Tesis Telecomunicaciones

Permanent URI for this collectionhttp://repositorio.uta.edu.ec/handle/123456789/34848

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Sistema electrónico para el monitoreo y control de variables agrícolas empleando los principios de smart farming y agricultura de precisión
    (Universidad Técnica de Ambato. Facultad de Ingeiería en Sistemas, Electrónica e Industrial. Carrera de Telecomunicaciones, 2025-02) Chato Guangasi Henry Paul; Córdova Córdova Edgar Patricio
    In contemporary society, agriculture plays a pivotal role. Although it is predominantly cultivated in the conventional manner, which is outdoors, there has been a notable increase in the cultivation of crops in controlled environments, such as greenhouses. This shift is driven by the need to safeguard plantations from the adverse effects of abrupt climate changes. Moreover, the integration of advanced technology tools has enabled enhanced control over the soil in which the plantations are situated, a practice known as precision agriculture. In this context, a study was conducted with the primary objective of implementing a system to control and monitor agricultural variables using Precision Agriculture and Smart Farming principles. It is imperative to have soil conducive to successful harvesting, as this is directly linked to achieving higher production and quality. The system is founded on the implementation of LoRaWAN technology, a system capable of managing multiple nodes with a high degree of reliability and without the loss of any information. The system is comprised of four distinct stages: data acquisition, transmission, control and processing, and visualization. The acquisition stage involves the use of sensors to gather data from the soil and the environment within the greenhouse, with a demonstrated reliability of 98.1%.The transmission stage employs LoRaWAN technology, utilizing Heltec LoRa32 microcontrollers and a gateway that functions as a central receiver for data from all nodes. The processing and visualization stage employs a dedicated graphical interface, facilitating the observation of measured variables through time-series graphs. In the control stage, the actuators demonstrated high efficiency, responding promptly and accurately to the programmed instructions
  • Item
    Sistema inalámbrico de energía por fotosíntesis con tecnología IoT, para el monitoreo de invernaderos
    (Universidad Técnica de Ambato. Facultad de Ingeniería en Sistemas, Electrónica e Industrial. Carrera de Telecomunicaciones, 2025-02) Quiroga Condo Diego Alexander; Pallo Noroña Juan Pablo
    The present project proposes to implement a wireless photosynthesis energy system with IoT technology, focused on the efficient monitoring of greenhouses. The system integrates renewable energy and wireless transmission through a rectenna, eliminating dependence on non-renewable sources. The biophotovoltaic system uses plants such as the Nephrolepis exaltata fern, generating energy from photosynthesis. With an effective leaf area of 0.5 m², the plants produce approximately 1,161 W per day, enough to power IoT sensors. The generated energy is transferred wirelessly with an efficiency of 85%, reaching a voltage of 7.99 V at the receiver. The IoT system includes temperature and humidity sensors, strategically distributed to collect real-time data and optimize greenhouse conditions. The data is stored in a cloud database, accessible through an interactive web interface. With 89% reliability, the system ensures continuous and sustainable monitoring, reducing operating costs and contributing to efficient environmental management. The results demonstrate that the technology is viable for low-energy agricultural applications, offering a scalable and adaptable model for different environments.