Maestría en Ingeniería Civil con Mención en Estructuras Metálicas
Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/34193
Browse
Item Diseño sismorresistente de un edificio de 4 plantas en estructura metálica con un subsuelo en hormigón armado ubicado en la ciudad de Quito(Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Maestría en Ingeniería Civil con Mención en Estructuras Metálicas, 2024-09) Quintana Vásconez, Roberto Sebastián; Peña Jordán, Francisco AgustínThe present thesis shows the structural design of a project located in a high seismic activity zone, with particular focus on seismic safety and compliance with applicable regulations such as AISC 341, AISC 360, AISC 358, NEC 2015, and ASCE 7-16. Based on previous geotechnical studies, a detailed analysis of soil conditions and expected loads was conducted to ensure a solid foundation for the structure. This analysis enabled the identification of the necessary seismic parameters to adapt the structural design to the specific characteristics of the terrain and ensure stability against seismic movements. During the project development, specialized software was used to perform structural modeling. Through these programs, seismic loads were precisely simulated, analyzing both the stresses and deformations that the structure could experience. This approach optimized the structural behavior, ensuring an adequate distribution of stresses and minimizing inter-story drifts and lateral displacements at each level. The results demonstrated robust structural performance under the seismic demands of the site, highlighting the implementation of cruciform steel columns. This structural solution maximized the building's efficiency, leveraging its high moment of inertia, which is essential for resisting lateral loads. Finally, the validation of the design parameters confirmed compliance with seismic design codes, ensuring that the building can withstand the expected seismic demands without compromising its safety or functionality. This comprehensive approach has allowed the development of an optimized structure that meets local requirements, providing a viable and safe solution for high seismic risk conditions.