Maestría en Ingeniería Civil con Mención en Estructuras Metálicas
Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/34193
Browse
Item Análisis y diseño del comportamiento estructural de pórticos arriostrados excéntricos con vigas de enlace aplicado en un edificio de 7 pisos(Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Maestría en Ingeniería Civil con Mención en Estructuras Metálicas, 2024-10-01) Bayas Freire, Jorge Esteban; Ramírez Cabrera, Wladimir JoséThe purpose of this research project is the analysis and structural seismic design of a seven-story building with steel structure and composite columns filled with concrete, located in the city of Ambato with a irregular floor geometry through the implementation of eccentric braced frames (EBF) with link beams in both directions of the structure with a clear length of 60 centimeters. In this research a dynamic analysis of the structure was carried out in the Etabs software verifying parameters within the Ecuadorian construction standard NEC 15 such as floor drifts, strong column - weak beam criteria, then the design of the structural elements with spreadsheets was carried out complying with the ASIC 360-16, AISC 341-16 and ASCE 7-16 regulations, also the connections of both the link and beam-column of the structure were design through finite element analysis of the welding and the connection plates in the IdeaStatica software complying with the AWS D1.1 design regulations. Additionally, a non-linear static analysis (pushover) was performed in both directions of the structure applying incremental load patterns, the capacity curves and performance points for a rare earthquake and a very rare earthquake were determined, an evaluation of these points was carried out within the matrix established in the Vision 200 standard. Finally, it was possible to observe the real overall performance that the structure will have under seismic loads, thus verifying the behavior of the link as an energy dissipator through the formation of plastic hinges. The results obtained in this research project have demonstrated the correct earthquake-resistant design of the eccentric braced frames, obtaining a safe and efficient structural system.