Las Técnicas de Predicción y su incidencia en la detección de patrones de Deserción Estudiantil en la Carrera de Docencia en Informática de la Facultad de Ciencias Humanas y de la Educación de la Universidad Técnica de Ambato

dc.contributor.advisorÁlvarez Mayorga, Edison Homero
dc.contributor.authorCuji Chacha, Blanca Rocio
dc.date.accessioned2016-10-13T13:23:57Z
dc.date.available2016-10-13T13:23:57Z
dc.date.issued2016
dc.description.abstractEl estudio sobre Deserción Estudiantil tuvo como objetivo primario detectar el porcentaje de abandono escolar que presenta la Carrera de Docencia en Informática, a partir del año 2006 hasta el año 2015, con base en ésta información se aplicó el algoritmo de Arboles de decisión para diseñar un prototipo de modelo predictivo de Deserción Estudiantil, la metodología usada se basa en el método KDD(Knowledge Discovery in Database), detallado en cinco etapas , selección, procesamiento, transformación, minería de datos, e interpretación de la información. Posterior a la aplicación del algoritmo se obtuvo un árbol de decisión de cuatro niveles de profundidad, evidenciando que las variables nivel y notas tienen mayor influencia en la Deserción Estudiantil dentro de la Carrera. Finalmente se obtuvieron cuatro reglas que fueron programadas y visualizadas en una interfaz web, que evalúa a los nuevos posibles desertores de la Carrera de Docencia en Informática. EXECUTE SUMMARY The present study about Student Dropout had as the main goal to determine the percentage of student dropout from the Computer Science Teaching program. The time frame for the study started in 2006 and finished in 2015. In order to process the information gathered we used the Decision Trees algorithm to create a prototype model to predict the percentage of student dropouts. The methodology is based on the Knowledge Discovery in Database(KDD)which has five stages: selection, processing, transformation, data mining, and interpretation. Afterwards, we got a Decision tree with four levels. The variables level and grades are very influent in the student dropout average. Finally, we obtained four rules that were programmed and visualized in a web interface, which assesses the future possible droppers.es_ES
dc.identifier.othert1164mbd
dc.identifier.urihttp://repositorio.uta.edu.ec/handle/123456789/23839
dc.language.isospaes_ES
dc.publisherUniversidad Técnica de Ambato. Facultad de Ingeniería en Sistemas, Electrónica e Industrial. Dirección de Posgrado. Maestría en Gestión de Bases de Datoses_ES
dc.rightsopenAccesses_ES
dc.subjectALGORITMOS DE CLASIFICACIÓNes_ES
dc.subjectMÉTODO KDDes_ES
dc.subjectTOMA DE DECISIONESes_ES
dc.subjectARBOLES DE DECISIÓNes_ES
dc.titleLas Técnicas de Predicción y su incidencia en la detección de patrones de Deserción Estudiantil en la Carrera de Docencia en Informática de la Facultad de Ciencias Humanas y de la Educación de la Universidad Técnica de Ambatoes_ES
dc.typemasterThesises_ES

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Tesis_t1164mbd.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: