fecha: Domingo, 26 de Noviembre del 2023 Realizado por: Christian Ar									el
ORA	LIVIANOS	BUSES	2D	2DA	PESA 2DB	DOS 3A	V3A	TOTAL	TOTAL	ACUMUL DO POR HORA
00h00-00h15	0	0	0	0	0	0	0	PESADOS 0	0	
00h15-00h30 00h30-00h45	0	0	0	0	0	0	0	0	0	
00h30-00h45 00h45-01h00	0	0	0	0	0	0	0	0	0	
01h00-01h15 01h15-01h30	0	0	0	0	0	0	0	0	0	
01h30-01h45	0	0	0	0	0	0	0	0	0	1
01h45-02h00 02h00-02h15	0	0	0	0	0	0	0	0	0	
02h15-02h30	0	0	0	0	0	0	0	0	0	0
02h30-02h45 02h45-03h00	0	0	0	0	0	0	0	0	0	-
03h00-03h15	0	0	0	0	0	0	0	0	0	
03h15-03h30 03h30-03h45	0	0	0	0	0	0	0	0	0	0
04h45-04h00	0	0	0	0	0	0	0	0	0	
04h00-04h15 04h15-04h30	0	0	0	0	0	0	0	0	0	
04h30-04h45	2	0	0	1	0	0	0	1	3	0
04h45-05h00 05h00-05h15	2	0	0	0	0	0	0	0	3	
05h15-05h30 05h30-05h45	3	0	0	0	0	0	0	0	3	7
05h30-05h45 05h45-06h00	1 2	0	0	1	0	0	0	1	4	
06h00-06h15 06h15-06h30	1 2	0	0	0	0	0	0	0	2 2	
06h30-06h45	3	0	0	0	0	0	0	0	3	11
06h45-07h00 07h00-07h15	1	0	0	0	0	0	0	0	3	
07h15-07h30	2	0	0	3	0	0	0	3	5	9
07h30-07h45 07h45-08h00	2	0	0	0	0	0	0	0	6	Ĭ
08h00-08h15	0	0	0	0	0	0	0	0	0	
08h15-08h30 08h30-08h45	4	0	0	2	0	0	0	2	5	13
08h45-09h00	5	0	0	2	0	0	0	2	7	
09h00-09h15 09h15-09h30	1	0	0	3	0	0	0	3	5	
09h30-09h45	5	0	0	0	0	0	0	0	5	17
09h45-10h00 10h00-10h15	0	0	0	0	0	0	0	0	0	
10h15-10h30	1	2	0	1 2	0	0	0	1	4	11
10h30-10h45 10h45-11h00	5	0	0	0	0	0	0	3 0	7 5	
11h00-11h15 11h15-11h30	3	0	0	0	0	0	0	0	3	
11h30-11h45	2	0	0	2	0	0	0	2	4	18
11h45 - 12h00 12h00 - 12h15	1	0	0	0	0	0	0	0	1	
12h15-12h30	2	0	0	2	0	0	0	2	4	9
12h30-12h45 12h45-13h00	5	0	0	0	0	0	0	0	7	-
13h00-13h15	1	0	0	0	0	0	0	0	1	
13h15-13h30 13h30-13h45	3 5	0	0	0	0	0	0	0	5	13
13h45-14h00	2	0	0	1	0	0	0	1	3	
14h00-14h15 14h15-14h30	5	0	0	0	0	0	0	0	5	
14h30-14h45	4	0	0	0	0	0	0	0	4	12
14h45-15h00 15h00-15h15	0	0	0	0	0	0	0	0	0	
15h15-15h30 15h30-15h45	4	0	0	2	0	0	0	2	6	12
15h30-15h45 15h45-16h00	4 2	0	0	1 2	0	0	0	1 2	5	
16h00-16h15 16h15-16h30	3	0	0	0	0	0	0	0	3	
16h30-16h45	4	0	0	2	0	0	0	2	6	17
16h45-17h00 17h00-17h15	3	0	0	0	0	0	0	0	3	
17h15-17h30	2	0	0	0	1	0	0	1	3	16
17h30-17h45 17h45-18h00	3	0	0	0	0	0	0	0	5	
18h00-18h15	2	0	0	0	0	0	0	0	2	
18h15-18h30 18h30-18h45	4	0	0	0	0	0	0	0	7	11
18h45-19h00	1	0	0	1	0	0	0	1	2	
19h00-19h15 19h15-19h30	0 4	0	0	0	0	0	0	0	4	,_
19h30-19h45	4	0	0	3	0	0	0	3	7	15
19h45-20h00 20h00-20h15	3	0	0	0	0	0	0	0	3	
20h15-20h30	2	0	0	2	0	0	0	2	4	15
20h30-20h45 20h45-21h00	3	0	0	0	0	0	0	0	3	
21h00-21h15	0	0	0	0	0	0	0	0	0	
2 lh 15 - 2 lh 30 2 lh 30 - 2 lh 45	3	0	0	2	0	0	0	2	6	13
2 lh45 - 22h00	2	0	0	0	0	0	0	0	2	
22h00-22h15 22h15-22h30	3	0	0	0	0	0	0	0	3	11
22h30-22h45	4	0	0	1	0	0	0	1	5	71
22h45-23h00 23h00-23h15	3	0	0	0	0	0	0	0	3	
23h15-23h30	2	0	0	0	0	0	0	0	2	11
		0	0	0	0	0	0	0	1	1
23h30-23h45 23h45-00h00	0	0	0	0	0	0	0	0	0	

ANEXO C.- IMÁGENES

Autor: Christian Garcés

Autor: Christian Garcés

Autor: Christian Garcés

Autor: Christian Garcés