Maestría en Matemática Aplicada

Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/32203

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Modelo de predicción del resultado en exámenes de acceso a la educación superior para estudiantes que se preparan en centros de capacitación preuniversitaria usando algoritmos de Machine Learning.
    (Universidad Técnica de Ambato. Facultad de Ingeniería en Sistemas, Electrónica e Industrial. Maestría en Matemática Aplicada, 2023) Coba Gavilánez, Christian Danilo; Benalcázar Palacios, Marco Enrique
    La nota de admisión para el ingreso a la educación superior define si un estudiante ingresa o no la carrera de su interés. En Ecuador se ofertan cupos para el 56% de los postulantes a tercer nivel [1]. Esto hace que los estudiantes que optan por un cupo se preparen adicionalmente en un programa preuniversitario. Los cursos de preparación preuniversitaria tienen la misión de hacer que un estudiante obtenga una buena nota y pueda postular para tener una mayor probabilidad de ingreso a la universidad. Usualmente un programa preuniversitario consta de varios procesos académicos y evaluaciones continuas. En este trabajo se propone tener una predicción de la nota que sacará un estudiante en su examen de ingreso a la universidad antes de completar el programa preuniversitario. Adicionalmente se desea conocer cuáles son los factores de mayor relevancia que hacen que esta nota varíe. En los resultados se puede ver que la filial Ambato, un curso de 10 meses y los simulacros de exámenes son factores que tienen un impacto directo en la nota final de admisión. Los modelos de predicción implementados en este trabajo se basan en el uso de regresión lineal y redes neuronales artificiales (RNA). Los resultados de predicción de ambos modelos son similares, pero la ventaja del modelo de regresión lineal es que se puede interpretar cada una de las variables predictoras. Los datos y las variables de interés se obtuvieron del centro de estudios Quality Up, con información de procesos de admisión de 300 estudiantes pertenecientes al ciclo sierra 2022.
  • Item
    Aplicación de algoritmos de Machine Learning para predecir la deserción estudiantil en alumnos de primer y segundo semestre en universidades públicas del Ecuador.
    (Universidad Técnica de Ambato. Facultad de Ingeniería en Sistemas, Electrónica e Industrial. Maestría en Matemática Aplicada, 2023) Rodríguez Vásconez, Cristóbal Alejandro; Benalcázar Palacios, Marco Enrique
    Se estima que en Ecuador la tasa de deserción en los dos primeros semestres de universidad es del 20%. Existen factores socioeconómicos que influyen en el abandono académico de un estudiante. La carencia de programas que atiendan la insatisfacción estudiantil provoca que no se detecten problemas a tiempo y no se puedan aplicar acciones correctivas oportunamente. En este proyecto se aplican técnicas de Machine Learning para predecir la deserción estudiantil a partir de factores seleccionados: socioeconómicos, psicológicos, demográficos y académicos. Partimos de la recolección y tratamiento de datos y se usaron Redes Neuronales Artificiales para crear un modelo que clasifica a un estudiante entre desertor o a salvo de deserción. Se evalúan las métricas Acurracy, sensibilidad y especificidad para determinar qué tan eficiente es el modelo. El modelo final es capaz de clasificar estudiantes a salvo de deserción de forma correcta el 87% de las veces y logra clasificar a desertores de forma correcta el 60% de las veces.