Maestría en Ingeniería Civil con Mención en Estructuras Metálicas
Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/34193
Browse
Item Caracterización de elementos estructurales de acero que hayan sido expuestos a diferentes tiempos y temperaturas debido a un incendio(Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Maestría en Ingeniería Civil con Mención en Estructuras Metálicas, 2022-03) Guamanquispe Vaca, Fernanda Patricia; Espín Lagos, Segundo ManuelIn the present investigative work, different structural elements such as columns, beams and steel straps ASTM A 36 exposed to flagella were characterized, considering different times and temperatures of exposure; For the experimental part, the conditions were simulated by using a conventional furnace in which several samples of steel and combustible material were placed, trying to simulate a real scourge, after which samples were taken at temperatures of 600, 800 and 1000 degrees celsius and exposure times of 30, 45 and 60 minutes, to which hardness and macroscopy tests were carried out in the materials laboratory of the Faculty of Civil and Mechanical Engineering and to be able to determine the mechanical properties of the material subjected under these conditions and compare them with those of the unexposed material; By means of the hardness it was possible to determine the ultimate resistance of the material and from the percentages of Ferrite and Perlite it was also verified that the ultimate resistance toxvi traction increased by 9-10 percentage since the samples were cooled by means of a cold water jet, a condition that occurs when a fire is extinguished; Although it is true that the mechanical properties of the specimens did not vary significantly, from the bibliographic review it was possible to determine that in real time of the flagellum, the resistance to creep decreases in inverse proportion with the temperature, so it is possible that the structure collapses. At that time, from the aforementioned, it can also be said that if the structure does not collapse during the fire and is still standing and without deformations in the structure, it can continue to provide service; Finally, after the analysis, it was possible to conclude that the mechanical properties of the structural steel elements at the time of the fire depend on the time and temperature of its exposure.